# UIC-I-\_009\_\_\_

# ANNUAL REPORTS

# ANNUAL CLASS I WELL REPORT

Waste Disposal Well #1 January – December 2015



Western Refining Southwest, Inc.
Bloomfield Terminal
Bloomfield, New Mexico
Permit # - UIC-CL1-009
API # - 30-45-29002

Submitted January 28, 2016

#### Certification

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

Ron Weaver

Regional Terminals Manager

# TABLE OF CONTENTS

| EXECUT | IVE SUMMARY                        | 1  |
|--------|------------------------------------|----|
| 1.0    | INTRODUCTION                       |    |
| 1.1    | Well Information                   |    |
| 2.0    | SUMMARY OF ACTIVITIES              | 4  |
| 3.0    | INJECTION VOLUME                   | 6  |
| 3.1    | Injection Volume                   | 6  |
| 3.2    | Injection Well Down-Time           |    |
| 4.0    | SAMPLING AND CHEMICAL ANALYSIS     | 7  |
| 5.0    | TESTING AND MAINTENANCE ACTIVITIES | 8  |
| 5.1    | Mechanical Integrity Testing       | 8  |
| 6.0    | WELL EVALUATION                    | 10 |
| 6.1    | Well Evaluation                    | 10 |
| 6.2    | Area of Review (AOR)               | 10 |
| 7.0    | CONCLUSIONS AND RECOMMENDATIONS    |    |
| 7.1    | Conclusions                        |    |
| 7.2    | Recommendations                    | 11 |
| 8.0    | REFERENCES                         | 12 |
|        |                                    |    |

#### LIST OF FIGURES

Figure 1 Site Location Map Figure 2 Well Schematic

Figure 3 Disposal Well and Area Wells

#### LIST OF TABLES

Table 1 Monthly Injection Well Report

Table 2 Area of Review

Table 3 2015 Quarterly Analytical Summary

#### LIST OF APPENDICES

Appendix A C-103 Sundry Reports

Appendix B Laboratory Analytical Reports
Appendix C Laboratory Quality Assurance Plan

#### **EXECUTIVE SUMMARY**

This report provides a summary of activities conducted in 2015 on Waste Disposal Well #1 (WDW-#1) at the Western Refining Bloomfield ("Western") facility. The following is a summary of well operations and well testing activities performed in 2015.

#### **Operational Summary**

**Injection Volume -** The volume injected into the disposal well during 2015 was 10,386,505 gallons. Western suspended refining operations at the Bloomfield Refinery on November 23, 2009. The facility currently operates as a Bulk Terminal. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation.

**Sampling and Chemical Analyses -** Injection fluids samples were collected on a quarterly basis for chemical analysis, with the following exception. A quarterly sample was not collected during the fourth quarter of 2015 due to the fact that the injection well was not in operation beyond September 22, 2015 as it was plugged and abandoned. Quarterly samples were collected during the 1<sup>st</sup>, 2<sup>nd</sup>, and 3<sup>rd</sup> quarters of 2015. Analytical results did not exhibit characteristics of being a hazardous waste.

Maintenance Operations – On September 22, 2015 Western Refining was scheduled to conduct the annual Mechanical Integrity Test (MIT), Bradenhead, and High Pressure Shutdown Test with a representative of NMOCD present to observe. The Bradenhead Test and High Pressure Shutdown Test passed. In the course of setting up the MIT test, the annulus casing showed a sudden increase in pressure. The test was suspended and the well was shut down. Western began troubleshooting the problem by pressure testing the injection well tubing. The results of the pressure test showed the integrity of the tubing to be good. Western, at this point, believed the issue was with the well packer. This began the attempt to remove the well packer to have it replaced. In the process of attempting to retrieve the packer the well casing was damaged. The damage was determined to un-salvageable and prompted the decision to have the well plugged and

abandoned. Western received conditional approval on October 26<sup>th</sup>, 2015 from NMOCD District 3 to plug and abandon the well. Well abandonment activities commenced the week of October 26<sup>th</sup>, 2015 with a representative from OCD on-site to witness the plugging activities. Associated C-103s are included in Appendix A.

**Mechanical Integrity Tests** - The 2015 MIT was not conducted as the well failed before the test could be set up. The failure took place on September 22, 2015 and the well was shut down as a result of the failure.

**Area of Review (AOR) -** No wells are known to be currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of WDW #1.

#### Recommendations

Western no longer operates the injection well as a result of un-repairable damage. Western went through the required process to have the well plugged and abandoned. This will be the final report submitted for this well.

#### 1.0 INTRODUCTION

This report provides a summary of activities conducted during 2015 on Waste Disposal Well #1 (WDW #1). The disposal well was part of the Western Bloomfield Terminal facility operations. The facility is located south of Bloomfield, New Mexico in San Juan County. The well location is depicted in Figure 1. The physical address of the facility is as follows:

#### **Bloomfield Terminal**

#50 County Road 4990 Bloomfield, NM 87413

The Bloomfield Terminal is located on approximately 263 acres. Bordering the facility is a combination of federal and private properties. Public property managed by the Bureau of Land Management lies to the south. The majority of undeveloped land in the vicinity of the facility is used extensively for oil and gas production and, in some instances, grazing. U.S. Highway 550 is located approximately one-half mile west of the facility. The topography of the main portion of the site is generally flat with steep bluffs to the north.

WDW #1 is owned by San Juan Refining Company, a New Mexico corporation. It is operated by Western Refining Southwest, Inc. formerly known as Giant Industries Arizona, Inc. an Arizona corporation.

#### 1.1 Well Information

Well Name & Number: Waste Disposal Well #1

OCD UIC: UIC-CL1-009
OCD Discharge Plan Permit Number: GW-130

Well Classification: Class I Non-hazardous

API Number: Class I Non-nazardous 30-045-29002

Legal Location: 1250 FEL, 2442FSL, I Sec 27 T29S R11E

Physical Address: #50 Road 4990, Bloomfield, NM 87413

#### 2.0 SUMMARY OF ACTIVITIES

The following list of activities was conducted in 2015 on WDW #1 located at the Bloomfield facility:

- 02/17/15 1st Quarter 2015 Sampling Event
  04/01/15 2nd Quarter 2015 Sampling Event
  07/01/15 3rd Quarter 2015 Sampling Event
  09/22/15 Braidenhead Test
- 09/22/15 High Pressure Shutdown Test

An analytical sample was not collected during the fourth quarter of 2015 due to the fact that the injection well was not operational for the quarter. Quarterly samples collected for laboratory analysis were submitted to Hall Environmental Laboratories located in Albuquerque, New Mexico. Copies of the analytical reports are provided in Appendix B. A summary of the analytical results is provided in Table 3.

A representative of New Mexico Oil Conservation Division (NMOCD) was on-site to witness the Bradenhead Test, High Pressure Shutdown Test, and MIT on September 22, 2015. Only the Braidenhead and High Pressure Tests were conducted successfully. While setting up the MIT test the well failed and prevented the tests from being preformed.

On September 22, 2015 Western Refining was scheduled to conduct the annual MIT, Bradenhead and, High Pressure Shutdown Test with a representative of NMOCD present to observe. The Bradenhead Test and High Pressure Shutdown Test passed. In the course of setting up the MIT test, the annulus casing showed a sudden increase in pressure. The test was suspended and the well was shut down. Western began troubleshooting the problem by pressure testing the injection well tubing. The results of the pressure test showed the integrity of the tubing to be good. Western, at this point, believed the issue was with the well packer. This began the attempt to remove the well packer to have it replaced. In the process of attempting to retrieve the packer the well casing was damaged. The damage was determined to un-salvageable and prompted the decision to have the well plugged and abandoned. Western received conditional approval on October 26<sup>th</sup>, 2015 from NMOCD District 3 to plug and abandon the well. Well abandonment

activities commenced the week of October 26<sup>th</sup>, 2015 with a representative from OCD on-site to witness the plugging activities. Associated C-103s are included in Appendix A.

#### 3.0 INJECTION VOLUME

The Monthly Injection Well Report summarizing injection volumes and well performance parameters is presented as Table 1.

#### 3.1 Injection Volume

The volume injected into the disposal well during 2015 was 10,386,505 gallons. Throughout 2015 the injection well operated within the operational limits of less than 1,150 psi.

#### 3.2 Injection Well Down-Time

The injection well was down approximately 4,789 hours in 2015. The well was permanently shut down on September 22, 2015.

#### 4.0 SAMPLING AND CHEMICAL ANALYSIS

Samples were collected of the injection water on a quarterly basis and analyzed for the following per Item #9 of the Bloomfield Refinery Class I (Non-Hazardous) Disposal Well UIC-CL1-009 (GW-130) Discharge Permit Renewal dated March 23, 2004:

- Volatile Organic Compounds (VOCs);
- Semi-Volatile Organic Compounds (SVOCs);
- General Chemistry Parameters (included calcium, potassium, magnesium, sodium, bicarbonate, carbonate, chloride, sulfate, total dissolved solids, pH, and conductivity);
- RCRA 8 Metals; and
- RCRA Characteristics for Ignitability, Corrosivity, and Reactivity.

Fourth quarter samples were not collected due to the well not being operational during that time. First quarter samples were collected February 17, 2015. Second quarter samples were collected April 1, 2015. Third quarter samples were collected July 1, 2015. A summary of the analytical results is provided in Table 3.

All quarterly samples collected for laboratory analysis were submitted to Hall Environmental Analysis Laboratory located in Albuquerque, NM. The analytical results conclude that the injected water did not exhibit characteristics of hazardous waste. The respective quarterly analytical reports and Laboratory Quality Assurance Plan are provided in Appendices B and C, respectively.

#### 5.0 TESTING AND MAINTENANCE ACTIVITIES

In addition to the conducting general preventative maintenance activities on the injection well equipment, the following testing and well maintenance activities were conducted during 2015:

- High-pressure shutdown and Bradenhead Testing.
- Well maintenance to fix problems with the well
- Plug and abandonment of the well

The Mechanical Integrity Testing (MIT) did not take place since the well as not able to be repaired. All activities were conducted following NMOCD approval, and such documentation is provided in Appendix A. The following is a brief summary of the testing and well maintenance activities conducted in 2015.

#### 5.1 Mechanical Integrity Testing

A representative of New Mexico Oil Conservation Division (NMOCD) was on-site to witness a High Pressure Shutdown Test, Bradenhead Test, and MIT on September 22, 2015. The Bradenhead and High Pressure Shutdown test were witnessed by Monica Kuehling of NMOCD-Aztec and the MIT test was not able to be preformed.

#### 5.2 Down-hole maintenance

On September 22, 2015 Western Refining was scheduled to conduct the annual MIT, Bradenhead, and High Pressure Shutdown Test with a representative of NMOCD present to observe. The Bradenhead Test and High Pressure Shutdown Test passed. In the course of setting up the MIT test, the annulus casing showed a sudden increase in pressure. The test was suspended and the well was shut down. Western began troubleshooting the problem by pressure testing the injection well tubing. The results of the pressure test showed the integrity of the tubing to be good. Western, at this point, believed the issue was with the well packer. This began the attempt to remove the well packer to have it replaced. In the process of attempting to retrieve the packer the well casing was damaged. The damage was determined to un-salvageable and prompted the decision to

have the well plugged and abandoned. Western received conditional approval on October 26<sup>th</sup>, 2015 from NMOCD District 3 to plug and abandon the well. Well abandonment activities commenced the week of October 26<sup>th</sup>, 2015 with a representative from OCD on-site to witness the plugging activities. Associated C-103s are included in Appendix A.

#### 6.0 WELL EVALUATION

#### 6.1 Well Evaluation

Between January 2015 and September 2015, the injection well operated normally and within the operation limit of 1,150 psi. The well was permanently shut down on September 22, 2015.

#### 6.2 Area of Review (AOR)

The Area of Review data was updated in the 2011 Annual Bottom hole Pressure Surveys and Pressure Fall-Off Tests for Waste Disposal Well #1Report (Cobb & Associates, 2011). At that time, no new wells are known to have been installed within the one-mile radius.

Fifty-eight wells were found within a one-mile radius of WDW #1, which injects water into the Mesaverde formation. The wells and status are spotted on an area map, Figure 3, with a well number listed with the well data in Table 2. Of these wells, 15 have been plugged and abandoned. Four wells are classified as dry holes and are believed to be plugged and abandoned. Twenty-four wells produce petroleum from shallow zones. One well is an Entrada injection well. Fourteen wells produce petroleum from the Dakota and Gallup zones, which are deeper than the Mesaverde interval used for injection purposes. No wells are producing from the injection interval within a one-mile radius of WDW #1.

Twenty-four of the 59 wells have penetrated the injection zone. Of these, three have been plugged. Five wells are currently producing from shallow zones and 14 wells produce from deep zones. There are two injection wells including WDW #1 and Ashcroft SWD #1 well.

No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of WDW #1.

#### 7.0 CONCLUSIONS AND RECOMMENDATIONS

The following is a summary of well operations and well testing activities performed in 2014.

#### 7.1 Conclusions

**Injection Volume -** The volume injected into the disposal well during 2015 was 10,386,505 gallons. Western suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation.

Sampling and Chemical Analyses - Injection fluids samples were collected for chemical analysis on a quarterly basis when the well was operational. Analytical results did not exhibit characteristics of hazardous waste.

**Maintenance Operations -** Down-hole maintenance activities were conducted in 2015 to attempt to repair the injection well. The well was beyond repair and went through the process to have it plugged and abandoned.

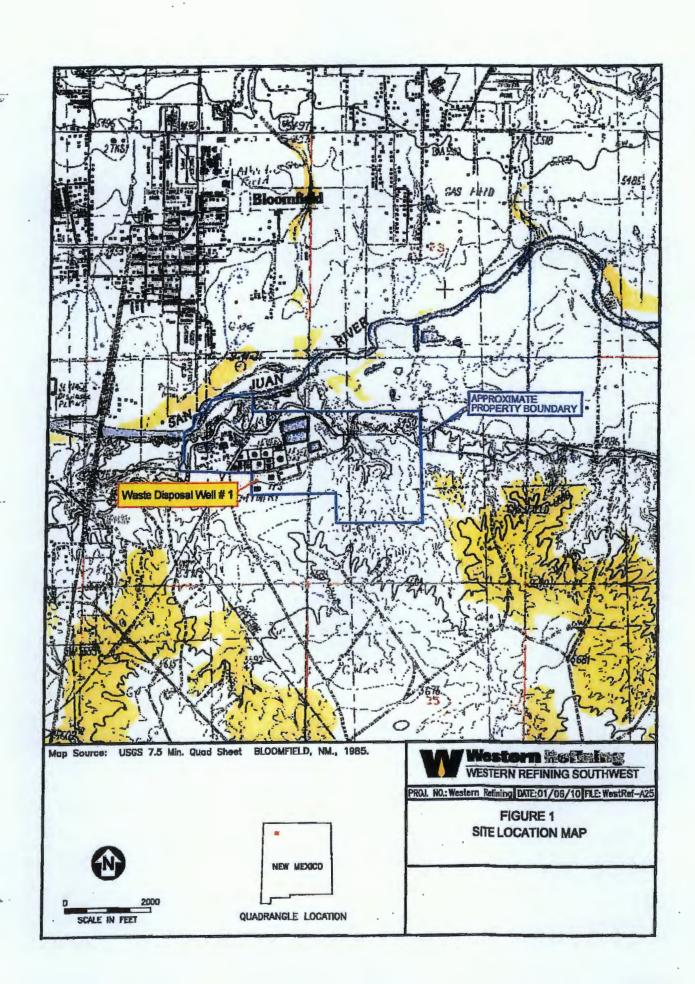
**Mechanical Integrity Tests** - The 2015 well testing program witnessed by a representative of OCD included a High-Pressure Shutdown Test and a Bradenhead Test. The MIT was not conducted since the well was not able to resume operation.

**Well Evaluation** – The injection well operated normally between January and September 2015 within the operational limit of 1,150 psi throughout 2015.

**Area of Review (AOR)** - No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of WDW #1.

#### 7.2 Recommendations

Western no longer operates the injection well as it has failed and was permanently plugged and abandoned. This will be the final report submitted for this well.


#### 8.0 REFERENCES

Cobb & Associates, 2009a, Evaluation of Disposal Well #1 Bloomfield Refinery, August 26, 2009.

Cobb & Associates, 2011, 2011 Annual Bottom hole Pressure Surveys and Pressure Fall-Off Tests for Waste Disposal Well #1Report December 21, 2011.

Bloomfield Refinery Class I (Non-Hazardous) Disposal Well UIC-CL1-009 (GW-130) Discharge Permit Renewal dated March 23, 2004.

# **FIGURES**



#### WESTERN REFINING DISPOSAL WELL #1 NW, SW SECTION 26, T29N, R11W

NO.: 30-045-29002



8-5/8", 48#/ft, Surface Casing @ 830' TOC: Surface

Hole Size: 11.0"

Tubing: 2-7/8", Acid Resistant Fluoroline Cement Lined

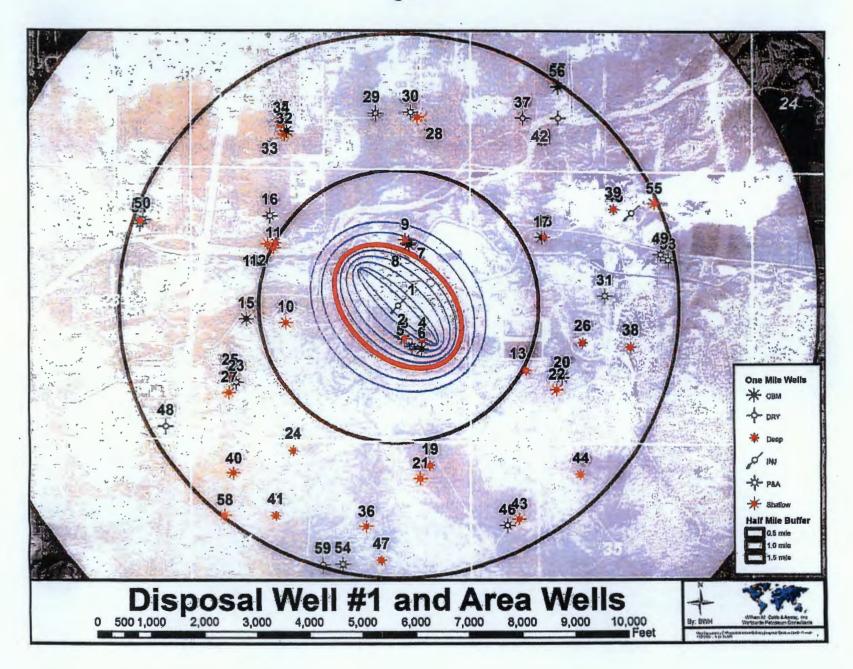
Wt of Tubing: 6.5 #/ft Wt of Tubing Lined: 7.55 #/ft

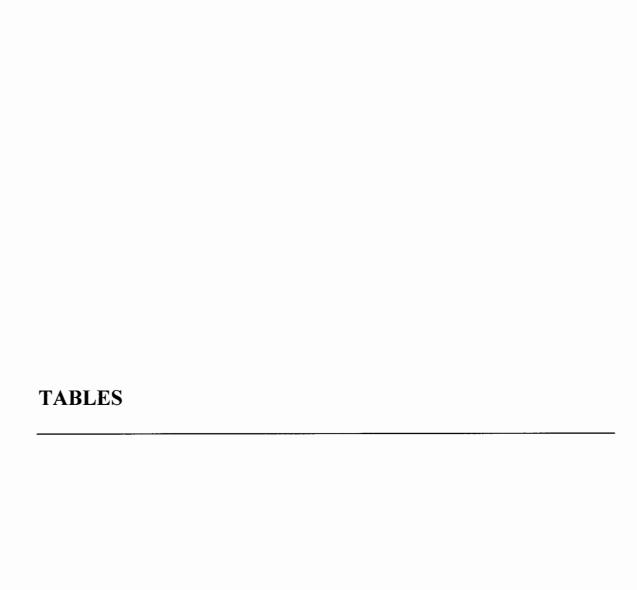
Tubing ID: 2.128"
Tubing Drift ID: 2.000"

Minimum ID @ Packer: ~1.87" estimated

Packer: Unknown Packer Type @ 3221'
Could be a Guiberson or similar model Uni-6

Perforations: 3276' - 3408' 4JSPF 0.5 EHD Top of the Cliff House Formation: 3276'


Fill was cleaned out of well on 4/20/06 Fill was orginally tagged at 3325'


Perforations: 3435' - 3460' 4JSPF 0.5 EHD Top of the Menefee Formation: 3400'

RBP: 3520'

5-1/2", 15.5#/ft, Production Casing @3600'

TOC: Surface Hole Size: 7-7/8"





#### TABLE 1

# WESTERN REFINING SOUTHWEST, INC. - BLOOMFIELD TERMINAL P.O. BOX 159 BLOOMFIELD, NEW MEXICO 87413

#### QUARTERLY INJECTION WELL REPORT DISCHARGE PLAN GW-130 NE1/4 SE1/4 SECTION 27, T29N, R11W NMPM, SAN JUAN COUNTY, NEW MEXICO

|        | AMOUNT<br>OF WATER | AMOUNT<br>TO SOLAR | TOTALIZER<br>AMOUNT | DOWN- | ir     | UECTION PRESSUR | E      |        | INNULAR PRESSUR | E      |       | ON-LINE<br>FLOW RATES |       |
|--------|--------------------|--------------------|---------------------|-------|--------|-----------------|--------|--------|-----------------|--------|-------|-----------------------|-------|
| PERIOD | FROM RIVER         | EVAP PONDS         | INJECTED            | TIME  | MAX    | MIN             | AVG    | MAX    | MIN             | AVG    | MAX   | MIN                   | AVG   |
| 2015   | (GALLONS)          | (GALLONS)          | (GALLONS)           | (HRS) | (PSIA) | (P5iA)          | (PSIA) | (PSIA) | (PSIA)          | (PSIA) | (GPM) | (GPM)                 | (GPM) |
|        |                    |                    |                     |       |        |                 |        |        |                 |        |       |                       |       |
| JAN    | 380                | 1,416,000          | -                   | 744   | 850    | 823             | 836    | 157    | 128             | 147    | 0     | 0                     | 00    |
| FEB    | 1,293              | -                  | 1,435,535           | 231   | 1071   | 817             | 979    | 173    | 127             | 159    | 59    | 0                     | 35    |
| MAR    | 578                | -                  | 1,957,682           | 109   | 1106   | 871             | 1044   | 210    | 141             | 157    | 54    | 0                     | 43    |
|        |                    |                    |                     |       |        |                 |        |        |                 |        |       |                       |       |
| APR    | 1,317              | 285,307            | 1,137,693           | 298   | 1067   | 854             | 946    | 207    | 140             | 164    | 53    | 0                     | 25    |
| MAY    | 990                | 2,156,000          |                     | 744   | 875    | 836             | 853    | 193    | 119             | 150    | 0     | 0                     | 0     |
| JUN    | 635                | 2,267,159          | 1,468,841           | 119   | 1090   | 834             | 991    | 188    | 133             | 157    | 54    | 29                    | 40    |
|        |                    |                    |                     |       |        |                 |        |        |                 |        |       |                       |       |
| JUL    | 587                | 1,292,517          | 1,497,483           | 152   | 1108   | 860             | 1025   | 174    | 115             | 153    | 47    | 36                    | 41    |
| AUG    | -                  | 580,533            | 1,765,467           | ٥     | 1082   | 1025            | 1063   | 191    | 132             | 166    | 43    | 34                    | 39    |
| SEP    | -                  | 2,010,196          | 1,123,804           | 184   | 1104   | 982             | 1059   | 199    | 139             | 169    | 41    | 24                    | 36    |
|        |                    |                    |                     |       |        |                 |        |        |                 |        |       |                       |       |
| ост    | -                  | -                  | -                   | _     | _      | -               | -      | -      | -               | -      | -     | -                     | •     |
| NOV    | -                  | -                  | -                   | -     | -      | -               | -      | -      |                 | -      | -     |                       | -     |
| DEC    | -                  |                    | -                   | -     | -      | -               | -      | _      |                 | _      | _     | •                     | -     |

The total amount injected in 2015 is:

10,386,505 gaile

NOTE: Well was abaondoned October 28, 2015

CERTIFICATION: Helly Coleurs

DATE: 10-29-2015

| Map<br>Seq. | Miles to<br>DW1 | WELLNAME             | #   | <u>APINO</u> | Perf<br>Top | Perf<br>Bottom | <u>Total</u><br>Depth | P&A Date  | <u>ULSTR</u> | OPERATOR         | RESERVOIR       | Status  | Pen.<br>Inj.<br>Zone |
|-------------|-----------------|----------------------|-----|--------------|-------------|----------------|-----------------------|-----------|--------------|------------------|-----------------|---------|----------------------|
| 1           | 0.00            | DISPOSAL             | 1   | 30-045-29002 | 3276        | 3514           | 3514                  |           | I-27-29N-11W | WESTERN REFINING | MESAVERDE       | INJ     | Yes                  |
| 2           | 0.11            | DAVIS GAS COM F      | 1   | 30-045-07825 | 6157        | 6298           | 6298                  | 19-Jan-94 | 1-27-29N-11W | BP AMERICA       | DAKOTA          | P&A     | Yes                  |
| 3           | 0.12            | DAVIS GAS COM G      | 1   | 30-045-23554 | 2827        | 2839           | 2839                  |           | I-27-29N-11W | XTO ENERGY, INC  | CHACRA          | Shallow | No                   |
| 4           | 0.15            | DAVIS GAS COM F      | 1R  | 30-045-30833 | 5314        | 5646           | 6177                  |           | I-27-29N-11W | XTO ENERGY, INC  | GALLUP          | Deep    | Yes                  |
| 5           | 0.16            | Davis Pooled Unit    | 1   | 30-045-07812 |             |                | 1717                  | 18-Oct-82 | I-27-29N-11W | Pre-Ongard       | PICTURED CLIFFS | P&A     | No                   |
| 6           | 0.18            | JACQUE               | 1   | 30-045-34463 | 1543        | 1714           | 1714                  |           | I-27-29N-11W | HOLCOMB O&G      | FRUITLAND COAL  | СВМ     | No                   |
| 7           | 0.23            | JACQUE               | 2   | 30-045-34409 | 1483        | 1689           | 1689                  |           | H-27-29N-11W | HOLCOMB O&G      | FRUITLAND COAL  | СВМ     | No                   |
| 8           | 0.23            | Davis PU/FB Umbarger | 2   | 30-045-07883 |             |                | 1800                  | 18-Aug-55 | H-27-29N-11W | Pre-Ongard       |                 | P&A     | No                   |
| 9           | 0.24            | DAVIS GAS COM F      | 1E  | 30-045-24084 | 2701        | 2810           | 6262                  |           | H-27-29N-11W | XTO ENERGY, INC  | CHACRA          | Shallow | Yes                  |
| 10          | 0.41            | CONGRESS             | 18  | 30-045-25673 | 1680        | 1770           | 5808                  |           | K-27-29N-11W | Burlington       | PICTURED CLIFFS | Shallow | Yes                  |
| 11          | 0.49            | LAUREN KELLY         | 1   | 30-045-27361 | 1326        | 1354           | 1354                  |           | F-27-29N-11W | MANANA GAS INC   | FRUITLAND SAND  | Shallow | No                   |
| 12          | 0.49            | MANGUM               | 1E  | 30-045-24673 | 6024        | 6160           | 6160                  |           | F-27-29N-11W | Burlington       | DAKOTA          | Deep    | Yes                  |
| 13          | 0.51            | CALVIN               | 1   | 30-045-12003 | 6176        | 6348           | 6348                  |           | M-26-29N-11W | Burlington       | DAKOTA          | Deep    | Yes                  |
| 14          | 0.52            | MARIAN S             | 1   | 30-045-27365 | 2578        | 2710           | 2710                  |           | F-27-29N-11W | MANANA GAS INC   | CHACRA          | Shallow | No                   |
| 15          | 0.55            | MANGUM               | 1   | 30-045-07835 | 1388        | 1661           | 6214                  |           | L-27-29N-11W | Burlington       | FRUITLAND COAL  | СВМ     | Yes                  |
| 16          | 0.56            | Black Diamond        | 1   | 30-045-07896 |             |                | 800                   | 09-Nov-78 | C-27-29N-11W | Pre-Ongard       |                 | P&A     | No                   |
| 17          | 0.57            | DAVIS GAS COM J      | 1   | 30-045-25329 | 1462        | 1645           | 4030                  |           | F-26-29N-11W | HOLCOMB O&G      | FRUITLAND COAL  | СВМ     | Yes                  |
| 18          | 0.58            | SULLIVAN GAS COM D   | 1E  | 30-045-24083 | 6086        | 6242           | 6242                  |           | F-26-29N-11W | XTO ENERGY, INC  | DAKOTA          | Deep    | Yes                  |
| 19          | 0.60            | CONGRESS             | 16  | 30-045-25657 | 6086        | 6148           | 6148                  |           | A-34-29N-11W | Burlington       | GALLUP          | Deep    | Yes                  |
| 20          | 0.64            | CALVIN               | 100 | 30-045-31118 | 1468        | 1760           | 1760                  |           | N-26-29N-11W | Burlington       | FRUITLAND COAL  | СВМ     | No                   |
| 21          | 0.64            | SUMMIT               | 9   | 30-045-24574 | 2747        | 2857           | 2857                  |           | A-34-29N-11W | Burlington       | CHACRA          | Shallow | No                   |
| 22          | 0.64            | CONGRESS             | 9   | 30-045-24572 | 2746        | 2869           | 2869                  |           | N-26-29N-11W | ENERGEN          | CHACRA          | Shallow | No                   |
| 23          | 0.64            | Garland "B"          | 1   | 30-045-07903 | 1664        | 1747           | 1747                  | 27-Jun-75 | M-27-29N-11W | Pre-Ongard       | PICTURED CLIFFS | P&A     | No                   |
| 24          | 0.65            | SUMMIT               | 15  | 30-045-25707 | 5326        | 5970           | 5970                  |           | C-34-29N-11W | ENERGEN          | GALLUP          | Deep    | Yes                  |

Table 2

| <u>Map</u><br>Seq. | Miles to<br>DW1 | WELLNAME           | #  | <u>APINO</u> | Perf<br>Top | Perf<br>Bottom | <u>Total</u><br>Depth | P&A Date  | ULSTR        | OPERATOR        | RESERVOIR         | Status  | Pen.<br>Inj.<br>Zone |
|--------------------|-----------------|--------------------|----|--------------|-------------|----------------|-----------------------|-----------|--------------|-----------------|-------------------|---------|----------------------|
| 25                 | 0.65            | GARLAND            | 3  | 30-045-24573 | 2668        | 2790           | 2790                  |           | M-27-29N-11W | ENERGEN         | CHACRA            | Shallow | No                   |
| 26                 | 0.67            | CALVIN             | 3  | 30-045-25612 | 5295        | 5870           | 5870                  |           | K-26-29N-11W | Burlington      | GALLUP            | Deep    | Yes                  |
| 27                 | 0.68            | GARLAND B          | 1R | 30-045-21732 | 1648        | 1678           | 1678                  |           | M-27-29N-11W | Burlington      | PICTURED CLIFFS   | Shallow | No                   |
| 28                 | 0.70            | NANCY HARTMAN      | 2  | 30-045-26721 | 2627        | 2754           | 2754                  |           | P-22-29N-11W | MANANA GAS INC  | CHACRA            | Shallow | No                   |
| 29                 | 0.71            | GRACE PEARCE       | 1  | 30-045-07959 | 1380        | 1466           | 1466                  | 02-Mar-00 | O-22-29N-11W | JOHN C PICKETT  | FRUITLAND SAND    | P&A     | No                   |
| 30                 | 0.72            | HARTMAN            | 1  | 30-045-07961 | 6072        | 6274           | 6274                  | 14-Jun-99 | P-22-29N-11W | MANANA GAS INC  | DAKOTA            | P&A     | Yes                  |
| 31                 | 0.73            | Davis              | 1  | 30-045-07776 |             |                | 1917                  | 11-Nov-58 | M-26-29N-11W | Pre-Ongard      | (N/A)             | P&A     | No                   |
| 32                 | 0.75            | MARY JANE          | 1  | 30-045-26731 | 2622        | 2732           | 2732                  |           | N-22-29N-11W | MANANA GAS INC  | CHACRA            | Shallow | No                   |
| 33                 | 0.76            | ROYAL FLUSH        | 1  | 30-045-34312 | 1440        | 1608           | 1608                  |           | N-22-29N-11W | MANANA GAS INC  | FRUITLAND COAL    | СВМ     | No                   |
| 34                 | 0.79            | соок               | 1  | 30-045-07940 | 6052        | 6226           | 6226                  |           | N-22-29N-11W | MANANA GAS INC  | DAKOTA            | Deep    | Yes                  |
| 35                 | 0.79            | соок               | 2  | 30-045-13089 | 1390        | 1410           | 1410                  |           | N-22-29N-11W | MANANA GAS INC  | FRUITLAND SAND    | Shallow | No                   |
| 36                 | 0.82            | SHELLY             | 2  | 30-045-20755 | 1726        | 1736           | 1736                  |           | G-34-29N-11W | CHAPARRAL O&G   | PICTURED CLIFFS   | Shallow | No                   |
| 37                 | 0.82            | HARE               | 3  | 30-545-02123 |             |                | 2335                  |           | M-23-29N-11W | Pre-Ongard      | FARMINGTON        | DRY     | No                   |
| 38                 | 0.84            | CALVIN             | 1F | 30-045-33093 | 6172        | 6430           | 6430                  |           | J-26-29N-11W | Burlington      | DAKOTA            | Deep    | Yes                  |
| 39                 | 0.85            | SULLIVAN GAS COM D | 1  | 30-045-07733 | 6047        | 6160           | 6160                  |           | B-26-29N-11W | XTO ENERGY, INC | DAKOTA            | Deep    | Yes                  |
| 40                 | 0.85            | ELLEDGE FEDERAL 34 | 11 | 30-045-24834 | 1060        | 1064           | 1525                  |           | D-34-29N-11W | MCELVAIN O&G    | FARMINGTON,NORTH  | Shallow | No                   |
| 41                 | 0.89            | CONGRESS           | 7E | 30-045-24835 | 6202        | 6347           | 6347                  |           | F-34-29N-11W | Burlington      | DAKOTA            | Deep    | Yes                  |
| 42                 | 0.90            | HARE               | 4  | 30-545-02124 |             |                | 2015                  |           | O-23-29N-11W | Pre-Ongard      | FARMINGTON        | DRY     | No                   |
| 43                 | 0.90            | CONGRESS           | 4E | 30-045-24837 | 2784        | 2906           | 6328                  |           | E-35-29N-11W | Burlington      | CHACRA            | Shallow | Yes                  |
| 44                 | 0.90            | CONGRESS           | 15 | 30-045-25675 | 5369        | 5943           | 5943                  |           | C-35-29N-11W | Burlington      | GALLUP            | Deep    | Yes                  |
| 45                 | 0.90            | ASHCROFT SWD       | 1  | 30-045-30788 | 6952        | 7070           | 7382                  |           | B-26-29N-11W | XTO ENERGY, INC | MORRISON BLUFF EN | INJ     | Yes                  |
| 46                 | 0.90            | LEA ANN            | 1  | 30-045-20752 | 1776        | 1790           | 1790                  | 18-Dec-99 | E-35-29N-11W | CHAPARRAL O&G   | PICTURED CLIFFS   | P&A     | No                   |
| 47                 | 0.94            | CONGRESS           | 5  | 30-045-07672 | 6171        | 6340           | 6340                  |           | G-34-29N-11W | Burlington      | DAKOTA            | Deep    | Yes                  |
| 48                 | 0.94            | Viles EE           | 1  | 30-045-07751 |             |                | 870                   |           | P-28-29N-11W | Pre-Ongard      |                   | DRY     | No                   |

Table 2

| Map<br>Seq. | Miles to<br>DW1 | WELLNAME                 | #  | <u>APINO</u> | Perf<br>Top | Perf<br>Bottom | <u>Total</u><br><u>Depth</u> | P&A Date           | ULSTR        | OPERATOR        | RESERVOIR       | Status  | Pen.<br>Ini.<br>Zone |
|-------------|-----------------|--------------------------|----|--------------|-------------|----------------|------------------------------|--------------------|--------------|-----------------|-----------------|---------|----------------------|
| 49          | 0.95            | Sullivan                 | 1X | 30-045-29107 |             |                | 900                          | 23-Jun-55          | G-26-29N-11W | Pre-Ongard      | PICTURED CLIFFS | P&A     | No                   |
| 50          | 0.97            | Madsen Selby Pooled Unit | 2  | 30-045-07895 |             |                | 1600                         | 05 <b>-M</b> ay-78 | A-28-29N-11W | Pre-Ongard      | PICTURED CLIFFS | P&A     | No                   |
| 51          | 0.97            | Masden-Selby             | 3  | 30-045-07762 |             |                | 600                          | 05-Jun-78          | A-28-29N-11W | Pre-Ongard      |                 | P&A     | No                   |
| 52          | 0.97            | MASDEN GAS COM           | 1  | 30-045-07894 | 6023        | 6125           | 6125                         |                    | A-28-29N-11W | XTO ENERGY, INC | DAKOTA          | Deep    | Yes                  |
| 53          | 0.97            | Sullivan                 | 1  | 30-045-07870 |             |                | 1420                         | 31-Aug-53          | G-26-29N-11W | Pre-Ongard      | PICTURED CLIFFS | P&A     | No                   |
| 54          | 0.98            | CONGRESS                 | 1  | 30-045-07674 |             |                | PC                           | 30-Oct-53          | J-34-29N-11W | Pre-Ongard      | PICTURED CLIFFS | P&A     | No                   |
| 55          | 0.98            | EARL B SULLIVAN          | 1  | 30-045-23163 | 2750        | 2761           | 2761                         |                    | B-26-29N-11W | XTO ENERGY, INC | CHACRA          | Shallow | No                   |
| 56          | 0.99            | STATE GAS COM BS         | 1  | 30-045-23550 | 1470        | 1648           | 2761                         |                    | K-23-29N-11W | HOLCOMB O&G     | FRUITLAND COAL  | СВМ     | No                   |
| 57          | 0.99            | PEARCE GAS COM           | 1  | 30-045-07985 | 6154        | 6182           | 6182                         | 10-Mar-97.         | K-23-29N-11W | BP AMERICA      | DAKOTA          | P&A     | Yes                  |
| 58          | 0.99            | CHAPARRAL                | 1  | 30-045-20609 | 1712        | 1731           | 1731                         |                    | E-34-29N-11W | CHAPARRAL O&G   | PICTURED CLIFFS | Shallow | No                   |
| 59          | 0.99            | CONGRESS                 | 2  | 30-545-02151 |             |                | Frtind                       |                    | -34-29N-11W  | Pre-Ongard      | FRUITLAND SAND  | DRY     | No                   |

|         | Total        | <u>Pen In</u> | <u>i. Zone</u> |
|---------|--------------|---------------|----------------|
| Status  | <u>Wells</u> | <u>Yes</u>    | <u>No</u>      |
| P&A     | 15           | 3             | 12             |
| Dry     | 4            | 0             | 4              |
| INJ     | 2            | 2             | 0              |
| СВМ     | 7            | 2             | 5              |
| Shallow | 17           | 3             | 14             |
| Deep    | 14           | 14            | 0              |
| Total   | 59           | 24            | 35             |

Injection Well 2015 Quarterly Analytical Summary

Table 3

|                                                    | Toxicity<br>Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1st Quarter                             | 2nd Quarter                                        | 3rd Quarter                             | 4th Quarte |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------|-----------------------------------------|------------|
| olatile Organic Compounds (ug/L)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2/17/2015                               | 4/1/2015                                           | 7/1/2015                                |            |
| 1,1,1,2-Tetrachloroethane                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| 1,1,1-Trichloroethane                              | territoria de la desta de la desta como de la decidad de la dela del del del de la dela de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| 1,1,2,2-Tetrachloroethane                          | PN 1566 of The assument of Sententian Control (Sententian Control        | < 10                                    | < 10                                               | < 2.0                                   | na         |
| 1,1,2-Trichloroethane                              | iogenedes. Maria l'autorita de como l'achano consecutivo de como en este a reducirio I sel Indirezi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| 1,1-Dichloroethane                                 | NORMERCO BREADENCY OF MATERIA OF HIS PROPERTY AND A STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| 1,1-Dichloroethene                                 | to the common the common terms of the common t       | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| 1,1-Dichloropropene                                | MMCCC California de debido e menor merco e mono qui que e imprejuyo de Maderia, con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| 1,2,3-Trichlorobenzene                             | Minimum assessment and an extensive section of water the section (MA) is added to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| 1,2,3-Trichloropropane                             | NUCCESSOR AND SANDONESS OF A CONTRACT OF A SANDON AND A SANDON ASSESSMENT OF A SANDON ASSESSMENT OF A SANDON A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 10                                    | < 10                                               | < 2.0                                   | na         |
| 1,2,4-Trichlorobenzene                             | report to the first section of the first of the first of the section of the secti       | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| 1,2,4-Trimethylbenzene                             | Ph. Ph. 11 Methodological advantage fra the construction of the control of the          | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| 1,2-Dibromo-3-chloropropane                        | tions to a <b>minimi</b> es work-construction on the orthograph to the New York (New York) (New York)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10                                    | < 10                                               | < 2.0                                   | na         |
| 1,2-Dibromoethane (EDB)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| 1,2-Dichlorobenzene                                | MANUFALLINANE PROPERTY AND AREA PROPERTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| 1,2-Dichloroethane (EDC)                           | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| 1,2-Dichloropropane                                | to the second se       | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| 1,3,5-Trimethylbenzene                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| 1,3-Dichlorobenzene                                | entropy of the state of the second and the state of the second se       | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| 1,3-Dichloropropane                                | oproporate action Control of the Section Section (Section Section Sect       | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| 1,4-Dichlorobenzene                                | 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| 1-Methylnaphthalene                                | POLTO IL SOCIELIZZAZIONI, NI TENNOMI NOVO. 100 MORRORI CON 100 MORRORI (NEL 100 MORRORI (NE       | < 20                                    | < 20                                               | < 4.0                                   | na         |
| 2,2-Dichloropropane                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 10                                    | < 10                                               | < 2.0                                   | na         |
| 2-Butanone                                         | galanda <b>et que proprio de la composiçõe de la composiçõe</b> | < 50                                    | < 50                                               | 11                                      | na         |
| 2-Chlorotoluene                                    | ger og a demokratiske er spremerer skrivet i i diskrivet vil fransfriktivans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| 2-Hexanone                                         | eran men menteranskar en er er grentet i 1. japan pila har sjøret den en er er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 50                                    | < 50                                               | < 1.0                                   | na         |
| 2-Methylnaphthalene                                | es and a representative state of the annument of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 20                                    | < 20                                               | < 4.0                                   | na         |
| 4-Chlorotoluene                                    | Which are Department and The Color of Color of Color of State of S       | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| 4-Choropyltoluene                                  | ROMA PROSESS NO NO SIGNASANDAN AND AND AND AND AND AND AND AND AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| 4-Methyl-2-pentanone                               | The state of the s       | < 50                                    | < 50                                               | < 10                                    | na         |
| Acetone                                            | and the second section of the second second section of the second       | 500                                     | 76                                                 | 72                                      | na         |
| Benzene                                            | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 5.0                                   | < 5.0                                              | < 1.0                                   |            |
| $0.27 \pm 0.01 \pm 0.0000000000000000000000000000$ | SOU CONTRACT TO THE CONTRACT OF THE CONTRACT O       | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| Bromobenzene                                       | and the second of the second o       | -                                       | **************************************             | *************************************** | na         |
| Bromodichloromethane                               | e ne pour seminare papare mai tenti i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| Bromoform                                          | and the latter was to be about the first of        | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| Bromomethane                                       | MCMC-6 [14 - 24 - 24 Annien der der nicht der met der met der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 15                                    | < 15                                               | < 3.0                                   | na         |
| Carbon disulfide                                   | addition to the latest of the state of the s       | < 50                                    | < 50                                               | < 10                                    | na         |
| Carbon Tetrachloride                               | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| Chloropthono                                       | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| Chloroform                                         | 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 10                                    | < 10                                               | < 2.0                                   | na         |
| Chloromothono                                      | 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 5.0                                   | < 5.0<br>< 15                                      | < 1.0                                   | na         |
| Chloromethane                                      | the contract of the second of        | < 15                                    | MANAGEMENT AND | < 3.0                                   | na         |
| cis-1,2-DCE                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 5.0<br>< 5.0                          | < 5.0<br>< 5.0                                     | < 1.0<br>< 1.0                          | na         |
| cis-1,3-Dichloropropene                            | ennin talkalajanterintaja tajan majajari in timojo oli ji ji ji ji                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *************************************** | ***************************************            | ######################################  | na         |
| Dibromochloromethane                               | Marine Marine and the second s       | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| Dibromomethane                                     | to a reference a manager of a contract to a factorial contract to a factorial contract to a contra       | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| Dichlorodifluoromethane                            | i de la compania del compania de la compania del compania de la compania del compania de la compania de la compania de la compania del compania de la compania de la compania de la compania de la compania del compania        | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| Ethylbenzene                                       | FOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| Hexachlorobutadiene                                | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| Isopropylbenzene                                   | man and the second seco       | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| Methyl tert-butyl ether (MTBE)                     | to a me continue contratable to the contratable to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 5.0                                   | < 5.0                                              | < 1.0                                   | na         |
| Methylene Chloride                                 | et also productives on the elementary of the last elementary of the        | < 15                                    | < 15                                               | < 3.0                                   | na         |
| Naphthalene                                        | Control of the Contro       | < 10                                    | < 15                                               | < 2.0                                   | na         |
| n-Butylbenzene                                     | The state of the s       | < 15                                    | < 5.0                                              | < 1.0                                   | na         |
| n-Propylbenzene                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 5.0                                   | < 10                                               | < 3.0                                   | na         |

Injection Well

Table 3

# 2015 Quarterly Analytical Summary

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Toxicity Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1st Quarter  | 2nd Quarter  | 3rd Quarter | 4th Ouarter |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-------------|-------------|
| sec-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CHAIR ACCE TO THE STATE OF THE  | < 5.0        | < 5.0        | < 1.0       | na          |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oppunggenum - Bussinesses sins "vissi gudisesh das sins im din im in in in in November in in 14 kelinis na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 5.0        | < 5.0        | < 1.0       | na          |
| tert-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ANY TRANSPORTED TO THE PROPERTY OF THE PROPERT | < 5.0        | < 5.0        | < 1.0       | na          |
| Tetrachloroethene (PCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 5.0        | < 5.0        | < 1.0       | na          |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | management of a contract of the contract of th | < 5.0        | < 5.0        | 1.5         | na          |
| trans-1,2-DCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | o compositivativa e e e e e e e e e e e e e e e e e e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 5.0        | < 5.0        | < 1.0       | na          |
| trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nick in distriction of the property of the first indicate and an extension of the contract of  | < 5.0        | < 5.0        | < 1.0       | na          |
| Trichloroethene (TCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | european yr var yn y gegynagia refinan fanna fanna fannar y section eila, aneche en c'hren en del ekklor e fila                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 5.0        | < 5.0        | < 1.0       | na          |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | an de respectación de secono con contracto de contracto de contracto de contracto de contracto de contracto de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 5.0        | < 5.0        | < 1.0       | na          |
| Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 5.0        | < 5.0        | < 1.0       | na          |
| Xylenes, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AND ALTERNATION AND AND AND AND AND AND AND AND AND AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 7.5        | < 7.5        | < 1.5       | na          |
| mi-Volatile Organic Compounds (ug/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1            |              |             |             |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | < 10         | < 10        | na          |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on consequent and executative and control of policy and the control of the contro | < 10         | < 10         | < 10        | na          |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | erandelliski i ostoon liitioti in oli. Polkuriaks nohaak ölderhekköleh ohte helistöin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 10         | < 10         | < 10        | na          |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 10         | < 10         | < 10        | na          |
| 1-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W. C. OR. PRINCE OF CHARLEST SPECIAL PRINCES OF CHARLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 10         | < 10         | < 10        | na          |
| 2,4,5-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | < 10         | < 10        | na          |
| 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 10         | < 10         | < 10        | na          |
| 2,4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ENGLISH STATE OF THE PROPERTY  | < 20         | < 20         | < 20        | na          |
| 2,4-Dientolophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | manus mendenni. Manusum manusum and en en en entre mendenni mendenni par indexe en feren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17           | < 10         | < 10        | na          |
| 2,4-Dinitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6) on healthing . While the sales and the high electronical about a text of the besser of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 20         | < 20         | < 20        | na          |
| 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 10         | < 10         | < 10        | na          |
| 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | detected and described delay of the control of the  | < 10         | < 10         | < 10        | na          |
| 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | too keep value of the second s | < 10         | < 10         | < 10        | na          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nya amanin <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 10         | < 10         | < 10        | na          |
| 2-Chlorophenol 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COMPANION CONTRACTOR AND A TABLE TO SEE THE TABLE TO SEE THE SECTION OF THE SECTI | < 10         | < 10         | < 10        | na          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the man court of the section of the  | 55           | 14           | < 10        | na          |
| 2-Methylphenol 2-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Burner Ber German Bernard Bern | < 10         | < 10         | < 10        | na          |
| ALT CHEMICAL PROPERTY OF THE P       | E SENTENDA - MANAGEMENT OF STREET STREET, STREET ST.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 10         | < 10         | < 10        | na          |
| 2-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | difficulty for the advances of the system of the section of the se | < 10         | < 10         | < 10        | na          |
| 3,3'-Dichlorobenzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Alberta Comment of the state of the second of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79           | 48           | < 10        | na na       |
| 3+4-Methylphenol 3-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d a phagaine and the same and the arthur and middle and the same and same and the same and same and the same and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 10         | < 10         | < 10        | na na       |
| <ul> <li>Composition described described and the control of th</li></ul> | STATUTE THE CONTRACT OF STATE  | < 20         | < 20         | < 20        | na          |
| 4,6-Dinitro-2-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | grunnane wegapenggapunghi anana sigo i i i i isana si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 10         | < 10         | < 10        | na          |
| 4-Bromophenyl phenyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and the second of the second o | < 10         | < 10         | < 10        | na na       |
| 4-Chloro-3-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | manufacture in garage of the second contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | < 10         | < 10        | na          |
| 4-Chloroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | regarders spaces a constitution to the space of the first                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 10         | < 10         | < 10        | na          |
| 4-Chlorophenyl phenyl ether 4-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | < 10         | < 10        | na          |
| 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | < 10         | < 10        | na          |
| A THE RESIDENCE OF THE PROPERTY OF THE PROPERT       | was the contraction and the contract of the co | < 10         | < 10         | < 10        | na na       |
| Acenaphthene<br>Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | grand popular and the rest of the contraction of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 10         | < 10         | < 10        | na          |
| Comprehensive Co       | or ringer green to the color date and the McModell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 10         | < 10         | < 10        | na          |
| Aniline<br>Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the s | < 10         | < 10         | < 10        | na          |
| Anunracene Azobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | constants where the second control of the second of the se | < 10         | < 10         | < 10        | na          |
| Benz(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TITLE TO BE A THE BURGET OF STREET AND THE STREET OF STREET STREET, AND STREET STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 10         | < 10         | < 10        | na na       |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | < 10         | < 10        | na na       |
| Benzo(a)pyrene Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Marie and Marie Ma | < 10         | < 10         | < 10        | na          |
| Benzo(g,h,i)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and the second service of the second  | < 10         | < 10         | < 10        | na          |
| Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E Principal Commission of the  | < 10         | < 10         | < 10        | na          |
| The street and approximation of the street o       | e branchedbron februarien reneal'h sokrenieu e - 256 - 2566 (1975 - 1975). Franc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 20         | 25           | < 20        | na na       |
| Benzoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The state of the s | < 10         | < 10         | < 10        | na          |
| Benzyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | once the experience of the annual tendence contains the tendence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 10         | < 10         | < 10        | na          |
| Bis(2-chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | alterfacility ( - Magnetius edits - sk. peopleserietus tot et netro-occusionistististististis to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |              | < 10        |             |
| Bis(2-chloroethyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.71.11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 10<br>< 10 | < 10<br>< 10 | < 10        | na<br>na    |

Injection Well

Table 3

# 2015 Quarterly Analytical Summary

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                      |                      |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|----------------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1st Quarter             | 2nd Quarter          | 3rd Quarter          | 4th Quarter |
| Bis(2-ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10                    | 12                   | < 10                 | na          |
| Butyl benzyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The state of the s | < 10                    | < 10                 | < 10                 | na          |
| Carbazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AND THE PROPERTY OF THE PROPER | < 10                    | < 10                 | < 10                 | na          |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A CONTRACTOR OF THE CONTRACTOR | < 10                    | < 10                 | < 10                 | na          |
| Dibenz(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | And the second s | < 10                    | < 10                 | < 10                 | na          |
| Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Charles Anna Rose Williams Laborator of Charles and Ch | < 10                    | < 10                 | < 10                 | na          |
| Diethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Magazania (Sampionia) o constitutivi di il 1 4 5 + 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 10                    | < 10                 | < 10                 | na          |
| Dimethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10                    | < 10                 | < 10                 | na          |
| Di-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Millione reduces and part the relativistic of the removal of the fill of the contract of the c | < 10                    | < 10                 | < 10                 | na          |
| Di-n-octyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - New York Committee Commi | < 10                    | < 10                 | < 10                 | na          |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10                    | < 10                 | < 10                 | na          |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | enterconnect of an interconnect transfer of the second of the order of the second of the order o | < 10                    | < 10                 | < 10                 | na          |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 10                    | < 10                 | < 10                 | na          |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 10                    | < 10                 | < 10                 | na          |
| Hexachlorocyclopentadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - particulationalists funcional established disease con succession                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 10                    | < 10                 | < 10                 | na          |
| Hexachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 10                    | < 10                 | < 10                 | na          |
| Indeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Annex control of the  | < 10                    | < 10                 | < 10                 | na          |
| Isophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ML/TWAMAY AND HORSEN AND THE BLOCK AND THE WAY ON THE STATE OF THE S   | < 10                    | < 10                 | < 10                 | na          |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 10                    | < 10                 | < 10                 | na          |
| Nitrobenzene N-Nitrosodimethylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 10<br>< 10            | < 10<br>< 10         | < 10<br>< 10         | na          |
| the second annual second secon | and the second of the second o | < 10                    | < 10                 | < 10                 | na<br>na    |
| N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | estimations.combered to to a solution of the second of the | < 10                    | < 10                 | < 10                 | na          |
| Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 20                    | < 20                 | < 20                 | na          |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TOOOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 10                    | < 10                 | < 10                 | na          |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The control of the state of the | 21                      | < 10                 | < 10                 | na          |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and the second section of the second section of the second section of the second section of the second section | < 10                    | < 10                 | < 10                 | na          |
| Pyridine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 10                    | < 10                 | < 10                 | na          |
| General Chemistry (mg/L unless otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |                      |             |
| Specific Conductance (umhos/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2900                    | 4900                 | 2000                 | na          |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Man about at a majorate to a majorate de set tra 100 f. set (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 950                     | 1400                 | 480                  | na          |
| Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48                      | 9.5                  | 65                   | na          |
| Total Dissolved Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2290                    | 2890                 | 1220                 | na          |
| pH (pH Units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and the first and the first and the first                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.19                    | 6.94                 | 7.45                 | na          |
| Bicarbonate (As CaCO3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                     | 358.6                | 274.6                | na          |
| Carbonate (As CaCO3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 2.0                   | < 2.000              | < 2.000              | na          |
| Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180                     | 300                  | 120                  | na          |
| Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38                      | 57                   | 28                   | na          |
| Potassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                      | 21                   | 7.7                  | na          |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | experimental control of the first think of our own                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 560                     | 750                  | 280                  | na          |
| Total Alkalinity (as CaCO3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 300                     | 358.6                | 274.6                | na          |
| Total Metals (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.000                 | Z 0 000              | < 0.000              |             |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.020                 | < 0.020              | < 0.020              | na          |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.36                    | 0.44                 | 0.27                 | na          |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.0020                | < 0.0020             | < 0.0020             | na          |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.0060<br>< 0.0050    | < 0.0060<br>< 0.0050 | < 0.0060<br>< 0.0050 | na          |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.0050                | < 0.0050             | < 0.0050             | na          |
| Selenium Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.0050                | < 0.050              | < 0.050              | na          |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.0030                | < 0.0030             | < 0.0030             | na          |
| Ignitability, Corrosivity, and Reactivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U.Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                | < 0.00020            | <u>\ 0.0010</u>      | na          |
| Reactive Cyanide (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.0200                | < 1.00               | < 1.00               | na          |
| Reactive Cyanide (mg/L)  Reactive Sulfide (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1100 Marie 110 M | < 0.0200                | 0.87                 | < 1.00               | na<br>na    |
| - Angel, Angel managaman menangan mengenangan mengenangan kan bersada a 1 1 1 200 sebagai angelangan mengensah mengensah angelangan mengensah angelangan mengensah men | 1400 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *********************** |                      |                      |             |
| Ignitability (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 140° F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | >200                    | >200                 | >200                 | na          |
| Corrosivity (ph Units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\leq 2 \text{ or} \geq 12.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.22                    | 7.17                 | 7.36                 | na          |

Notes:

na = well shut down

# APPENDIX A



E-mail address

# NEW MEXICO ENERGY, MUNERALS & NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION AZTEC DISTRICT OFFICE 1000 RIO BRAZOS ROAD AZTEC NM 87410 1505) 334-6178 FAX: (505) 334-8170

(505) 334-6178 FAX: (505) 334-6170 http://emnrd.state.nm.us/ocd/District III/3distric.htm

|                |             |                 |                       |                     |                    |                 |                     | OIL CONS. DILL                                      |
|----------------|-------------|-----------------|-----------------------|---------------------|--------------------|-----------------|---------------------|-----------------------------------------------------|
|                |             | _               |                       | BR                  | ADENH<br>(submit 1 | Copy to above   | T REPORT e address) | OIL CONS. DIV DIST. 3 SEP 22 2015  \$30-0 45- 29002 |
| Date of        | f Test      | <del>, 9.</del> | 22                    | 15                  | Operator           | Sanjaar         | Jung API #          | #30-0 45- Z900Z                                     |
| Proper         | ty Nar      | ne S            | 2000                  | Sw Dw               | ell No             | Location        | : Unit L Section    | 27 Township 29 Range //                             |
| Well S         | tatus(      | Shut-In         |                       |                     |                    |                 |                     | asing 152 Bradenhead 0                              |
| OPE            | N BR        | ADENH           | EAD AN                | D INTERM            | IEDIATE T          | O ATMOSPH       | ERE INDIVIDUAL      | LLY FOR 15 MINUTES EACH                             |
| Testing        | вн          | Bradeni<br>Int  | PRESSU<br>head<br>Csg | RE<br>INTERI<br>Int | M<br>Csg           |                 |                     | ARACTERISTICS<br>INTERMEDIATE                       |
| TIME<br>5 min_ | 0           |                 | 154                   |                     |                    | Steady Flow_    |                     |                                                     |
| 10 min_        | 0           | ·               | 153                   |                     |                    | Surges          |                     | .,,                                                 |
| 15 min_        | 0           |                 | 155                   |                     |                    | Down to Not     | hing                |                                                     |
| 20 min_        |             |                 |                       |                     |                    | Nothing         |                     |                                                     |
| 25 min_        | <del></del> |                 |                       |                     |                    | Gas             | /                   |                                                     |
| 30 min_        |             |                 |                       |                     |                    | Gas & Water     |                     |                                                     |
|                |             |                 |                       |                     |                    | Water           | '                   |                                                     |
| If brade       | nhead       | flowed w        | ater, chec            | k all of the        | descriptions       | that apply belo | ow:                 |                                                     |
|                | CLEAI       | R               | FRESH                 | SA                  | LTY                | SULFUR          | BLACK               | ·                                                   |
| 5 MINU         | TE SH       | UT-IN P         | RESSUR                | E BR                | ADENHEA            | D_0_            | INTERMEDIAT         | E/V/A                                               |
| REMAR          | KS:         | Hari            | Du                    | 66 le               | hene               | Deneo           | <u>(</u>            |                                                     |
|                | $\sim$ 1    | (               |                       | . 0                 | , \                | 1 int           | 1 - MINI            | Shutti                                              |
|                | ( Y         | o en            | eng                   | When                | copieu             |                 |                     | Thuttie.                                            |
| By M           |             | 4///            |                       |                     | Wi                 | itness_//       | omea (rech          | Mug                                                 |
|                | (Positi     | on)             |                       |                     |                    |                 |                     | ·                                                   |

| Submit 1 Copy To Appropriate District Office                                                                                     | State of New Me                                                                | xico                                     | Form C-103                                                                                         |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|
| District I – (575) 393-6161                                                                                                      | Energy, Minerals and Natu                                                      | ral Resources                            | Revised August 1, 2011                                                                             |  |  |  |  |
| 1625 N. French Dr., Hobbs, NM 88240                                                                                              |                                                                                |                                          | WELL API NO.                                                                                       |  |  |  |  |
| <u>District II</u> (575) 748-1283<br>811 S. First St., Artesia, NM 88210                                                         | OIL CONSERVATION                                                               | DIVISION                                 | 30-045-29002-00 5. Indicate Type of Lease                                                          |  |  |  |  |
| District III - (505) 334-6178                                                                                                    | 1220 South St. Fran                                                            | cis Dr.                                  | STATE FEE                                                                                          |  |  |  |  |
| 1000 Rio Brazos Rd., Aztec, NM 87410<br><u>District IV</u> – (505) 476-3460                                                      | Santa Fe, NM 87                                                                | <b>'</b> 505                             | 6. State Oil & Gas Lease No.                                                                       |  |  |  |  |
| 1220 S. St. Francis Dr., Santa Fe, NM                                                                                            | ,                                                                              |                                          | N/A                                                                                                |  |  |  |  |
| 87505                                                                                                                            |                                                                                | ·                                        |                                                                                                    |  |  |  |  |
| SUNDRY NOT<br>(DO NOT USE THIS FORM FOR PROPO<br>DIFFERENT RESERVOIR. USE "APPLI<br>PROPOSALS.)                                  | 7. Lease Name or Unit Agreement Name<br>Disposal                               |                                          |                                                                                                    |  |  |  |  |
| 1. Type of Well: Oil Well                                                                                                        | Gas Well Other - (Disposal W                                                   | Vell)                                    | 8. Well Number: #001                                                                               |  |  |  |  |
|                                                                                                                                  | efining Co. / Western Refining South                                           |                                          | 9. OGRID Number: 037218                                                                            |  |  |  |  |
| Bloomfield Terminal                                                                                                              |                                                                                |                                          |                                                                                                    |  |  |  |  |
| 3. Address of Operator                                                                                                           |                                                                                |                                          | 10. Pool name or Wildcat:                                                                          |  |  |  |  |
| # 50 Road 4990, Bloomfield, NM,                                                                                                  | 87413                                                                          |                                          | Blanco/Mesa Verde                                                                                  |  |  |  |  |
| 4. Well Location                                                                                                                 |                                                                                |                                          |                                                                                                    |  |  |  |  |
| Unit Letter I : 24                                                                                                               | feet from the south                                                            | line and125                              | 50 feet from the East line                                                                         |  |  |  |  |
| Section 27                                                                                                                       | Township 29 N                                                                  | Range 11 W                               | NMPM County San Juan                                                                               |  |  |  |  |
|                                                                                                                                  | 11. Elevation (Show whether DR,                                                | RKB, RT, GR, etc.,                       |                                                                                                    |  |  |  |  |
|                                                                                                                                  |                                                                                |                                          |                                                                                                    |  |  |  |  |
| NOTICE OF IN PERFORM REMEDIAL WORK  TEMPORARILY ABANDON  PULL OR ALTER CASING  DOWNHOLE COMMINGLE  OTHER: Annual MIT, Bradenhead | PULL OR ALTER CASING   MULTIPLE COMPL   CASING/CEMENT JOB   DOWNHOLE COMMINGLE |                                          |                                                                                                    |  |  |  |  |
| 13. Describe proposed or comp                                                                                                    | pleted operations. (Clearly state all p                                        |                                          | d give pertinent dates, including estimated date                                                   |  |  |  |  |
|                                                                                                                                  |                                                                                | C. For Multiple Cor                      | npletions: Attach wellbore diagram of                                                              |  |  |  |  |
| proposed completion or re-                                                                                                       | completion.                                                                    |                                          |                                                                                                    |  |  |  |  |
| Western Refining Southwest, Inc. – Class I injection well referenced abbe here to monitor the tests.                             | Bloomfield Terminal requests permove. The tests will be performed on           | ission to perform th<br>Tuesday, Septemb | ne annual MIT and Bradenhead test on the er 22 <sup>th</sup> , 2015. Monica Kuehling has agreed to |  |  |  |  |
| Spud Date:                                                                                                                       | Rig Release Da                                                                 | te:                                      |                                                                                                    |  |  |  |  |
| I hereby certify that the information                                                                                            | above is true and complete to the be                                           | st of my knowledg                        | e and belief.                                                                                      |  |  |  |  |
|                                                                                                                                  |                                                                                |                                          |                                                                                                    |  |  |  |  |
| SIGNATURE MANDA //                                                                                                               | TITLE En                                                                       | vironmental Coord                        | nator DATE 9/3/15                                                                                  |  |  |  |  |
| Type or print name <u>Matthew Kr</u> For State Use Only                                                                          | akow E-mail address                                                            | : <u>matt.krakow@</u>                    | wnr.com PHONE: <u>505-632-4169</u>                                                                 |  |  |  |  |
| APPROVED BY:                                                                                                                     | theling TITLE Envir                                                            | ronmantal Ev                             | 19 ineer DATE 9/2/2015                                                                             |  |  |  |  |

| HEZ ZING OFFICIAL TORKS, TORKS STORE AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Submit 1 Copy To Appropriate District Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | State of New Mexico                                                                                               | Form C-103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| <u>District I</u> – (575) 393-6161 Energy,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minerals and Natural Resources                                                                                    | Revised July 18, 2013 WELL API NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 1625 N. French Dr., Hobbs, NM 88240<br><u>District II</u> – (575) 748-1283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ONSERVATION DIVISION                                                                                              | 30-045-29002-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 611 S. Filst St., Altesia, NW 66210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 220 South St. Francis Dr.                                                                                         | 5. Indicate Type of Lease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1000 Rio Brazos Rd., Aztec, NM 87410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Santa Fe, NM 87505                                                                                                | STATE FEE 6. State Oil & Gas Lease No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| <u>District IV</u> – (505) 476-3460<br>1220 S. St. Francis Dr., Santa Fe, NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 mile 1 5, 1 mil 5 / 5 65                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 87505 SUNDRY NOTICES AND RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PORTS ON WELLS                                                                                                    | 7. Lease Name or Unit Agreement Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| (DO NOT USE THIS FORM FOR PROPOSALS TO DRILL<br>DIFFERENT RESERVOIR. USE "APPLICATION FOR PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OR TO DEEPEN OR PLUG BACK TO A                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| PROPOSALS.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                   | Disposal  8. Well Number: #001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 1. Type of Well: Oil Well Gas Well 2. Name of Operator: San Juan Refining Co. / W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Other – (Disposal Well)                                                                                           | 9. OGRID Number: 037218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Bloomfield Terminal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | estern Remning Southwest, nic                                                                                     | 9. OGRID Nulliber. 037218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 3. Address of Operator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   | 10. Pool name or Wildcat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| #50 Road 4990, Bloomfield, NM, 87413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   | Blanco/Mesa Verde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 4. Well Location Unit Letter I: 2442 fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | et from the South line and                                                                                        | 1250 feet from the East line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ownship 29N Range 11 W                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n (Show whether DR, RKB, RT, GR, etc.)                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 12 Charle Appropriate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Box to Indicate Nature of Notice, I                                                                               | Papart or Other Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 12. Check Appropriate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| NOTICE OF INTENTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                   | SEQUENT REPORT OF:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| PERFORM REMEDIAL WORK  PLUG AND TEMPORARILY ABANDON CHANGE PLUG AND TEMPORARILY ABANDON DESCRIPTION OF THE PROPERTY AND TEMPORARILY ABANDON DESCRIPTION OF THE PROPERTY AND TEMPORARILY ABANDON DESCRIPTION OF THE PROPERTY AND THE PROPERTY AND THE PROPERTY ABANDON DESCRIPTION OF THE PROPERTY AND T | ABANDON   REMEDIAL WORK                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| PULL OR ALTER CASING   MULTIPLE (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| DOWNHOLE COMMINGLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| CLOSED-LOOP SYSTEM   OTHER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | □ OTHER:                                                                                                          | П                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 13. Describe proposed or completed operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s. (Clearly state all pertinent details, and                                                                      | give pertinent dates, including estimated date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| of starting any proposed work). SEE RUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LE 19.15.7.14 NMAC. For Multiple Con                                                                              | npletions: Attach wellbore diagram of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| proposed completion or recompletion.  Western RefineryCo. plugged and abandoned the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | is well on October 27 - 29, 2015 per the                                                                          | e attached report:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Plug #1 with CR at 2785' spot 170 sxs (200.6 cf) Class B cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | from 3533' to 2785'. Tag TOC at 2782'.                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Plug #2 with squeeze holes at 2750' and CR at 2700' spot 56 sx CR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s (66.08 cf) Class B cement from 2750' to 2647 squ                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Plug #3 with squeeze holes at 2390' and CR at 2350' spot 50 sxs cover the Chacra top. Tag TOC at 2180'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (59 cf) Class B cement from 2390' to 2235' squeeze                                                                | e 32 sxs outside, 5 sxs below leaving 13 sxs on top of CR to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Plug #4 with 20 sxs (23.6 cf) Class B cement from 1748' to 1570' Plug #5 with 24 sxs (28.32 cf) Class B cement from 1407' to 1197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | to cover the Fruitland top.                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Plug #6 spot 113 sxs (133.34 cf) Class B cement from 915' to 150<br>Plug #7 with 53 sxs Class B cement top off casings and install P&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ', to top off casing from 150' to surface with 16 sxs to<br>A marker with coordinates 36° 41′ 48″ N/ 107° 58′ 26′ | cover the surface casing shoe.  W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 10/27/15 Rode cement equipment to location. Spot in and RU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                   | 1500 PSI, OK. Pressure test casing to 1000 PSI, OK. Spot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| plug #1 with calculated TOC at 2785'. Sting out. RD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   | A NO. CONT. |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ol><li>Spot plug #2 with calculated TOC at 2647'. Disp</li></ol>                                                 | lace with 15.2 mud. POH. Reverse circulate clean. RU A-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| set 5-1/2" CR at 2350'. Spot plug #3 with calculated To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Casing started flowing from squeeze floies. Si we DC at 2235'. Displace with mud. Reverse circulate v             | ell. Check well pressures: casing 180 PSI. Wireline RIH and well clean. RD. SDFD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 10/29/15 Travel to location. Spot in and RU cement equipment off casings and install P&A marker with coordinates 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TIH and tag TOC at 2180'. Circulate well clean. S                                                                 | pot plugs #4, #5 and #6. Cut off wellhead. Spot plug #7 top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| on casings and install Pow market with cooldinates so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Spud Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rig R Approved for plugging of well<br>Liability under bond is retaine                                            | ed pending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| PNR only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Receipt of C-103 (Subsequent<br>Plugging) which may be found                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| I hereby certify that the information above is true a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd complet page under forms                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                                                                                                                 | / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| SIGNATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TITLE Agent / Enjine                                                                                              | a DATE /1/18/2415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Type or print name Jaka Thankson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E-mail address: _ j olmew ola                                                                                     | hen. net PHONE: 505-320-1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| For State Use Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DEPUTY OIL & GAS                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| APPROVED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TITLE DISTRICT                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Conditions of Approval (if any):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |

OIL CONS. DIV DIST. 3 SEP 25 2015 WELL API NO. ~045-29002-0 rte Tyr Submit I'Copy To Appropriate District State of New Mexico Form C-103 Energy, Minerals and Natural Resources Revised August 1, 2011 District I -- (575) 393-6161 1625 N. French Dr., Hobbs, NM 88240 District II - (575) 748-1283 30-045-29002-00 OIL CONSERVATION DIVISION 811 S. First St., Artesia, NM 88210 5. Indicate Type of Lease District III - (505) 334-6178 1220 South St. Francis Dr. STATE FEE 🖂 1000 Rio Brazos Rd., Aztec, NM 87410 Santa Fe, NM 87505 District IV - (505) 476-3460 6. State Oil & Gas Lease No. 1220 S. St. Francis Dr., Santa Fe, NM N/A 87505 SUNDRY NOTICES AND REPORTS ON WELLS 7. Lease Name or Unit Agreement Name (DO NOT USE THIS FORM FOR PROPOSALS TO DRILL OR TO DEEPEN OR PLUG BACK TO A Disposal DIFFERENT RESERVOIR. USE "APPLICATION FOR PERMIT" (FORM C-101) FOR SUCH 8. Well Number: #001 1. Type of Well: Oil Well Gas Well Other - (Disposal Well) 2. Name of Operator San Juan Refining Co. / Western Refining Southwest, Inc. -9. OGRID Number: 037218 **Bloomfield Refinery** 3. Address of Operator 10. Pool name or Wildcat: # 50 Road 4990, Bloomfield, NM, 87413 Blanco/Mesa Verde 4. Well Location Unit Letter 2442 feet from the south line and 1250 feet from the East line 11 W Section Township 29 N Range **NMPM** County San Juan 11. Elevation (Show whether DR, RKB, RT, GR, etc.) 12. Check Appropriate Box to Indicate Nature of Notice, Report or Other Data NOTICE OF INTENTION TO: SUBSEQUENT REPORT OF: PERFORM REMEDIAL WORK PLUG AND ABANDON REMEDIAL WORK ALTERING CASING **TEMPORARILY ABANDON CHANGE PLANS** COMMENCE DRILLING OPNS. P AND A **PULL OR ALTER CASING** MULTIPLE COMPL CASING/CEMENT JOB DOWNHOLE COMMINGLE OTHER: Troubleshoot injection well problem OTHER: 13. Describe proposed or completed operations. (Clearly state all pertinent details, and give pertinent dates, including estimated date of starting any proposed work). SEE RULE 19.15.7.14 NMAC. For Multiple Completions: Attach wellbore diagram of proposed completion or recompletion. Western Refining Southwest, Inc. - Bloomfield Terminal is going to pressure test the tubing on the Class I injection well referenced above. The test would consist of setting a plug using a wireline rig and pressurizing the tubing to determine its integrity in response to the recent MIT failure. The tests will be performed on Thursday, September 25th, 2015. Rig Release Date: Spud Date: I hereby certify that the information above is true and complete to the best of my knowledge and belief. SIGNATURE Environmental Coordinator E-mail address: matt.krakow@wnr.com PHONE: 505-632-4169 Type or print name Matthew Krakow For State Use Only, SEP 2 5 2015 APPROVED BY: Conditions of Approval (if any):

# APPENDIX B



Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109
TEL: 505-345-3975 FAX: 505-345-4107
Website: www.hallenvironmental.com

March 16, 2015

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4166 FAX (505) 632-3911

RE: Injection Well 2-17-15 OrderNo.: 1502723

#### Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 2/18/2015 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <a href="www.hallenvironmental.com">www.hallenvironmental.com</a> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

Only

4901 Hawkins NE

Albuquerque, NM 87109

#### Date Reported: 3/16/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

**Project:** Injection Well 2-17-15

**Collection Date:** 2/17/2015 11:20:00 AM

Lab ID: 1502723-001

Matrix: AQUEOUS

Received Date: 2/18/2015 8:00:00 AM

| Analyses                      | Result | RL (    | Qual Units | DF  | Date Analyzed         | Batch  |
|-------------------------------|--------|---------|------------|-----|-----------------------|--------|
| EPA METHOD 300.0: ANIONS      |        |         |            |     | Analyst:              | LGT    |
| Chloride                      | 950    | 50      | mg/L       | 100 | 2/18/2015 2:54:18 PM  | R24392 |
| Sulfate                       | 48     | 5.0     | mg/L       | 10  | 2/18/2015 2:41:53 PM  | R24392 |
| EPA METHOD 7470: MERCURY      |        |         |            |     | Analyst:              | MMD    |
| Mercury                       | ND     | 0.00020 | mg/L       | 1   | 2/26/2015 9:17:02 AM  | 17887  |
| EPA 6010B: TOTAL RECOVERABLE  | METALS |         |            |     | Analyst:              | ELS    |
| Arsenic                       | ND     | 0.020   | mg/L       | 1   | 2/21/2015 12:09:42 PM | 17834  |
| Barium                        | 0.36   | 0.020   | mg/L       | 1   | 2/21/2015 12:09:42 PM | 17834  |
| Cadmium                       | ND     | 0.0020  | mg/L       | 1   | 2/21/2015 12:09:42 PM | 17834  |
| Calcium                       | 180    | 10      | mg/L       | 10  | 2/21/2015 12:11:20 PM | 17834  |
| Chromium                      | ND     | 0.0060  | mg/L       | 1   | 2/21/2015 12:09:42 PM | 17834  |
| Lead                          | ND     | 0.0050  | mg/L       | 1   | 2/21/2015 12:09:42 PM | 17834  |
| Magnesium                     | 38     | 1.0     | mg/L       | 1   | 2/21/2015 12:09:42 PM | 17834  |
| Potassium                     | 15     | 1.0     | mg/L       | 1   | 2/21/2015 12:09:42 PM | 17834  |
| Selenium                      | ND     | 0.050   | mg/L       | 1   | 2/21/2015 12:09:42 PM | 17834  |
| Silver                        | ND     | 0.0050  | mg/L       | 1   | 2/21/2015 12:09:42 PM | 17834  |
| Sodium                        | 560    | 10      | mg/L       | 10  | 2/21/2015 12:11:20 PM | 17834  |
| EPA METHOD 8270C: SEMIVOLATII | _ES    |         |            |     | Analyst:              | DAM    |
| Acenaphthene                  | ND     | 10      | μg/L       | 1   | 2/23/2015 4:43:18 PM  | 17825  |
| Acenaphthylene                | ND     | 10      | μg/L       | 1   | 2/23/2015 4:43:18 PM  | 17825  |
| Aniline                       | ND     | 10      | μg/L       | 1   | 2/23/2015 4:43:18 PM  | 17825  |
| Anthracene                    | ND     | 10      | μg/L       | 1   | 2/23/2015 4:43:18 PM  | 17825  |
| Azobenzene                    | ND     | 10      | μg/L       | 1   | 2/23/2015 4:43:18 PM  | 17825  |
| Benz(a)anthracene             | ND     | 10      | μg/L       | 1   | 2/23/2015 4:43:18 PM  | 17825  |
| Benzo(a)pyrene                | ND     | 10      | μg/L       | 1   | 2/23/2015 4:43:18 PM  | 17825  |
| Benzo(b)fluoranthene          | ND     | 10      | μg/L       | 1   | 2/23/2015 4:43:18 PM  | 17825  |
| Benzo(g,h,i)perylene          | ND     | 10      | μg/L       | 1   | 2/23/2015 4:43:18 PM  | 17825  |
| Benzo(k)fluoranthene          | ND     | 10      | μg/L       | 1   | 2/23/2015 4:43:18 PM  | 17825  |
| Benzoic acid                  | ND     | 20      | μg/L       | 1   | 2/23/2015 4:43:18 PM  | 17825  |
| Benzyl alcohol                | ND     | 10      | μg/L       | 1   | 2/23/2015 4:43:18 PM  | 17825  |
| Bis(2-chloroethoxy)methane    | ND     | 10      | μg/L       | 1   | 2/23/2015 4:43:18 PM  | 17825  |
| Bis(2-chloroethyl)ether       | ND     | 10      | μg/L       | 1   | 2/23/2015 4:43:18 PM  | 17825  |
| Bis(2-chloroisopropyl)ether   | ND     | 10      | μg/L       | 1   | 2/23/2015 4:43:18 PM  | 17825  |
| Bis(2-ethylhexyl)phthalate    | ND     | 10      | μg/L       | 1   | 2/23/2015 4:43:18 PM  | 17825  |
| 4-Bromophenyl phenyl ether    | ND     | 10      | μg/L       | 1   | 2/23/2015 4:43:18 PM  | 17825  |
| Butyl benzyl phthalate        | ND     | 10      | μg/L       | 1   | 2/23/2015 4:43:18 PM  | 17825  |
| Carbazole                     | ND     | 10      | μg/L       | 1   | 2/23/2015 4:43:18 PM  | 17825  |
| 4-Chloro-3-methylphenol       | ND     | 10      | μg/L       | 1   | 2/23/2015 4:43:18 PM  | 17825  |
| 4-Chloroaniline               | ND     | 10      | μg/L       | 1   | 2/23/2015 4:43:18 PM  | 17825  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 19

- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order 1502723

Date Reported: 3/16/2015

### Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: Injection Well CLIENT: Western Refining Southwest, Inc.

Injection Well 2-17-15 Collection Date: 2/17/2015 11:20:00 AM Project: Received Date: 2/18/2015 8:00:00 AM

Lab ID: 1502723-001 Matrix: AQUEOUS Result **RL Qual Units DF** Date Analyzed Batch **Analyses EPA METHOD 8270C: SEMIVOLATILES** Analyst: DAM ND 10 μg/L 2/23/2015 4:43:18 PM 17825 2-Chloronaphthalene 1 ND 10 μg/L 1 2/23/2015 4:43:18 PM 17825 2-Chlorophenol 4-Chlorophenyl phenyl ether ND 10 μg/L 1 2/23/2015 4:43:18 PM 17825 ND 10 μg/L 2/23/2015 4:43:18 PM 17825 Chrysene 1 Di-n-butyl phthalate ND 10 μg/L 1 2/23/2015 4:43:18 PM 17825 Di-n-octyl phthalate ND 10 μg/L 1 2/23/2015 4:43:18 PM 17825 ND 10 μg/L 1 2/23/2015 4:43:18 PM 17825 Dibenz(a,h)anthracene ND 10 μg/L 2/23/2015 4:43:18 PM 17825 Dibenzofuran ND 10 2/23/2015 4:43:18 PM 17825 μg/L 1 1,2-Dichlorobenzene ND 10 μg/L 1 2/23/2015 4:43:18 PM 17825 1,3-Dichlorobenzene ND 10 μg/L 1 2/23/2015 4:43:18 PM 17825 1,4-Dichlorobenzene 17825 3,3'-Dichlorobenzidine ND 10 μg/L 1 2/23/2015 4:43:18 PM Diethyl phthalate ND 10 μg/L 1 2/23/2015 4:43:18 PM 17825 Dimethyl phthalate ND 10 μg/L 1 2/23/2015 4:43:18 PM 17825 2,4-Dichlorophenol ND 20 μg/L 2/23/2015 4:43:18 PM 17825 17 10 μg/L 1 2/23/2015 4:43:18 PM 17825 2,4-Dimethylphenol 4,6-Dinitro-2-methylphenol ND 20 μg/L 1 2/23/2015 4:43:18 PM 17825 ND 20 μg/L 1 2/23/2015 4:43:18 PM 17825 2,4-Dinitrophenol ND 2/23/2015 4:43:18 PM 17825 2,4-Dinitrotoluene 10 μg/L 1 2.6-Dinitrotoluene ND 10 μg/L 1 2/23/2015 4:43:18 PM 17825 ND 10 1 2/23/2015 4:43:18 PM 17825 Fluoranthene μg/L Fluorene ND 10 μg/L 1 2/23/2015 4:43:18 PM 17825 Hexachlorobenzene ND 10 μg/L 1 2/23/2015 4:43:18 PM 17825 Hexachlorobutadiene ND 10 μg/L 1 2/23/2015 4:43:18 PM 17825 Hexachlorocyclopentadiene ND 10 μg/L 1 2/23/2015 4:43:18 PM 17825 ND 17825 10 μg/L 1 2/23/2015 4:43:18 PM Hexachloroethane ND 10 2/23/2015 4:43:18 PM 17825 Indeno(1,2,3-cd)pyrene μg/L 17825 ND 10 μg/L 1 2/23/2015 4:43:18 PM Isophorone ND 10 μg/L 1 2/23/2015 4:43:18 PM 17825 1-Methylnaphthalene 2-Methylnaphthalene ND 10 μg/L 1 2/23/2015 4:43:18 PM 55 10 1 2/23/2015 4:43:18 PM 17825 2-Methylphenol μg/L 3+4-Methylphenol 79 10 μg/L 1 2/23/2015 4:43:18 PM 17825 ND 10 μg/L 1 2/23/2015 4:43:18 PM 17825 N-Nitrosodi-n-propylamine ND N-Nitros odimethylamine 10 μg/L 1 2/23/2015 4:43:18 PM 17825 N-Nitrosodiphenylamine ND 10 μg/L 2/23/2015 4:43:18 PM 17825 ND 10 μg/L 1 2/23/2015 4:43:18 PM 17825 Naphthalene 17825 2-Nitroaniline ND 10 μg/L 1 2/23/2015 4:43:18 PM 3-Nitroaniline ND 10 μg/L 2/23/2015 4:43:18 PM 17825 ND 10 2/23/2015 4:43:18 PM 17825

Refer to the OC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

4-Nitroaniline

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit

Page 2 of 19

P Sample pH Not In Range

μg/L

Reporting Detection Limit

Lab Order 1502723

Date Reported: 3/16/2015

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 2-17-15

Lab ID: 1502723-001

Client Sample ID: Injection Well

**Collection Date:** 2/17/2015 11:20:00 AM

Received Date: 2/18/2015 8:00:00 AM

| Analyses                        | Result | RL        | Qual | Units | DF | Date Analyzed         | Batch |
|---------------------------------|--------|-----------|------|-------|----|-----------------------|-------|
| EPA METHOD 8270C: SEMIVOLATILES | 3      |           |      |       |    | Analyst               | DAM   |
| Nitrobenzene                    | ND     | 10        |      | μg/L  | 1  | 2/23/2015 4:43:18 PM  | 17825 |
| 2-Nitrophenol                   | ND     | 10        |      | μg/L  | 1  | 2/23/2015 4:43:18 PM  | 17825 |
| 4-Nitrophenol                   | ND     | 10        |      | µg/L  | 1  | 2/23/2015 4:43:18 PM  | 17825 |
| Pentachlorophenol               | ND     | 20        |      | μg/L  | 1  | 2/23/2015 4:43:18 PM  | 17825 |
| Phenanthrene                    | ND     | 10        |      | μg/L  | 1  | 2/23/2015 4:43:18 PM  | 17825 |
| Phenol                          | 21     | 10        |      | μg/L  | 1  | 2/23/2015 4:43:18 PM  | 1782  |
| Pyrene                          | ND     | 10        |      | μg/L  | 1  | 2/23/2015 4:43:18 PM  | 1782  |
| Pyridine                        | ND     | 10        |      | μg/L  | 1  | 2/23/2015 4:43:18 PM  | 1782  |
| 1,2,4-Trichlorobenzene          | ND     | 10        |      | μg/L  | 1  | 2/23/2015 4:43:18 PM  | 1782  |
| 2,4,5-Trichlorophenol           | ND     | 10        |      | μg/L  | 1  | 2/23/2015 4:43:18 PM  | 1782  |
| 2,4,6-Trichlorophenol           | ND     | 10        |      | μg/L  | 1  | 2/23/2015 4:43:18 PM  | 1782  |
| Surr: 2-Fluorophenol            | 42.5   | 17.6-104  |      | %REC  | 1  | 2/23/2015 4:43:18 PM  | 1782  |
| Surr: Phenol-d5                 | 52.5   | 17.7-89.9 |      | %REC  | 1  | 2/23/2015 4:43:18 PM  | 1782  |
| Surr: 2,4,6-Tribromophenol      | 62.3   | 16.3-122  |      | %REC  | 1  | 2/23/2015 4:43:18 PM  | 1782  |
| Surr: Nitrobenzene-d5           | 83.4   | 45.3-117  |      | %REC  | 1  | 2/23/2015 4:43:18 PM  | 1782  |
| Surr: 2-Fluorobiphenyl          | 72.8   | 43-113    |      | %REC  | 1  | 2/23/2015 4:43:18 PM  | 1782  |
| Surr: 4-Terphenyl-d14           | 43.6   | 47.6-122  | S    | %REC  | 1  | 2/23/2015 4:43:18 PM  | 1782  |
| EPA METHOD 8260B: VOLATILES     |        |           |      |       |    | Analyst               | cadg  |
| Benzene                         | ND     | 5.0       |      | μg/L  | 5  | 2/26/2015 12:27:45 PM | R245  |
| Toluene                         | ND     | 5.0       |      | μg/L  | 5  | 2/26/2015 12:27:45 PM |       |
| Ethylbenzene                    | ND     | 5.0       |      | μg/L  | 5  | 2/26/2015 12:27:45 PM | R245  |
| Methyl tert-butyl ether (MTBE)  | ND     | 5.0       |      | μg/L  | 5  | 2/26/2015 12:27:45 PM | R245  |
| 1,2,4-Trimethylbenzene          | ND     | 5.0       |      | μg/L  | 5  | 2/26/2015 12:27:45 PM | R245  |
| 1,3,5-Trimethylbenzene          | ND     | 5.0       |      | μg/L  | 5  | 2/26/2015 12:27:45 PM | R245  |
| 1,2-Dichloroethane (EDC)        | ND     | 5.0       |      | μg/L  | 5  | 2/26/2015 12:27:45 PM | R245  |
| 1,2-Dibromoethane (EDB)         | ND     | 5.0       |      | μg/L  | 5  | 2/26/2015 12:27:45 PM | R245  |
| Naphthalene                     | ND     | 10        |      | μg/L  | 5  | 2/26/2015 12:27:45 PM | R245  |
| 1-Methylnaphthalene             | ND     | 20        |      | μg/L  | 5  | 2/26/2015 12:27:45 PM | R245  |
| 2-Methylnaphthalene             | ND     | 20        |      | μg/L  | 5  | 2/26/2015 12:27:45 PM | R245  |
| Acetone                         | 500    | 50        |      | μg/L  | 5  | 2/26/2015 12:27:45 PM | R245  |
| Bromobenzene                    | ND     | 5.0       |      | μg/L  | 5  | 2/26/2015 12:27:45 PM | R245  |
| Bromodichloromethane            | ND     | 5.0       |      | μg/L  | 5  | 2/26/2015 12:27:45 PM | R245  |
| Bromoform                       | ND     | 5.0       |      | μg/L  | 5  | 2/26/2015 12:27:45 PM | R245  |
| Bromomethane                    | ND     | 15        |      | μg/L  | 5  | 2/26/2015 12:27:45 PM | R245  |
| 2-Butanone                      | ND     | 50        |      | μg/L  | 5  | 2/26/2015 12:27:45 PM | R245  |
| Carbon disulfide                | ND     | 50        |      | μg/L  | 5  | 2/26/2015 12:27:45 PM | R245  |
| Carbon Tetrachloride            | ND     | 5.0       |      | μg/L  | 5  | 2/26/2015 12:27:45 PM | R245  |
| Chlorobenzene                   | ND     | 5.0       |      | μg/L  | 5  | 2/26/2015 12:27:45 PM | R245  |
| Chloroethane                    | ND     | 10        |      | μg/L  | 5  | 2/26/2015 12:27:45 PM |       |

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 19

- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order 1502723

Date Reported: 3/16/2015

#### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

**Project:** Injection Well 2-17-15

**Lab ID:** 1502723-001

Client Sample ID: Injection Well

Collection Date: 2/17/2015 11:20:00 AM Received Date: 2/18/2015 8:00:00 AM

**RL Qual Units Analyses** Result DF Date Analyzed Batch **EPA METHOD 8260B: VOLATILES** Analyst: cadq Chloroform ND 5.0 μg/L 5 2/26/2015 12:27:45 PM R24544 Chloromethane ND 15 μg/L 5 2/26/2015 12:27:45 PM R24544 2/26/2015 12:27:45 PM R24544 2-Chlorotoluene ND 5.0 μg/L 5 4-Chlorotoluene ND 5.0 5 μg/L 2/26/2015 12:27:45 PM R24544 cis-1.2-DCE ND 5.0 μg/L 5 2/26/2015 12:27:45 PM R24544 cis-1,3-Dichloropropene ND 5.0 5 μg/L 2/26/2015 12:27:45 PM R24544 1,2-Dibromo-3-chloropropane ND 10 5 2/26/2015 12:27:45 PM R24544 μg/L Dibromochloromethane ND 5.0 5 μg/L 2/26/2015 12:27:45 PM R24544 ND Dibromomethane 5.0 μg/L 5 2/26/2015 12:27:45 PM R24544 1,2-Dichlorobenzene ND 5.0 μg/L 5 2/26/2015 12:27:45 PM R24544 ND 1,3-Dichlorobenzene 5.0 μg/L 5 2/26/2015 12:27:45 PM R24544 1,4-Dichlorobenzene ND 5.0 μg/L 5 2/26/2015 12:27:45 PM R24544 Dichlorodifluoromethane ND 5.0 μg/L 5 2/26/2015 12:27:45 PM R24544 1,1-Dichloroethane ND 5.0 5 2/26/2015 12:27:45 PM R24544 μg/L 1,1-Dichloroethene ND 5.0 5 μg/L 2/26/2015 12:27:45 PM R24544 ND 5.0 5 1,2-Dichloropropane μg/L 2/26/2015 12:27:45 PM R24544 1,3-Dichloropropane ND 5.0 μg/L 5 2/26/2015 12:27:45 PM R24544 ND 10 5 2,2-Dichloropropane μg/L 2/26/2015 12:27:45 PM R24544 1,1-Dichloropropene ND 5.0 μg/L 5 2/26/2015 12:27:45 PM R24544 Hexachlorobutadiene ND 5.0 μg/L 5 2/26/2015 12:27:45 PM R24544 2-Hexanone ND 50 μg/L 5 2/26/2015 12:27:45 PM R24544 Isopropylbenzene ND 5.0 μg/L 5 2/26/2015 12:27:45 PM R24544 4-Isopropyltoluene ND 5.0 5 μg/L 2/26/2015 12:27:45 PM R24544 ND 50 4-Methyl-2-pentanone μg/L 2/26/2015 12:27:45 PM R24544 Methylene Chloride ND 15 5 μg/L 2/26/2015 12:27:45 PM R24544 n-Butylbenzene ND 15 μg/L 5 2/26/2015 12:27:45 PM R24544 n-Propylbenzene ND 5.0 5 μg/L 2/26/2015 12:27:45 PM R24544 sec-Butylbenzene ND 5.0 μg/L 5 2/26/2015 12:27:45 PM R24544 Styrene ND 5.0 μg/L 5 2/26/2015 12:27:45 PM R24544 tert-Butylbenzene ND 5.0 μg/L 5 2/26/2015 12:27:45 PM R24544 1,1,1,2-Tetrachloroethane ND 5.0 μg/L 5 2/26/2015 12:27:45 PM R24544 1,1,2,2-Tetrachloroethane ND 10 μg/L 5 2/26/2015 12:27:45 PM R24544 Tetrachloroethene (PCE) ND 5.0 μg/L 5 2/26/2015 12:27:45 PM R24544 trans-1,2-DCE ND 5.0 5 2/26/2015 12:27:45 PM R24544 μg/L trans-1,3-Dichloropropene ND 5.0 5 μg/L 2/26/2015 12:27:45 PM R24544 ND 1,2,3-Trichlorobenzene 5.0 5 μg/L 2/26/2015 12:27:45 PM R24544 1,2,4-Trichlorobenzene ND 5.0 μg/L 5 2/26/2015 12:27:45 PM R24544 1,1,1-Trichloroethane ND 5.0 μg/L 5 2/26/2015 12:27:45 PM R24544 1,1,2-Trichloroethane ND 5.0 μg/L 2/26/2015 12:27:45 PM R24544

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 19

- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order 1502723

Date Reported: 3/16/2015

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

 Project:
 Injection Well 2-17-15
 Collection Date: 2/17/2015 11:20:00 AM

 Lab ID:
 1502723-001
 Matrix: AQUEOUS
 Received Date: 2/18/2015 8:00:00 AM

| Analyses                     | Result | RL (   | Qual | Units      | DF | Date Analyzed         | Batch         |
|------------------------------|--------|--------|------|------------|----|-----------------------|---------------|
| EPA METHOD 8260B: VOLATILES  |        |        |      |            |    | Analys                | t: cadg       |
| Trichloroethene (TCE)        | ND     | 5.0    |      | μg/L       | 5  | 2/26/2015 12:27:45 PM | 1 R24544      |
| Trichlorofluoromethane       | ND     | 5.0    |      | μg/L       | 5  | 2/26/2015 12:27:45 PM | 1 R24544      |
| 1,2,3-Trichloropropane       | ND     | 10     |      | μg/L       | 5  | 2/26/2015 12:27:45 PM | 1 R24544      |
| Vinyl chloride               | ND     | 5.0    |      | μg/L       | 5  | 2/26/2015 12:27:45 PM | 1 R24544      |
| Xylenes, Total               | ND     | 7.5    |      | μg/L       | 5  | 2/26/2015 12:27:45 PM | 1 R24544      |
| Surr: 1,2-Dichloroethane-d4  | 101    | 70-130 |      | %REC       | 5  | 2/26/2015 12:27:45 PM | 1 R24544      |
| Surr: 4-Bromofluorobenzene   | 103    | 70-130 |      | %REC       | 5  | 2/26/2015 12:27:45 PM | 1 R24544      |
| Surr: Dibromofluoromethane   | 101    | 70-130 |      | %REC       | 5  | 2/26/2015 12:27:45 PM | 1 R24544      |
| Surr: Toluene-d8             | 98.7   | 70-130 |      | %REC       | 5  | 2/26/2015 12:27:45 PM | 1 R24544      |
| SM2510B: SPECIFIC CONDUCTANC | E      |        |      |            |    | Analys                | t: JRR        |
| Conductivity                 | 2900   | 0.010  |      | µmhos/cm   | 1  | 2/18/2015 12:49:27 PM | 1 R24379      |
| SM4500-H+B: PH               |        |        |      |            |    | Analys                | t: <b>JRR</b> |
| рН                           | 7.19   | 1.68   | Н    | pH units   | 1  | 2/18/2015 12:49:27 PM | 1 R24379      |
| SM2320B: ALKALINITY          |        |        |      |            |    | Analys                | t: <b>JRR</b> |
| Bicarbonate (As CaCO3)       | 300    | 20     |      | mg/L CaCO3 | 1  | 2/18/2015 12:49:27 PM | 1 R24379      |
| Carbonate (As CaCO3)         | ND     | 2.0    |      | mg/L CaCO3 | 1  | 2/18/2015 12:49:27 PM | 1 R24379      |
| Total Alkalinity (as CaCO3)  | 300    | 20     |      | mg/L CaCO3 | 1  | 2/18/2015 12:49:27 PM | 1 R24379      |
| SM2540C MOD: TOTAL DISSOLVED | SOLIDS |        |      |            |    | Analys                | t: <b>KS</b>  |
| Total Dissolved Solids       | 2290   | 40.0   | *    | mg/L       | 1  | 2/19/2015 3:19:00 PM  | 17793         |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 5 of 19
- P Sample pH Not In Range
- RL Reporting Detection Limit

# Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

**Client:** 

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

150219026

Address:

4901 HAWKINS NE SUITE D

1502723

**ALBUQUERQUE, NM 87109** 

Project Name:

Attn:

ANDY FREEMAN

### **Analytical Results Report**

Sample Number

150219026-001

Sampling Date 2/17/2015

Date/Time Received 2/19/2015 1:20 PM

Client Sample ID

1502723-001E / INJECTION WELL

Sampling Time 11:20 AM

Matrix

Water

Sample Location

Comments

| Parameter          | Result | Units    | PQL  | Analysis Date | Analyst | Method      | Qualifier |
|--------------------|--------|----------|------|---------------|---------|-------------|-----------|
| Cyanide (reactive) | ND     | mg/L     | 0.02 | 2/24/2015     | CRW     | SW646 CH7   |           |
| Flashpoint         | >200   | °F       |      | 2/25/2015     | KFG     | EPA 1010    |           |
| pH                 | 7.13   | ph Units |      | 2/20/2015     | KJS     | SM 4500pH-B |           |
| Şulfidə            | ND     | mg/L     | 0.45 | 3/3/2015      | HSW     | SM4500S2F   |           |
| Reactive sulfide   | ND     | mg/L     | 0.45 | 3/3/2015      | HSW     | SW846 CH7   |           |

**Authorized Signature** 

John Coddington, Lab Manager

MCL.

EPA's Maximum Contaminant Level

ND

Not Detected

PQL

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

# Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

**Client:** 

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

150219026

Address:

4901 HAWKINS NE SUITE D

1502723

**ALBUQUERQUE, NM 87109** 

**Project Name:** 

Attn:

**ANDY FREEMAN** 

**Analytical Results Report Quality Control Data** 

| Lab Control Sai    | mple               |               |                  |              |       |       |             |             |            |           |               |
|--------------------|--------------------|---------------|------------------|--------------|-------|-------|-------------|-------------|------------|-----------|---------------|
| Parameter          |                    | LCS Result    | Units            | LCS          | Spike | %Rec  | AR          | %Rec        | Prep       | Date      | Analysis Date |
| Sulfide            |                    | 0.200         | mg/L             | 0            | .2    | 100.0 | 70          | -130        | 3/3/2      | 2015      | 3/3/2015      |
| Reactive sulfide   |                    | 0.200         | mg/L             | 0            | .2    | 100.0 | 70          | <b>-130</b> | 3/3/2      | 2015      | 3/3/2015      |
| Cyanide (reactive) |                    | 0.488         | mg/L             | 0            | .5    | 97.6  | 80          | -120        | 2/24/      | 2015      | 2/24/2015     |
| Matrix Spike       |                    |               |                  |              |       |       |             |             |            |           |               |
| Sample Number      | Parameter          |               | Sample<br>Result | MS<br>Result | Uni   | fe    | MS<br>Spike | %Rec        | AR<br>%Rec | Prep Date | Analysis Date |
| 150219026-001      | Reactive sulfide   |               | ND               | 0.727        | mg/   |       | 0.91        | 79.9        | 70-130     | 3/3/2015  | 3/3/2015      |
|                    | Cyanide (reactive) |               | ND               | 0.953        | mg/   |       | 1           | 95.3        | 80-120     | 2/24/2015 |               |
| Matrix Spike Du    | plicate            |               |                  |              |       |       |             |             |            |           | <del></del>   |
| Parameter          |                    | MSD<br>Result | Units            | MSD<br>Spike | %F    | Rec   | %RPD        | AR<br>%RPI  | ) Pre      | p Date    | Analysis Date |
| Cyanide (reactive) |                    | 0.955         | mg/L             | 1            |       | 5.5   | 0.2         | 0-25        | -          | 4/2015    | 2/24/2015     |
| Method Blank       |                    |               |                  |              |       |       |             |             |            |           |               |
| Parameter          |                    |               | Re               | sult         | U     | nits  |             | PQL         | P          | rep Date  | Analysis Date |
| Cyanide (reactive) |                    |               | N                | D            | n     | ıg/L  |             | 1           | 2/2        | 24/2015   | 2/24/2015     |
| Reactive sulfide   |                    |               | N                | ID           | n     | ng/L  |             | 1           | 3/         | 3/2015    | 3/3/2015      |
| Sulfide            |                    |               | N                | D            | IT    | ıg/L  |             | 0.05        | 3/         | 3/2015    | 3/3/2015      |

AR

Acceptable Range

ND

Not Detected

PQL

**Practical Quantitation Limit** 

**RPD** 

Relative Percentage Difference

Comments:

Certifications held by Aretek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Monday, March 09, 2015

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1502723

16-Mar-15

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2-17-15

| Sample ID MB   | SampT      | ype: ME       | BLK       | Tes         | tCode: El | PA Method | 300.0: Anion: | S    |          |      |
|----------------|------------|---------------|-----------|-------------|-----------|-----------|---------------|------|----------|------|
| Client ID: PBW | Batch      | 1D: <b>R2</b> | 4392      | F           | RunNo: 2  | 4392      |               |      |          |      |
| Prep Date:     | Analysis D | ate: 2/       | 18/2015   | S           | SeqNo: 7  | 18760     | Units: mg/L   |      |          |      |
| Analyte        | Result     | PQL           | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit     | %RPD | RPDLimit | Qual |
| Chloride       | ND         | 0.50          |           |             |           |           |               |      |          |      |
| Sulfate        | ND         | 0.50          |           |             |           |           |               |      |          |      |

Sample ID LCS SampType: LCS TestCode: EPA Method 300.0: Anions Client ID: Batch ID: R24392 LCSW RunNo: 24392 SeqNo: 718761 Prep Date: Analysis Date: 2/18/2015 Units: mg/L SPK value SPK Ref Val HighLimit Analyte **PQL** %REC LowLimit %RPD **RPDLimit** Qual 4.8 0.50 5.000 96.3 90 110 Chloride Sulfate 9.9 0.50 10.00 0 98.6 90 110

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit O
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reporting Detection Limit

Page 6 of 19

Sample pH Not In Range

RL

### Hall Environmental Analysis Laboratory, Inc.

WO#: 1502723

16-Mar-15

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2-17-15

| Sample ID 5mL rb               | SampT      | уре: МЕ         | BLK       | Tes         | Code: El | PA Method | 8260B: VOL  | ATILES |          |      |
|--------------------------------|------------|-----------------|-----------|-------------|----------|-----------|-------------|--------|----------|------|
| Client ID: PBW                 | Batch      | n ID: <b>R2</b> | 4544      | R           | lunNo: 2 | 4544      |             |        |          |      |
| Prep Date:                     | Analysis D | Date: 2/        | 26/2015   | S           | SeqNo: 7 | 22682     | Units: µg/L |        |          |      |
| Analyte                        | Result     | PQL             | SPK value | SPK Ref Val | %REC     | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |
| Benzene                        | ND         | 1.0             |           |             |          |           |             |        |          |      |
| Toluene                        | ND         | 1.0             |           |             |          |           |             |        |          |      |
| Ethylbenzene                   | ND         | 1.0             |           |             |          |           |             |        |          |      |
| Methyl tert-butyl ether (MTBE) | ND         | 1.0             |           |             |          |           |             |        |          |      |
| 1,2,4-Trimethylbenzene         | ND         | 1.0             |           |             |          |           |             |        |          |      |
| 1,3,5-Trimethylbenzene         | ND         | 1.0             |           |             |          |           |             |        |          |      |
| 1,2-Dichloroethane (EDC)       | ND         | 1.0             |           |             |          |           |             |        |          |      |
| 1,2-Dibromoethane (EDB)        | ND         | 1.0             |           |             |          |           |             |        |          |      |
| Naphthalene                    | ND         | 2.0             |           |             |          |           |             |        |          |      |
| 1-Methylnaphthalene            | ND         | 4.0             |           |             |          |           |             |        |          |      |
| 2-Methylnaphthalene            | ND         | 4.0             |           |             |          |           |             |        |          |      |
| Acetone                        | ND         | 10              |           |             |          |           |             |        |          |      |
| Bromobenzene                   | ND         | 1.0             |           |             |          |           |             |        |          |      |
| Bromodichloromethane           | ND         | 1.0             |           |             |          |           |             |        |          |      |
| Bromoform                      | ND         | 1.0             |           |             |          |           |             |        |          |      |
| Bromomethane                   | ND         | 3.0             |           |             |          |           |             |        |          |      |
| 2-Butanone                     | ND         | 10              |           |             |          |           |             |        |          |      |
| Carbon disulfide               | ND         | 10              |           |             |          |           |             |        |          |      |
| Carbon Tetrachloride           | ND         | 1.0             |           |             |          |           |             |        |          |      |
| Chlorobenzene                  | ND         | 1.0             |           |             |          |           |             |        |          |      |
| Chloroethane                   | ND         | 2.0             |           |             |          |           |             |        |          |      |
| Chloroform                     | ND         | 1.0             |           |             |          |           |             |        |          |      |
| Chloromethane                  | ND         | 3.0             |           |             |          |           |             |        |          |      |
| 2-Chlorotoluene                | ND         | 1.0             |           |             |          |           |             |        |          |      |
| 4-Chlorotoluene                | ND         | 1.0             |           |             |          |           |             |        |          |      |
| cis-1,2-DCE                    | ND         | 1.0             |           |             |          |           |             |        |          |      |
| cis-1,3-Dichloropropene        | ND         | 1.0             |           |             |          |           |             |        |          |      |
| 1,2-Dibromo-3-chloropropane    | ND         | 2.0             |           |             |          |           |             |        |          |      |
| Dibromochloromethane           | ND         | 1.0             |           |             |          |           |             |        |          |      |
| Dibromomethane                 | ND         | 1.0             |           |             |          |           |             |        |          |      |
| 1,2-Dichlorobenzene            | ND         | 1.0             |           |             |          |           |             |        |          |      |
| 1,3-Dichlorobenzene            | ND         | 1.0             |           |             |          |           |             |        |          |      |
| 1,4-Dichlorobenzene            | ND         | 1.0             |           |             |          |           |             |        |          |      |
| Dichlorodifluoromethane        | ND         | 1.0             |           |             |          |           |             |        |          |      |
| 1,1-Dichloroethane             | ND         | 1.0             |           |             |          |           |             |        |          |      |
| 1,1-Dichloroethene             | ND         | 1.0             |           |             |          |           |             |        |          |      |
| 1,2-Dichloropropane            | ND         | 1.0             |           |             |          |           |             |        |          |      |
| 1,3-Dichloropropane            | ND         | 1.0             |           |             |          |           |             |        |          |      |
| 2,2-Dichloropropane            | ND         | 2.0             |           |             |          |           |             |        |          |      |
| z,z-bichloroproparie           | IND        | 2.0             |           |             |          |           |             |        |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 7 of 19

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1502723

16-Mar-15

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2-17-15

| Sample ID 5mL rb            | SampTy      | ype: ME       | BLK       |             |          |          | 8260B: VOL  | ATILES |          |      |
|-----------------------------|-------------|---------------|-----------|-------------|----------|----------|-------------|--------|----------|------|
| Client ID: PBW              | Batch       | ID: <b>R2</b> | 4544      | R           | unNo: 24 | 1544     |             |        |          |      |
| Prep Date:                  | Analysis Da | ate: 2/       | 26/2015   | S           | eqNo: 72 | 22682    | Units: µg/L |        |          |      |
| Analyte                     | Result      | PQL           | SPK value | SPK Ref Val | %REC     | LowLimit | HighLimit   | %RPD   | RPDLimit | Qual |
| 1,1-Dichloropropene         | ND          | 1.0           |           |             |          |          |             |        |          |      |
| Hexachlorobutadiene         | ND          | 1.0           |           |             |          |          |             |        |          |      |
| 2-Hexanone                  | ND          | 10            |           |             |          |          |             |        |          |      |
| Isopropylbenzene            | ND          | 1.0           |           |             |          |          |             |        |          |      |
| 4-isopropyitoluene          | ND          | 1.0           |           |             |          |          |             |        |          |      |
| 4-Methyl-2-pentanone        | ND          | 10            |           |             |          |          |             |        |          |      |
| Methylene Chioride          | ND          | 3.0           |           |             |          |          |             |        |          |      |
| n-Butylbenzene              | ND          | 3.0           |           |             |          |          |             |        |          |      |
| n-Propylbenzene             | ND          | 1.0           |           |             |          |          |             |        |          |      |
| sec-Butylbenzene            | ND          | 1.0           |           |             |          |          |             |        |          |      |
| Styrene                     | ND          | 1.0           |           |             |          |          |             |        |          |      |
| tert-Butylbenzene           | ND          | 1.0           |           |             |          |          |             |        |          |      |
| 1,1,1,2-Tetrachloroethane   | ND          | 1.0           |           |             |          |          |             |        |          |      |
| 1,1,2,2-Tetrachloroethane   | ND          | 2.0           |           |             |          |          |             |        |          |      |
| Tetrachloroethene (PCE)     | ND          | 1.0           |           |             |          |          |             |        |          |      |
| trans-1,2-DCE               | ND          | 1.0           |           |             |          |          |             |        |          |      |
| trans-1,3-Dichloropropene   | ND          | 1.0           |           |             |          |          |             |        |          |      |
| 1,2,3-Trichlorobenzene      | ND          | 1.0           |           |             |          |          |             |        |          |      |
| 1,2,4-Trichlorobenzene      | ND          | 1.0           |           |             |          |          |             |        |          |      |
| 1,1,1-Trichloroethane       | ND          | 1.0           |           |             |          |          |             |        |          |      |
| 1,1,2-Trichloroethane       | ND          | 1.0           |           |             |          |          |             |        |          |      |
| Trichloroethene (TCE)       | ND          | 1.0           |           |             |          |          |             |        |          |      |
| Trichlorofluoromethane      | ND          | 1.0           |           |             |          |          |             |        |          |      |
| 1,2,3-Trichloropropane      | ND          | 2.0           |           |             |          |          |             |        |          |      |
| Vinyl chloride              | ND          | 1.0           |           |             |          |          |             |        |          |      |
| Xylenes, Total              | ND          | 1.5           |           |             |          |          |             |        |          |      |
| Surr: 1,2-Dichloroethane-d4 | 9.9         |               | 10.00     |             | 99.2     | 70       | 130         |        |          |      |
| Surr: 4-Bromofluorobenzene  | 10          |               | 10.00     |             | 104      | 70       | 130         |        |          |      |
| Surr: Dibromofluoromethane  | 10          |               | 10.00     |             | 104      | 70       | 130         |        |          |      |
|                             | 9.8         |               | 10.00     |             | 97.8     | 70       | 130         |        |          |      |

| Sample ID 100ng ics | SampT      | ype: LC  | S         | Tes         | tCode: El            | PA Method | 8260B: VOL | ATILES |          |      |
|---------------------|------------|----------|-----------|-------------|----------------------|-----------|------------|--------|----------|------|
| Client ID: LCSW     | Batch      | ı ID: R2 | 4544      | F           | RunNo: 2             | 4544      |            |        |          |      |
| Prep Date:          | Analysis D | ate: 2/  | 26/2015   | 8           | SeqNo: <b>722684</b> |           |            |        |          |      |
| Analyte             | Result     | PQL      | SPK value | SPK Ref Val | %REC                 | LowLimit  | HighLimit  | %RPD   | RPDLimit | Qual |
| Benzene             | 21         | 1.0      | 20.00     | 0           | 104                  | 70        | 130        |        |          |      |
| Toluene             | 21         | 1.0      | 20.00     | 0           | 103                  | 70        | 130        |        |          |      |
| Chlorobenzene       | 20         | 1.0      | 20.00     | 0           | 102                  | 70        | 130        |        |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 8 of 19

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1502723

16-Mar-15

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2-17-15

| Sample ID 100ng Ics         | SampTy      | ype: LC | s         | Tes         | tCode: E | PA Method    | 8260B: VOL  | ATILES |          |      |
|-----------------------------|-------------|---------|-----------|-------------|----------|--------------|-------------|--------|----------|------|
| Client ID: LCSW             | Batch       | ID: R2  | 4544      | F           | RunNo: 2 | 4544         |             |        |          |      |
| Prep Date:                  | Analysis Da | ate: 2/ | 26/2015   | 8           | SeqNo: 7 | 22684        | Units: µg/L |        |          |      |
| Analyte                     | Result      | PQL     | SPK value | SPK Ref Val | %REC     | LowLimit     | HighLimit   | %RPD   | RPDLimit | Qual |
| 1,1-Dichloroethene          | 22          | 1.0     | 20.00     | 0           | 112      | <b>7</b> 5.6 | 144         |        |          |      |
| Trichloroethene (TCE)       | 20          | 1.0     | 20.00     | 0           | 102      | 70           | 130         |        |          |      |
| Surr: 1,2-Dichloroethane-d4 | 10          |         | 10.00     |             | 101      | 70           | 130         |        |          |      |
| Surr: 4-Bromofluorobenzene  | 10          |         | 10.00     |             | 101      | 70           | 130         |        |          |      |
| Surr: Dibromofluoromethane  | 10          |         | 10.00     |             | 102      | 70           | 130         |        |          |      |
| Surr: Toluene-d8            | 10          |         | 10.00     |             | 100      | 70           | 130         |        |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 9 of 19

### Hall Environmental Analysis Laboratory, Inc.

WO#: 1502723

16-Mar-15

Client: Western Refining Southwest, Inc.

**Project:** Injection Well 2-17-15

| Sample ID mb-17825          | SampT      | ype: ME       | BLK       | Tes         | tCode: El | PA Method | 8270C: Semi | ivolatiles |          |      |
|-----------------------------|------------|---------------|-----------|-------------|-----------|-----------|-------------|------------|----------|------|
| Client ID: PBW              | Batch      | ID: <b>17</b> | 825       | F           | RunNo: 2  | 4458      |             |            |          |      |
| Prep Date: 2/20/2015        | Analysis D | ate: 2/       | 23/2015   | ;           | SeqNo: 7  | 20293     | Units: µg/L |            |          |      |
| Analyte                     | Result     | PQL           | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD       | RPDLimit | Qual |
| Acenaphthene                | ND         | 10            |           |             |           |           |             |            |          |      |
| Acenaphthylene              | ND         | 10            |           |             |           |           |             |            |          |      |
| Aniline                     | ND         | 10            |           |             |           |           |             |            |          |      |
| Anthracene                  | ND         | 10            |           |             |           |           |             |            |          |      |
| Azobenzene                  | ND         | 10            |           |             |           |           |             |            |          |      |
| Benz(a)anthracene           | ND         | 10            |           |             |           |           |             |            |          |      |
| Benzo(a)pyrene              | ND         | 10            |           |             |           |           |             |            |          |      |
| Benzo(b)fluoranthene        | ND         | 10            |           |             |           |           |             |            |          |      |
| Benzo(g,h,i)perylene        | ND         | 10            |           |             |           |           |             |            |          |      |
| Benzo(k)fluoranthene        | ND         | 10            |           |             |           |           |             |            |          |      |
| Benzoic acid                | ND         | 20            |           |             |           |           |             |            |          |      |
| Benzyl alcohol              | ND         | 10            |           |             |           |           |             |            |          |      |
| Bis(2-chloroethoxy)methane  | ND         | 10            |           |             |           |           |             |            |          |      |
| Bis(2-chloroethyl)ether     | ND         | 10            |           |             |           |           |             |            |          |      |
| Bis(2-chloroisopropyl)ether | ND         | 10            |           |             |           |           |             |            |          |      |
| Bis(2-ethylhexyl)phthalate  | ND         | 10            |           |             |           |           |             |            |          |      |
| 4-Bromophenyl phenyl ether  | ND         | 10            |           |             |           |           |             |            |          |      |
| Butyl benzyl phthalate      | ND         | 10            |           |             |           |           |             |            |          |      |
| Carbazole                   | ND         | 10            |           |             |           |           |             |            |          |      |
| 4-Chioro-3-methylphenol     | ND         | 10            |           |             |           |           |             |            |          |      |
| 4-Chloroaniline             | ND         | 10            |           |             |           |           |             |            |          |      |
| 2-Chloronaphthalene         | ND         | 10            |           |             |           |           |             |            |          |      |
| 2-Chlorophenol              | ND         | 10            |           |             |           |           |             |            |          |      |
| 4-Chlorophenyl phenyl ether | ND         | 10            |           |             |           |           |             |            |          |      |
| Chrysene                    | ND         | 10            |           |             |           |           |             |            |          |      |
| Di-n-butyl phthalate        | ND         | 10            |           |             |           |           |             |            |          |      |
| Di-n-octyl phthalate        | ND         | 10            |           |             |           |           |             |            |          |      |
| Dibenz(a,h)anthracene       | ND         | 10            |           |             |           |           |             |            |          |      |
| Dibenzofuran                | ND         | 10            |           |             |           |           |             |            |          |      |
| 1,2-Dichlorobenzene         | ND         | 10            |           |             |           |           |             |            |          |      |
| 1,3-Dichlorobenzene         | ND         | 10            |           |             |           |           |             |            |          |      |
| 1,4-Dichlorobenzene         | ND         | 10            |           |             |           |           |             |            |          |      |
| 3,3'-Dichlorobenzidine      | ND         | 10            |           |             |           |           |             |            |          |      |
| Diethyl phthalate           | ND         | 10            |           |             |           |           |             |            |          |      |
| Dimethyl phthalate          | ND         | 10            |           |             |           |           |             |            |          |      |
| 2,4-Dichlorophenol          | ND         | 20            |           |             |           |           |             |            |          |      |
| 2,4-Dimethylphenol          | ND         | 10            |           |             |           |           |             |            |          |      |
| 4,6-Dinitro-2-methylphenol  | ND         | 20            |           |             |           |           |             |            |          |      |
| • •                         | ND         | 20            |           |             |           |           |             |            |          |      |
| 2,4-Dinitrophenol           | ND         | 20            |           |             |           |           |             |            |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 10 of 19

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1502723

16-Mar-15

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2-17-15

| Sample ID mb-17825                      | SampT      | ype: MBLK          | Tes         | tCode: EPA Metho     | d 8270C: Semi | volatiles |          |      |
|-----------------------------------------|------------|--------------------|-------------|----------------------|---------------|-----------|----------|------|
| Client ID: PBW                          | Batch      | n ID: <b>17825</b> | F           | RunNo: <b>24458</b>  |               |           |          |      |
| Prep Date: 2/20/2015                    | Analysis D | ate: 2/23/2015     | S           | SeqNo: <b>720293</b> | Units: µg/L   |           |          |      |
| Analyte                                 | Result     | PQL SPK value      | SPK Ref Val | %REC LowLimi         | t HighLimit   | %RPD      | RPDLimit | Qual |
| 2,4-Dinitrotoluene                      | ND         | 10                 |             |                      |               |           | -        |      |
| 2,6-Dinitrotoluene                      | ND         | 10                 |             |                      |               |           |          |      |
| Fluoranthene                            | ND         | 10                 |             |                      |               |           |          |      |
| Fluorene                                | ND         | 10                 |             |                      |               |           |          |      |
| Hexachiorobenzene                       | ND         | 10                 |             |                      |               |           |          |      |
| Hexachlorobutadiene                     | ND         | 10                 |             |                      |               |           |          |      |
| Hexachlorocyclopentadiene               | ND         | 10                 |             |                      |               |           |          |      |
| Hexachloroethane                        | ND         | 10                 |             |                      |               |           |          |      |
| Indeno(1,2,3-cd)pyrene                  | ND         | 10                 |             |                      |               |           |          |      |
| Isophorone                              | ND         | 10                 |             |                      |               |           |          |      |
| 1-Methylnaphthalene                     | ND         | 10                 |             |                      |               |           |          |      |
| 2-Methylnaphthalene                     | ND         | 10                 |             |                      |               |           |          |      |
| 2-Methylphenol                          | ND         | 10                 |             |                      |               |           |          |      |
| 3+4-Methylphenol                        | ND         | 10                 |             |                      |               |           |          |      |
| N-Nitrosodi-n-propylamine               | ND         | 10                 |             |                      |               |           |          |      |
| N-Nitrosodimethylamine                  | ND         | 10                 |             |                      |               |           |          |      |
| N-Nitrosodiphenylamine                  | ND         | 10                 |             |                      |               |           |          |      |
| Naphthalene                             | ND         | 10                 |             |                      |               |           |          |      |
| 2-Nitroaniline                          | ND         | 10                 |             |                      |               |           |          |      |
| 3-Nitroaniline                          | ND         | 10                 |             |                      |               |           |          |      |
| 4-Nitroaniline                          | ND         | 10                 |             |                      |               |           |          |      |
| Nitrobenzene                            | ND         | 10                 |             |                      |               |           |          |      |
| 2-Nitrophenol                           | ND         | 10                 |             |                      |               |           |          |      |
| 4-Nitrophenol                           | ND         | 10                 |             |                      |               |           |          |      |
| Pentachlorophenol                       | ND         | 20                 |             |                      |               |           |          |      |
| Phenanthrene                            | ND         | 10                 |             |                      |               |           |          |      |
| Phenol                                  | ND         | 10                 |             |                      |               |           |          |      |
| Pyrene                                  | ND         | 10                 |             |                      |               |           |          |      |
| Pyridine                                | ND         | 10                 |             |                      |               |           |          |      |
| 1,2,4-Trichlorobenzene                  | ND         | 10                 |             |                      |               |           |          |      |
| 2,4,5-Trichlorophenol                   | ND         | 10                 |             |                      |               |           |          |      |
| 2,4,6-Trichlorophenol                   | ND         | 10                 |             |                      |               |           |          |      |
| Surr: 2-Fluorophenol                    | 180        | 200.0              |             | 89.4 17.6            | 104           |           |          |      |
| Surr: Phenol-d5                         | 160        | 200.0              |             | 78.8 17.7            | 89.9          |           |          |      |
| Surr: 2,4,6-Tribromophenol              | 160        | 200.0              |             | 78.9 16.3            | 122           |           |          |      |
| Sun: Nitrobenzene-d5                    | 81         | 100.0              |             | 81.4 45.3            | 117           |           |          |      |
| Surr: 2-Fluorobiphenyl                  | 82         | 100.0              |             | 82.2 43              |               |           |          |      |
| Surr: 4-Terphenyl-d14                   | 60         | 100.0              |             | 60.2 47.6            |               |           |          |      |
| • • • • • • • • • • • • • • • • • • • • |            |                    |             |                      |               |           |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 11 of 19

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1502723

16-Mar-15

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2-17-15

| Sample ID Ics-17825        | SampT      | SampType: LCS TestCode: EPA Method 827 |           |             |          |          |             | volatiles |          |      |
|----------------------------|------------|----------------------------------------|-----------|-------------|----------|----------|-------------|-----------|----------|------|
| Client ID: LCSW            | Batch      | n ID: <b>17</b> 8                      | 825       | R           | unNo: 24 | 4458     |             |           |          |      |
| Prep Date: 2/20/2015       | Analysis D | )ate: 2/                               | 23/2015   | S           | eqNo: 7  | 20294    | Units: µg/L |           |          |      |
| Analyte                    | Result     | PQL                                    | SPK value | SPK Ref Val | %REC     | LowLimit | HighLimit   | %RPD      | RPDLimit | Qual |
| Acenaphthene               | 64         | 10                                     | 100.0     | 0           | 64.1     | 47.9     | 114         |           |          |      |
| 4-Chloro-3-methylphenol    | 130        | 10                                     | 200.0     | 0           | 65.2     | 51.7     | 122         |           |          |      |
| 2-Chlorophenol             | 130        | 10                                     | 200.0     | 0           | 65.7     | 40.7     | 113         |           |          |      |
| 1,4-Dichlorobenzene        | 65         | 10                                     | 100.0     | 0           | 65.0     | 39.6     | 99.9        |           |          |      |
| 2,4-Dinitrotoluene         | 50         | 10                                     | 100.0     | 0           | 50.5     | 40.8     | 113         |           |          |      |
| N-Nitrosodi-n-propylamine  | 67         | 10                                     | 100.0     | 0           | 67.3     | 51.2     | 111         |           |          |      |
| 4-Nitrophenol              | 130        | 10                                     | 200.0     | 0           | 65.4     | 15.7     | 86.9        |           |          |      |
| Pentachlorophenol          | 120        | 20                                     | 200.0     | 0           | 58.1     | 21.6     | 104         |           |          |      |
| Phenol                     | 140        | 10                                     | 200.0     | 0           | 70.0     | 28.6     | 71.7        |           |          |      |
| Pyrene                     | 56         | 10                                     | 100.0     | 0           | 56.0     | 54.2     | 128         |           |          |      |
| 1,2,4-Trichlorobenzene     | 62         | 10                                     | 100.0     | 0           | 62.0     | 40.9     | 101         |           |          |      |
| Surr: 2-Fluorophenol       | 140        |                                        | 200.0     |             | 71.0     | 17.6     | 104         |           |          |      |
| Surr: Phenol-d5            | 140        |                                        | 200.0     |             | 71.3     | 17.7     | 89.9        |           |          |      |
| Surr: 2,4,6-Tribromophenol | 140        |                                        | 200.0     |             | 69.7     | 16.3     | 122         |           |          |      |
| Surr: Nitrobenzene-d5      | 70         |                                        | 100.0     |             | 70.5     | 45.3     | 117         |           |          |      |
| Surr: 2-Fluorobiphenyl     | 68         |                                        | 100.0     |             | 67.6     | 43       | 113         |           |          |      |
| Surr: 4-Terphenyl-d14      | 51         |                                        | 100.0     |             | 50.9     | 47.6     | 122         |           |          |      |

| Sample ID Icsd-17825       | SampT      | SampType: LCSD TestCode: EPA Method 82 |           |             |               |          |           | volatiles |          |      |
|----------------------------|------------|----------------------------------------|-----------|-------------|---------------|----------|-----------|-----------|----------|------|
| Client ID: LCSS02          | Batch      | n ID: <b>17</b> 8                      | 825       | R           | RunNo: 2      | 4458     |           |           |          |      |
| Prep Date: 2/20/2015       | Analysis D | ate: 2/                                | 23/2015   | S           | SeqNo: 720295 |          |           |           |          |      |
| Analyte                    | Result     | PQL                                    | SPK value | SPK Ref Val | %REC          | LowLimit | HighLimit | %RPD      | RPDLimit | Qual |
| Acenaphthene               | 82         | 10                                     | 100.0     | 0           | 81.7          | 47.9     | 114       | 24.2      | 27.2     |      |
| 4-Chloro-3-methylphenol    | 170        | 10                                     | 200.0     | 0           | 86.0          | 51.7     | 122       | 27.5      | 25.9     | R    |
| 2-Chlorophenol             | 140        | 10                                     | 200.0     | 0           | 67.7          | 40.7     | 113       | 2.98      | 22.5     |      |
| 1,4-Dichlorobenzene        | 68         | 10                                     | 100.0     | 0           | 67.9          | 39.6     | 99.9      | 4.30      | 24.6     |      |
| 2,4-Dinitrotoluene         | 72         | 10                                     | 100.0     | 0           | 72.0          | 40.8     | 113       | 35.2      | 25.3     | R    |
| N-Nitrosodi-n-propylamine  | 75         | 10                                     | 100.0     | 0           | 75.2          | 51.2     | 111       | 11.1      | 23.6     |      |
| 4-Nitrophenol              | 170        | 10                                     | 200.0     | 0           | 87.0          | 15.7     | 86.9      | 28.3      | 34.7     | S    |
| Pentachlorophenol          | 140        | 20                                     | 200.0     | 0           | 69.5          | 21.6     | 104       | 17.8      | 32.8     |      |
| Phenol                     | 150        | 10                                     | 200.0     | 0           | 74.9          | 28.6     | 71.7      | 6.87      | 25.5     | S    |
| Pyrene                     | 73         | 10                                     | 100.0     | 0           | 72.7          | 54.2     | 128       | 25.9      | 31.4     |      |
| 1,2,4-Trichlorobenzene     | 73         | 10                                     | 100.0     | 0           | 72.6          | 40.9     | 101       | 15.8      | 25.9     |      |
| Surr: 2-Fluorophenol       | 160        |                                        | 200.0     |             | 77.6          | 17.6     | 104       | 0         | 0        |      |
| Surr: Phenol-d5            | 150        |                                        | 200.0     |             | 75.6          | 17.7     | 89.9      | 0         | 0        |      |
| Surr: 2,4,6-Tribromophenol | 180        |                                        | 200.0     |             | 90.3          | 16.3     | 122       | 0         | 0        |      |
| Surr: Nitrobenzene-d5      | 79         |                                        | 100.0     |             | 78.9          | 45.3     | 117       | 0         | 0        |      |
| Surr: 2-Fluorobiphenyl     | 81         |                                        | 100.0     |             | 81.0          | 43       | 113       | 0         | 0        |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0
- RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 12 of 19

Sample pH Not In Range Reporting Detection Limit

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1502723 16-Mar-15

Client:

Western Refining Southwest, Inc.

Project:

Client ID:

Injection Well 2-17-15

Sample ID Icsd-17825

LCSS02

SampType: LCSD

TestCode: EPA Method 8270C: Semivolatiles

Prep Date: 2/20/2015

Batch ID: 17825 Analysis Date: 2/23/2015

**PQL** 

RunNo: 24458

SeqNo: 720295

Units: µg/L

Analyte Surr: 4-Terphenyl-d14 Result

47.6

HighLimit

%RPD

**RPDLimit** 

Qual

72

100.0

SPK value SPK Ref Val

%REC 72.5

LowLimit

122

Qualifiers:

Value exceeds Maximum Contaminant Level.

Ε Value above quantitation range

Analyte detected below quantitation limits

0 RSD is greater than RSDlimit

RPD outside accepted recovery limits R

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH Not In Range

Reporting Detection Limit

Page 13 of 19

Hall Environmental Analysis Laboratory, Inc.

2900

WO#: 1502723

0.349

20

16-Mar-15

Client: Western Refining Southwest, Inc.

**Project:** Injection Well 2-17-15

Conductivity

Sample ID 1502723-001c dup SampType: DUP TestCode: SM2510B: Specific Conductance

Client ID: Injection Well Batch ID: R24379 RunNo: 24379

0.010

Prep Date: Analysis Date: 2/18/2015 SeqNo: 718418 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH Not In Range

RL Reporting Detection Limit

Page 14 of 19

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1502723 16-Mar-15

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2-17-15

Sample ID MB-17887

SampType: MBLK

TestCode: EPA Method 7470: Mercury

Client ID:

PBW

Prep Date: 2/25/2015

Prep Date: 2/25/2015

Batch ID: 17887 Analysis Date: 2/26/2015 RunNo: 24523

SeqNo: 722178

Units: mg/L

Qual

Analyte Mercury

Result PQL

SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD

**RPDLimit** 

ND 0.00020

TestCode: EPA Method 7470: Mercury

Sample ID LCS-17887

Client ID: LCSW

SampType: LCS

RunNo: 24523

LowLimit

Batch ID: 17887

Analysis Date: 2/26/2015

SeqNo: 722179

Units: mg/L HighLimit

%RPD **RPDLimit** 

Qual

PQL SPK value SPK Ref Val

Analyte

0.005000

80

Mercury 0.0051 0.00020 0

%REC 102

120

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
- Sample pH Not In Range P
- RLReporting Detection Limit

Page 15 of 19

### Hall Environmental Analysis Laboratory, Inc.

WO#: 1502723

16-Mar-15

Client: Western Refining Southwest, Inc.

Project: Injection Well 2-17-15

|                      |          |                          | _         |              |               |           |               |               |          |      |
|----------------------|----------|--------------------------|-----------|--------------|---------------|-----------|---------------|---------------|----------|------|
| Sample ID MB-17834   | Samp     | Туре: МЕ                 | BLK       | Test         | Code: El      | PA 6010B: | Total Recover | able Meta     | als      |      |
| Client ID: PBW       | Bato     | ch ID: 17                | 834       | RunNo: 24435 |               |           |               |               |          |      |
| Prep Date: 2/20/2015 | Analysis | Analysis Date: 2/21/2015 |           | S            | SeqNo: 719770 |           |               | 0 Units: mg/L |          |      |
| Analyte              | Result   | PQL                      | SPK value | SPK Ref Val  | %REC          | LowLimit  | HighLimit     | %RPD          | RPDLimit | Qual |
| Arsenic              | ND       | 0.020                    |           |              |               |           |               |               |          |      |
| Barium               | ND       | 0.020                    |           |              |               |           |               |               |          |      |
| Cadmium              | ND       | 0.0020                   |           |              |               |           |               |               |          |      |
| Calcium              | ND       | 1.0                      |           |              |               |           |               |               |          |      |
| Chromium             | ND       | 0.0060                   |           |              |               |           |               |               |          |      |
| Lead                 | ND       | 0.0050                   |           |              |               |           |               |               |          |      |
| Magnesium            | ND       | 1.0                      |           |              |               |           |               |               |          |      |
| Potassium            | ND       | 1.0                      |           |              |               |           |               |               |          |      |
| Selenium             | ND       | 0.050                    |           |              |               |           |               |               |          |      |
| Silver               | ND       | 0.0050                   |           |              |               |           |               |               |          |      |
| Sodium               | ND       | 1.0                      |           |              |               |           |               |               |          |      |

| Sample ID LCS-17834  | Samp     | Type: LC  | s         | Tes         | tCode: El | PA 6010B: | Total Recover | able Met | als      |      |
|----------------------|----------|-----------|-----------|-------------|-----------|-----------|---------------|----------|----------|------|
| Client ID: LCSW      | Bato     | ch ID: 17 | 834       | F           | RunNo: 2  | 4435      |               |          |          |      |
| Prep Date: 2/20/2015 | Analysis | Date: 2/  | /21/2015  | S           | SeqNo: 7  | 19771     | Units: mg/L   |          |          |      |
| Analyte              | Result   | PQL       | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit     | %RPD     | RPDLimit | Qual |
| Arsenic              | 0.52     | 0.020     | 0.5000    | 0           | 104       | 80        | 120           |          |          |      |
| Barium               | 0.49     | 0.020     | 0.5000    | 0           | 97.6      | 80        | 120           |          |          |      |
| Cadmium              | 0.49     | 0.0020    | 0.5000    | 0           | 98.8      | 80        | 120           |          |          |      |
| Calcium              | 50       | 1.0       | 50.00     | 0           | 99.5      | 80        | 120           |          |          |      |
| Chromium             | 0.50     | 0.0060    | 0.5000    | 0           | 99.2      | 80        | 120           |          |          |      |
| Lead                 | 0.49     | 0.0050    | 0.5000    | 0           | 99.0      | 80        | 120           |          |          |      |
| Magnesium            | 49       | 1.0       | 50.00     | 0           | 98.7      | 80        | 120           |          |          |      |
| Potassium            | 47       | 1.0       | 50.00     | 0           | 94.2      | 80        | 120           |          |          |      |
| Selenium             | 0.50     | 0.050     | 0.5000    | 0           | 100       | 80        | 120           |          |          |      |
| Silver               | 0.11     | 0.0050    | 0.1000    | 0           | 106       | 80        | 120           |          |          |      |
| Sodium               | 49       | 1.0       | 50.00     | 0           | 97.4      | 80        | 120           |          |          |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- Reporting Detection Limit
- Sample pH Not In Range

RL

Page 16 of 19

### Hall Environmental Analysis Laboratory, Inc.

WO#: 1502723

16-Mar-15

Client:

Western Refining Southwest, Inc.

Project:

Prep Date:

Injection Well 2-17-15

Sample ID 1502723-001c dup

SampType: DUP

Analysis Date: 2/18/2015

TestCode: SM4500-H+B: pH

Client ID: Injection Well Batch ID: R24379

RunNo: 24379

SeqNo: 718422

Units: pH units

Analyte

Result **PQL**  SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD

**RPDLimit** 

Qual

7.22 1.68 Н

Qualifiers:

Value exceeds Maximum Contaminant Level.

Value above quantitation range Е

Analyte detected below quantitation limits J

0 RSD is greater than RSDlimit

RPD outside accepted recovery limits R

Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

P Sample pH Not In Range RLReporting Detection Limit Page 17 of 19

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1502723

16-Mar-15

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2-17-15

Sample ID mb-1

SampType: MBLK

TestCode: SM2320B: Alkalinity

Batch ID: R24379

RunNo: 24379

Client ID: PBW Prep Date:

Analysis Date: 2/18/2015

SeqNo: 718434

Units: mg/L CaCO3

Analyte Result

**RPDLimit** 

Qual

ND

SPK value SPK Ref Val %REC LowLimit PQL 20

HighLimit

%RPD

Total Alkalinity (as CaCO3)

Sample ID Ics-1 Client ID: LCSW SampType: LCS Batch ID: R24379 TestCode: SM2320B: Alkalinity RunNo: 24379

SeqNo: 718435

Units: mg/L CaCO3

Prep Date: Analyte

Result **PQL** 

SPK value SPK Ref Val %REC

0

HighLimit LowLimit

%RPD

**RPDLimit** 

Total Alkalinity (as CaCO3) 80 20 80.00 99.7

Analysis Date: 2/18/2015

110

Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

0 RSD is greater than RSDlimit

RPD outside accepted recovery limits R

Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Sample pH Not In Range Reporting Detection Limit Page 18 of 19

### Hall Environmental Analysis Laboratory, Inc.

WO#: 1502723 16-Mar-15

Client:

Western Refining Southwest, Inc.

Project:

Analyte

Injection Well 2-17-15

Sample ID MB-17793

SampType: MBLK

TestCode: SM2540C MOD: Total Dissolved Solids

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID:

PBW Batch ID: 17793 RunNo: 24408

Prep Date: 2/18/2015

Analysis Date: 2/19/2015

Result

SeqNo: 718999

Units: mg/L

SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD **RPDLimit** 

Qual

Total Dissolved Solids

ND 20.0

**PQL** 

Sample ID LCS-17793

SampType: LCS Batch ID: 17793

RunNo: 24408

LowLimit

Client ID: LCSW Prep Date: 2/18/2015

Analysis Date: 2/19/2015

Result

SeqNo: 719000

Units: mg/L HighLimit

%RPD

**PQL** SPK value SPK Ref Val %REC

**RPDLimit** Qual

Analyte 102 120 Total Dissolved Solids 1020 20.0 1000

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value above quantitation range
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit 0
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range Reporting Detection Limit

Page 19 of 19



#### Hall Environmental Analysis Laboratory 4901 Hawkins NE

Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.kallenvironmental.com

# Sample Log-In Check List

| Client Name:         | Western Refining Southw                                         | Work Order Number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1502723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RcptNo:                    | 1                    |
|----------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------|
| Received by/o        | tates IM                                                        | 02/18/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                      |
| Logged By.           | Ashley Gallegos                                                 | 2/18/2015 8:00:00 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                      |
| Completed By         | Ashley Gailegos                                                 | 2/18/2015 8:45:45 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                      |
| Reviewed By:         |                                                                 | 02/18/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                      |
| Chain of Cu          | •                                                               | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                      |
| 1. Custody s         | eals intact on sample bottles?                                  | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No 🗔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Not Present                |                      |
| 2. Is Chain o        | f Custody complete?                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No 🗀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Not Present                |                      |
| 3. How was           | lhe sample delivered?                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Courier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                      |
| <u>Log in</u>        |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                      |
| 4. Was an a          | itempt made to cool the samp                                    | les?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes 💆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA 🗆                       |                      |
| 5. Were all s        | amples received at a tempera                                    | ture of >0° C to 6.0°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA [                       |                      |
| 6. Sample(s          | ) in proper container(s)?                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                      |
| 7. Sufficient        | sample volume for indicated to                                  | est(s)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No 🗌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                      |
| 8. Are sample        | es (except VOA and ONG) pro                                     | operty preserved?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                      |
| 9. Was prese         | ervative added to bottles?                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA _                       |                      |
| 10.VOA vials         | have zero headspace?                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes 👱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No VOA Vials               |                      |
| 11. Were any         | sample containers received b                                    | roken?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | # of preserved             |                      |
| • -                  | erwork match bottle labels?<br>repancies on chain of custody    | <b>)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No 🗀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | bottles checked<br>for pH: | r (12) unless noted) |
| 13. Are matric       | es correctly identified on Chai                                 | n of Custody?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Adjusted?                  | No                   |
| 14, la it clear v    | what analyses were requested                                    | ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | ,                    |
|                      | olding times able to be met?<br>fy customer for authorization.) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Checked by:                | Da                   |
| Special Han          | dling (if applicable)                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                      |
| 16. Was client       | notified of all discrepancies v                                 | ith this order?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes 🗌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA 🗹                       |                      |
| Pers                 | on Notified:                                                    | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and the second s |                            |                      |
| By Y                 | Yhom;                                                           | Vie:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eMail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phone 🗀 Fax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | In Person                  |                      |
| Rega                 | arding:                                                         | ## ## ## ## ## ## ## ## ## ## ## ## ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CONTRACTOR OF THE PERSON OF TH |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                      |
| Clier                | nt instructions:                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                      |
| 17. Additional       | remarks:                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                      |
| 18. <u>Cooler In</u> |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                      |
| Cooler               |                                                                 | The state of the s | Seal Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Signed By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                      |
| þ                    | 1.7 Good                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                      |

| Chain-of-Custody Record                                                             | Turn-Around Time:                               | <b>— —</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client: Western Refining                                                            | Standard □ RushProject Name:                    | HALL ENVIRONMENTAL ANALYSIS LABORATORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Moiling Address: 4/                                                                 |                                                 | www.hallenvironmental.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mailing Address: #50 CR 4990 Bloomfield, NM 874/3                                   | Injection Well 2-17-15                          | 4901 Hawkins NE - Albuquerque, NM 87109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1500mfield, NM 874/3                                                                | Project #:                                      | Tel. 505-345-3975 Fax 505-345-4107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Phone #: 505-632 -4(35                                                              |                                                 | Analysis Request                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| email or Fax#:                                                                      | Project Manager:                                | Only) MRO) MRO) So <sub>4</sub> ) Si <sup>2</sup> S |
| QA/QC Package:  □ Standard                                                          |                                                 | E + TMB's (8021)  E + TPH (Gas only)  GRO / DRO / MRO)  GRO / DRO / MRO)  or 8270 SIMS)  or 8270 SIMS)  als Ca, Mc, Nb, K  NO <sub>3</sub> , NO <sub>2</sub> , PO <sub>4</sub> , SO <sub>4</sub> )  /OA)  (ity, Carresiuify  ity, Carresiui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Accreditation                                                                       | Sampler: Bob                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| □ NELAP □ Other                                                                     | On Ice: Tx/Yes □ No                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| □ EDD (Type)                                                                        | Sample Temperature: 1, 7                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Date Time Matrix Sample Request ID                                                  | Container Type and # Preservative Type HEAL No. | BTEX + MTBE + TMB's (8021) BTEX + MTBE + TPH (Gas only) TPH 8015B (GRO / DRO / MRO) TOWN (BACK / WITH TAUTASILITY CARRINITY RECET / WITH TAUTASILITY CARRINITY RECET / WITH TAUTASILITY RECET / WITH TAUTASILITY RECET / WITH TAUTASILITY RECET / WITH TAUTASILITY RECET / WITH THE BUbbles (Y or N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ?-17-5 11:20 HaD - Injection Well                                                   | 3-40A HC1 -001                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 1 1                                                                               | 1-Liter amber                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                     | 1-500ml                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <del>/                                    </del>                                    |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                     | 1-500ml                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                     | 1-250ml H2504                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                     | 1-500ml HNO3                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                     | 1-500m   Na OH                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ( ) ! !                                                                             | 1-50 ml Acetate                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                     |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                     |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                     |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                     |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Date: Time: Relinevished by: 17-15   Le 12   Cofert Kraken                          | Christi Walle 2/11/15 1612                      | Remarks: Per BK - analyze for RCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Date: Time: Relinquished by:  17115 1750 NWW Waster  Holl Environmental may be such | Date Time  172 18/15 CB                         | s possibility. Any sub-contracted data will be clearly notated on the analytical report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 28, 2015

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4166 FAX (505) 632-3911

RE: Injection Well OrderNo.: 1504086

#### Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 4/2/2015 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <a href="www.hallenvironmental.com">www.hallenvironmental.com</a> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

#### Lab Order 1504086

Date Reported: 4/28/2015

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

 Project:
 Injection Well
 Collection Date: 4/1/2015 10:15:00 AM

 Lab ID:
 1504086-001
 Matrix: AQUEOUS
 Received Date: 4/2/2015 7:00:00 AM

| Analyses                      | Result | RL Qu   | al Units | DF  | Date Analyzed        | Batch  |
|-------------------------------|--------|---------|----------|-----|----------------------|--------|
| EPA METHOD 300.0: ANIONS      |        |         |          |     | Analyst              | LGT    |
| Chloride                      | 1400   | 50      | mg/L     | 100 | 4/2/2015 6:46:26 PM  | R25272 |
| Sulfate                       | 9.5    | 5.0     | mg/L     | 10  | 4/2/2015 6:34:01 PM  | R25272 |
| EPA METHOD 7470: MERCURY      |        |         |          |     | Analyst              | MED    |
| Mercury                       | ND     | 0.00020 | mg/L     | 1   | 4/13/2015 3:11:02 PM | 18653  |
| EPA 6010B: TOTAL RECOVERABLE  | METALS |         |          |     | Analyst              | ELS    |
| Arsenic                       | ND     | 0.020   | mg/L     | 1   | 4/4/2015 12:54:50 PM | 18515  |
| Barium                        | 0.44   | 0.020   | mg/L     | 1   | 4/4/2015 12:54:50 PM | 18515  |
| Cadmium                       | ND     | 0.0020  | mg/L     | 1   | 4/4/2015 12:54:50 PM | 18515  |
| Calcium                       | 300    | 10      | mg/L     | 10  | 4/4/2015 12:56:16 PM | 18515  |
| Chromium                      | ND     | 0.0060  | mg/L     | 1   | 4/4/2015 12:54:50 PM | 18515  |
| Lead                          | ND     | 0.0050  | mg/L     | 1   | 4/4/2015 12:54:50 PM | 18515  |
| Magnesium                     | 57     | 1.0     | mg/L     | 1   | 4/4/2015 12:54:50 PM | 18515  |
| Potassium                     | 21     | 1.0     | mg/L     | 1   | 4/4/2015 12:54:50 PM | 18515  |
| Selenium                      | ND     | 0.050   | mg/L     | 1   | 4/4/2015 12:54:50 PM | 18515  |
| Silver                        | ND     | 0.0050  | mg/L     | 1   | 4/4/2015 12:54:50 PM | 18515  |
| Sodium                        | 750    | 10      | mg/L     | 10  | 4/4/2015 12:56:16 PM | 18515  |
| EPA METHOD 8270C: SEMIVOLATIL | _ES    |         |          |     | Analyst              | DAM    |
| Acenaphthene                  | ND     | 10      | μg/L     | 1   | 4/8/2015 3:02:35 PM  | 18572  |
| Acenaphthylene                | ND     | 10      | μg/L     | 1   | 4/8/2015 3:02:35 PM  | 18572  |
| Aniline                       | ND     | 10      | μg/L     | 1   | 4/8/2015 3:02:35 PM  | 18572  |
| Anthracene                    | ND     | 10      | μg/L     | 1   | 4/8/2015 3:02:35 PM  | 18572  |
| Azobenzene                    | ND     | 10      | μg/L     | 1   | 4/8/2015 3:02:35 PM  | 18572  |
| Benz(a)anthracene             | ND     | 10      | μg/L     | 1   | 4/8/2015 3:02:35 PM  | 18572  |
| Benzo(a)pyrene                | ND     | 10      | μg/L     | 1   | 4/8/2015 3:02:35 PM  | 18572  |
| Benzo(b)fluoranthene          | ND     | 10      | μg/L     | 1   | 4/8/2015 3:02:35 PM  | 18572  |
| Benzo(g,h,i)perylene          | ND     | 10      | μg/L     | 1   | 4/8/2015 3:02:35 PM  | 18572  |
| Benzo(k)fluoranthene          | ND     | 10      | μg/L     | 1   | 4/8/2015 3:02:35 PM  | 18572  |
| Benzoic acid                  | 25     | 20      | μg/L     | 1   | 4/8/2015 3:02:35 PM  | 18572  |
| Benzyl alcohol                | ND     | 10      | μg/L     | 1   | 4/8/2015 3:02:35 PM  | 18572  |
| Bis(2-chloroethoxy)methane    | ND     | 10      | μg/L     | 1   | 4/8/2015 3:02:35 PM  | 18572  |
| Bis(2-chloroethyl)ether       | ND     | 10      | μg/L     | 1   | 4/8/2015 3:02:35 PM  | 18572  |
| Bis(2-chloroisopropyl)ether   | ND     | 10      | μg/L     | 1   | 4/8/2015 3:02:35 PM  | 18572  |
| Bis(2-ethylhexyl)phthalate    | 12     | 10      | μg/L     | 1   | 4/8/2015 3:02:35 PM  | 18572  |
| 4-Bromophenyl phenyl ether    | ND     | 10      | μg/L     | 1   | 4/8/2015 3:02:35 PM  | 18572  |
| Butyl benzyl phthalate        | ND     | 10      | μg/L     | 1   | 4/8/2015 3:02:35 PM  | 18572  |
| Carbazole                     | ND     | 10      | μg/L     | 1   | 4/8/2015 3:02:35 PM  | 18572  |
| 4-Chloro-3-methylphenol       | ND     | 10      | μg/L     | 1   | 4/8/2015 3:02:35 PM  | 18572  |
| 4-Chloroaniline               | ND     | 10      | μg/L     | 1   | 4/8/2015 3:02:35 PM  | 18572  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Page 1 of 14
- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order 1504086

Date Reported: 4/28/2015

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

 Project:
 Injection Well
 Collection Date: 4/1/2015 10:15:00 AM

 Lab ID:
 1504086-001
 Matrix: AQUEOUS
 Received Date: 4/2/2015 7:00:00 AM

| Analyses                    | Result | RL Qu | al Units | DF | Date Analyzed       | Batch  |
|-----------------------------|--------|-------|----------|----|---------------------|--------|
| EPA METHOD 8270C: SEMIVOLA  | TILES  |       |          |    | Analys              | t: DAM |
| 2-Chloronaphthalene         | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| 2-Chlorophenol              | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| 4-Chlorophenyl phenyl ether | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| Chrysene                    | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| Di-n-butyl phthalate        | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| Di-n-octyl phthalate        | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| Dibenz(a,h)anthracene       | ЙD     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| Dibenzofuran                | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| 1,2-Dichlorobenzene         | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| 1,3-Dichlorobenzene         | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| 1,4-Dichlorobenzene         | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| 3,3'-Dichlorobenzidine      | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| Diethyl phthalate           | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| Dimethyl phthalate          | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| 2,4-Dichlorophenol          | ND     | 20    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| 2,4-Dimethylphenol          | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| 4,6-Dinitro-2-methylphenol  | ND     | 20    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| 2,4-Dinitrophenol           | ND     | 20    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| 2,4-Dinitrotoluene          | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| 2,6-Dinitrotoluene          | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| Fluoranthene                | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| Fluorene                    | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| Hexachlorobenzene           | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| Hexachlorobutadiene         | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| Hexachlorocyclopentadiene   | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| Hexachloroethane            | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| Indeno(1,2,3-cd)pyrene      | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| Isophorone                  | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| 1-Methylnaphthalene         | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| 2-Methylnaphthalene         | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| 2-Methylphenol              | 14     | 10    | µg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| 3+4-Methylphenol            | 48     | 10    | µg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| N-Nitrosodi-n-propylamine   | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| N-Nitrosodimethylamine      | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| N-Nitrosodiphenylamine      | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| Naphthalene                 | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| 2-Nitroaniline              | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| 3-Nitroaniline              | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |
| 4-Nitroaniline              | ND     | 10    | μg/L     | 1  | 4/8/2015 3:02:35 PM | 18572  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 14

- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order 1504086

Date Reported: 4/28/2015

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

 Project:
 Injection Well
 Collection Date: 4/1/2015 10:15:00 AM

 Lab ID:
 1504086-001
 Matrix: AQUEOUS
 Received Date: 4/2/2015 7:00:00 AM

| Analyses                       | Result | RL        | Qual Units | DF | Date Analyzed       | Batch         |
|--------------------------------|--------|-----------|------------|----|---------------------|---------------|
| EPA METHOD 8270C: SEMIVOLAT    | ILES   |           |            |    | Analys              | t: <b>DAM</b> |
| Nitrobenzene                   | ND     | 10        | μg/L       | 1  | 4/8/2015 3:02:35 PM | 18572         |
| 2-Nitrophenol                  | ND     | 10        | μg/L       | 1  | 4/8/2015 3:02:35 PM | 18572         |
| 4-Nitrophenol                  | ND     | 10        | μg/L       | 1  | 4/8/2015 3:02:35 PM | 18572         |
| Pentachlorophenol              | ND     | 20        | μg/L       | 1  | 4/8/2015 3:02:35 PM | 18572         |
| Phenanthrene                   | ND     | 10        | μg/L       | 1  | 4/8/2015 3:02:35 PM | 18572         |
| Phenol                         | ND     | 10        | μg/L       | 1  | 4/8/2015 3:02:35 PM | 18572         |
| Pyrene                         | ND     | 10        | μg/L       | 1  | 4/8/2015 3:02:35 PM | 18572         |
| Pyridine                       | ND     | 10        | μg/L       | 1  | 4/8/2015 3:02:35 PM | 18572         |
| 1,2,4-Trichlorobenzene         | ND     | 10        | μg/L       | 1  | 4/8/2015 3:02:35 PM | 18572         |
| 2,4,5-Trichlorophenol          | ND     | 10        | μg/L       | 1  | 4/8/2015 3:02:35 PM | 18572         |
| 2,4,6-Trichlorophenol          | ND     | 10        | μg/L       | 1  | 4/8/2015 3:02:35 PM | 18572         |
| Surr: 2-Fluorophenol           | 50.2   | 17.6-104  | %REC       | 1  | 4/8/2015 3:02:35 PM | 18572         |
| Surr: Phenol-d5                | 46.5   | 17.7-89.9 | %REC       | 1  | 4/8/2015 3:02:35 PM | 18572         |
| Surr: 2,4,6-Tribromophenol     | 65.5   | 16.3-122  | %REC       | 1  | 4/8/2015 3:02:35 PM | 18572         |
| Surr: Nitrobenzene-d5          | 60.5   | 45.3-117  | %REC       | 1  | 4/8/2015 3:02:35 PM | 18572         |
| Surr: 2-Fluorobiphenyl         | 50.8   | 43-113    | %REC       | 1  | 4/8/2015 3:02:35 PM | 18572         |
| Surr: 4-Terphenyl-d14          | 46.9   | 47.6-122  | S %REC     | 1  | 4/8/2015 3:02:35 PM | 18572         |
| EPA METHOD 8260B: VOLATILES    | i .    |           |            |    | Analys              | t: <b>DJF</b> |
| Benzene                        | ND     | 5.0       | μg/L       | 5  | 4/2/2015 8:23:27 PM | R2525         |
| Toluene                        | ND     | 5.0       | μg/L       | 5  | 4/2/2015 8:23:27 PM | R2525         |
| Ethylbenzene                   | ND     | 5.0       | μg/L       | 5  | 4/2/2015 8:23:27 PM | R2525         |
| Methyl tert-butyl ether (MTBE) | ND     | 5.0       | μg/L       | 5  | 4/2/2015 8:23:27 PM | R2525         |
| 1,2,4-Trimethylbenzene         | ND     | 5.0       | μg/L       | 5  | 4/2/2015 8:23:27 PM | R2525         |
| 1,3,5-Trimethylbenzene         | ND     | 5.0       | μg/L       | 5  | 4/2/2015 8:23:27 PM | R2525         |
| 1,2-Dichloroethane (EDC)       | ND     | 5.0       | μg/L       | 5  | 4/2/2015 8:23:27 PM | R2525         |
| 1,2-Dibromoethane (EDB)        | ND     | 5.0       | μg/L       | 5  | 4/2/2015 8:23:27 PM | R2525         |
| Naphthalene                    | ND     | 10        | μg/L       | 5  | 4/2/2015 8:23:27 PM | R2525         |
| 1-Methylnaphthalene            | ND     | 20        | μg/L       | 5  | 4/2/2015 8:23:27 PM | R2525         |
| 2-Methylnaphthalene            | ND     | 20        | µg/L       | 5  | 4/2/2015 8:23:27 PM | R2525         |
| Acetone                        | 76     | 50        | μg/L       | 5  | 4/2/2015 8:23:27 PM | R2525         |
| Bromobenzene                   | ND     | 5.0       | μg/L       | 5  | 4/2/2015 8:23:27 PM | R2525         |
| Bromodichloromethane           | ND     | 5.0       | μg/L       | 5  | 4/2/2015 8:23:27 PM | R2525         |
| Bromoform                      | ND     | 5.0       | μg/L       | 5  | 4/2/2015 8:23:27 PM | R2525         |
| Bromomethane                   | ND     | 15        | μg/L       | 5  | 4/2/2015 8:23:27 PM | R2525         |
| 2-Butanone                     | ND     | 50        | μg/L       | 5  | 4/2/2015 8:23:27 PM | R2525         |
| Carbon disulfide               | ND     | 50        | μg/L       | 5  | 4/2/2015 8:23:27 PM | R2525         |
| Carbon Tetrachloride           | ND     | 5.0       | μg/L       | 5  | 4/2/2015 8:23:27 PM | R2525         |
| Chlorobenzene                  | ND     | 5.0       | μg/L       | 5  | 4/2/2015 8:23:27 PM | R2525         |
| Chloroethane                   | ND     | 10        | μg/L       | 5  | 4/2/2015 8:23:27 PM | R2525         |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 14

- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order 1504086

Date Reported: 4/28/2015

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Injection Well

 Project:
 Injection Well
 Collection Date: 4/1/2015 10:15:00 AM

 Lab ID:
 1504086-001
 Matrix: AQUEOUS
 Received Date: 4/2/2015 7:00:00 AM

| Analyses                    | Result | RL Qu | al Units | DF | Date Analyzed       | Batch  |
|-----------------------------|--------|-------|----------|----|---------------------|--------|
| EPA METHOD 8260B: VOLATILES |        |       |          |    | Analys              | :: DJF |
| Chloroform                  | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| Chloromethane               | ND     | 15    | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| 2-Chlorotoluene             | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| 4-Chlorotoluene             | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| cis-1,2-DCE                 | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| cis-1,3-Dichloropropene     | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| 1,2-Dibromo-3-chloropropane | ND     | 10    | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| Dibromochloromethane        | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| Dibromomethane              | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| 1,2-Dichlorobenzene         | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| 1,3-Dichlorobenzene         | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| 1,4-Dichlorobenzene         | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| Dichlorodifluoromethane     | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| 1,1-Dichloroethane          | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| 1,1-Dichloroethene          | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| 1,2-Dichloropropane         | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| 1,3-Dichloropropane         | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| 2,2-Dichloropropane         | ND     | 10    | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| 1,1-Dichloropropene         | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| Hexachlorobutadiene         | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| 2-Hexanone                  | ND     | 50    | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| Isopropylbenzene            | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| 4-isopropyltoluene          | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| 4-Methyl-2-pentanone        | ND     | 50    | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| Methylene Chloride          | ND     | 15    | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| n-Butylbenzene              | ND     | 15    | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| n-Propylbenzene             | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| sec-Butylbenzene            | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| Styrene                     | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| tert-Butylbenzene           | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| 1,1,1,2-Tetrachloroethane   | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| 1,1,2,2-Tetrachloroethane   | ND     | 10    | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| Tetrachloroethene (PCE)     | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| trans-1,2-DCE               | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| trans-1,3-Dichloropropene   | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| 1,2,3-Trichlorobenzene      | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| 1,2,4-Trichlorobenzene      | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| 1,1,1-Trichloroethane       | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |
| 1,1,2-Trichloroethane       | ND     | 5.0   | μg/L     | 5  | 4/2/2015 8:23:27 PM | R25251 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 14

- P Sample pH Not In Range
- RL Reporting Detection Limit

### Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/28/2015

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

Project: Injection Well

Collection Date: 4/1/2015 10:15:00 AM

Lab ID: 1504086-001

Matrix: AQUEOUS

Received Date: 4/2/2015 7:00:00 AM

| Result | RL (                                                                                        | Qual 1                                                                                                                                       | Units                                                                                                                                          | DF                                                                                                                                                                                                                     | Date Analyzed                                                                                                                                                                                                                                                                                               | Batch         |
|--------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|        |                                                                                             |                                                                                                                                              |                                                                                                                                                |                                                                                                                                                                                                                        | Analys                                                                                                                                                                                                                                                                                                      | t: <b>DJF</b> |
| ND     | 5.0                                                                                         |                                                                                                                                              | μg/L                                                                                                                                           | 5                                                                                                                                                                                                                      | 4/2/2015 8:23:27 PM                                                                                                                                                                                                                                                                                         | R25251        |
| ND     | 5.0                                                                                         |                                                                                                                                              | μg/L                                                                                                                                           | 5                                                                                                                                                                                                                      | 4/2/2015 8:23:27 PM                                                                                                                                                                                                                                                                                         | R25251        |
| ND     | 10                                                                                          |                                                                                                                                              | μg/L                                                                                                                                           | 5                                                                                                                                                                                                                      | 4/2/2015 8:23:27 PM                                                                                                                                                                                                                                                                                         | R25251        |
| ND     | 5.0                                                                                         |                                                                                                                                              | μg/L                                                                                                                                           | 5                                                                                                                                                                                                                      | 4/2/2015 8:23:27 PM                                                                                                                                                                                                                                                                                         | R25251        |
| ND     | 7.5                                                                                         |                                                                                                                                              | μg/L                                                                                                                                           | 5                                                                                                                                                                                                                      | 4/2/2015 8:23:27 PM                                                                                                                                                                                                                                                                                         | R25251        |
| 91.2   | 70-130                                                                                      |                                                                                                                                              | %REC                                                                                                                                           | 5                                                                                                                                                                                                                      | 4/2/2015 8:23:27 PM                                                                                                                                                                                                                                                                                         | R25251        |
| 87.3   | 70-130                                                                                      |                                                                                                                                              | %REC                                                                                                                                           | 5                                                                                                                                                                                                                      | 4/2/2015 8:23:27 PM                                                                                                                                                                                                                                                                                         | R25251        |
| 101    | 70-130                                                                                      |                                                                                                                                              | %REC                                                                                                                                           | 5                                                                                                                                                                                                                      | 4/2/2015 8:23:27 PM                                                                                                                                                                                                                                                                                         | R25251        |
| 91.7   | 70-130                                                                                      |                                                                                                                                              | %REC                                                                                                                                           | 5                                                                                                                                                                                                                      | 4/2/2015 8:23:27 PM                                                                                                                                                                                                                                                                                         | R25251        |
|        |                                                                                             |                                                                                                                                              |                                                                                                                                                |                                                                                                                                                                                                                        | Analys                                                                                                                                                                                                                                                                                                      | t: <b>JRR</b> |
| 4900   | 0.010                                                                                       |                                                                                                                                              | µmhos/cm                                                                                                                                       | 1                                                                                                                                                                                                                      | 4/3/2015 3:32:30 PM                                                                                                                                                                                                                                                                                         | R25315        |
|        |                                                                                             |                                                                                                                                              |                                                                                                                                                |                                                                                                                                                                                                                        | Analys                                                                                                                                                                                                                                                                                                      | t: <b>JRR</b> |
| 6.94   | 1.68                                                                                        | Н                                                                                                                                            | pH units                                                                                                                                       | 1                                                                                                                                                                                                                      | 4/3/2015 3:32:30 PM                                                                                                                                                                                                                                                                                         | R25315        |
|        |                                                                                             |                                                                                                                                              |                                                                                                                                                |                                                                                                                                                                                                                        | Analys                                                                                                                                                                                                                                                                                                      | t: <b>JRR</b> |
| 358.6  | 20.00                                                                                       |                                                                                                                                              | mg/L CaCO3                                                                                                                                     | 1                                                                                                                                                                                                                      | 4/3/2015 3:32:30 PM                                                                                                                                                                                                                                                                                         | R25315        |
| ND     | 2.000                                                                                       |                                                                                                                                              | mg/L CaCO3                                                                                                                                     | 1                                                                                                                                                                                                                      | 4/3/2015 3:32:30 PM                                                                                                                                                                                                                                                                                         | R25315        |
| 358.6  | 20.00                                                                                       |                                                                                                                                              | mg/L CaCO3                                                                                                                                     | 1                                                                                                                                                                                                                      | 4/3/2015 3:32:30 PM                                                                                                                                                                                                                                                                                         | R25315        |
| OLIDS  |                                                                                             |                                                                                                                                              |                                                                                                                                                |                                                                                                                                                                                                                        | Analys                                                                                                                                                                                                                                                                                                      | t: <b>KS</b>  |
| 2890   | 200                                                                                         | *                                                                                                                                            | mg/L                                                                                                                                           | 1                                                                                                                                                                                                                      | 4/3/2015 3:48:00 PM                                                                                                                                                                                                                                                                                         | 18487         |
|        | ND<br>ND<br>ND<br>ND<br>91.2<br>87.3<br>101<br>91.7<br>4900<br>6.94<br>358.6<br>ND<br>358.6 | ND 5.0 ND 5.0 ND 10 ND 5.0 ND 7.5 91.2 70-130 87.3 70-130 101 70-130 91.7 70-130 4900 0.010 6.94 1.68 358.6 20.00 ND 2.000 358.6 20.00 OLIDS | ND 5.0 ND 5.0 ND 10 ND 5.0 ND 7.5 91.2 70-130 87.3 70-130 101 70-130 91.7 70-130 4900 0.010 6.94 1.68 H 358.6 20.00 ND 2.000 358.6 20.00 OLIDS | ND 5.0 μg/L ND 5.0 μg/L ND 10 μg/L ND 10 μg/L ND 7.5 μg/L 91.2 70-130 %REC 87.3 70-130 %REC 101 70-130 %REC 91.7 70-130 %REC 4900 0.010 μmhos/cm 6.94 1.68 H pH units 358.6 20.00 mg/L CaCO3 ND 2.000 mg/L CaCO3 OLIDS | ND 5.0 μg/L 5 ND 5.0 μg/L 5 ND 10 μg/L 5 ND 7.5 μg/L 5 ND 7.5 μg/L 5 91.2 70-130 %REC 5 87.3 70-130 %REC 5 101 70-130 %REC 5 91.7 70-130 %REC 5 91.7 10-130 %REC 5 91.7 70-130 %REC 1  4900 0.010 μmhos/cm 1 6.94 1.68 H pH units 1 358.6 20.00 mg/L CaCO3 1 ND 2.000 mg/L CaCO3 1 358.6 20.00 mg/L CaCO3 1 | ND   5.0      |

### Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page
- P Sample pH Not In Range
- Page 5 of 14
- RL Reporting Detection Limit

# Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

**Client:** 

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

150403019

Address:

4901 HAWKINS NE SUITE D

Project Name:

1504086

Attn:

**ALBUQUERQUE, NM 87109** ANDY FREEMAN

### **Analytical Results Report**

Sample Number

150403019-001

Sampling Date 4/1/2015 Date/Time Received 4/3/2015

11:40 AM

Client Sample ID

1504086-001E / INJECTION WELL

Sampling Time 10:15 AM

Matrix

Water

Sample Location

Comments

| Parameter          | Result | Units    | PQL  | Analysis Date | Analyst | Method      | Qualifier |
|--------------------|--------|----------|------|---------------|---------|-------------|-----------|
| Cyanide (reactive) | ND     | mg/L     | 1    | 4/8/2015      | CRW     | SW846 CH7   |           |
| Flashpoint         | >200   | °F       |      | 4/6/2015      | KFG     | EPA 1010    |           |
| pH                 | 7.17   | ph Units |      | 4/6/2015      | KJS     | SM 4500pH-B |           |
| Reactive sulfide   | 0.872  | mg/L     | 0.36 | 4/6/2015      | HSW     | SW846 CH7   |           |

**Authorized Signature** 

John Coddington, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND

Not Detected

PQL

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

# Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

150403019

Address:

4901 HAWKINS NE SUITE D

**ALBUQUERQUE, NM 87109** 

**Project Name:** 

1504086

Attn:

ANDY FREEMAN

**Analytical Results Report Quality Control Data** 

| Lab Control Sample               |            |                  |              |             |       |             |      |            |           |               |
|----------------------------------|------------|------------------|--------------|-------------|-------|-------------|------|------------|-----------|---------------|
| Parameter                        | LCS Result | Units            | s LCS        | Spike       | %Rec  | AR          | %Rec | Prep       | Date      | Analysis Date |
| Cyanide (reactive)               | 0.555      | mg/L             | . (          | ).5         | 111.0 | 80          | -120 | 4/8/       | 2015      | 4/8/2015      |
| Reactive sulfide                 | 0.2        | mg/L             |              | 0.2         | 100.0 | 70          | -130 | 4/6/2      | 2015      | 4/6/2015      |
| Matrix Spike                     |            |                  |              |             |       |             | _    |            |           |               |
| Sample Number Parameter          |            | Sample<br>Result | MS<br>Result | Unit        | le:   | MS<br>Spike | %Rec | AR<br>%Rec | Prep Date | Analysis Date |
| 150403019-001A Reactive sulfide  |            | 0.872            | 1.60         | mg/         |       | 0.73        | 99.7 | 70-130     | 4/6/2015  | 4/6/2015      |
| 150403019-001 Cyanide (reactive) |            | ND               | 0.464        | mg/         |       | 0.5         | 92.8 | 80-120     | 4/8/2015  |               |
| Matrix Spike Duplicate           |            |                  |              | <del></del> |       |             |      |            |           |               |
| -                                | MSD        |                  | MSD          |             |       |             | AR   |            |           |               |
| Parameter                        | Result     | Units            | Spike        | <b>%F</b>   |       | %RPD        | %RPI |            | p Date    | Analysis Date |
| Cyanide (reactive)               | 0.447      | mg/L             | 0.5          | 89          | .4    | 3.7         | 0-25 | 4/8        | 9/2015    | 4/8/2015      |
| Method Blank                     |            |                  |              |             |       |             |      |            |           | •             |
| Parameter                        |            | Re               | sult         | Üı          | nits  |             | PQL  | Pr         | ep Date   | Analysis Date |
| Cyanide (reactive)               |            | N                | ID           | m           | g/L   |             | 1    | 4/         | 8/2015    | 4/8/2015      |
| Reactive sulfide                 |            | N                | ID           |             | g/L   |             | 0.5  | 4/0        | 5/2015    | 4/6/2015      |

AR

Acceptable Range Not Detected

ND

Practical Quantitation Limit

**PQL** RPD

Relative Percentage Difference

#### Comments:

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1504086 28-Apr-15

Client: Western Refining Southwest, Inc.

Project:

Injection Well

TestCode: EPA Method 300.0: Anions Sample ID MB SampType: MBLK

Client ID: PBW Batch ID: R25272 RunNo: 25272

Prep Date: Analysis Date: 4/2/2015 SeqNo: 747284 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

ND 0.50 Chloride Sulfate ND 0.50

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range Е
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Sample pH Not In Range Reporting Detection Limit Page 6 of 14

Spike Recovery outside accepted recovery limits

### Hall Environmental Analysis Laboratory, Inc.

WO#: 1504086

28-Apr-15

Client: Western Refining Southwest, Inc.

Project: Injection Well

| Sample ID 5ml rb               | SampT      | ype: MBL       | -K        | Tes          | tCode: El | PA Method | 8260B: VOL  | ATILES |                   |      |  |
|--------------------------------|------------|----------------|-----------|--------------|-----------|-----------|-------------|--------|-------------------|------|--|
| Client ID: PBW                 | Batch      | ID: <b>R25</b> | 251       | RunNo: 25251 |           |           |             |        |                   |      |  |
| Prep Date:                     | Analysis D | ate: 4/2       | 2015      |              | SeqNo: 7  |           | Units: µg/L |        |                   |      |  |
| Analyte                        | Result     | PQL            | SPK value | SPK Ref Val  | %REC      | LowLimit  | HighLimit   | %RPD   | RPDLi <b>m</b> it | Qual |  |
| Benzene                        | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| Toluene                        | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| Ethylbenzene                   | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| Methyl tert-butyl ether (MTBE) | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| 1,2,4-Trimethylbenzene         | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| 1,3,5-Trimethylbenzene         | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| 1,2-Dichloroethane (EDC)       | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| 1,2-Dibromoethane (EDB)        | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| Naphthalene                    | ND         | 2.0            |           |              |           |           |             |        |                   |      |  |
| 1-Methylnaphthalene            | ND         | 4.0            |           |              |           |           |             |        |                   |      |  |
| 2-Methylnaphthalene            | ND         | 4.0            |           |              |           |           |             |        |                   |      |  |
| Acetone                        | ND         | 10             |           |              |           |           |             |        |                   |      |  |
| Bromobenzene                   | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| Bromodichloromethane           | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| Bromoform                      | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| Bromomethane                   | ND         | 3.0            |           |              |           |           |             |        |                   |      |  |
| 2-Butanone                     | ND         | 10             |           |              |           |           |             |        |                   |      |  |
| Carbon disulfide               | ND         | 10             |           |              |           |           |             |        |                   |      |  |
| Carbon Tetrachloride           | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| Chlorobenzene                  | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| Chloroethane                   | ND         | 2.0            |           |              |           |           |             |        |                   |      |  |
| Chloroform                     | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| Chloromethane                  | ND         | 3.0            |           |              |           |           |             |        |                   |      |  |
| 2-Chlorotoluene                | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| 4-Chlorotoluene                | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| cis-1,2-DCE                    | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| cis-1,3-Dichloropropene        | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| 1,2-Dibromo-3-chloropropane    | ND         | 2.0            |           |              |           |           |             |        |                   |      |  |
| Dibromochloromethane           | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| Dibromomethane                 | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| 1,2-Dichlorobenzene            | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| 1,3-Dichlorobenzene            | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| 1.4-Dichlorobenzene            | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| Dichlorodifluoromethane        | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| 1,1-Dichloroethane             | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| 1,1-Dichloroethene             | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| 1,2-Dichloropropane            | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
|                                | ND         | 1.0            |           |              |           |           |             |        |                   |      |  |
| 1,3-Dichloropropane            | ND<br>ND   | 2.0            |           |              |           |           |             |        |                   |      |  |
| 2,2-Dichloropropane            | ND         | 2.0            |           |              |           |           |             |        |                   |      |  |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 7 of 14

### Hall Environmental Analysis Laboratory, Inc.

WO#: 15

1504086 28-Apr-15

Client:

Western Refining Southwest, Inc.

Project:

Injection Well

| Sample ID 5mi rb            | mple ID <b>5mi rb</b> SampType: <b>MBLK</b> |               |           |             |           |          | TestCode: EPA Method 8260B: VOLATILES |      |          |      |  |  |  |  |
|-----------------------------|---------------------------------------------|---------------|-----------|-------------|-----------|----------|---------------------------------------|------|----------|------|--|--|--|--|
| Client ID: PBW              | Batch I                                     | D: <b>R2</b>  | 5251      | F           | RunNo: 2  |          |                                       |      |          |      |  |  |  |  |
| Prep Date:                  | Analysis Da                                 | te: <b>4/</b> | 2/2015    | 8           | SeqNo: 74 | 46628    | Units: µg/L                           |      |          |      |  |  |  |  |
| Analyte                     | Result                                      | PQL           | SPK value | SPK Ref Val | %REC      | LowLimit | HighLimit                             | %RPD | RPDLimit | Qual |  |  |  |  |
| 1,1-Dichloropropene         | ND                                          | 1.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| Hexachlorobutadiene         | ND                                          | 1.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| 2-Hexanone                  | ND                                          | 10            |           |             |           |          |                                       |      |          |      |  |  |  |  |
| sopropylbenzene             | ND                                          | 1.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| 1-Isopropyitoluene          | ND                                          | 1.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| 1-Methyl-2-pentanone        | ND                                          | 10            |           |             |           |          |                                       |      |          |      |  |  |  |  |
| Methylene Chloride          | ND                                          | 3.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| n-Butylbenzene              | ND                                          | 3.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| n-Propylbenzene             | ND                                          | 1.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| sec-Butylbenzene            | ND                                          | 1.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| Styrene                     | ND                                          | 1.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| ert-Butylbenzene            | ND                                          | 1.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| 1,1,1,2-Tetrachloroethane   | ND                                          | 1.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| 1,1,2,2-Tetrachloroethane   | ND                                          | 2.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| Tetrachloroethene (PCE)     | ND                                          | 1.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| rans-1,2-DCE                | ND                                          | 1.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| rans-1,3-Dichloropropene    | ND                                          | 1.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| 1,2,3-Trichlorobenzene      | ND                                          | 1.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| 1,2,4-Trichlorobenzene      | ND                                          | 1.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| 1,1,1-Trichloroethane       | ND                                          | 1.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| 1,1,2-Trichloroethane       | ND                                          | 1.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| Trichloroethene (TCE)       | ND                                          | 1.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| Trichlorofluoromethane      | ND                                          | 1.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| 1,2,3-Trichloropropane      | ND                                          | 2.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| /inyl chloride              | ND                                          | 1.0           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| Kylenes, Total              | ND                                          | 1.5           |           |             |           |          |                                       |      |          |      |  |  |  |  |
| Surr: 1,2-Dichloroethane-d4 | 9.0                                         |               | 10.00     |             | 90.2      | 70       | 130                                   |      |          |      |  |  |  |  |
| Surr: 4-Bromofluorobenzene  | 9.9                                         |               | 10.00     |             | 98.5      | 70       | 130                                   |      |          |      |  |  |  |  |
| Surr: Dibromofluoromethane  | 10                                          |               | 10.00     |             | 100       | 70       | 130                                   |      |          |      |  |  |  |  |
| Surr: Toluene-d8            | 8.9                                         |               | 10.00     |             | 89.1      | 70       | 130                                   |      |          |      |  |  |  |  |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 8 of 14

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1504086

28-Apr-15

Client:

Western Refining Southwest, Inc.

Project:

Injection Well

|                                         |              |                     | -           |                             |          |             |           |          |      |
|-----------------------------------------|--------------|---------------------|-------------|-----------------------------|----------|-------------|-----------|----------|------|
| Sample ID mb-18572                      | SampTyp      | oe: MBLK            | Tes         | tCode: EPA                  | Method   | 8270C: Semi | olatiles/ |          |      |
| Client ID: PBW                          | Batch I      | D: <b>18572</b>     | F           | RunNo: <b>2538</b>          | B1       |             |           |          |      |
| Prep Date: 4/8/2015                     | Analysis Dat | te: <b>4/8/2015</b> | :           | Seq <b>N</b> o: <b>7511</b> | 155      | Units: µg/L |           |          |      |
| Analyte                                 | Result       | PQL SPK value       | SPK Ref Val | %REC_L                      | .owLimit | HighLimit   | %RPD      | RPDLimit | Qual |
| Acenaphthene                            | ND           | 10                  |             |                             |          |             |           |          |      |
| Acenaphthylene                          | ND           | 10                  |             |                             |          |             |           |          |      |
| Aniline                                 | ND           | 10                  |             |                             |          |             |           |          |      |
| Anthracene                              | ND           | 10                  |             |                             |          |             |           |          |      |
| Azobenzene                              | ND           | 10                  |             |                             |          |             |           |          |      |
| Benz(a)anthracene                       | ND           | 10                  |             |                             |          |             |           |          |      |
| Benzo(a)pyrene                          | ND           | 10                  |             |                             |          |             |           |          |      |
| Benzo(b)fluoranthene                    | ND           | 10                  |             |                             |          |             |           |          |      |
| Benzo(g,h,i)perylene                    | ND           | 10                  |             |                             |          |             |           |          |      |
| Benzo(k)fluoranthene                    | ND           | 10                  |             |                             |          |             |           |          |      |
| Benzoic acid                            | ND           | 20                  |             |                             |          |             |           |          |      |
| Benzyl alcohol                          | ND           | 10                  |             |                             |          |             |           |          |      |
| Bis(2-chloroethoxy)methane              | ND           | 10                  |             |                             |          |             |           |          |      |
| Bis(2-chloroethyl)ether                 | ND           | 10                  |             |                             |          |             |           |          |      |
| Bis(2-chloroisopropyl)ether             | ND           | 10                  |             |                             |          |             |           |          |      |
| Bis(2-ethylhexyl)phthalate              | ND           | 10                  |             |                             |          |             |           |          |      |
| 4-Bromophenyl phenyl ether              | ND           | 10                  |             |                             |          |             |           |          |      |
| Butyl benzyl phthalate                  | ND           | 10                  |             |                             |          |             |           |          |      |
| Carbazole                               | ND           | 10                  |             |                             |          |             |           |          |      |
| 4-Chloro-3-methylphenol                 | ND           | 10                  |             |                             |          |             |           |          |      |
| 4-Chloroaniline                         | ND           | 10                  |             |                             |          |             |           |          |      |
| 2-Chloronaphthalene                     | ND           | 10                  |             |                             |          |             |           |          |      |
| 2-Chlorophenol                          | ND           | 10                  |             |                             |          |             |           |          |      |
| 4-Chlorophenyl phenyl ether             | ND           | 10                  |             |                             |          |             |           |          |      |
| Chrysene                                | ND           | 10                  |             |                             |          |             |           |          |      |
| Di-n-butyl phthalate                    | ND           | 10                  |             |                             |          |             |           |          |      |
| Di-n-octyl phthalate                    | ND<br>ND     | 10                  |             |                             |          |             |           |          |      |
| Dibenz(a,h)anthracene                   | ND           | 10<br>10            |             |                             |          |             |           |          |      |
| Dibenzofuran                            | ND           | 10<br>10            |             |                             |          |             |           |          |      |
| 1,2-Dichlorobenzene 1,3-Dichlorobenzene | ND<br>ND     | 10<br>10            |             |                             |          |             |           |          |      |
| 1,4-Dichlorobenzene                     | ND<br>ND     | 10                  |             |                             |          |             |           |          |      |
| 3,3'-Dichlorobenzene                    | ND<br>ND     | 10                  |             |                             |          |             |           |          |      |
| Diethyl phthalate                       | ND           | 10                  |             |                             |          |             |           |          |      |
| Dimethyl phthalate                      | ND<br>ND     | 10                  |             |                             |          |             |           |          |      |
| 2,4-Dichlorophenol                      | ND<br>ND     | 20                  |             |                             |          |             |           |          |      |
| 2,4-Dimethylphenol                      | ND           | 10                  |             |                             |          |             |           |          |      |
| 4,6-Dinitro-2-methylphenol              | ND<br>ND     | 20                  |             |                             |          |             |           |          |      |
| 2,4-Dinitrophenol                       | ND<br>ND     | 20                  |             |                             |          |             |           |          |      |
| z,4-Dinidopnenoi                        | ND           | 20                  |             |                             |          |             |           |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range

RL Reporting Detection Limit

Page 9 of 14

### Hall Environmental Analysis Laboratory, Inc.

WO#: 1504086

28-Apr-15

Client:

Western Refining Southwest, Inc.

Project:

Injection Well

| Sample ID mb-18572         | SampTy          | pe: MBL           | _K        | TestCode: EPA Method 8270C: Semivolatiles |              |          |             |      |          |      |  |
|----------------------------|-----------------|-------------------|-----------|-------------------------------------------|--------------|----------|-------------|------|----------|------|--|
| Client ID: PBW             | Batch ID: 18572 |                   |           | RunNo: <b>25381</b>                       |              |          |             |      |          |      |  |
| Prep Date: 4/8/2015        | Analysis Da     | ite: <b>4/8</b> / | /2015     | SeqNo: <b>751155</b>                      |              |          | Units: µg/L |      |          |      |  |
| Analyte                    | Result          | PQL :             | SPK value | SPK Ref Val                               | %REC         | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |  |
| 2,4-Dinitrotoluene         | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| 2,6-Dinitrotoluene         | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| Fluoranthene               | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| Fluorene                   | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| Hexachlorobenzene          | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| Hexachlorobutadiene        | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| Hexachlorocyclopentadiene  | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| Hexachloroethane           | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| Indeno(1,2,3-cd)pyrene     | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| Isophorone                 | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| 1-Methylnaphthalene        | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| 2-Methylnaphthalene        | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| 2-Methylphenol             | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| 3+4-Methylphenol           | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| N-Nitrosodi-n-propylamine  | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| N-Nitrosodimethylamine     | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| N-Nitrosodiphenylamine     | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| Naphthalene                | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| 2-Nitroaniline             | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| 3-Nitroaniline             | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| 4-Nitroaniline             | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| Nitrobenzene               | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| 2-Nitrophenol              | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| 4-Nitrophenol              | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| entachlorophenol           | ND              | 20                |           |                                           |              |          |             |      |          |      |  |
| Phenanthrene               | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| Phenol                     | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| <sup>O</sup> yrene         | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| Pyridine                   | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| 1,2,4-Trichlorobenzene     | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| 2,4,5-Trichlorophenol      | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| 2,4,6-Trichlorophenol      | ND              | 10                |           |                                           |              |          |             |      |          |      |  |
| Surr: 2-Fluorophenol       | 170             |                   | 200.0     |                                           | 86.8         | 17.6     | 104         |      |          |      |  |
| Surr: Phenol-d5            | 170             |                   | 200.0     |                                           | 85.8         | 17.7     | 89.9        |      |          |      |  |
| Surr: 2,4,6-Tribromophenol | 170             |                   | 200.0     |                                           | 85.6         | 16.3     | 122         |      |          |      |  |
| Surr: Nitrobenzene-d5      | 78              |                   | 100.0     |                                           | 78. <b>4</b> | 45.3     | 117         |      |          |      |  |
| Surr: 2-Fluorobiphenyl     | 79              |                   | 100.0     |                                           | 79.3         | 43       | 113         |      |          |      |  |
| Surr: 4-Terphenyl-d14      | 80              |                   | 100.0     |                                           | 80.3         | 47.6     | 122         |      |          |      |  |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 10 of 14

#### Hall Environmental Analysis Laboratory, Inc.

WO#:

1504086

28-Apr-15

Qual

Client:

Western Refining Southwest, Inc.

Project:

Injection Well

Sample ID MB-18653

SampType: MBLK

TestCode: EPA Method 7470: Mercury

Client ID: PBW

Batch ID: 18653

RunNo: 25477

SPK value SPK Ref Val %REC LowLimit

Prep Date: 4/13/2015

Analysis Date: 4/13/2015

SeqNo: 754166

Units: mg/L

%RPD

**RPDLimit** 

HighLimit

Analyte Mercury

**PQL** ND 0.00020

Qualifiers:

Value exceeds Maximum Contaminant Level.

Value above quantitation range

Analyte detected below quantitation limits

0 RSD is greater than RSDlimit

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

Sample pH Not In Range P

RLReporting Detection Limit Page 11 of 14

### Hall Environmental Analysis Laboratory, Inc.

WO#: 1

1504086

28-Apr-15

Client:

Western Refining Southwest, Inc.

Project:

Injection Well

| Sample ID MB-18515  | Samp     | Туре: Мі  | BLK       | Tes         | tCode: E | PA 6010B: | Total Recove | rable Met | als      |      |
|---------------------|----------|-----------|-----------|-------------|----------|-----------|--------------|-----------|----------|------|
| Client ID: PBW      | Bate     | ch ID: 18 | 515       | F           | RunNo: 2 | 5295      |              |           |          |      |
| Prep Date: 4/3/2015 | Analysis | Date: 4   | 4/2015    | 9           | SeqNo: 7 | 47966     | Units: mg/L  |           |          |      |
| Analyte             | Result   | PQL       | SPK value | SPK Ref Val | %REC     | LowLimit  | HighLimit    | %RPD      | RPDLimit | Qual |
| Arsenic             | ND       | 0.020     |           |             |          |           |              |           |          |      |
| Barium              | ND       | 0.020     |           |             |          |           |              |           |          |      |
| Cadmium             | ND       | 0.0020    |           |             |          |           |              |           |          |      |
| Calcium             | ND       | 1.0       |           |             |          |           |              |           |          |      |
| Chromium            | ND       | 0.0060    |           |             |          |           |              |           |          |      |
| Lead                | ND       | 0.0050    |           |             |          |           |              |           |          |      |
| Magnesium           | ND       | 1.0       |           |             |          |           |              |           |          |      |
| Potassium           | ND       | 1.0       |           |             |          |           |              |           |          |      |
| Selenium            | ND       | 0.050     |           |             |          |           |              |           |          |      |
| Silver              | ND       | 0.0050    |           |             |          |           |              |           |          |      |
| Sodium              | ND       | 1.0       |           |             |          |           |              |           |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 12 of 14

#### Hall Environmental Analysis Laboratory, Inc.

WO#: 1504086

28-Apr-15

Client:

Western Refining Southwest, Inc.

Project:

Injection Well

Sample ID mb-1

SampType: MBLK

TestCode: SM2320B: Alkalinity

Client ID: PBW

Batch ID: R25315

RunNo: 25315

LowLimit

Units: mg/L CaCO3

Prep Date: Analyte

Analysis Date: 4/3/2015

Result

SPK value SPK Ref Val %REC

SPK value SPK Ref Val %REC LowLimit

SeqNo: 748965

%RPD

**RPDLimit** 

Qual

Total Alkalinity (as CaCO3)

Sample ID mb-2

ND 20.00

SampType: MBLK

TestCode: SM2320B: Alkalinity

Client ID:

**PBW** 

Batch ID: R25315

**PQL** 

RunNo: 25315

HighLimit

Units: mg/L CaCO3

Prep Date: Analyte

Analysis Date: 4/3/2015

Result

SeqNo: 748989

HighLimit

%RPD **RPDLimit** 

Qual

Total Alkalinity (as CaCO3)

ND 20.00

Qualifiers:

Value exceeds Maximum Contaminant Level.

Ε Value above quantitation range

Analyte detected below quantitation limits

0 RSD is greater than RSDlimit

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

Sample pH Not In Range

Reporting Detection Limit

Page 13 of 14

#### Hall Environmental Analysis Laboratory, Inc.

WO#: 1504086

28-Apr-15

**Client:** 

Western Refining Southwest, Inc.

Project:

Injection Well

Sample ID MB-18487

SampType: MBLK

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW

Batch ID: 18487

RunNo: 25292

Prep Date: 4/2/2015

Analysis Date: 4/3/2015

SeqNo: 747841

Units: mg/L

Analyte

**PQL** 

SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD **RPDLimit**  Qual

Total Dissolved Solids

ND

SampType: MS

20.0

TestCode: SM2540C MOD: Total Dissolved Solids

Sample ID 1504086-001BMS Client ID: Injection Well

Batch ID: 18487

RunNo: 25292

Prep Date: 4/2/2015

Analysis Date: 4/3/2015

SeqNo: 747863

Units: mg/L

Analyte Total Dissolved Solids

13000

**PQL** SPK value SPK Ref Val

10000

%REC 2890 101

LowLimit

HighLimit

**RPDLimit** 

Qual

Qual

Sample ID 1504086-001BMSD

SampType: MSD

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: Injection Well

Batch ID: 18487

200

RunNo: 25292

Units: mg/L

%RPD

Page 14 of 14

Prep Date: 4/2/2015

Analysis Date: 4/3/2015

SeqNo: 747864

**RPDLimit** 

Total Dissolved Solids

13100

**PQL** 200

SPK value SPK Ref Val 10000 2890

%REC LowLimit 102

HighLimit %RPD 120

0.841

#### Qualifiers:

Value exceeds Maximum Contaminant Level.

Spike Recovery outside accepted recovery limits

- E Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Reporting Detection Limit RL
- P Sample pH Not In Range



Hall Environmental Analysis Laboratory 4901 Hawkias NE Albuquerque, NM 87109

TEL: 595-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

## Sample Log-In Check List

| Client Name     | Western Refining Southw                                          | Work Order Number.        | 15040          | 086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | RcptNo:                                | 1                                                |
|-----------------|------------------------------------------------------------------|---------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------|--------------------------------------------------|
| Received by/da  | nte: AT                                                          | OHali5                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                                  |
| Logged By:      | Lindsay Mangin                                                   | 4/2/2015 7:00:00 AM       |                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>g gyllygi</del> o |                                        |                                                  |
| Completed By:   | Lindsay Mangin                                                   | 4/2/2015 9:21:57 AM       |                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +4H40                  |                                        |                                                  |
| Reviewed By:    | Q <sub>1</sub>                                                   | 04/02/15                  |                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • •                    |                                        |                                                  |
| Chain of Cus    | stody                                                            | 0//0//                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                                  |
|                 | els intect on sample bottles?                                    |                           | Yes            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No 🗆                   | Not Present                            |                                                  |
| 2. Is Chain of  | Custody complete?                                                |                           | Yes            | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No 🗔                   | Not Present                            |                                                  |
| 3. How was th   | nc sample delivered?                                             |                           | Cour           | <u>ner</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                                        |                                                  |
| <u>Log In</u>   |                                                                  |                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                                  |
| 4. Was an att   | tempt made to cool the sample:                                   | 5?                        | Yes            | ₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No 🗍                   | NA                                     |                                                  |
| 5. Were all sa  | imples received at a temperatu                                   | re of >0°C to 60°C        | Yes            | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No :                   | NA !                                   |                                                  |
| 6. Sample(s)    | in proper container(s)?                                          |                           | Yes            | $\mathbf{V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No 🗀                   |                                        |                                                  |
| 7. Sufficient s | ample volume for indicated test                                  | t(s)?                     | Yes            | <b>&gt;</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No L                   |                                        |                                                  |
| 8. Are sample   | s (except VOA and ONG) prop                                      | erly preserved?           | Yes            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No                     |                                        |                                                  |
| 9. Was preser   | rvative added to bottles?                                        |                           | Yes            | 100/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No 🗹                   | 4 -001A                                | 2 of 3 and 3 of                                  |
| 10. VOA vials h | nave zero headspace?                                             | Ċ                         | Yes            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No L                   | No VOA Vials                           | 2 of 3 and 3 of<br>have bushles.<br>-es o4/volus |
|                 | sample containers received bro                                   | ken?                      | Yes            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No 🗹                   |                                        | -cs orthopics                                    |
|                 |                                                                  |                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | # of preserved<br>bottles checked      | 1,2                                              |
|                 | rwork match bottle labels?                                       |                           | Yes            | <b>Y</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No L                   | for pH:                                | or 12 unless noted)                              |
| •               | epancies on chain of custody) es correctly identified on Chain e | of Custody?               | Yes            | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No.                    | Adjusted?                              | no                                               |
|                 | hat analyses were requested?                                     | •                         | Yes            | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No                     |                                        | Q.C.                                             |
|                 | lding times able to be met?<br>y customer for authorization.)    |                           | Yes            | <b>☑</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No 🗍                   | Checked by:                            | G2                                               |
| Special Hand    | dlin <u>g (if applicable)</u>                                    |                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                                  |
|                 | notified of all discrepancies with                               | h this order?             | Yes            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No 🗆                   | NA 🗹                                   |                                                  |
|                 | on Notified:                                                     | Date [                    |                | M. Alexander and the second se |                        | . W * Maked                            |                                                  |
| By W            |                                                                  |                           | еМа            | il   Phon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e Fax                  | in Person                              |                                                  |
| Rega            |                                                                  |                           |                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                                        |                                                  |
| _               | t Instructions                                                   |                           | ************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | ······································ |                                                  |
| 17. Additional  | remarks:                                                         |                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                                  |
| 18. Cooler Info | <del></del>                                                      | Continue   Continue   c   | Sael D.        | un I e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mad Du                 |                                        |                                                  |
| Cooler N        |                                                                  | Seal Intact   Seal No   8 | Seal Da        | ne i sig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ned By                 |                                        |                                                  |
| 1               |                                                                  |                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i                      |                                        |                                                  |

| C                  | hain-   | of-Cu        | stody Record                            | Turn-Around              | Time:                |                                   |           | <b>,</b>   |                     | ш         | AI          |                | FN            | IV1                                                                               | T D             | O B         | M               | EN              | ΤΔΙ     | ,        |            |
|--------------------|---------|--------------|-----------------------------------------|--------------------------|----------------------|-----------------------------------|-----------|------------|---------------------|-----------|-------------|----------------|---------------|-----------------------------------------------------------------------------------|-----------------|-------------|-----------------|-----------------|---------|----------|------------|
| Client:            | Nesi    | ern          | Refining                                | Standard<br>Project Name | ):                   |                                   |           |            |                     | A         | N           | <b>AL</b>      | YS:           | IS                                                                                | L               |             | OR              | AT              |         |          |            |
| Mailing            | Address | #50          | CR 4990                                 | Tried                    | Tionwe               | 11 4-1-15                         |           | 490        | )1 Ha               | awkir     | ns Ni       | E              | Albu          | quer                                                                              | que,            | , NM        | 8710            | )9              |         |          |            |
| Blow               | mf      | ield         | NM 87413                                | Project #:               |                      |                                   |           | Te         | l. 50               | 5-34      | 5-39        | 75             | Fa            | x 50                                                                              | 05-3            | 45-4°       | 107             |                 |         |          |            |
|                    |         |              | 1-4135                                  | Po #                     | 126/12               | 43                                |           |            |                     |           |             |                | alys          | is R                                                                              | Requ            | est         |                 |                 |         |          | I          |
| email or           |         |              |                                         | Project Mana             | ger:                 |                                   | 1)        | only)      | 9                   | ٢,        | 2           |                |               | 3                                                                                 |                 |             | 4               | 14              |         |          |            |
| QA/QC F            | -       | -            | Level 4 (Full Validation)               |                          |                      |                                   | 's (8021) | TPH (Gas o | 3 (GRO / DRO / MRO) | À         | M) BAKED    | SIMS)          |               | ,PO4,S                                                                            | 2 PCB's         |             |                 | Corrosiu. TY    | N<br>V  |          |            |
| Accredi            |         |              |                                         | Sampler: B               |                      |                                   | TMB       | 표          | □                   | #         | E C         | 2              |               | ဂ္ဂ                                                                               | / 8082          |             |                 | 2               | A       | 5        | ž          |
| O NEL              |         | ☐ Other      |                                         |                          |                      | □ No                              | +         | +          | 8                   | #         |             | 82             | <u>s</u>      | တ္မီ                                                                              | / SS            |             | <u>∿</u> I      |                 | 1       | , W 2    | 5          |
| □ EDD              | (Type)_ |              |                                         | Sample Tem               | perature: "{         | 0                                 | MTBE      | MTBE       | 9                   |           |             | 9              | leta          | 5                                                                                 | ici             | র ?         | <u>}</u>   {    | <b>#</b>        | 3       | સુ       | ç          |
| Date               | Time    | Matrix       | Sample Request ID                       | Container<br>Type and #  | Preservative<br>Type | HEAL NO.                          | BTEX + M  | BTEX + M   | TPH 8015B           | TEMPERATE | Total Marie | PAH's (8310 or | RCRA 8 Metals | Anions (F,CI,NO <sub>3</sub> ,NO <sub>2</sub> ,PO <sub>4</sub> ,SO <sub>4</sub> ) | 8081 Pesticides | 8260B (VOA) | 8270 (Semi-VOA) | Realing Realing | Ec. PH. | 177 N    | IAL DULLUR |
| 4-1-15             | 10:15   | H20          | injectionwell                           | 3-10A                    | HCI                  | -001                              |           |            |                     |           |             |                |               |                                                                                   | 7               | X           |                 |                 |         |          |            |
| 1                  | 1       |              |                                         |                          | amber                | -001                              |           |            |                     |           |             |                |               |                                                                                   |                 | 7>          | ZT              |                 |         |          |            |
|                    |         |              |                                         | 1-500ml                  |                      | -001                              |           |            |                     |           |             |                |               |                                                                                   |                 |             | >               | <b>X</b>        |         |          |            |
|                    |         |              |                                         | 1-500ml                  |                      | -001                              |           |            |                     | X         |             |                |               |                                                                                   |                 |             |                 |                 | X       |          | •          |
|                    |         |              |                                         |                          | H2504                | -001                              |           |            |                     |           | X           |                |               |                                                                                   |                 |             |                 |                 |         |          | _          |
|                    |         |              |                                         |                          | HNO3                 | -001                              |           |            |                     |           |             |                | X             |                                                                                   |                 |             |                 |                 |         |          | _          |
|                    |         |              |                                         |                          | NOH                  | -001                              |           |            |                     |           |             |                |               |                                                                                   |                 |             |                 | X               |         | ,        | _          |
|                    |         |              |                                         | 1-500ml                  | Zin<br>Acetata       | -001                              |           |            |                     |           |             |                |               |                                                                                   |                 |             |                 |                 |         | X        | _          |
|                    |         |              |                                         |                          |                      |                                   |           |            |                     |           |             |                |               |                                                                                   |                 |             |                 |                 |         |          | _          |
|                    |         |              |                                         |                          |                      |                                   |           |            |                     |           |             |                |               |                                                                                   | $\perp$         |             |                 |                 |         | $\sqcup$ | _          |
|                    |         |              |                                         |                          |                      |                                   | L         |            |                     |           |             |                |               |                                                                                   |                 |             |                 |                 |         |          | _          |
|                    |         |              |                                         |                          |                      |                                   |           |            |                     |           |             |                |               |                                                                                   |                 |             |                 |                 |         |          | _          |
| Date: 4-1-15 Date: | Time:   | Relinquishe  | Krakow)                                 | Received by:             | t Was                | Date Time  4/1//5/1615  Date Time | Rer       | nark       | s:                  |           |             |                |               |                                                                                   |                 |             |                 |                 |         |          |            |
| 1/4/5              | 182\$   | samoles subr | nited to Hall Environmental may be sub- | contracted to other a    | ccredited laboratori | es. This serves as notice of thi  | s possi   | bility.    | Anv su              | ıb-cont   | tracted     | data v         | vill be o     | dearty                                                                            | notate          | ed on ti    | ne anai         | Mtical re       | oort.   |          | _          |



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 1507094

August 06, 2015

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4166 FAX (505) 632-3911

RE: Injection Well 7-1-15

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 7/2/2015 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <a href="www.hallenvironmental.com">www.hallenvironmental.com</a> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1507094

Hall Environmental Analysis Laboratory, Inc. Date Reported: 8/6/2015

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Injection Well

Project: Injection Well 7-1-15 Collection Date: 7/1/2015 9:00:00 AM

Lab ID: 1507094-001 Matrix: AQUEOUS Received Date: 7/2/2015 7:00:00 AM

| Analyses                       | Result | RL     | Qual | Units      | DF  | Date Analyzed         | Batch  |
|--------------------------------|--------|--------|------|------------|-----|-----------------------|--------|
| EPA METHOD 300.0: ANIONS       |        |        |      |            |     | Analyst               | LGT    |
| Chloride                       | 480    | 50     |      | mg/L       | 100 | 7/2/2015 5:18:55 PM   | R27295 |
| Sulfate                        | 65     | 5.0    |      | mg/L       | 10  | 7/2/2015 5:06:31 PM   | R27295 |
| SM2510B: SPECIFIC CONDUCTANCE  | E      |        |      |            |     | Analyst:              | JRR    |
| Conductivity                   | 2000   | 0.010  |      | µmhos/cm   | 1   | 7/6/2015 11:31:17 AM  | R27329 |
| SM2320B: ALKALINITY            |        |        |      |            |     | Analyst:              | JRR    |
| Bicarbonate (As CaCO3)         | 274.6  | 20.00  |      | mg/L CaCO3 | 1   | 7/6/2015 11:31:17 AM  | R27329 |
| Carbonate (As CaCO3)           | ND     | 2.000  |      | mg/L CaCO3 | 1   | 7/6/2015 11:31:17 AM  | R27329 |
| Total Alkalinity (as CaCO3)    | 274.6  | 20.00  |      | mg/L CaCO3 | 1   | 7/6/2015 11:31:17 AM  | R27329 |
| SM2540C MOD: TOTAL DISSOLVED   | SOLIDS |        |      |            |     | Analyst:              | KS     |
| Total Dissolved Solids         | 1220   | 40.0   | *    | mg/L       | 1   | 7/8/2015 5:09:00 PM   | 20129  |
| SM4500-H+B: PH                 |        |        |      |            |     | Analyst:              | JRR    |
| pН                             | 7.45   | 1.68   | Н    | pH units   | 1   | 7/6/2015 11:31:17 AM  | R27329 |
| EPA METHOD 7470: MERCURY       |        |        |      |            |     | Analyst:              | JLF    |
| Mercury                        | ND     | 0.0010 |      | mg/L       | 5   | 7/8/2015 4:47:51 PM   | 20158  |
| EPA 6010B: TOTAL RECOVERABLE   | METALS |        |      |            |     | Analyst:              | MED    |
| Arsenic                        | ND     | 0.020  |      | mg/L       | 1   | 7/9/2015 10:51:23 AM  | 20102  |
| Barium                         | 0.27   | 0.020  |      | mg/L       | 1   | 7/9/2015 10:51:23 AM  | 20102  |
| Cadmium                        | ND     | 0.0020 |      | mg/L       | 1   | 7/16/2015 12:13:28 PM | 20102  |
| Calcium                        | 120    | 5.0    |      | mg/L       | 5   | 7/9/2015 1:02:36 PM   | 20102  |
| Chromium                       | ND     | 0.0060 |      | mg/L       | 1   | 7/14/2015 3:52:06 PM  | 20102  |
| Lead                           | ND     | 0.0050 |      | mg/L       | 1   | 7/9/2015 10:51:23 AM  | 20102  |
| Magnesium                      | 28     | 1.0    |      | mg/L       | 1   | 7/9/2015 10:51:23 AM  | 20102  |
| Potassium                      | 7.7    | 1.0    |      | mg/L       | 1   | 7/9/2015 10:51:23 AM  | 20102  |
| Selenium                       | ND     | 0.050  |      | mg/L       | 1   | 7/16/2015 12:13:28 PM | 20102  |
| Silver                         | ND     | 0.0050 |      | mg/L       | 1   | 7/16/2015 12:13:28 PM | 20102  |
| Sodium                         | 280    | 5.0    |      | mg/L       | 5   | 7/9/2015 1:02:36 PM   | 20102  |
| EPA METHOD 8270C: SEMIVOLATILI | ≣S     |        |      |            |     | Analyst:              | DAM    |
| Acenaphthene                   | ND     | 10     |      | μg/L       | 1   | 7/10/2015 1:30:30 PM  | 20095  |
| Acenaphthylene                 | ND     | 10     |      | μg/L       | 1   | 7/10/2015 1:30:30 PM  | 20095  |
| Aniline                        | ND     | 10     |      | μg/L       | 1   | 7/10/2015 1:30:30 PM  | 20095  |
| Anthracene                     | ND     | 10     |      | μg/L       | 1   | 7/10/2015 1:30:30 PM  | 20095  |
| Azobenzene                     | ND     | 10     |      | μg/L       | 1   | 7/10/2015 1:30:30 PM  | 20095  |
| Benz(a)anthracene              | ND     | 10     |      | μg/L       | 1   | 7/10/2015 1:30:30 PM  | 20095  |
| Benzo(a)pyrene                 | ND     | 10     |      | μg/L       | 1   | 7/10/2015 1:30:30 PM  | 20095  |
| Benzo(b)fluoranthene           | ND     | 10     |      | μg/L       | 1   | 7/10/2015 1:30:30 PM  | 20095  |
| Benzo(g,h,i)perylene           | ND     | 10     |      | μg/L       | 1   | 7/10/2015 1:30:30 PM  | 20095  |
|                                |        |        |      |            |     |                       |        |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits Page 1 of 20
- P Sample pH Not In Range
- Reporting Detection Limit

Lab Order 1507094

Date Reported: 8/6/2015

#### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

**Project:** Injection Well 7-1-15

Lab ID: 1507094-001

Client Sample ID: Injection Well

Collection Date: 7/1/2015 9:00:00 AM

Received Date: 7/2/2015 7:00:00 AM

| Analyses                    | Result | RL Qu | al Units | DF | Date Analyzed        | Batch |
|-----------------------------|--------|-------|----------|----|----------------------|-------|
| EPA METHOD 8270C: SEMIVOLA  | TILES  |       |          |    | Analyst              | : DAM |
| Benzo(k)fluoranthene        | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Benzoic acid                | ND     | 20    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Benzyl alcohol              | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Bis(2-chloroethoxy)methane  | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Bis(2-chloroethyl)ether     | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Bis(2-chloroisopropyl)ether | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Bis(2-ethylhexyl)phthalate  | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| 4-Bromophenyl phenyl ether  | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Butyl benzyl phthalate      | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Carbazole                   | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| 4-Chloro-3-methylphenol     | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| 4-Chloroaniline             | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| 2-Chloronaphthalene         | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| 2-Chlorophenol              | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| 4-Chlorophenyl phenyl ether | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Chrysene                    | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Di-n-butyl phthalate        | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Di-n-octyl phthalate        | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Dibenz(a,h)anthracene       | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Dibenzofuran                | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| 1,2-Dichlorobenzene         | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| 1,3-Dichlorobenzene         | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| 1,4-Dichlorobenzene         | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| 3,3'-Dichlorobenzidine      | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Diethyl phthalate           | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Dimethyl phthalate          | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| 2,4-Dichlorophenol          | ND     | 20    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| 2,4-Dimethylphenol          | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| 4,6-Dinitro-2-methylphenol  | ND     | 20    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| 2,4-Dinitrophenol           | ND     | 20    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| 2,4-Dinitrotoluene          | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| 2,6-Dinitrotoluene          | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Fluoranthene                | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Fluorene                    | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Hexachlorobenzene           | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Hexachlorobutadiene         | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Hexachlorocyclopentadiene   | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Hexachloroethane            | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |
| Indeno(1,2,3-cd)pyrene      | ND     | 10    | μg/L     | 1  | 7/10/2015 1:30:30 PM | 20095 |

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 20
- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order 1507094

Date Reported: 8/6/2015

#### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Injection Well

**Project:** Injection Well 7-1-15 **Collection Date:** 7/1/2015 9:00:00 AM

Lab ID: 1507094-001 Matrix: AQUEOUS Received Date: 7/2/2015 7:00:00 AM

| Analyses                       | Result | RL Qu    | ual Units | DF | Date Analyzed        | Batch  |
|--------------------------------|--------|----------|-----------|----|----------------------|--------|
| EPA METHOD 8270C: SEMIVOLATILE | S      |          |           |    | Analyst              | : DAM  |
| Isophorone                     | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| 1-Methylnaphthalene            | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| 2-Methylnaphthalene            | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| 2-Methylphenol                 | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| 3+4-Methylphenol               | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| N-Nitrosodi-n-propylamine      | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| N-Nitrosodimethylamine         | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| N-Nitrosodiphenylamine         | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| Naphthalene                    | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| 2-Nitroaniline                 | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| 3-Nitroaniline                 | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| 4-Nitroaniline                 | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| Nitrobenzene                   | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| 2-Nitrophenol                  | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| 4-Nitrophenol                  | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| Pentachlorophenol              | ND     | 20       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| Phenanthrene                   | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| Phenol                         | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| Pyrene                         | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| Pyridine                       | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| 1,2,4-Trichlorobenzene         | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| 2,4,5-Trichlorophenol          | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| 2,4,6-Trichlorophenol          | ND     | 10       | μg/L      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| Surr: 2-Fluorophenol           | 66.2   | 14.9-111 | %REC      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| Surr: Phenol-d5                | 64.1   | 11.3-108 | %REC      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| Surr: 2,4,6-Tribromophenol     | 75.7   | 15.7-154 | %REC      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| Surr: Nitrobenzene-d5          | 84.6   | 47.8-106 | %REC      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| Surr: 2-Fluorobiphenyl         | 63.7   | 21.3-123 | %REC      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| Surr: 4-Terphenyl-d14          | 51.4   | 14.3-135 | %REC      | 1  | 7/10/2015 1:30:30 PM | 20095  |
| EPA METHOD 8260B: VOLATILES    |        |          |           |    | Analyst              | BCN    |
| Benzene                        | ND     | 1.0      | μg/L      | 1  | 7/9/2015 8:19:52 PM  | R27397 |
| Toluene                        | 1.5    | 1.0      | μg/L      | 1  | 7/9/2015 8:19:52 PM  | R27397 |
| Ethylbenzene                   | ND     | 1.0      | μg/L      | 1  | 7/9/2015 8:19:52 PM  | R27397 |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0      | μg/L      | 1  | 7/9/2015 8:19:52 PM  | R27397 |
| 1,2,4-Trimethylbenzene         | ND     | 1.0      | μg/L      | 1  | 7/9/2015 8:19:52 PM  | R27397 |
| 1,3,5-Trimethylbenzene         | ND     | 1.0      | μg/L      | 1  | 7/9/2015 8:19:52 PM  | R27397 |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0      | μg/L      | 1  | 7/9/2015 8:19:52 PM  | R27397 |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0      | μg/L      | 1  | 7/9/2015 8:19:52 PM  | R27397 |
| Naphthalene                    | ND     | 2.0      | μg/L      | 1  | 7/9/2015 8:19:52 PM  | R27397 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 20
- P Sample pH Not In Range
- RL Reporting Detection Limit

#### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

 Project:
 Injection Well 7-1-15
 Collection Date: 7/1/2015 9:00:00 AM

 Lab ID:
 1507094-001
 Matrix: AQUEOUS
 Received Date: 7/2/2015 7:00:00 AM

| Analyses                    | Result | RL Qu | al Units | DF | Date Analyzed       | Batch  |
|-----------------------------|--------|-------|----------|----|---------------------|--------|
| EPA METHOD 8260B: VOLATILES |        |       |          |    | Analys              | t: BCN |
| 1-Methylnaphthalene         | ND     | 4.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| 2-Methylnaphthalene         | ND     | 4.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| Acetone                     | 72     | 10    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| Bromobenzene                | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| Bromodichloromethane        | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| Bromoform                   | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| Bromomethane                | ND     | 3.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| 2-Butanone                  | 11     | 10    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| Carbon disulfide            | ND     | 10    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| Carbon Tetrachloride        | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| Chlorobenzene               | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| Chloroethane                | ND     | 2.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| Chloroform                  | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| Chloromethane               | ND     | 3.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| 2-Chlorotoluene             | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| 4-Chlorotoluene             | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| cis-1,2-DCE                 | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| cis-1,3-Dichloropropene     | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| 1,2-Dibromo-3-chloropropane | ND     | 2.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| Dibromochloromethane        | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| Dibromomethane              | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| 1,2-Dichlorobenzene         | ND     | 1.0   | µg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| 1,3-Dichlorobenzene         | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| 1,4-Dichlorobenzene         | ND     | 1.0   | µg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| Dichlorodifluoromethane     | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| 1,1-Dichloroethane          | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| 1,1-Dichloroethene          | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| 1,2-Dichloropropane         | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| 1,3-Dichloropropane         | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| 2,2-Dichloropropane         | ND     | 2.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| 1,1-Dichloropropene         | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| Hexachlorobutadiene         | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| 2-Hexanone                  | ND     | 10    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| Isopropylbenzene            | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| 4-Isopropyltoluene          | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| 4-Methyl-2-pentanone        | ND     | 10    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| Methylene Chloride          | ND     | 3.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| n-Butylbenzene              | ND     | 3.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |
| n-Propylbenzene             | ND     | 1.0   | μg/L     | 1  | 7/9/2015 8:19:52 PM | R2739  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 4 of 20
- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order 1507094

Date Reported: 8/6/2015

#### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Injection Well

**Project:** Injection Well 7-1-15 **Collection Date:** 7/1/2015 9:00:00 AM

Lab ID: 1507094-001 Matrix: AQUEOUS Received Date: 7/2/2015 7:00:00 AM

| Analyses                    | Result | RL Qu  | al Units | DF | Date Analyzed       | Batch  |
|-----------------------------|--------|--------|----------|----|---------------------|--------|
| EPA METHOD 8260B: VOLATILES |        |        |          |    | Analys              | t: BCN |
| sec-Butylbenzene            | ND     | 1.0    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R27397 |
| Styrene                     | ND     | 1.0    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R27397 |
| tert-Butylbenzene           | ND     | 1.0    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R27397 |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R27397 |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R27397 |
| Tetrachloroethene (PCE)     | ND     | 1.0    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R27397 |
| trans-1,2-DCE               | ND     | 1.0    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R27397 |
| trans-1,3-Dichloropropene   | ND     | 1.0    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R27397 |
| 1,2,3-Trichlorobenzene      | ND     | 1.0    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R27397 |
| 1,2,4-Trichlorobenzene      | ND     | 1.0    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R27397 |
| 1,1,1-Trichloroethane       | ND     | 1.0    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R27397 |
| 1,1,2-Trichloroethane       | ND     | 1.0    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R27397 |
| Trichloroethene (TCE)       | ND     | 1.0    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R27397 |
| Trichlorofluoromethane      | ND     | 1.0    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R27397 |
| 1,2,3-Trichloropropane      | ND     | 2.0    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R27397 |
| Vinyl chloride              | ND     | 1.0    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R27397 |
| Xylenes, Total              | ND     | 1.5    | μg/L     | 1  | 7/9/2015 8:19:52 PM | R27397 |
| Surr: 1,2-Dichloroethane-d4 | 96.9   | 70-130 | %REC     | 1  | 7/9/2015 8:19:52 PM | R27397 |
| Surr: 4-Bromofluorobenzene  | 90.8   | 70-130 | %REC     | 1  | 7/9/2015 8:19:52 PM | R27397 |
| Surr: Dibromofluoromethane  | 103    | 70-130 | %REC     | 1  | 7/9/2015 8:19:52 PM | R27397 |
| Surr: Toluene-d8            | 95.5   | 70-130 | %REC     | 1  | 7/9/2015 8:19:52 PM | R27397 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- $R \quad \ RPD \ outside \ accepted \ recovery \ limits$
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 5 of 20
- P Sample pH Not In Range
- RL Reporting Detection Limit

# Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

150707035

Address:

4901 HAWKINS NE SUITE D

Project Name:

1507094

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID | 150707035-001<br>1507094-001E / INJE |        | pling Date   | 7/1/2015 |               | Date/Time Received 7/7/2015<br>Sampling Time 9:00 AM |             |           |  |  |  |
|-----------------------------------|--------------------------------------|--------|--------------|----------|---------------|------------------------------------------------------|-------------|-----------|--|--|--|
| Matrix<br>Comments                | Water                                |        | ple Location |          |               |                                                      |             |           |  |  |  |
| Parameter                         |                                      | Result | Units        | PQL      | Analysis Date | Analyst                                              | Method      | Qualifier |  |  |  |
| Cyanide (reacti                   | ive)                                 | ND     | mg/L         | 1        | 7/15/2015     | CRW                                                  | SW846 CH7   |           |  |  |  |
| Flashpoint                        |                                      | >200   | ۰۴           |          | 7/15/2015     | KFG                                                  | EPA 1010    |           |  |  |  |
| pН                                |                                      | 7.36   | ph Units     |          | 7/8/2015      | KMC                                                  | SM 4500pH-B |           |  |  |  |
| Reactive sulfide                  | e                                    | ND     | mg/L         | 1        | 7/15/2015     | HSW                                                  | SW846 CH7   |           |  |  |  |

Authorized Signature

John Coddington, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND PQL Not Detected

Practical Quantitation Limit

This report shall not be reproduced except in full without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

# Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D · Spokane WA 99202 · (509) 838-3999 · Fax (509) 838-4433 · email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

150707035

Address:

4901 HAWKINS NE SUITE D

Project Name:

1507094

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

**Analytical Results Report Quality Control Data** 

| Lab Control San    | nple                          |               |              |                     |       |          |                    |            |            |           |               |
|--------------------|-------------------------------|---------------|--------------|---------------------|-------|----------|--------------------|------------|------------|-----------|---------------|
| Parameter          |                               | LCS Result    | Units        | LCS                 | Spike | %Rec     | AR                 | %Rec       | Prep       | Date      | Analysis Date |
| Reactive sulfide   |                               | 0.816         | mg/L         | 0.9                 | 07    | 90.0     | 70                 | -130       | 7/15/      | 2015      | 7/15/2015     |
| Cyanide (reactive) |                               | 0.486         | mg/L         | . 0.                | .5    | 97.2     | 80                 | -120       | 7/15/      | 2015      | 7/15/2015     |
| Matrix Spike       |                               |               |              |                     |       |          |                    |            | -          |           |               |
| Comple Number      | Daramatar                     |               | Sample       | MS                  | Unit  | <b>.</b> | MS                 | %Rec       | AR<br>%Rec | Prep Date | Analysis Date |
|                    | Parameter<br>Reactive sulfide |               | Result<br>ND | <b>Result</b> 0.816 |       |          | <b>Spike</b> 0.907 | 90.0       | 70-130     | 7/15/2015 | -             |
|                    |                               |               |              |                     | mg/   |          |                    |            |            |           |               |
| 150707035-001      | Cyanide (reactive)            |               | ND           | 0.462               | mg/   | 'L       | 0.5                | 92.4       | 80-120     | 7/15/2015 | 7/15/2015     |
| Matrix Spike Du    | plicate                       | wan           |              |                     |       |          |                    | 40         |            |           |               |
| Parameter          |                               | MSD<br>Result | Units        | MSD<br>Spike        | %F    | Rec      | %RPD               | AR<br>%RPD | ) Pre      | p Date    | Analysis Date |
| Cyanide (reactive) |                               | 0.454         | mg/L         | 0.5                 | 90    |          | 1.7                | 0-25       |            | 5/2015    | 7/15/2015     |
| Method Blank       |                               |               |              |                     |       |          |                    |            |            | -         |               |
| Parameter          |                               |               | Re           | sult                | Ų     | nits     |                    | PQL        | Pr         | ep Date   | Analysis Date |
| Cyanide (reactive) |                               |               | N            | ID                  | m     | ıg/L     |                    | 1          | 7/1        | 5/2015    | 7/15/2015     |
| Reactive sulfide   |                               |               | N            | ID                  | m     | ig/L     |                    | 1          | 7/1        | 5/2015    | 7/15/2015     |

AR

Acceptable Range

ND

Not Detected

PQL RPD Practical Quantitation Limit Relative Percentage Difference

Comments:

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Page 1 of 1 Wednesday, July 22, 2015

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1507094

06-Aug-15

Client:

Western Refining Southwest, Inc.

**Project:** 

Injection Well 7-1-15

| Sample ID MB   | SampT      | ype: ME         | BLK       | Tes         | tCode: E | PA Method | 300.0: Anions | 5    |          |      |
|----------------|------------|-----------------|-----------|-------------|----------|-----------|---------------|------|----------|------|
| Client ID: PBW | Batch      | 1 ID: <b>R2</b> | 7295      | F           | RunNo: 2 | 7295      |               |      |          |      |
| Prep Date:     | Analysis D | ate: 7/         | 2/2015    | S           | SeqNo: 8 | 17819     | Units: mg/L   |      |          |      |
| Analyte        | Result     | PQL             | SPK value | SPK Ref Val | %REC     | LowLimit  | HighLimit     | %RPD | RPDLimit | Qual |
| Chloride       | ND         | 0.50            |           |             |          |           |               |      |          |      |
| Sulfate        | ND         | 0.50            |           |             |          |           |               |      |          |      |

| Sample ID LCS   | SampType: LC      | s         | Test        | tCode: El | PA Method | 300.0: Anions | 5    |          |      |
|-----------------|-------------------|-----------|-------------|-----------|-----------|---------------|------|----------|------|
| Client ID: LCSW | Batch ID: R2      | 7295      | R           | RunNo: 2  | 7295      |               |      |          |      |
| Prep Date:      | Analysis Date: 7/ | 2/2015    | S           | SeqNo: 8  | 17820     | Units: mg/L   |      |          |      |
| Analyte         | Result PQL        | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit     | %RPD | RPDLimit | Qual |
| Chloride        | 5.0 0.50          | 5.000     | 0           | 99.0      | 90        | 110           |      |          |      |
| Sulfate         | 10 0.50           | 10.00     | 0           | 103       | 90        | 110           |      |          |      |

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Page 6 of 20

- P Sample pH Not In Range
- RL Reporting Detection Limit

### Hall Environmental Analysis Laboratory, Inc.

WO#: 1507094

06-Aug-15

Client:

Western Refining Southwest, Inc.

SampType: MBLK

Project:

Sample ID rb1

Injection Well 7-1-15

| Sample ID 100ng LCS         | SampT      | ype: LC         | s         | Tes         | tCode: El | PA Method | 8260B: VOL  | ATILES |          |      |
|-----------------------------|------------|-----------------|-----------|-------------|-----------|-----------|-------------|--------|----------|------|
| Client ID: LCSW             | Batcl      | 1 ID: <b>R2</b> | 7397      | F           | RunNo: 2  | 7397      |             |        |          |      |
| Prep Date:                  | Analysis D | ate: <b>7/</b>  | 9/2015    | S           | SeqNo: 8  | 22125     | Units: µg/L |        |          |      |
| Analyte                     | Result     | PQL             | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |
| Benzene                     | 18         | 1.0             | 20.00     | 0           | 90.9      | 70        | 130         |        |          |      |
| Toluene                     | 17         | 1.0             | 20.00     | 0           | 87.2      | 70        | 130         |        |          |      |
| Chlorobenzene               | 17         | 1.0             | 20.00     | 0           | 85.5      | 70        | 130         |        |          |      |
| 1,1-Dichloroethene          | 19         | 1.0             | 20.00     | 0           | 95.4      | 70        | 130         |        |          |      |
| Trichloroethene (TCE)       | 17         | 1.0             | 20.00     | 0           | 84.0      | 70        | 130         |        |          |      |
| Surr: 1,2-Dichloroethane-d4 | 9.3        |                 | 10.00     |             | 93.4      | 70        | 130         |        |          |      |
| Surr: 4-Bromofluorobenzene  | 9.9        |                 | 10.00     |             | 99.3      | 70        | 130         |        |          |      |
| Surr: Dibromofluoromethane  | 11         |                 | 10.00     |             | 106       | 70        | 130         |        |          |      |
| Surr: Toluene-d8            | 10         |                 | 10.00     |             | 100       | 70        | 130         |        |          |      |

TestCode: EPA Method 8260B: VOLATILES

|   | '                              |             |               |           |             |         |          |             |      |          |      |
|---|--------------------------------|-------------|---------------|-----------|-------------|---------|----------|-------------|------|----------|------|
|   | Client ID: PBW                 | Batch       | ID: <b>R2</b> | 7397      | R           | unNo: 2 | 7397     |             |      |          |      |
|   | Prep Date:                     | Analysis Da | ate: 7/       | 9/2015    | S           | eqNo: 8 | 22418    | Units: µg/L |      |          |      |
| ı | Analyte                        | Result      | PQL           | SPK value | SPK Ref Val | %REC    | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
|   | Benzene                        | ND          | 1.0           |           |             |         |          |             |      | 1        |      |
|   | Toluene                        | ND          | 1.0           |           |             |         |          |             |      |          |      |
|   | Ethylbenzene                   | ND          | 1.0           |           |             |         |          |             |      |          |      |
|   | Methyl tert-butyl ether (MTBE) | ND          | 1.0           |           |             |         |          |             |      |          |      |
|   | 1,2,4-Trimethylbenzene         | ND          | 1.0           |           |             |         |          |             |      |          |      |
|   | 1,3,5-Trimethylbenzene         | ND          | 1.0           |           |             |         |          |             |      |          |      |
|   | 1,2-Dichloroethane (EDC)       | ND          | 1.0           |           |             |         |          |             |      |          |      |
|   | 1,2-Dibromoethane (EDB)        | ND          | 1.0           |           |             |         |          |             |      |          |      |
|   | Naphthalene                    | ND          | 2.0           |           |             |         |          |             |      |          |      |
|   | 1-Methylnaphthalene            | ND          | 4.0           |           |             |         |          |             |      |          |      |
|   | 2-Methylnaphthalene            | ND          | 4.0           |           |             |         |          |             |      |          |      |
|   | Acetone                        | ND          | 10            |           |             |         |          |             |      |          |      |
|   | Bromobenzene                   | ND          | 1.0           |           |             |         |          |             |      |          |      |
|   | Bromodichloromethane           | ND          | 1.0           |           |             |         |          |             |      |          |      |
|   | Bromoform                      | ND          | 1.0           |           |             |         |          |             |      |          |      |
|   | Bromomethane                   | ND          | 3.0           |           |             |         |          |             |      |          |      |
|   | 2-Butanone                     | ND          | 10            |           |             |         |          |             |      |          |      |
|   | Carbon disulfide               | ND          | 10            |           |             |         |          |             |      |          |      |
|   | Carbon Tetrachloride           | ND          | 1.0           |           |             |         |          |             |      |          |      |
|   | Chlorobenzene                  | ND          | 1.0           |           |             |         |          |             |      |          |      |
|   | Chloroethane                   | ND          | 2.0           |           |             |         |          |             |      |          |      |
|   | Chloroform                     | ND          | 1.0           |           |             |         |          |             |      |          |      |
|   | Chloromethane                  | ND          | 3.0           |           |             |         |          |             |      |          |      |
|   | 2-Chlorotoluene                | ND          | 1.0           |           |             |         |          |             |      |          |      |
|   |                                |             |               |           |             |         |          |             |      |          |      |
|   |                                |             |               |           |             |         |          |             |      |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 7 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1507094

06-Aug-15

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-1-15

| Sample ID rb1               | SampT      | ype: MBLK          |         | Tes         | tCode: E | PA Method | 8260B: VOL  | ATILES |          |      |
|-----------------------------|------------|--------------------|---------|-------------|----------|-----------|-------------|--------|----------|------|
| Client ID: PBW              | Batch      | ID: <b>R2739</b> 7 | 7       | F           | RunNo: 2 | 7397      |             |        |          |      |
| Prep Date:                  | Analysis D | ate: 7/9/20        | 15      | S           | SeqNo: 8 | 22418     | Units: µg/L |        |          |      |
| Analyte                     | Result     | PQL SP             | K value | SPK Ref Val | %REC     | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |
| 4-Chlorotoluene             | ND         | 1.0                |         |             |          |           |             |        |          |      |
| cis-1,2-DCE                 | ND         | 1.0                |         |             |          |           |             |        |          |      |
| cis-1,3-Dichloropropene     | ND         | 1.0                |         |             |          |           |             |        |          |      |
| 1,2-Dibromo-3-chloropropane | ND         | 2.0                |         |             |          |           |             |        |          |      |
| Dibromochloromethane        | ND         | 1.0                |         |             |          |           |             |        |          |      |
| Dibromomethane              | ND         | 1.0                |         |             |          |           |             |        |          |      |
| 1,2-Dichlorobenzene         | ND         | 1.0                |         |             |          |           |             |        |          |      |
| 1,3-Dichlorobenzene         | ND         | 1.0                |         |             |          |           |             |        |          |      |
| 1,4-Dichlorobenzene         | ND         | 1.0                |         |             |          |           |             |        |          |      |
| Dichlorodifluoromethane     | ND         | 1.0                |         |             |          |           |             |        |          |      |
| 1,1-Dichloroethane          | ND         | 1.0                |         |             |          |           |             |        |          |      |
| 1,1-Dichloroethene          | ND         | 1.0                |         |             |          |           |             |        |          |      |
| 1,2-Dichloropropane         | ND         | 1.0                |         |             |          |           |             |        |          |      |
| 1,3-Dichloropropane         | ND         | 1.0                |         |             |          |           |             |        |          |      |
| 2,2-Dichloropropane         | ND         | 2.0                |         |             |          |           |             |        |          |      |
| 1,1-Dichloropropene         | ND         | 1.0                |         |             |          |           |             |        |          |      |
| Hexachlorobutadiene         | ND         | 1.0                |         |             |          |           |             |        |          |      |
| 2-Hexanone                  | ND         | 10                 |         |             |          |           |             |        |          |      |
| Isopropylbenzene            | ND         | 1.0                |         |             |          |           |             |        |          |      |
| 4-Isopropyltoluene          | ND         | 1.0                |         |             |          |           |             |        |          |      |
| 4-Methyl-2-pentanone        | ND         | 10                 |         |             |          |           |             |        |          |      |
| Methylene Chloride          | ND         | 3.0                |         |             |          |           |             |        |          |      |
| n-Butylbenzene              | ND         | 3.0                |         |             |          |           |             |        |          |      |
| n-Propylbenzene             | ND         | 1.0                |         |             |          |           |             |        |          |      |
| sec-Butylbenzene            | ND         | 1.0                |         |             |          |           |             |        |          |      |
| Styrene                     | ND         | 1.0                |         |             |          |           |             |        |          |      |
| tert-Butylbenzene           | ND         | 1.0                |         |             |          |           |             |        |          |      |
| 1,1,1,2-Tetrachloroethane   | ND         | 1.0                |         |             |          |           |             |        |          |      |
| 1,1,2,2-Tetrachioroethane   | ND         | 2.0                |         |             |          |           |             |        |          |      |
| Tetrachloroethene (PCE)     | ND         | 1.0                |         |             |          |           |             |        |          |      |
| trans-1,2-DCE               | ND         | 1.0                |         |             |          |           |             |        |          |      |
| trans-1,3-Dichloropropene   | ND         | 1.0                |         |             |          |           |             |        |          |      |
| 1,2,3-Trichlorobenzene      | ND         | 1.0                |         |             |          |           |             |        |          |      |
| 1,2,4-Trichlorobenzene      | ND         | 1.0                |         |             |          |           |             |        |          |      |
| 1,1,1-Trichloroethane       | ND         | 1.0                |         |             |          |           |             |        |          |      |
| 1,1,2-Trichloroethane       | ND         | 1.0                |         |             |          |           |             |        |          |      |
| Trichloroethene (TCE)       | ND         | 1.0                |         |             |          |           |             |        |          |      |
| Trichlorofluoromethane      | ND         | 1.0                |         |             |          |           |             |        |          |      |
| 1,2,3-Trichloropropane      | ND         | 2.0                |         |             |          |           |             |        |          |      |
| 1,2,0 Homoropropane         | 110        | 2.0                |         |             |          |           |             |        |          |      |

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Page 8 of 20

- P Sample pH Not In Range
- RL Reporting Detection Limit

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1507094

06-Aug-15

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-1-15

| Sample ID rb1               | SampT      | ype: ME          | BLK       | Tes         | tCode: El | PA Method | 8260B: VOL  | ATILES |          |      |
|-----------------------------|------------|------------------|-----------|-------------|-----------|-----------|-------------|--------|----------|------|
| Client ID: PBW              | Batch      | Batch ID: R27397 |           |             | RunNo: 2  | 7397      |             |        |          |      |
| Prep Date:                  | Analysis D | ate: 7/          | 9/2015    | S           | SeqNo: 8  | 22418     | Units: µg/L |        |          |      |
| Analyte                     | Result     | PQL              | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |
| Vinyl chloride              | ND         | 1.0              |           |             |           |           |             |        |          |      |
| Xylenes, Total              | ND         | 1.5              |           |             |           |           |             |        |          |      |
| Surr: 1,2-Dichloroethane-d4 | 10         |                  | 10.00     |             | 102       | 70        | 130         |        |          |      |
| Surr: 4-Bromofluorobenzene  | 10         |                  | 10.00     |             | 104       | 70        | 130         |        |          |      |
| Surr: Dibromofluoromethane  | 11         |                  | 10.00     |             | 107       | 70        | 130         |        |          |      |
| Surr: Toluene-d8            | 9.9        |                  | 10.00     |             | 98.7      | 70        | 130         |        |          |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 9 of 20

#### Hall Environmental Analysis Laboratory, Inc.

WO#:

1507094 *06-Aug-15* 

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-1-15

| Sample ID mb-20095          | SampTy      | /pe: <b>M</b> l | BLK       | Tes         | tCode: E | PA Method | 8270C: Semi | volatiles |          | 44.18 |
|-----------------------------|-------------|-----------------|-----------|-------------|----------|-----------|-------------|-----------|----------|-------|
| Client ID: PBW              | Batch       | ID: <b>20</b>   | 095       | · F         | RunNo:   | 27414     |             |           |          |       |
| Prep Date: 7/6/2015         | Analysis Da | ate: <b>7</b> / | 10/2015   | 5           | SeqNo:   | 822558    | Units: µg/L |           |          |       |
| Analyte                     | Result      | PQL             | SPK value | SPK Ref Val | %REC     | LowLimit  | HighLimit   | %RPD      | RPDLimit | Qual  |
| Acenaphthene                | ND          | 10              |           |             |          |           |             |           |          |       |
| Acenaphthylene              | ND          | 10              |           |             |          |           |             |           |          |       |
| Aniline                     | ND          | 10              |           |             |          |           |             |           |          |       |
| Anthracene                  | ND          | 10              |           |             |          |           |             |           |          |       |
| Azobenzene                  | ND          | 10              |           |             |          |           |             |           |          |       |
| Benz(a)anthracene           | ND          | 10              |           |             |          |           |             |           |          |       |
| Benzo(a)pyrene              | ND          | 10              |           |             |          |           |             |           |          |       |
| Benzo(b)fluoranthene        | ND          | 10              |           |             |          |           |             |           |          |       |
| Benzo(g,h,i)perylene        | ND          | 10              |           |             |          |           |             |           |          |       |
| Benzo(k)fluoranthene        | ND          | 10              |           |             |          |           |             |           |          |       |
| Benzoic acid                | ND          | 20              |           |             |          |           |             |           |          |       |
| Benzyl alcohol              | ND          | 10              |           |             |          |           |             |           |          |       |
| Bis(2-chloroethoxy)methane  | ND          | 10              |           |             |          |           |             |           |          |       |
| Bis(2-chloroethyl)ether     | ND          | 10              |           |             |          |           |             |           |          |       |
| Bis(2-chloroisopropyl)ether | ND          | 10              |           |             |          |           |             |           |          |       |
| Bis(2-ethylhexyl)phthalate  | ND          | 10              |           |             |          |           |             |           |          |       |
| 4-Bromophenyl phenyl ether  | ND          | 10              |           |             |          |           |             |           |          |       |
| Butyl benzyl phthalate      | ND          | 10              |           |             |          |           |             |           |          |       |
| Carbazole                   | ND          | 10              |           |             |          |           |             |           |          |       |
| 4-Chloro-3-methylphenol     | ND          | 10              |           |             |          |           |             |           |          |       |
| 4-Chloroaniline             | ND          | 10              |           |             |          |           |             |           |          |       |
| 2-Chloronaphthalene         | ND          | 10              |           |             |          |           |             |           |          |       |
| 2-Chlorophenol              | ND          | 10              |           |             |          |           |             |           |          |       |
| 4-Chlorophenyl phenyl ether | ND          | 10              |           |             |          |           |             |           |          |       |
| Chrysene                    | ND          | 10              |           |             |          |           |             |           |          |       |
| Di-n-butyl phthalate        | ND          | 10              |           |             |          |           |             |           |          |       |
| Di-n-octyl phthalate        | ND          | 10              |           |             |          |           |             |           |          |       |
| Dibenz(a,h)anthracene       | ND          | 10              |           |             |          |           |             |           |          |       |
| Dibenzofuran                | ND          | 10              |           |             |          |           |             |           |          |       |
| 1,2-Dichlorobenzene         | ND          | 10              |           |             |          |           |             |           |          |       |
| 1,3-Dichlorobenzene         | ND          | 10              |           |             |          |           |             |           |          |       |
| 1,4-Dichlorobenzene         | ND          | 10              |           |             |          |           |             |           |          |       |
| 3,3'-Dichlorobenzidine      | ND          | 10              |           |             |          |           |             |           |          |       |
| Diethyl phthalate           | ND          | 10              |           |             |          |           |             |           |          |       |
| Dimethyl phthalate          | ND          | 10              |           |             |          |           |             |           |          |       |
| 2,4-Dichlorophenol          | ND          | 20              |           |             |          |           |             |           |          |       |
| 2,4-Dimethylphenol          | ND          | 10              |           |             |          |           |             |           |          |       |
| 4,6-Dinitro-2-methylphenol  | ND          | 20              |           |             |          |           |             |           |          |       |
| 2,4-Dinitrophenol           | ND          | 20              |           |             |          |           |             |           |          |       |
| _, opo                      | .,,,        |                 |           |             |          |           |             |           |          |       |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 10 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1507094

06-Aug-15

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-1-15

| Sample ID mb-20095         | SampT      | ype: M | BLK      | Tes         | tCode: E | PA Method | 8270C: Semi | volatiles |          |      |
|----------------------------|------------|--------|----------|-------------|----------|-----------|-------------|-----------|----------|------|
| Client ID: PBW             | Batch      | 1D: 20 | 095      | F           | RunNo: 2 | 7414      |             |           |          |      |
| Prep Date: 7/6/2015        | Analysis D | ate: 7 | /10/2015 | 5           | SeqNo: 8 | 22558     | Units: µg/L |           |          |      |
| Analyte                    | Result     | PQL    |          | SPK Ref Val | %REC     | LowLimit  | HighLimit   | %RPD      | RPDLimit | Qual |
| 2,4-Dinitrotoluene         | ND         | 10     |          |             |          |           |             |           |          |      |
| 2,6-Dinitrotoluene         | ND         | 10     |          |             |          |           |             |           |          |      |
| Tuoranthene                | ND         | 10     |          |             |          |           |             |           |          |      |
| luorene                    | ND         | 10     |          |             |          |           |             |           |          |      |
| Hexachlorobenzene          | ND         | 10     |          |             |          |           |             |           |          |      |
| Hexachlorobutadiene        | ND         | 10     |          |             |          |           |             |           |          |      |
| lexachlorocyclopentadiene  | ND         | 10     |          |             |          |           |             |           |          |      |
| lexachloroethane           | ND         | 10     |          |             |          |           |             |           |          |      |
| ndeno(1,2,3-cd)pyrene      | ND         | 10     |          |             |          |           |             |           |          |      |
| sophorone                  | ND         | 10     |          |             |          |           |             |           |          |      |
| -Methylnaphthalene         | ND         | 10     |          |             |          |           |             |           |          |      |
| ?-Methylnaphthalene        | ND         | 10     |          |             |          |           |             |           |          |      |
| ?-Methylphenol             | ND         | 10     |          |             |          |           |             |           |          |      |
| 3+4-Methylphenol           | ND         | 10     |          |             |          |           |             |           |          |      |
| N-Nitrosodi-n-propylamine  | ND         | 10     |          |             |          |           |             |           |          |      |
| N-Nitrosodimethylamine     | ND         | 10     |          |             |          |           |             |           |          |      |
| N-Nitrosodiphenylamine     | ND         | 10     |          |             |          |           |             |           |          |      |
| Naphthalene                | ND         | 10     |          |             |          |           |             |           |          |      |
| 2-Nitroaniline             | ND         | 10     |          |             |          |           |             |           |          |      |
| 3-Nitroaniline             | ND         | 10     |          |             |          |           |             |           |          |      |
| l-Nitroaniline             | ND         | 10     |          |             |          |           |             |           |          |      |
| Vitrobenzene               | ND         | 10     |          |             |          |           |             |           |          |      |
| ?-Nitrophenol              | ND         | 10     |          |             |          |           |             |           |          |      |
| -Nitrophenol               | ND         | 10     |          |             |          |           |             |           |          |      |
| Pentachlorophenol          | ND         | 20     |          |             |          |           |             |           |          |      |
| Phenanthrene               | ND         | 10     |          |             |          |           |             |           |          |      |
| Phenol                     | ND         | 10     |          |             |          |           |             |           |          |      |
| Pyrene                     | ND         | 10     |          |             |          |           |             |           |          |      |
| yridine                    | ND         | 10     |          |             |          |           |             |           |          |      |
| ,2,4-Trichlorobenzene      | ND         | 10     |          |             |          |           |             |           |          |      |
| 2,4,5-Trichlorophenol      | ND         | 10     |          |             |          |           |             |           |          |      |
| 2,4,6-Trichlorophenol      | ND         | 10     |          |             |          |           |             |           |          |      |
| Surr: 2-Fluorophenol       | 140        |        | 200.0    |             | 69.6     | 14.9      | 111         |           |          |      |
| Surr: Phenol-d5            | 150        |        | 200.0    |             | 74.2     | 11.3      | 108         |           |          |      |
| Surr: 2,4,6-Tribromophenol | 150        |        | 200.0    |             | 75.2     | 15.7      | 154         |           |          |      |
| Surr: Nitrobenzene-d5      | 75         |        | 100.0    |             | 75.0     | 47.8      | 106         |           |          |      |
| Surr: 2-Fluorobiphenyl     | 76         |        | 100.0    |             | 75.9     | 21.3      | 123         |           |          |      |
| Surr: 4-Terphenyl-d14      | 52         |        | 100.0    |             | 52.2     | 14.3      | 135         |           |          |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 11 of 20

#### Hall Environmental Analysis Laboratory, Inc.

WO#:

1507094

06-Aug-15

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-1-15

| Sample ID Ics-20095        | SampT      | ype: LC       | s         | Tes         | tCode: El | PA Method | 8270C: Semi | volatiles |          |      |
|----------------------------|------------|---------------|-----------|-------------|-----------|-----------|-------------|-----------|----------|------|
| Client ID: LCSW            | Batch      | ID: <b>20</b> | 095       | F           | RunNo: 2  | 7414      |             |           |          |      |
| Prep Date: 7/6/2015        | Analysis D | ate: 7/       | 10/2015   | 8           | SeqNo: 8  | 22559     | Units: µg/L |           |          |      |
| Analyte                    | Result     | PQL           | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD      | RPDLimit | Qual |
| Acenaphthene               | 51         | 10            | 100.0     | 0           | 51.2      | 47.8      | 99.7        |           |          |      |
| 4-Chloro-3-methylphenol    | 110        | 10            | 200.0     | 0           | 56.2      | 58.1      | 103         |           |          | S    |
| 2-Chlorophenol             | 73         | 10            | 200.0     | 0           | 36.7      | 49.5      | 96.8        |           |          | S    |
| 1,4-Dichlorobenzene        | 34         | 10            | 100.0     | 0           | 33.8      | 40.4      | 89.4        |           |          | S    |
| 2,4-Dinitrotoluene         | 42         | 10            | 100.0     | 0           | 41.8      | 38.6      | 91.3        |           |          |      |
| N-Nitrosodi-n-propylamine  | 51         | 10            | 100.0     | 0           | 51.1      | 53.9      | 95.6        |           |          | S    |
| 4-Nitrophenol              | 93         | 10            | 200.0     | 0           | 46.3      | 26.4      | 108         |           |          |      |
| Pentachlorophenol          | 98         | 20            | 200.0     | 0           | 49.1      | 36.5      | 86.6        |           |          |      |
| Phenol                     | 85         | 10            | 200.0     | 0           | 42.7      | 29.3      | 108         |           |          |      |
| Pyrene                     | 56         | 10            | 100.0     | 0           | 56.2      | 45.7      | 100         |           |          |      |
| 1,2,4-Trichlorobenzene     | 43         | 10            | 100.0     | 0           | 42.9      | 39.3      | 94.5        |           |          |      |
| Surr: 2-Fluorophenol       | 67         |               | 200.0     |             | 33.4      | 14.9      | 111         |           |          |      |
| Surr: Phenol-d5            | 86         |               | 200.0     |             | 43.0      | 11.3      | 108         |           |          |      |
| Surr: 2,4,6-Tribromophenol | 120        |               | 200.0     |             | 62.3      | 15.7      | 154         |           |          |      |
| Surr: Nitrobenzene-d5      | 47         |               | 100.0     |             | 46.6      | 47.8      | 106         |           |          | S    |
| Surr: 2-Fluorobiphenyl     | 53         |               | 100.0     |             | 53.0      | 21.3      | 123         |           |          |      |
| Surr: 4-Terphenyl-d14      | 44         |               | 100.0     |             | 44.1      | 14.3      | 135         |           |          |      |

| Sample ID Icsd-20095       | SampT      | SampType: LCSD TestCode: EPA Method 8270C: Semivolatiles |           |             |          |          |             |      |          |      |  |
|----------------------------|------------|----------------------------------------------------------|-----------|-------------|----------|----------|-------------|------|----------|------|--|
| Client ID: LCSS02          | Batch      | iD: 20                                                   | 095       | F           | RunNo: 2 | 7414     |             |      |          |      |  |
| Prep Date: 7/6/2015        | Analysis D | ate: 7/                                                  | 10/2015   | S           | SeqNo: 8 | 22560    | Units: μg/L |      |          |      |  |
| Analyte                    | Result     | PQL                                                      | SPK value | SPK Ref Val | %REC     | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |  |
| Acenaphthene               | 76         | 10                                                       | 100.0     | 0           | 76.1     | 47.8     | 99.7        | 39.1 | 28.2     | R    |  |
| 4-Chloro-3-methylphenol    | 160        | 10                                                       | 200.0     | 0           | 81.3     | 58.1     | 103         | 36.4 | 24.4     | R    |  |
| 2-Chlorophenol             | 150        | 10                                                       | 200.0     | 0           | 76.8     | 49.5     | 96.8        | 70.6 | 28.1     | R    |  |
| 1,4-Dichlorobenzene        | 72         | 10                                                       | 100.0     | 0           | 72.5     | 40.4     | 89.4        | 72.9 | 31.2     | R    |  |
| 2,4-Dinitrotoluene         | 55         | 10                                                       | 100.0     | 0           | 54.6     | 38.6     | 91.3        | 26.4 | 44.4     |      |  |
| N-Nitrosodi-n-propylamine  | 76         | 10                                                       | 100.0     | 0           | 76.4     | 53.9     | 95.6        | 39.6 | 24.2     | R    |  |
| 4-Nitrophenol              | 130        | 10                                                       | 200.0     | 0           | 63.8     | 26.4     | 108         | 31.8 | 36.6     |      |  |
| Pentachlorophenol          | 130        | 20                                                       | 200.0     | 0           | 65.8     | 36.5     | 86.6        | 29.1 | 29.5     |      |  |
| Phenol                     | 160        | 10                                                       | 200.0     | 0           | 77.8     | 29.3     | 108         | 58.2 | 30       | R    |  |
| Pyrene                     | 69         | 10                                                       | 100.0     | 0           | 69.3     | 45.7     | 100         | 20.8 | 31       |      |  |
| 1,2,4-Trichlorobenzene     | 86         | 10                                                       | 100.0     | 0           | 85.7     | 39.3     | 94.5        | 66.6 | 24       | R    |  |
| Surr: 2-Fluorophenol       | 140        |                                                          | 200.0     |             | 70.6     | 14.9     | 111         | 0    | 0        |      |  |
| Surr: Phenol-d5            | 160        |                                                          | 200.0     |             | 79.2     | 11.3     | 108         | 0    | 0        |      |  |
| Surr: 2,4,6-Tribromophenol | 160        |                                                          | 200.0     |             | 82.0     | 15.7     | 154         | 0    | 0        |      |  |
| Surr: Nitrobenzene-d5      | 80         |                                                          | 100.0     |             | 79.5     | 47.8     | 106         | 0    | 0        |      |  |
| Surr: 2-Fluorobiphenyl     | 77         |                                                          | 100.0     |             | 77.3     | 21.3     | 123         | 0    | 0        |      |  |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 12 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1507094

06-Aug-15

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-1-15

| Sample ID Icsd-20095  | SampTy      | pe: LC  | SD        | Test        | Code: El | PA Method | volatiles   |      |          |      |
|-----------------------|-------------|---------|-----------|-------------|----------|-----------|-------------|------|----------|------|
| Client ID: LCSS02     | Batch       | ID: 20  | 095       | R           | tunNo: 2 | 7414      |             |      |          |      |
| Prep Date: 7/6/2015   | Analysis Da | ate: 7/ | 10/2015   | S           | eqNo: 8  | 22560     | Units: µg/L |      |          |      |
| Analyte               | Result      | PQL     | SPK value | SPK Ref Val | %REC     | LowLimit  | HighLimit   | %RPD | RPDLimit | Qual |
| Surr: 4-Terphenyl-d14 | 51          |         | 100.0     |             | 51.2     | 14.3      | 135         | 0    | 0        |      |

| Sample ID mb-20218         | SampTy      | /pe: <b>M</b> E | BLK       | Tes         | tCode: El | ivolatiles |            |      |          |      |
|----------------------------|-------------|-----------------|-----------|-------------|-----------|------------|------------|------|----------|------|
| Client ID: PBW             | Batch       | ID: 20          | 218       | F           | RunNo: 2  | 7531       |            |      |          |      |
| Prep Date: 7/13/2015       | Analysis Da | ate: 7/         | 15/2015   | S           | SeqNo: 8  | 26536      | Units: %RE | С    |          |      |
| Analyte                    | Result      | PQL             | SPK value | SPK Ref Val | %REC      | LowLimit   | HighLimit  | %RPD | RPDLimit | Qual |
| Surr: 2-Fluorophenol       | 90          |                 | 200.0     |             | 45.0      | 14.9       | 111        |      |          |      |
| Surr: Phenol-d5            | 75          |                 | 200.0     |             | 37.3      | 11.3       | 108        |      |          |      |
| Surr: 2,4,6-Tribromophenol | 140         |                 | 200.0     |             | 69.6      | 15.7       | 154        |      |          |      |
| Surr: Nitrobenzene-d5      | 64          |                 | 100.0     |             | 64.4      | 47.8       | 106        |      |          |      |
| Surr: 2-Fluorobiphenyl     | 61          |                 | 100.0     |             | 61.2      | 21.3       | 123        |      |          |      |
| Surr: 4-Terphenyl-d14      | 45          |                 | 100.0     |             | 45.2      | 14.3       | 135        |      |          |      |

| Sample ID Ics-20218        | SampType      | : LCS        | TestCode: E      | volatiles |            |      |          |      |
|----------------------------|---------------|--------------|------------------|-----------|------------|------|----------|------|
| Client ID: LCSW            | Batch ID      | 20218        | RunNo: 2         | 7531      |            |      |          |      |
| Prep Date: 7/13/2015       | Analysis Date | 7/15/2015    | SeqNo: 8         | 26537     | Units: %RE | C    |          |      |
| Analyte                    | Result P      | QL SPK value | SPK Ref Val %REC | LowLimit  | HighLimit  | %RPD | RPDLimit | Qual |
| Surr: 2-Fluorophenol       | 110           | 200.0        | 53.4             | 14.9      | 111        |      |          |      |
| Surr: Phenol-d5            | 82            | 200.0        | 41.0             | 11.3      | 108        |      |          |      |
| Surr: 2,4,6-Tribromophenol | 150           | 200.0        | 74.7             | 15.7      | 154        |      |          |      |
| Surr: Nitrobenzene-d5      | 74            | 100.0        | 74.2             | 47.8      | 106        |      |          |      |
| Surr: 2-Fluorobiphenyl     | 74            | 100.0        | 73.5             | 21.3      | 123        |      |          |      |
| Surr: 4-Terphenyl-d14      | 44            | 100.0        | 44.2             | 14.3      | 135        |      |          |      |

| Sample ID Icsd-20218       | SampTy      | SampType: LCSD |           |             | tCode: El | volatiles |            |      |          |      |
|----------------------------|-------------|----------------|-----------|-------------|-----------|-----------|------------|------|----------|------|
| Client ID: LCSS02          | Batch       | ID: <b>20</b>  | 218       | F           | RunNo: 2  | 7531      |            |      |          |      |
| Prep Date: 7/13/2015       | Analysis Da | ate: 7/        | 15/2015   | S           | SeqNo: 8  | 26538     | Units: %RE | С    |          |      |
| Analyte                    | Result      | PQL            | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit  | %RPD | RPDLimit | Qual |
| Surr: 2-Fluorophenol       | 100         |                | 200.0     |             | 52.2      | 14.9      | 111        | 0    | 0        |      |
| Surr: Phenol-d5            | 84          |                | 200.0     |             | 41.8      | 11.3      | 108        | 0    | 0        |      |
| Surr: 2,4,6-Tribromophenol | 150         |                | 200.0     |             | 75.7      | 15.7      | 154        | 0    | 0        |      |
| Surr: Nitrobenzene-d5      | 76          |                | 100.0     |             | 76.0      | 47.8      | 106        | 0    | 0        |      |
| Surr: 2-Fluorobiphenyl     | 69          |                | 100.0     |             | 68.5      | 21.3      | 123        | 0    | 0        |      |
| Surr: 4-Terphenyl-d14      | 46          |                | 100.0     |             | 45.5      | 14.3      | 135        | 0    | 0        |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 13 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1507094

06-Aug-15

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-1-15

Sample ID 1507094-001b dup

SampType: DUP

TestCode: SM2510B: Specific Conductance

Client ID: Injection Well Batch ID: **R27329** 

RunNo: 27329

Units: µmhos/cm

Prep Date:

Analysis Date: 7/6/2015

SeqNo: 819171

SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD **RPDLimit** Qual

Result **PQL** 

Analyte Conductivity

2000 0.010

0.0491

Qualifiers:

Value exceeds Maximum Contaminant Level.

Sample Diluted Due to Matrix D

Η Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit ND

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix В Analyte detected in the associated Method Blank

E Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

Reporting Detection Limit

P

Page 14 of 20

#### Hall Environmental Analysis Laboratory, Inc.

WO#: 1507094

06-Aug-15

**Client:** 

Western Refining Southwest, Inc.

Project:

Injection Well 7-1-15

Sample ID MB-20158

SampType: MBLK

TestCode: EPA Method 7470: Mercury

LowLimit

LowLimit

Client ID:

PBW

Batch ID: 20158

RunNo: 27365

Prep Date: 7/8/2015

Analysis Date: 7/8/2015

SeqNo: 820590

Units: mg/L

HighLimit

%RPD **RPDLimit** 

Qual

Analyte

ND 0.00020

Sample ID LCS-20158

SampType: LCS

TestCode: EPA Method 7470: Mercury

%RPD

Mercury

Client ID: LCSW

Batch ID: 20158

RunNo: 27365

102

120

Prep Date: 7/8/2015

Analysis Date: 7/8/2015

0.0051

Result

0.005000

SPK value SPK Ref Val

SeqNo: 820591 %REC

Units: mg/L HighLimit

**RPDLimit** 

Qual

Analyte Mercury

Sample ID 1507094-001DMS

SampType: MS

TestCode: EPA Method 7470: Mercury

Client ID:

Injection Well

Batch ID: 20158

RunNo: 27365

Prep Date: 7/8/2015

Analysis Date: 7/8/2015

**PQL** 

0.00020

SeqNo: 820635

Units: mg/L

**RPDLimit** 

Qual

Analyte

0.0059

PQL

SPK value SPK Ref Val 0.0010 0.005000

%REC 118

LowLimit HighLimit 75 125 %RPD

Mercury

Sample ID 1507094-001DMSD

SampType: MSD

SPK value SPK Ref Val %REC

TestCode: EPA Method 7470: Mercury

Client ID: Prep Date: 7/8/2015

Injection Well

Batch ID: 20158 Analysis Date: 7/8/2015 RunNo: 27365 SeqNo: 820638

Units: mg/L

**RPDLimit** Qual

Analyte Mercury

SPK value SPK Ref Val %REC PQL 0.0058 0.0010 0.005000

116

LowLimit 75

HighLimit 125

1.62

%RPD

20

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
  - Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- RPD outside accepted recovery limits
- % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- E Value above quantitation range

Reporting Detection Limit

- J Analyte detected below quantitation limits
- Sample pH Not In Range

RL

Page 15 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1507094

06-Aug-15

Client:

Western Refining Southwest, Inc.

| Project:               | Injec     | ction Well 7-1-   | 15                |           |             |          |             |               |            |          |      |
|------------------------|-----------|-------------------|-------------------|-----------|-------------|----------|-------------|---------------|------------|----------|------|
| Sample ID              | MB-20102  | Samp              | Туре: МЕ          | BLK       | Tes         | tCode: E | PA 6010B:   | Total Recove  | rable Met  | als      |      |
| Client ID:             | PBW       | Bato              | h ID: 20          | 102       | F           | RunNo: 2 | 7378        |               |            |          |      |
| Prep Date:             | 7/6/2015  | Analysis [        | Date: <b>7</b> /  | 9/2015    | 8           | SeqNo: 8 | 21352       | Units: mg/L   |            |          |      |
| Analyte                |           | Result            | PQL               | SPK value | SPK Ref Val | %REC     | LowLimit    | HighLimit     | %RPD       | RPDLimit | Qual |
| Arsenic                |           | ND                | 0.020             |           |             |          |             |               |            |          |      |
| Banum                  |           | ND                | 0.020             |           |             |          |             |               |            |          |      |
| Calcium                |           | ND                | 1.0               |           |             |          |             |               |            |          |      |
| Lead                   |           | ND                | 0.0050            |           |             |          |             |               |            |          |      |
| Magnesium<br>Potassium |           | ND<br>ND          | 1.0<br>1.0        |           |             |          |             |               |            |          |      |
| Sodium                 |           | ND<br>ND          | 1.0               |           |             |          |             |               |            |          |      |
|                        |           | 110               | 1.0               |           |             |          |             |               |            |          |      |
| Sample ID              | LCS-20102 | ·                 | Type: <b>LC</b>   |           | Tes         | tCode: E | PA 6010B:   | Total Recove  | rable Met  | als      |      |
| Client ID:             | LCSW      | Batc              | h ID: 20          | 102       | F           | RunNo: 2 | 7378        |               |            |          |      |
| Prep Date:             | 7/6/2015  | Analysis [        | Date: <b>7</b> /  | 9/2015    | 8           | SeqNo: 8 | 21353       | Units: mg/L   |            |          |      |
| Analyte                |           | Result            | PQL               | SPK value | SPK Ref Val | %REC     | LowLimit    | HighLimit     | %RPD       | RPDLimit | Qual |
| Arsenic                |           | 0.52              | 0.020             | 0.5000    | 0           | 103      | 80          | 120           |            |          |      |
| Barium                 |           | 0.49              | 0.020             | 0.5000    | 0           | 98.5     | 80          | 120           |            |          |      |
| Calcium                |           | 51                | 1.0               | 50.00     | 0           | 102      | 80          | 120           |            |          |      |
| Lead                   |           | 0.50              | 0.0050            | 0.5000    | 0           | 100      | 80          | 120           |            |          |      |
| Magnesium              |           | 50                | 1.0               | 50.00     | 0           | 101      | 80          | 120           |            |          |      |
| Potassium              |           | 48                | 1.0               | 50.00     | 0           | 96.8     | 80          | 120           |            |          |      |
| Sodium                 |           | 49                | 1.0               | 50.00     | 0           | 98.9     | 80          | 120           |            |          |      |
| Sample ID              | MB-20102  | Samp              | Гуре: <b>МЕ</b>   | BLK       | Tes         | tCode: E | PA 6010B:   | Total Recove  | rable Meta | als      |      |
| Client ID:             | PBW       | Batc              | h ID: <b>20</b>   | 102       | F           | RunNo: 2 | 7491        |               |            |          |      |
| Prep Date:             | 7/6/2015  | Analysis [        | Date: 7/          | 14/2015   | S           | SeqNo: 8 | 24974       | Units: mg/L   |            |          |      |
| Analyte                |           | Result            | PQL               | SPK value | SPK Ref Val | %REC     | LowLimit    | HighLimit     | %RPD       | RPDLimit | Qual |
| Chromium               |           | ND                | 0.0060            |           |             |          |             |               |            |          |      |
| Sample ID              | LCS-20102 | Samp <sup>-</sup> | Гуре: LC          | S         | Tes         | Code: E  | PA 6010B:   | Total Recove  | rable Meta | als      |      |
| Client ID:             | LCSW      | Batc              | h ID: <b>20</b>   | 102       | R           | lunNo: 2 | 7491        |               |            |          |      |
| Prep Date:             | 7/6/2015  | Analysis [        | Date: 7/          | 14/2015   | S           | SeqNo: 8 | 24975       | Units: mg/L   |            |          |      |
| Analyte                |           | Result            | PQL               | SPK value | SPK Ref Val | %REC     | LowLimit    | HighLimit     | %RPD       | RPDLimit | Qual |
| Chromium               |           | 0.49              | 0.0060            | 0.5000    | 0           | 98.5     | 80          | 120           |            |          |      |
| Sample ID              | MB-20102  | Samp              | Гуре: МЕ          | BLK       | Test        | Code: El | PA 6010B: 1 | Total Recover | able Meta  | als      |      |
| Client ID:             | PBW       |                   | h ID: <b>20</b> 1 |           |             | lunNo: 2 |             |               |            |          |      |
| Prep Date:             |           | Analysis [        |                   |           | S           | eqNo: 8  | 26932       | Units: mg/L   |            |          |      |
| Analyte                |           | Result            | PQL               | SPK value | SPK Ref Val | %REC     | LowLimit    | HighLimit     | %RPD       | RPDLimit | Qual |
|                        |           |                   |                   |           |             |          |             |               |            |          |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- Analyte detected below quantitation limits

Page 16 of 20

- Р Sample pH Not In Range
- Reporting Detection Limit

#### Hall Environmental Analysis Laboratory, Inc.

Result

0.50

0.50

0.10

PQL

0.0020

0.050

0.0050

WO#:

1507094

06-Aug-15

Client:

Western Refining Southwest, Inc.

Project:

Analyte

Cadmium

Selenium

Silver

Injection Well 7-1-15

| Sample ID MB-20102  | SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals                |
|---------------------|-----------------------------------------------------------------------------|
| Client ID: PBW      | Batch ID: 20102 RunNo: 27540                                                |
| Prep Date: 7/6/2015 | Analysis Date: 7/16/2015 SeqNo: 826932 Units: mg/L                          |
| Analyte             | Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual |
| Cadmium             | ND 0.0020                                                                   |
| Selenium            | ND 0.050                                                                    |
| Silver              | ND 0.0050                                                                   |
| Sample ID LCS-20102 | SampType: LCS TestCode: EPA 6010B: Total Recoverable Metals                 |
| Client ID: LCSW     | Batch ID: 20102 RunNo: 27540                                                |
| Prep Date: 7/6/2015 | Analysis Date: 7/16/2015 SeqNo: 826933 Units: mg/L                          |

0

0

0

%REC

101

99.7

105

LowLimit

80

80

80

HighLimit

120

120

120

%RPD

**RPDLimit** 

Qual

SPK value SPK Ref Val

0.5000

0.5000

0.1000

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 17 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1507094

06-Aug-15

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-1-15

Sample ID 1507094-001b dup

SampType: DUP
Batch ID: R27329

TestCode: SM4500-H+B: pH

RunNo: 27329

Client ID: Injection Well
Prep Date:

Analysis Date: 7/6/2015

15 Seal

SeqNo: **819204** 

Units: pH units

Analyte

Result

PQL SPK value

SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD RPDLimit

Qual

Н

nH.

7.46 1.68

. .

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 18 of 20

#### Hall Environmental Analysis Laboratory, Inc.

WO#:

1507094

06-Aug-15

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-1-15

| Sample ID mb-1 |
|----------------|
|----------------|

SampType: MBLK

TestCode: SM2320B: Alkalinity

Client ID: PBW

Batch ID: R27329

RunNo: 27329

Prep Date:

Client ID:

Prep Date:

Analysis Date: 7/6/2015

SeqNo: 819128

Units: mg/L CaCO3

Analyte

SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD

**RPDLimit** 

Qual

Total Alkalinity (as CaCO3)

LCSW

ND

20.00

TestCode: SM2320B: Alkalinity

**RPDLimit** 

Sample ID Ics-1

SampType: LCS Batch ID: R27329

RunNo: 27329 SeqNo: 819129

Units: mg/L CaCO3

Analyte

Result PQL

Analysis Date: 7/6/2015 SPK value SPK Ref Val

%REC

HighLimit

%RPD

Total Alkalinity (as CaCO3)

78.36

Result

Result

79.44

20.00 80.00 98.0

110

Qual

Sample ID mb-2 Client ID: PBW

SampType: MBLK

SPK value SPK Ref Val %REC LowLimit

TestCode: SM2320B: Alkalinity RunNo: 27329

HighLimit

Prep Date:

Batch ID: R27329 Analysis Date: 7/6/2015

**PQL** 

SeqNo: 819152

Units: mg/L CaCO3

**RPDLimit** 

Analyte Total Alkalinity (as CaCO3)

ND 20.00

SampType: LCS

TestCode: SM2320B: Alkalinity

Sample ID Ics-2 Client ID: LCSW

Batch ID: R27329

RunNo: 27329

Units: mg/L CaCO3

Prep Date:

Analysis Date: 7/6/2015

SeqNo: 819153

HighLimit

%RPD

Analyte Total Alkalinity (as CaCO3)

**PQL** 20.00 SPK value SPK Ref Val 80.00

%REC LowLimit 99.3

90

110

%RPD

**RPDLimit** Qual

Page 19 of 20

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- Value above quantitation range
- J Analyte detected below quantitation limits
- Sample pH Not In Range
- Reporting Detection Limit
- % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank

#### Hall Environmental Analysis Laboratory, Inc.

WO#:

1507094

06-Aug-15

Client:

Western Refining Southwest, Inc.

Project:

Analyte

Injection Well 7-1-15

Sample ID MB-20129

SampType: MBLK

TestCode: SM2540C MOD: Total Dissolved Solids

LowLimit

LowLimit

Client ID:

**PBW** 

Batch ID: 20129

RunNo: 27360

Prep Date: 7/7/2015

Analysis Date: 7/8/2015

SPK value SPK Ref Val %REC

SeqNo: 820297

Units: mg/L HighLimit

%RPD **RPDLimit** 

Qual

Total Dissolved Solids

SampType: LCS

ND 20.0

Sample ID LCS-20129

Batch ID: 20129

RunNo: 27360

120

Client ID: LCSW Prep Date: 7/7/2015

Analysis Date: 7/8/2015

SeqNo: 820298

Units: mg/L HighLimit

%RPD **RPDLimit** 

Qual

Result **PQL**  SPK value SPK Ref Val 1000

101

%REC

Total Dissolved Solids

1010

20.0

Analyte

TestCode: SM2540C MOD: Total Dissolved Solids

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded Η

Not Detected at the Reporting Limit ND

RPD outside accepted recovery limits R

% Recovery outside of range due to dilution or matrix S

Analyte detected in the associated Method Blank В

E Value above quantitation range

Analyte detected below quantitation limits J

Sample pH Not In Range

Reporting Detection Limit

Page 20 of 20



нии влуновшения лишума ваооговогу

4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

### Sample Log-In Check List

Western Refining Southw Work Order Number: 1507094 RcptNo: 1 Client Name: Received by/date: anne Sham 7/2/2015 7:00:00 AM Logged By: **Anne Thorne** Completed By: **Anne Thome** 7/2/2015 Reviewed By: Chain of Custody Not Present 1. Custody seals intact on sample bottles? Yes 🗌 No 🗌 Yes 🗹 Not Present No 🗌 2. Is Chain of Custody complete? 3. How was the sample delivered? Courier Log In Yes 🗸 No 🗆 NA 🗌 4. Was an attempt made to cool the samples? No 🗌 NA 🗌 5. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 No 🗀 Yes 🗸 Sample(s) in proper container(s)? No 🗆 Yes 🗸 7. Sufficient sample volume for indicated test(s)? No 🗆 Yes 🗹 8. Are samples (except VOA and ONG) properly preserved? NA 🗆 No 🔽 Yes 🗌 9. Was preservative added to bottles? No 🗌 No VOA Vials 10. VOA vials have zero headspace? Yes Yes No 🗹 11. Were any sample containers received broken? # of preserved bottles checked Yes V No 🔲 for pH: 12. Does paperwork match bottle labels? (2)unless noted) (Note discrepancies on chain of custody) No 🗆 Adjusted<sup>4</sup> Yes 🗸 13. Are matrices correctly identified on Chain of Custody? No 🗌 Yes 🗹 14. Is it clear what analyses were requested? Yes 🗸 No 🗆 Checked by 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) Yes 🗌 No  $\square$ NA 🗹 16. Was client notified of all discrepancies with this order? Person Notified: Date By Whom: eMail Phone Fax In Person Via: Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Cooler No Temp °C | Condition | Seal Intact | Seal No Seal Date Signed By 1.0 Good Yes

| C                                                    | hain- | of-Cu      | stody Record      | Turn-Around                      | Time:                |            |                                                                   |                                        |                |           |                                                     |                           |                     |                       | TD                         | <b>~</b> !  |            |          | MT.           | A I                         |             |
|------------------------------------------------------|-------|------------|-------------------|----------------------------------|----------------------|------------|-------------------------------------------------------------------|----------------------------------------|----------------|-----------|-----------------------------------------------------|---------------------------|---------------------|-----------------------|----------------------------|-------------|------------|----------|---------------|-----------------------------|-------------|
| Client: Western Refining                             |       |            | Refining          | X Standard □ Rush                |                      |            |                                                                   | HALL ENVIRONMENTAL ANALYSIS LABORATORY |                |           |                                                     |                           |                     |                       |                            |             |            |          |               |                             |             |
|                                                      |       |            |                   | Project Name                     | <b>)</b> :           |            |                                                                   |                                        |                |           |                                                     |                           |                     |                       |                            |             |            |          |               |                             |             |
| Mailing Address: #50 CR 4990                         |       |            |                   | Injection well 7-1-15 Project #: |                      |            | www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 |                                        |                |           |                                                     |                           |                     |                       |                            |             |            |          |               |                             |             |
| Bloomfield, NN87413                                  |       |            |                   | Project #:                       |                      | •          |                                                                   | Tel. 505-345-3975 Fax 505-345-4107     |                |           |                                                     |                           |                     |                       |                            |             |            |          |               |                             |             |
|                                                      |       |            | 52-4/35           | P.O.# 126/0939                   |                      |            | Analysis Request                                                  |                                        |                |           |                                                     |                           |                     |                       |                            |             |            |          |               |                             |             |
| email o                                              |       |            |                   | Project Mana                     |                      | <u> </u>   | ï                                                                 |                                        | <u>Ş</u>       | <u>ô</u>  |                                                     |                           | Y                   | (7)                   |                            |             |            | T.       | P             | <b>₹</b>                    | Τ           |
| QA/QC Package:  Standard   Level 4 (Full Validation) |       |            |                   |                                  | •                    |            |                                                                   | TMB's (8021)                           | TPH (Gas only) | DRO/MRO)  | 7 7 2                                               | IMS)                      | 18, Na.             | ,<br>Fo₄,s€           | PCB's                      |             |            |          | rresivi       | AIK, C                      |             |
| Accreditation  □ NELAP  □ Other  □ Other             |       |            | Sampler:          | Beb                              | amana v s            |            | - TMB                                                             | - TPH                                  | 四/Q            |           | 8270 S                                              | 3                         | 3,NÓ <sub>2</sub> , | / 8082                |                            | 2           | 4          | ø,       | -             | Ž<br>Ž                      |             |
| □ EDD (Type)                                         |       |            |                   |                                  | 176) <u>-</u>        |            | 踞                                                                 | 띪                                      | (GRO           |           | ō                                                   | tals                      | S.                  | des                   |                            | <u></u>     | 17         | 性        | ر<br>د اد     | ح إ                         |             |
| Date                                                 | Time  | Matrix     | Sample Request ID |                                  | Preservative<br>Type |            |                                                                   | BTEX + MTBE                            | BTEX + MTBE    | TPH 8015B | 1711 (wedned + 10:17 ( ) / EDB (Wethod 504.+) R. V. | PAH's (8310 or 8270 SIMS) | RCRA 8 Metals       | Anions (F,CI,NO3,NÓ2, | 8081 Pesticides / 8082 PCB | 8260B (VOA) | 8270 (Semi | 1901 ta  | Reactivity C  | 1.17.12.12<br>1.17.12.12.12 | Air Ruhhles |
| 7-1-15                                               | 9:00  | Hao        | injection well    | 5-VOA                            | HCI                  |            | -001                                                              | i                                      |                |           |                                                     |                           |                     |                       | 1                          | X           |            |          |               |                             | T           |
| i                                                    | -     | 1          |                   |                                  | amber                |            | -od                                                               |                                        |                |           |                                                     |                           |                     |                       |                            |             | X          |          | T             |                             | T           |
|                                                      |       |            |                   | 1-500ml                          |                      |            | 700                                                               |                                        |                |           |                                                     |                           |                     |                       |                            | T           |            | X        |               |                             | Τ           |
|                                                      |       |            |                   | 1-500 m                          |                      |            | 700                                                               |                                        |                | 7         |                                                     |                           |                     |                       |                            |             |            |          | <u> </u>      | ₹ <u></u>                   | T           |
|                                                      |       |            |                   | 1-125ml                          | Ho504                |            | 70                                                                |                                        |                |           | 17                                                  |                           |                     |                       |                            | $\top$      |            | $\top$   | 1             | 1                           | <b>†</b>    |
|                                                      |       |            |                   | 1                                | HNO3                 |            | -00                                                               |                                        |                |           | <u> </u>                                            | 1                         | X                   | •                     | $\dashv$                   | 1           | 寸          | 十        | $\top$        |                             | <b>†</b>    |
|                                                      |       |            |                   | l                                | NaOH                 |            | 7001                                                              |                                        |                | 1         |                                                     |                           |                     | 1                     |                            | $\neg$      |            | <b>\</b> | $\sqrt{}$     |                             | †           |
|                                                      |       |            |                   | 1                                | ZN aceto             | +,         | -001                                                              |                                        |                |           |                                                     |                           |                     |                       |                            |             | _          | - -      | $\overline{}$ | ×                           | ⇟           |
|                                                      |       | •          |                   |                                  | 2579 101.81          |            |                                                                   |                                        |                |           |                                                     |                           |                     |                       | 1                          |             |            |          |               |                             | Ť           |
|                                                      |       |            |                   | ""                               |                      |            |                                                                   |                                        |                |           |                                                     |                           |                     |                       |                            |             |            |          |               |                             | Τ           |
|                                                      |       |            |                   |                                  |                      |            |                                                                   |                                        |                |           |                                                     |                           |                     |                       |                            |             |            |          |               |                             | I           |
|                                                      |       |            |                   |                                  |                      |            |                                                                   |                                        |                |           |                                                     |                           |                     |                       |                            |             |            |          |               |                             | I           |
| Date: 7-/-15                                         | Time: | Relinquish | ed by:            | Received by:                     | Walle                | Date 7//// | Time 12/5                                                         | Ren                                    | narks          | :         |                                                     |                           | , ,                 | ,                     | •                          |             |            |          |               |                             |             |
| Date:                                                | Time: | Relinquish | od by:            | Received by:                     | Jan De               | Date 07/02 | Time - 115 - U7 V                                                 | ]<br>Đ                                 |                |           |                                                     |                           |                     |                       |                            |             |            |          |               |                             |             |
| * *                                                  |       |            |                   | ,                                | *** *** * * *        |            | 4 2                                                               | 7                                      |                |           | • •                                                 |                           | -16 1               |                       |                            |             | •<br>      |          | 25            | *                           | *           |





# **Hall Environmental Analysis Laboratory**

### **QUALITY ASSURANCE PLAN**

Effective Date: August 13th, 2014

**Revision 9.9** 

www.hallenvironmental.com

Control Number: 00000158

Approved By:

Andy Freeman

Laboratory Manager

Approved By:

8/12/2014

Carolyn Swanson

Quality Assurance/Quality Control Officer

| Approved By:        |            |
|---------------------|------------|
|                     |            |
|                     | ol. l.     |
| Yeu                 | 8/13/14    |
| lan Cameron         | Date       |
| Assistant Laborator | ry Manager |

John Caldwell Date
Assistant Laboratory Manager
Semi-Volatiles Technical Director

Rene Aguilera Date
Volatiles Technical Director

Tiffany Shaw Date
Metals Technical Director

Stacey McCoy Date
Wet Chemistry Technical Director

Stephanie Shaffers Date
Microbiology Technical Director

# **Table of Contents**

| Section | Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>Page</u> |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.0     | Title Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1           |
| 2.0     | Table of Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3           |
| 3.0     | Introduction Purpose of Document Objectives Policies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6           |
| 4.0     | Organization and Responsibility Company Certifications Personnel  Laboratory Director Laboratory Manager/ Lead Technical Director Assistant Laboratory Manager Quality Assurance Quality Control Officer Project Managers Technical Directors Health and Safety/Chemical Hygiene Officer Analyst I, II and III Laboratory Technician Sample Control Manager Sample Custodians Sample Disposal Custodian Bookkeeper Administrative Assistant IT Specialist Delegations in the Absence of Key Personnel Laboratory Personnel Qualification and Training Organizational Chart | 9           |
| 5.0     | Receipt and Handling of Samples Reviewing Requests, Tenders and Contracts Sampling Procedures Containers Preservation Sample Custody Chain-of-Custody Form Receiving Samples                                                                                                                                                                                                                                                                                                                                                                                               | 21          |

Page 3 of 59 Quality Assurance Plan 9.9 Effective August 13<sup>th</sup>, 2014

|      | Disposal of Samples                                                                                                                                                                                                                                                                   |    |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 6.0  | Analytical Procedures List of Procedures Used Criteria for Standard Operating Procedures                                                                                                                                                                                              | 25 |
| 7.0  | Calibration Thermometers Refrigerators/Freezers Ovens Analytical and Table Top Balances Instrument Calibration pH Meter Other Analytical Instrumentation and Equipment Standards Reagents                                                                                             | 30 |
| 8.0  | Maintenance                                                                                                                                                                                                                                                                           | 34 |
| 9.0  | Data Integrity                                                                                                                                                                                                                                                                        | 35 |
| 10.0 | Quality Control Internal Quality Control Checks Client Requested QC Precision, Accuracy, Detection Levels Precision Accuracy Detection Limit Quality Control Parameter Calculations Mean Standard Deviation Percent Recovery (LCS and LCSD) Percent Recovery (MS, NSD) Control Limits | 36 |

Logging in Samples and Storage

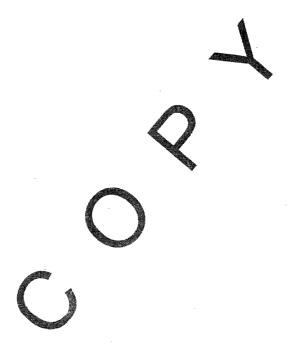
11.0 Data Reduction, Validation, Reporting, and Record Keeping 51

**Grubbs Outliers** 

Total Nitrogen

Weighting

RPD (Relative Percent Difference)


**Uncertainty Measurements** 

Langelier Saturation Index Calibration Calculations

**Concentration Calculations** 

Data Reduction Validation Reports and Records

| 12.0 | Corrective Action                                                                                                                                                    | 53                               |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 13.0 | Quality Assurance Audits, Reports and Complaints Internal/External Systems' Audits, Performance Evaluati Management Reviews Complaints Internal and External Reports | <b>55</b><br>ons, and Complaints |
| 14.0 | References (Analytical Protocols Utilized at HEAL)                                                                                                                   | 58                               |



#### 3.0 Introduction

### **Purpose of Document**

The purpose of this Quality Assurance Plan is to formally document the quality assurance policies and procedures of Hall Environmental Analysis Laboratory, Inc. (HEAL), for the benefit of its employees, clients, and accrediting organizations. HEAL continually implements all aspects of this plan as an essential and integral part of laboratory operations in order to ensure that high quality data is produced in an efficient and effective manner.

### **Objectives**

The objective of HEAL is to achieve and maintain excellence in environmental testing. This is accomplished by developing, incorporating and documenting the procedures and policies specified by each of our accrediting authorities and outlined in this plan. These activities are carried out by a laboratory staff that is analytically competent, well-qualified, and highly trained. An experienced management team, knowledgeable in their area of expertise, monitors them. Finally, a comprehensive quality assurance program governs laboratory practices and ensures that the analytical results are valid, defensible, reproducible, reconstructable and of the highest quality.

HEAL establishes and thoroughly documents its activities to ensure that all data generated and processed will be scientifically valid and of known and documented quality. Routine laboratory activities are detailed in method specific standard operating procedures (SOP). All data reported meets the applicable requirements for the specific method or methods that are referenced, ORELAP, TCEQ, EPA, client specific requirements and/or State Bureaus. In the event that these requirements are ever in contention with each other, it is HEAL's policy to always follow the most prudent requirement available. For specific method requirements refer to HEAL's Standard Operating Procedures (SOP's), EPA methods, Standard Methods 20' edition, ASTM methods or state specific methods.

HEAL management ensures that this document is correct in terms of required accuracy and data reproducibility, and that the procedures contain proper quality control measures. HEAL management additionally ensures that all equipment is reliable, well-maintained and appropriately calibrated. The procedures and practices of the laboratory are geared towards not only strictly following our regulatory requirements but also allowing the flexibility to conform to client specific specifications. Meticulous records are maintained for all samples and their respective analyses so that results are well-documented and defensible in a court of law.

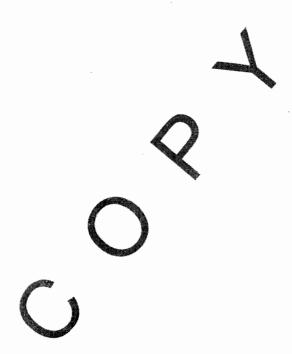
The HEAL Quality Assurance/Quality Control Officer (QA/QCO) and upper management are responsible for supervising and administering this quality assurance program, and

ensuring each individual is responsible for its proper implementation. All HEAL management remains committed to the encouragement of excellence in analytical testing and will continue to provide the necessary resources and environment conducive to its achievement.

#### **Policies**

Understanding that quality cannot be mandated, it is the policy of this laboratory to provide an environment that encourages all staff members to take pride in the quality of their work. In addition to furnishing proper equipment and supplies, HEAL stresses the importance of continued training and professional development. Further, HEAL recognizes the time required for data interpretation. Therefore, no analyst should feel pressure to sacrifice data quality for data quantity. Each staff member must perform with the highest level of integrity and professional competence, always being alert to problems that could compromise the quality of their technical work.

Management and senior personnel supervise analysts closely in all operations. Under no circumstance is the willful act or fraudulent manipulation of analytical data condoned. Such acts must be reported immediately to HEAL management. Reported acts will be assessed on an individual basis and resulting actions could result in dismissar. The laboratory staff is encouraged to speak with lab managers or senior management if they feel that there are any undo commercial, financial, or other pressures, which might adversely affect the quality of their work; or in the event that they suspect that data quality has been compromised in any way. HEAL's Quality Assurance quality Control Officer is available if any analyst and/or manager wishes to anonymously report any suspected or known breaches in data integrity.


Understanding the importance of meeting curtomer requirements in addition to the requirements set forth in statutory and requirements, HEAL shall periodically seek feedback from customers and evaluate the feedback in order to initiate improvements.

All proprietary rights and client information at HEAL (including national security concerns) are considered confidential. No information will be given out without the express verbal or written permission of the client. All reports generated will be held in the strictest of confidence.

HEAL shall continually improve the effectiveness of its management system through the use of the policies and procedures outlined in this Quality Assurance Plan. Quality control results, internal and external audit findings, management reviews, new and continual training and corrective and preventive actions are continually evaluated to identify possible improvements and to ensure that appropriate communication processes are taking place regarding the effectiveness of the management system. HEAL shall ensure that the

integrity of the quality system is maintained when changes to the system are planned and implemented.

This is a controlled document. Each copy is assigned a unique tracking number and when released to a client or accrediting agency the QA/QCO keeps the tracking number on file. This document is reviewed on an annual basis to ensure that it is valid and representative of current practices at HEAL.



### 4.0 Organization and Responsibility

### Company

HEAL is accredited in accordance with the 2009 TNI standard (see NELAC accredited analysis list in the QA Department or on the company website), through ORELAP and TCEQ and by the Arizona Department of Health Services. Additionally, HEAL is qualified as defined under the State of New Mexico Water Quality Control Commission regulations and the New Mexico State Drinking Water Bureau. HEAL is a locally owned small business that was established in 1991. HEAL is a full service environmental analysis laboratory with analytical capabilities that include both organic and inorganic methodologies and has performed analyses of soil, water, and air as well as various other matrices for many sites in the region. HEAL's client base includes local, state and federal agencies, private consultants, commercial industries as well as individual homeowners. HEAL has performed as a subcontractor to the state of New Mexico and to the New Mexico Department of Transportation. HEAL has been acclaimed by its customers as producing quality results and as being adaptive to client-specific needs.

The laboratory is divided into an organic section, an inorganic section and a microbiology section. Each section has a designated managemechnical director. The technical directors report directly to the laboratory manager, who oversees all operations.

#### Certifications

ORELAP - NELAC Oregon Primary accrediting authority.

TCEQ - NELAC Texas Secondary accrediting authority.

The Arizona Department of Health Services

The New Mexico Drinking Water Burgau

See our website at <a href="www.hallenvironmental.com">www.hallenvironmental.com</a> or the QA Office for copies of current licenses and licensed parameters.

In the event of a certification being revoked or suspended, HEAL will notify, in writing, those clients that require the affected certification.

#### Personnel

HEAL management ensures the competence of all who operate equipment, perform environmental tests, evaluate results, and sign test reports. Personnel performing specific tasks shall be qualified on the basis of appropriate education, training, experience and /or demonstrated skills.

HEAL ensures that all personnel are aware of the relevance and importance of their activities and how each employee contributes to the achievement of the objectives defined throughout this document.

All personnel shall be responsible for complying with HEAL's quality assurance/quality control requirements that pertain to their technical function. Each technical staff member must have a combination of experience and education to adequately demonstrate specific knowledge of their particular function and a general knowledge of laboratory operations, test methods, quality assurance/quality control procedures, and records management.

All employees' training certificates and diplomas are kept on file with demonstrations of capability for each method they perform. An Organizational Chartican be found at the end of this section and a personnel list is available in the current Controlled Document Logbook.

# **Laboratory Director**

The Laboratory Director is responsible for overall technical direction and business leadership of HEAL. The Laboratory Manager, the Project Manager and Quality Assurance/Quality Control Officer report directly to the Laboratory Director. Someone with a minimum of 7 years of directly related experience and a bachelor's degree in a scientific or engineering discipline should fill this position.

### Laboratory Manager/Lead Technical Director

The Laboratory Manager shall exercise day—to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results. The Laboratory Manager shall be experienced in the fields of accreditation for which the laboratory is approved or seeking accreditation. The Laboratory Manager shall certify that personnel with appropriate educational and/or technical background perform all tests for which HEAL is accredited. Such certification shall be documented.

The Laboratory Manager shall monitor standards of performance in quality control and quality assurance and monitor the validity of the analyses performed and data generated at HEAL to assure reliable data.

The Laboratory Manager is responsible for the daily operations of the laboratory. The Laboratory Manager is the lead technical director of the laboratory and, in conjunction with the section technical directors, is responsible for coordinating activities within the laboratory with the overall goal of efficiently producing high quality data within a reasonable time frame.

In events where employee scheduling or current workload is such that new work cannot be incorporated, without missing hold times, the Laboratory Manager has authority to modify employee scheduling, re-schedule projects or, when appropriate, allocate the work to approved subcontracting laboratories.

Additionally, the laboratory manager reviews and approves new analytical procedures and methods, and performs a final review of most analytical results. The Laboratory Manager provides technical support to both customers and HEAL staff.

The Laboratory Manager also observes the performance of supervisors to ensure that good laboratory practices and proper techniques are being taught and utilized, and to assist in overall quality control implementation and strategic planning for the future of the company. Other duties include assisting in establishing laboratory policies that lead to the fulfillment of requirements for various certification programs, assuring that all Quality Assurance and Quality Control documents are reviewed and approved, and assisting in conducting Quality Assurance Audits.

The laboratory manager addresses questions or complaints that cannot be answered by the section managers.

The Laboratory Manager shall have a bachelor's degree in a chemical, environmental, biological sciences, physical sciences or engineering field, and at least five years of experience in the environmental analysis of representative inorganic and organic analytes for which the laboratory seeks or maintains accreditation.

# Assistant Laboratory Manager

The Assistant Laboratory Manager shall aid the Laboratory Manager in exercising dayto-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results. The Assistant Laboratory Manager shall be experienced in the fields of accreditation for which the laboratory is approved or seeking accreditation.

The Assistant Laboratory Manager is responsible for helping the Laboratory Manager in the daily operations of the laboratory. In conjunction with the section Technical Directors, the Assistant Laboratory Manager is responsible for coordinating activities within the laboratory with the overall goal of efficiently producing high quality data within a reasonable time frame.

The Assistant Laboratory Manager shall have at least ten years of experience in environmental analysis of representative inorganic and/or organic analytes for which the laboratory seeks or maintains accreditation.

# **Quality Assurance Quality Control Officer**

The Quality Assurance/Quality Control Officer (QA/QCO) serves as the focal point for QA/QC and shall be responsible for the oversight and/or review of quality control data. The QA/QCO functions independently from laboratory operations and shall be empowered to halt unsatisfactory work and/or prevent the reporting of results generated from an out-of-control measurement system. The QA/QCO shall objectively evaluate data and perform assessments without any outside/managerial influence. The QA/QCO shall have direct access to the highest level of management at which decisions are made on laboratory policy and/or resources. The QA/QCO shall notify laboratory management of deficiencies in the quality system in periodic, independent reports.

The QA/QCO shall have general knowledge of the analytical test methods for which data review is performed and have documented training and or experience in QA/QC procedures and in the laboratory's quality system. The QA/QCO will have a minimum of a BS in a scientific or related field and a minimum of three years of related experience.

The QA/QCO shall schedule and conduct internal audits as per the Internal Audit SOP at least annually, monitor and trend Corrective Action Reports as per the Data Validation SOP, periodically review control charts for out of control conditions, and initiate any appropriate corrective actions.

The QA/QCO shall oversee the analysis of proficiency testing in accordance with our standards and monitor any corrective actions issued as a result of this testing.

The QA/QCO reviews all standard operating procedures and statements of work in order to assure their occurate and compliance to method and regulatory requirements.

The QA/QCO shall be responsible for maintaining and updating this quality manual.

# **Project Managers**

The role of the project manager is to act as a liaison between HEAL and our clients. The Project Manager updates clients on the status of projects in-house, prepares quotations for new work, and is responsible for HEAL's marketing effort.

All new work is assessed by the Project Manager and reviewed with the other managers so as to not exceed the laboratory's capacity. In events where employee scheduling or current workload is such that new work cannot be incorporated without missing hold times, the Project Manager has authority to re-schedule projects.

It is also the duty of the project manager to work with the Laboratory Manager and QA/QCO to insure that before new work is undertaken, the resources required and accreditations requested are available to meet the client's specific needs.

Additionally, the Project Manager can initiate the review of the need for new analytical procedures and methods, and perform a final review of some analytical results. The Project Manager provides technical support to customers. Someone with a minimum of 2 years of directly related experience and a bachelor's degree in a scientific or engineering discipline should fill this position.

#### Technical Directors

Technical Directors are full-time members of the staff at HEAL who exercise day-to-day supervision of laboratory operations for the appropriate relds of accreditation and reporting of results for their department within HEAL. A Technical Director's duties shall include, but not be limited to, monitoring standards of performance in quality control and quality assurance, monitoring the validity of the analyses performed and the data generated in their sections to ensure reliable data, overseeing training and supervising departmental staff, scheduling including work for their sections, and monitoring laboratory personnel to ensure that proper procedures and techniques are being utilized. They supervise and implement new Quality Control procedures as directed by the QA/QCO, update and maintain quality control records including, but not limited to, training forms, IDOCs, IDOCPs, and MDLs, and evaluate laboratory personnel in their Quality Control activities. In addition, technical directors are responsible for upholding the spirit and intent of HEAL's data integrity procedures.

As Technical Directors of their associated section, they review analytical data to acknowledge that data meets all criteria set forth for good Quality Assurance practices. Someone with a minimum of a years of experience in the environmental analysis of representative analytes for which HEAL seeks or maintains accreditation and a bachelor's degree in a scientific or related discipline should fill this position.

The education requirements for a Technical Director may be waived at the discretion of HEAL's accrediting agencies.

Health and Safety / Chemical Hygiene Officer

Page 13 of 59 Quality Assurance Plan 9.9 Effective August 13<sup>th</sup>, 2014 Refer to the most recent version of the Health and Safety and Chemical Hygiene Plans for the roles, responsibilities, and basic requirements of the Health and Safety Officer (H&SO) and the Chemical Hygiene Officer (CHO). These jobs can be executed by the same employee.

### Analyst I, II and III

Analysts are responsible for the analysis of various sample matrices including, but not limited to, solid, aqueous, and air, as well as the generation of high quality data in accordance with the HEAL SOPs and QA/QC guidelines in a reasonable time as prescribed by standard turnaround schedules or as directed by the Section Manager or Laboratory Manager.

Analysts are responsible for making sure all data generated is entered in the database in the correct manner and the raw data is reviewed, signed and delivered to the appropriate peer for review. An analyst reports daily to the section manager and will inform them as to material needs of the section specifically pertaining to the analyses performed by the analyst. Additional duties may include preparation of samples for analysis, maintenance of lab instruments or equipment, and cleaning and providing technical assistance to lower level laboratory staff.

The senior analyst in the section may be asked to perform supervisory duties as related to operational aspects of the section. The analyst may perform all duties of a lab technician.

The position of Analyst is a full or part time hourly position and is divided into three levels, Analyst I, II, and III. All employees hard into an Analyst position at HEAL must begin as an Analyst I and remain there at a minimum of three months regardless of their education and experience. Analytical aust have a minimum of an AA in a related field or equivalent experience (equivalent experience means years of related experience can be substituted for the education requirement). An Analyst I is responsible for analysis, in trument operation, including calibration and data reduction. Analyst II must have a minimum in an AA in a related field or equivalent experience and must have documented and demonstrated aptitude to perform all functions of an Analyst II. An Analyst II is responsible for the full analysis of their test methods, routine instrument maintenance, purchase of consumables as dictated by their Technical Director, advanced data reduction, and basic data review. Analyst II may also assist Analyst III in method development and, as dictated by their Technical Director, may be responsible for the review and/or revision of their method specific SOPs. Analyst III must have Bachelor's degree or equivalent experience and must have documented and demonstrated aptitude to perform all functions of an Analyst III. An Analyst III is responsible for all tasks completed by an Analyst I and II as well as advanced data review, non-routine instrument maintenance, assisting their technical director in basic supervisory duties and method development.

#### Laboratory Technician

A laboratory technician is responsible for providing support to analysts in the organics, inorganics and disposal departments. Laboratory Technicians can assist analysts in basic sample preparation, general laboratory maintenance, glassware washing, chemical inventories, sample disposal and sample kit preparation. This position can be filled by someone without the education and experience necessary to obtain a position as an analyst.

### Sample Control Manager

The sample control manager is responsible for receiving samples and reviewing the sample login information after it has been entered into the computer. The sample control manager also checks the samples against the chain-of-custody for any sample and/or labeling discrepancies prior to distribution.

The sample control manager is responsible for sending but samples to the sub-contractors along with the review and shipping of field sampling bottle kits. The sample control manager acts as a liaison between the laboratory and field sampling crew to ensure that the appropriate analytical less is assigned. If a discrepancy is noted, the sample control manager or sample custodian will contact the customer to resolve any questions or problems. The sample control manager is an integral part of the customer service team.

This position should be filled by some the with a high school diploma and a minimum of 2 years of related experience and car also be filled by a senior manager.

# Sample Custodians

Sample Custodians work directly under the Sample Control Manager. They are responsible for sample intake into the laboratory and into the LIMS. Sample Custodians take orders from our clients and prepare appropriate bottle kits to meet the clients' needs. Sample Custodians work directly with the clients in properly labeling and identifying samples as well as properly filling out legal COCs. When necessary, Sample Custodians contact clients to resolve any questions or problems associated with their samples. Sample Custodians are responsible for distributing samples throughout the laboratory and are responsible for notifying analysts of special circumstances such as short holding times or improper sample preservation upon receipt.

# Sample Disposal Custodian

The sample disposal custodian is responsible for characterizing and disposing of samples in accordance to the most recent version of the sample disposal SOP. The sample disposal custodian collects waste from the laboratory and transports it to the disposal warehouse for storage and eventual disposal. The sample disposal custodian is responsible for maintaining the disposal warehouse and following the requirements for documentation, integrity, chemical hygiene and health and safety as set forth in the various HEAL administrative SOPs. The sample disposal custodian is responsible for overseeing any laboratory technicians employed at the disposal warehouse.

This position should be filled by someone with a high school diploma and a minimum of 1 year of related experience.

### Bookkeeper

The Bookkeeper is responsible for the preparation of quarterly financials and quarterly payroll reports. The bookkeeper monitors payables, receivables, deposits, pays all bills and maintains an inventory of administrative supplies. The Brokkeeper completes final data package assembly and oversees the consignment of final reports. The Bookkeeper assists in the project management of drinking water compliance samples for NMED and NMEFC and any other tasks as assigned by the aboratory Manager. This position should be filled by someone with a degree in accourting or a minimum of a high school diploma and at least 4 years of directly related experience.

#### Administrative Assistant

The Administrative Assistant is responsible for aiding administrative staff in tasks that include but are not limited to: the processing and consignment of final reports, and the generation of client specific spreadsheets. This position should be filled by someone with a minimum of a high so fool diploma.

#### IT Specialist

The IT Specialist is responsible for the induction and maintenance of all hard and software technology not maintained through a service agreement. The IT Specialist follows the requirements of this document, all regulatory documents and the EPAs Good Automated Laboratory Practices. This position should be filled by someone with a degree in a computer related field, or at least two years of directly related experience.

### **Delegations in the Absence of Key Personnel**

Planned absences shall be preceded by notification to the Laboratory Manager. The appropriate staff members shall be informed of the absence. In the case of unplanned absences, the superior shall either assume the responsibilities and duties or delegate the responsibilities and duties to another appropriately qualified employee.

In the event that the Laboratory Manager is absent for a period of time exceeding fifteen consecutive calendar days, another full-time staff member meeting the basic qualifications and competent to temporarily perform this function will be designated. If this absence exceeds thirty-five consecutive calendar days, HEAL will notify ORELAP in writing of the absence and the pertinent qualifications of the temporary laboratory manager.

# **Laboratory Personnel Qualification and Training**

All personnel joining HEAL shall undergo orientation and training. During this period the new personnel shall be introduced to the organization and their responsibilities, as well as the policies and procedures of the company. They shall also undergo on-the-job training and shall work with trained staff. They will be shown required tasks and be observed while performing them.

When utilizing staff undergoing training, appropriate supervision shall be dictated and overseen by the appropriate section technical lirector. Prior to analyzing client samples, a new employee, or an employee new to a procedure, must meet the following basic requirements. The SOP and Method(s) for the analysis must be read and signed by the employee indicating that they read, understand, and intend to comply with the requirements of the documents. The employee must undergo documented training. Training is conducted by a senior analyst familiar with the procedure and overseen by the section Technical Director. This training is documented by any means deemed appropriate by the trainer and section Technical Director, and kept on file if the employees file located in the QA/QCO's office. The employee must perform a successful Initial Demonstration of Capability (IDOC). See the current Document Control Logbook for the training documents and checklists utilized at HEAL to ensure that all of these requirements are met. Once all of the above requirements are met it is incumbent upon the section Technical Director to determine at which point the employee can begin to perform the test unsupervised. Certification to Complete Work Unsupervised (see the current Document Control Logbook) is then filled out by the employee and technical director.

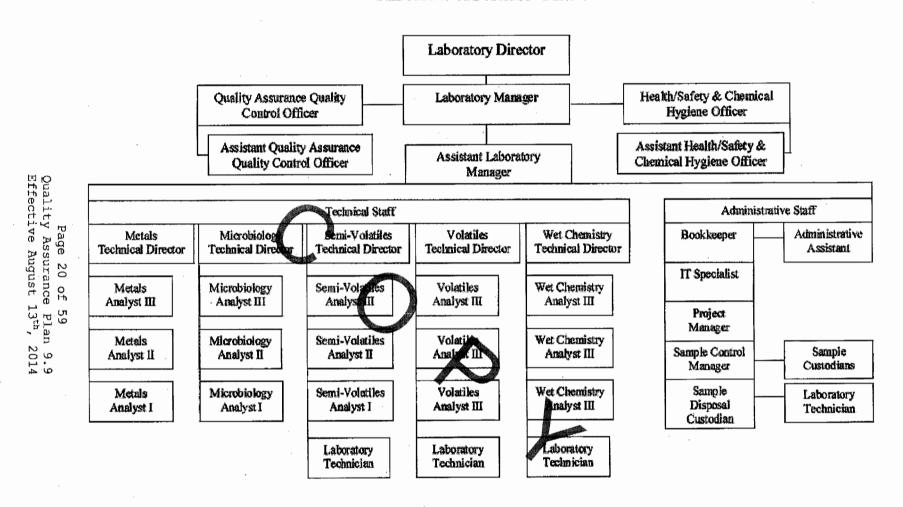
IDOCs are required for all new analysts and methods prior to sample analysis. IDOCs are also required any time there is a change in the instrument, analyte list or method. If more than twelve months have passed since an analyst performed an IDOC and they

have not performed the method and/or have not met the continuing DOC requirements, the analyst must perform an IDOC prior to resuming the test.

All IDOCs shall be documented through the use of the certification form which can be found in the current Document Control Logbook. IDOCs are performed by analyzing four Laboratory Control Spikes (LCSs). Using the results of the LCSs the mean recovery is calculated in the appropriate reporting units and the standard deviations of the population sample (n-1) (in the same units) as well as the relative percent difference for each parameter of interest. When it is not possible or pertinent to determine mean and standard deviations HEAL assesses performance against establish and documented criteria dictated in the method SOP. The mean and standard deviation are compared to the corresponding acceptance criteria for precision and accuracy in the test method (if applicable) or in laboratory-generated acceptance criteria. In the event that the HEAL SOP or test method(s) fail to establish the pass/fail criteria the default limits of +/- 20% for calculated recovery and <20% relative percent difference based on the standard deviation will be utilized. If all parameters meet the acceptance criteria, the IDOC is successfully completed. If any one of the parameters do not meet the acceptance criteria, the performance is unacceptable for that parameter and the analyst must either locate and correct the source of the problem and repeat the test for all parameters of interest or repeating test for all parameters that failed to meet criteria. Repeat failure, however, confirms a general problem with the measurement system. If this occurs the source of the problem must be identified and the test repeated for all parameters of interest

New employees that do not have prior analysis experience will not be allowed to perform analysis until they have demonstrated attention to detail with minimal errors in the assigned tasks. To ensure a sustained level of quality performance among staff members, continuing demonstration of capability shall be performed at least once a year. These are as an Annual Documentation of Continued Proficiency (ADOCP).

At least once per year an ADOCP must be completed. This is achieved by the acceptable performance of a blind sample (typically by using a PT sample, but can be a single blind (to the analyst) sample), by performing another IDOC, or by summarizing the data of four consecutive laboratory control samples with acceptable levels of precision and accuracy (these limits are those currently listed in the LIMS for an LCS using the indicated test method(s).) ADOCPs are documented using a standard form and are kept on file in each analyst's employee folder. ADOCPs may be demonstrated as an analyst group utilizing LIMS control charting, so long as all listed analysts participated, the results are consecutive and pass the requirements for precision and accuracy.


Each new employee shall be provided with data integrity training as a formal part of their new employee orientation. Each new employee will sign an ethics and data integrity agreement to ensure that they understand that data quality is our main objective. Every HEAL employee recognizes that although turnaround time is

important, quality is put above any pressure to complete the task expediently. Analysts are not compensated for passing QC parameters nor are incentives given for the quantity of work produced. Data Integrity and Ethics training are performed on an annual basis in order to remind all employees of HEAL's policy on data quality. Employees are required to understand that any infractions of the laboratory data integrity procedures will result in a detailed investigation that could lead to very serious consequences including immediate termination, debarment, or civil/criminal prosecution.

Training for each member of HEAL's technical staff is further established and maintained through documentation that each employee has read, understood, and is using the latest version of this Quality Assurance Manual. Training courses or workshops on specific equipment, analytical techniques, or laboratory procedures are documented through attendance sheets, certificates of attendance, training forms, or quizzes. This training documentation is located in analyst specific employee folders in the QA/QCO Office. On the front of all methods, SOPs, and procedures for HEAL, there is a signoff sheet that is signed by all pertinent employees, indicating that they have read, understand, and agree to perform the most recent version of the document.

The effectiveness of training will be evaluated during routine data review, annual employee reviews, and internal and external audits. Repetitive errors, complaints and audit findings serve as indicators that training has been ineffective. When training is deemed to have been ineffective a brief review of the training process will be completed and a re-training conducted as soon as possible.

# **HEAL Personnel Chart**



### 5.0 Receipt and Handling of Samples

### **Reviewing Requests, Tenders and Contracts**

All contracts and written requests by clients are closely reviewed to ensure that the client's data quality objectives can be met to their specifications. This review includes making sure that HEAL has the resources necessary to perform the tests to the clients specifications.

When HEAL is unable to meet the clients specifications their samples will be subcontracted to an approved laboratory capable of meeting the client's data quality objectives.

### Sampling

#### **Procedures**

HEAL does not provide field sampling for any projects. Sample kits are prepared and provided for clients upon request. The sample kits contain the appropriate sampling containers (with a preservative when necessary), labels, blue ice (The use of "blue ice" by anyone except HEAL personnel is discouraged because it generally does not maintain the appropriate temperature of the sample. If blue ice is used, it should be completely frozen at this time of use, the sample should be chilled before packing, and special notice taken at sample receipt to be certain the relative demperature has been maintained.), a cooler, chain-of-custody forms, plastic bags, bubble wrap, and any special sampling instructions. Sample kits are reviewed prior to shipment for accuracy and completeness.

#### Containers

Containers which are sent out for sampling are purchased by HEAL from a commercial source. Glass containers are certified "EPA Cleaned" QA level 1. Plastic containers are certified clean when required These containers are received with a Certificate of Analysis verifying that the containers have been cleaned according to the EPA wash procedure. Containers are used once and discarded. If the samples are collected and stored in inappropriate containers the laboratory may not be able to accurately quantify the amount of the desired components. In this case, re-sampling may be required.

#### Preservation

If sampling for analyte(s) requires preservation, the sample custodians fortify the containers prior to shipment to the field, or provide the preservative for the sampler to add in the field. The required preservative is introduced into the vials in uniform amounts

and done so rapidly to minimize the risk of contamination. Vials that contain a preservative are labeled appropriately. If the samples are stored with inappropriate preservatives, the laboratory may not be able to accurately quantify the amount of the desired components. In this case re-sampling may be required.

Refer to the current Login SOP and/or the current price book for detailed sample receipt and handling procedures, appropriate preservation and holding time requirements.

### Sample Custody

#### Chain-of-Custody Form

A Chain-of-Custody (COC) form is used to provide a record of sample chronology from the field to receipt at the laboratory. HEAL's COC contains the client's name, address, phone and fax numbers, the project name and number, the project manager's name, and the field sampler's name. It also identifies the date and time of sample collection, sample matrix, field sample ID number, number/volume of sample containers, sample temperature upon receipt, and any sample preservative information.

There is also a space to record the HEAL ID number assigned to samples after they are received. Next to the sample information is a space for the client to indicate the desired analyses to be performed. There is a section for the client to indicate the data package level as well as any accreditation requirements. Junely, there is a section to track the actual custody of the samples. The custody section contains lines for signatures, dates and times when samples are relinquished and recorded. The COC form also includes a space to record special sample related instructions, sampling anomalies, time constraints, and any sample disposal considerations.

It is paramount that all COCs arrive at LEAL complete and accurate so that the samples can be processed and allocated for testing in a timely and efficient manner. A sample chain-of-custody form can be found in the current Document Control Logbook or on line at <a href="https://www.hallenvironmental.com">www.hallenvironmental.com</a>

Should a specific project or client require the use of an internal COC, advanced notification and approval must be estained. The use of internal COCs are not part of our standard operating procedure.

# **Receiving Samples**

Samples are received by authorized HEAL personnel. Upon arrival, the COC is compared to the respective samples. After the samples and COC have been determined to be complete and accurate, the sampler signs over the COC. The HEAL staff member in turn signs the chain-of-custody, also noting the current date, time, and sample temperature. This relinquishes custody of the samples from the sampler and

delegates sample custody to HEAL. The first (white) copy of the COC form is filed in the appropriate sample folder. The second (yellow) copy of the COC form is filed in the COC file in the sample control manager's office. The third (pink) copy of the COC form is given to the person who has relinquished custody of the samples.

### Logging in Samples and Storage

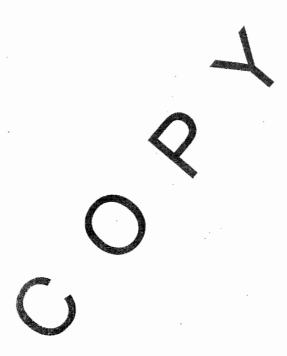
Standard Operating Procedures have been established for the receiving and tracking of all samples (refer to the current HEAL Login SOP). These procedures ensure that samples are received and properly logged into the laboratory and that all associated documentation, including chain of custody forms, is complete and consistent with the samples received. Each sample set is given a unique HEAL tracking ID number. Individual sample locations within a defined sample set are given a unique sample ID suffix-number. Labels with the HEAL numbers, and tests requested, are generated and placed on their respective containers. The pH of preserved, non-volatile samples is checked and noted if out of compliance. Due to the nature of the samples, the pHs of volatiles samples are checked after analysis. Samples are reviewed prior to being distributed for analysis.

All samples received that are requested for compliance, whether on the COC or by contract, will be identified as compliance samples in the LIMS so as to properly notify the analytical staff that they are to be analyzed in accordance with the test method(s) as well as the compliance requirements.

Samples are distributed for analysis based upon the requested tests. In the event that sample volume is limited and different departments at HEAL are required to share the sample, volatile work takes precedence and will always be analyzed first before the sample is sent to any other department for analysis.

Care will be taken to store samples isolated from laboratory contaminants, standards and highly contaminated samples

All samples that require thermal preservation shall be acceptably stored at a temperature range just above freezing to 6 unless specified at another range by the SOP and Method.


Each project (sample set) is entered into the Laboratory Information Management System (LIMS) with a unique ID that will be identified on every container. The ID tag includes the Lab ID, Client ID, date and time of collection, and the analysis/analyses to be performed. The LIMS continually updates throughout the lab. Therefore, at any time, an analyst or manager may inquire about a project and/or samples status. For more information about the login procedures, refer to the Sample Login SOP.

### **Disposal of Samples**

Samples are held at HEAL for a minimum of thirty days and then transferred to the HEAL warehouse for disposal. Analytical results are used to characterize their respective sample contamination level(s) so that the proper disposal can be performed. These wastes will be disposed of according to their hazard as well as their type and level of contamination. Refer to the Hall Environmental Analysis Laboratory Chemical Hygiene Plan and current Sample Disposal SOP for details regarding waste disposal.

Waste drums are provided by an outside agency. These drums are removed by the outside agency and disposed of in a proper manner.

The wastes that are determined to be non-hazardous are disposed of as non-hazardous waste in accordance with the Chemical Hygiene Plan and Sample Disposal SOP.



### 6.0 Analytical Procedures

All analytical methods used at HEAL incorporate necessary and sufficient Quality Assurance and Quality Control practices. A Standard Operating Procedure (SOP) is used to provide the necessary criteria to yield acceptable results. These procedures are reviewed at least annually and revised as necessary and are attached as a pdf file in the Laboratory Information Management System (LIMS) for easy access by each analyst. The sample is often consumed or altered during the analytical process. Therefore, it is important that each step in the analytical process be correctly followed in order to yield valid data.

When unforeseen problems arise, the analyst, technical director, and, when necessary, laboratory manager meet to discuss the factors involved. The analytical requirements are evaluated and a suitable corrective action or resolution is established. The client is notified in the case narrative with the final report or before, if the validity of their result is in question.

#### **List of Procedures Used**

Typically, the procedures used by HEAL are EPA approved methodologies or 20<sup>th</sup> edition Standard Methods. However, proprietary methods for eliminary specific samples are sometimes used. On occasion, multiple methods or multiple method revisions are used, in this event the SOP is written to include the requirements of all referenced methods. The following tables list EPA and Standard Methods Methods numbers with their corresponding analytes and/or instrument classification.

#### Methods Utilized at HEAL

Drinking Water(DW) Non-Potable Water (NPW) Solids (S)

| Methodology | Matrix    | Title of Method .                                                                                                           |
|-------------|-----------|-----------------------------------------------------------------------------------------------------------------------------|
| 180.1.      | DW<br>NPW | "Turbidity (Nephelometric)"                                                                                                 |
| 200.2       | DW<br>NPW | "Sample Preparation Procedure For Spectrochemical Determination of Total Recoverable Elements"                              |
| 200.7       | DW        | "Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry" |
| 200.8       | DW<br>NPW | "Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry."                     |
| 245.1       | DW<br>NPW | "Mercury (Manual Cold Vapor Technique)"                                                                                     |

| 300.0          | DW<br>NPW     | "Determination of Inorganic Anions by Ion Chromatography"                                                                                                          |
|----------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 413.2          | S<br>NPW<br>S | "Oil and Grease"                                                                                                                                                   |
| 418.1          | NPW<br>S      | "Petroleum Hydrocarbons (Spectrophotometric, Infrared)"                                                                                                            |
| 504.1          | DW            | "EDB, DBCP and 123TCP in Water by Microextraction and Gas Chromatography"                                                                                          |
| 524.2          | DW            | "Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry"                                                     |
| 552.3          | DW.           | "Determination of Haloacetic Acids and Dalapon in Drinking Water by lon-Exchange Liquid-Solid Extraction and Gas Chromatography with an Electron Capture Detector" |
| 624            | NPW           | Appendix A to Part 136 Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater Method 624-Purgeables"                                         |
| 1311           | s             | "Toxicity Characteristic Leaching Procedure                                                                                                                        |
| 1311ZHE        | s             | "Toxicity Characteristic Leaching Procedure"                                                                                                                       |
| 166 <b>4</b> A | NPW           | "N-Hexane Extractable Material HEM; Oil and Grease) and Silica Gel Treated N-Hexane Extractable Material) by Extraction and Gravimetry"                            |
| 3005A          | NPW           | "Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by FAA or ICP Spectroscopy"                                                       |
| 3010A          | NPW           | "Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis LAA or ICP Spectroscopy"                                                             |
| 3050B          | S             | "Acid Digestion of Sediment, Sludge, and Soils"                                                                                                                    |
| 3510C          | DW<br>NPW     | "Separatory Funnel Liquid-Liquid Extraction"                                                                                                                       |
| 3540           | s             | "Soxhlet Extraction"                                                                                                                                               |
| 3545           | S             | "Pressurized Fluid Extraction(PFE)"                                                                                                                                |
| 3665           | NPW<br>S      | "Sulfuric Acid/Permanganate Cleanup"                                                                                                                               |
| 5030B          | NPW           | "Purge-and-Trap for Aqueous Samples"                                                                                                                               |
| 5035           | s             | "Closed-System Purge-and-Trap and Extraction for Volatile Organics in Soil and Waste Samples"                                                                      |
| 6010B          | NPW<br>S      | "Inductively Coupled Plasma-Atomic Emission Spectrometry"                                                                                                          |
|                |               |                                                                                                                                                                    |

| <ul> <li>"Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)"</li> <li>NPW "Aromatic and Halogenated Volatiles By Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors"</li> <li>NPW "Nonhalogenated Volatile Organics by Gas Chromatography" (Gasoline Range and Diesel Range Organics)</li> <li>NPW s "Organochlorine Pesticides by Gas Chromatography"</li> <li>NPW s "Polychlorinated Biphenyls (PCBs) by Gas Chromatography"</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7470A         | NPW    | "Mercury in Liquid Waste (Manual Cold-Vapor Technique)"                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|--------------------------------------------------------------------------------------------------------|
| Schromatography Using Photoionization and/or Electrolytic Conductivity Detectors"  NPW S (Gasoline Range and Diesel Range Organics)  8081A NPW S "Organochlorine Pesticides by Gas Chromatography"  8082 NPW S "Polychlorinated Biphenyls (PCBs) by Gas Chromatography"  8260B NPW S "Volatile Organic Compounds by Gas Chromatography"  8270C NPW S Spectrometry (GC/MS)"  8310 NPW S "Semivolatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS)"  8310 NPW S "Polynuclear Aromatic Hydrocarbons"  9060 NPW "Total Organic Carbon"  9067 NPW "Phenolics (Spectrophotometric) MBTH With Distillation)"  9095A S "Paint Filter Liquids Test"  H-8167 NPW "Method 8167 Chlorina Total"  Walkley/Black S FOC/TOC WB  SM2340B NPW "2340 Hardness"  SM2540 B NPW "2510 Conductivity"  SM2540 C NPW "Total Dissolved Solids Dried at 103-105° C"  SM2540 D NPW "Total Suspended Solids Dried at 103-105° C"  SM4500-NH3 NPW "PH Value"  SM4500-NH3 NPW "4500-NH3" Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7471A         | s      | "Mercury in Solid or Semisolid Waste (Manual Cold Vapor                                                |
| ## South Substitution of the compound of the c | 8021B         |        | "Aromatic and Halogenated Volatiles By Gas<br>Chromatography Using Photoionization and/or Electrolytic |
| ## B081A SPW s "Organochlorine Pesticides by Gas Chromatography"  ## B082 NPW s "Polychlorinated Biphenyls (PCBs) by Gas Chromatography"  ## B260B SPECTROMERY (GC/MS)"  ## B270C SPECTROMERY (GC/MS)"  ## Semivolatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS)"  ## B310 NPW SEMIVOLET Aromatic Hydrocarbons  ## Polynuclear Aromatic Hydrocarbons  ## Polynuclear Aromatic Hydrocarbons  ## Polynuclear Aromatic Hydrocarbons  ## Phenolics (Spectrophotorpatric MBTH With Distillation)"  ## Phenolics (Spectrophotorpatric MBTH With Distillation)"  ## Polynuclear Aromatic Hydrocarbons  ## Phenolics (Spectrophotorpatric MBTH With Distillation)"  ## Polynuclear Aromatic Hydrocarbons  ## Phenolics (Spectrophotorpatric MBTH With Distillation)"  ## Polynuclear Aromatic Hydrocarbons  ## Polynuclear Aromatic Hydrocar | 8015D         |        | "Nonhalogenated Volatile Organics by Gas Chromatography"                                               |
| ### according to the content of the  | 8081A         | NPW    |                                                                                                        |
| Spectrometry (GC/MS)"  8270C  NPW s "Semivolatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS)"  8310  NPW s "Polynuclear Aromatic Hydrocarbons"  9060  NPW "Total Organic Carbon"  9067  Phenolics (Spectrophotometric MBTH With Distillation)"  9095A s "Paint Filter Liquids Test"  H-8167  Walkley/Black s FOC/TOC WB  SM2320 B DW "Alkalinity"  SM2340B NPW "2340 hardness"  SM2510B DW "2510 Canduckvity"  SM2540 B NPW "Total Solids Dried at 103-105° C"  SM2540 C DW NPW "Total Dissolved Solids Dried at 180° C"  SM2540 D NPW "Total Suspended Solids Dried at 103-105° C"  SM4500-H+B DW NPW "4500-NH3" Ammonia  SM4500-NH3 NPW "4500-NH3" Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8082          |        | "Polychlorinated Biphenyls (PCBs) by Gas Chromatography"                                               |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8260B         | ]      | "Volatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS)"                          |
| ## Suppose the content of the conten | 8270C         | *** ** |                                                                                                        |
| 9067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8310          |        | "Polynuclear Aromatic Hydrocarbons"                                                                    |
| 9095A s "Phenolics (Spectrophotomatric MBTH With Distillation)" 9095A s "Paint Filter Liquids Test"  H-8167 DW Method 8167 Chlorine Total"  Walkley/Black s FOC/TOC WB  SM2320 B DW MPW "Alkalinity"  SM2340B NPW "2340 Hardness"  SM2510B DW MPW "2510 Canduckvity"  SM2540 B NPW "Total Solids Dried at 103-105° C"  SM2540 C DW MPW "Total Dissolved Solids Dried at 180° C"  SM2540 D NPW "Total Suspended Solids Dried at 103-105° C"  SM4500-H+B DW MPW "Total Suspended Solids Dried at 103-105° C"  SM4500-NH3 C "Phenolics (Spectrophotomatric MBTH With Distillation)"  "Method 8167 Chlorine Total"  "Alkalinity"  "2340 Hardness"  "2510 Canduckvity"  SM2540 D NPW "Total Solids Dried at 103-105° C"  SM4500-H+B DW MPW "Total Suspended Solids Dried at 103-105° C"  SM4500-NH3 SM4500-NH3 SM4500-NH3" Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9060          | NPW    | "Total Organic Carbon"                                                                                 |
| H-8167 DW NPW "Method 8167 Chlorine Total"  Walkley/Black s FOC/TOC WB  SM2320 B DW "Alkalinity"  SM2340B NPW "2340 Hardness"  SM2510B DW "2510 Canductvity"  SM2540 B NPW "Total Solids Dried at 103-105° C"  SM2540 C "Total Dissolved Solids Dried at 180° C"  SM2540 D NPW "Total Suspended Solids Dried at 103-105° C"  SM4500-H+B DW "PH Value"  SM4500-NH3 C "4500-NH3" Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9067          | ]      | "Phenolics (Spectrophotorp stric MBTH With Distillation)"                                              |
| H-8167  Walkley/Black S FOC/TOC WB  SM2320 B  MPW  "Alkalinity"  SM2340B  NPW  "2340 Hardness"  SM2510B  MPW  "2510 Conductivity"  SM2540 B  NPW  "Total Solids Dried at 103-105° C"  SM2540 C  SM2540 D  NPW  "Total Dissolved Solids Dried at 180° C"  SM2540 D  NPW  "Total Suspended Solids Dried at 103-105° C"  SM4500-H+B  NPW  NPW  "H Value"  "PH Value"  "4500-NH3" Ammonia  C  "Method 8167 Chloring Total"  "Alkalinity"  "Alkalinity"  "Total Suspendeds"  "Total Solids Dried at 103-105° C"  "Total Dissolved Solids Dried at 180° C"  "Total Suspended Solids Dried at 103-105° C"  "PH Value"  "4500-NH3" Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9095A         | s      | "Paint Filter Liquids Test"                                                                            |
| SM2320 B         DW NPW         "Alkalinity"           SM2340B         NPW         "2340 Hardness"           SM2510B         DW NPW         "2510 Conductivity"           SM2540 B         NPW         "Total Solids Dried at 103-105° C"           SM2540 C         DW NPW         "Total Dissolved Solids Dried at 180° C"           SM2540 D         NPW         "Total Suspended Solids Dried at 103-105° C"           SM4500-H+B         DW NPW         "pH Value"           SM4500-NH3         NPW NPW         "4500-NH3" Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H-8167        |        | "Method 8167 Chloring Total"                                                                           |
| SM2320 B         NPW         "Alkalinity"           SM2340B         NPW         "2340 h ardness"           SM2510B         DW NPW         "2510 Conductivity"           SM2540 B         NPW         "Total Solids Dried at 103-105° C"           SM2540 C         DW NPW         "Total Dissolved Solids Dried at 180° C"           SM2540 D         NPW         "Total Suspended Solids Dried at 103-105° C"           SM4500-H+B         DW NPW         "pH Value"           SM4500-NH3 C         NPW NPW         "4500-NH3" Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Walkley/Black | s      | FOC/TOC WB                                                                                             |
| SM2510B  DW NPW  "2510 Cenductivity"  SM2540 B  NPW  "Total Solids Dried at 103-105° C"  SM2540 C  SM2540 D  NPW  "Total Dissolved Solids Dried at 180° C"  "Total Suspended Solids Dried at 103-105° C"  SM4500-H+B  DW NPW  "PH Value"  "4500-NH3" Ammonia  "2510 Cenductivity"  "Total Solids Dried at 103-105° C"  "PH Value"  "4500-NH3" Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SM2320 B      |        | "Alkalinity"                                                                                           |
| SM2510B  NPW  "2510 Canductivity"  SM2540 B  NPW  "Total Solids Dried at 103-105° C"  SM2540 C  NPW  "Total Dissolved Solids Dried at 180° C"  SM2540 D  NPW  "Total Suspended Solids Dried at 103-105° C"  SM4500-H+B  NPW  NPW  "PH Value"  "4500-NH3" Ammonia  "2510 Canductivity"  "Total Solids Dried at 103-105° C"  "PH Value"  "4500-NH3" Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SM2340B       | NPW    | "2340 Hardness"                                                                                        |
| SM2540 C DW Total Dissolved Solids Dried at 180° C"  SM2540 D NPW "Total Suspended Solids Dried at 103-105° C"  SM4500-H+B DW NPW "pH Value"  SM4500-NH3 C "4500-NH3" Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SM2510B       |        | "2510 Conductivity"                                                                                    |
| SM2540 C  NPW  "Total Dissolved Solids Dried at 180° C"  SM2540 D  NPW  "Total Suspended Solids Dried at 103-105° C"  SM4500-H+B  NPW  "PH Value"  SM4500-NH3  C  "4500-NH3" Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SM2540 B      | NPW    | "Total Solids Dried at 103-105° C"                                                                     |
| SM4500-H+B         DW NPW         "pH Value"           SM4500-NH3 C         NPW s         "4500-NH3" Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SM2540 C      | 1      | "Total Dissolved Solids Dried at 180° C"                                                               |
| SM4500-H+B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SM2540 D      | NPW    | "Total Suspended Solids Dried at 103-105° C"                                                           |
| C s "4500-NH3" Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SM4500-H+B    |        | "pH Value"                                                                                             |
| SM4500-Norg NPW "4500-Norg" Total Kjeldahl Nitrogen (TKN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 1      | "4500-NH3" Ammonia                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SM4500-Norg   | NPW    | "4500-Norg" Total Kjeldahl Nitrogen (TKN)                                                              |

| С         | s   |                                             |
|-----------|-----|---------------------------------------------|
| SM5210 B  | NPW | "5210 B. 5-day BOD Test"                    |
| SM5310 B  | DW  | "5310" Total Organic Carbon (TOC)           |
| SM9223B   | NPW | "9223 Enzyme Substrate Coliform Test"       |
| SIVIBZZSB | DW  |                                             |
| 8000B     | NPW | "Determinative Chromatographic Separations" |
| 8000B     | s   |                                             |
| 8000C     | NPW | "Determinative Chromatographic Separations" |
| 80000     | s   |                                             |

## Criteria for Standard Operating Procedures

HEAL has Standard Operating Procedures (SOPs) for each of the test methods listed above. These SOPs are based upon the listed methods and detail the specific procedure and equipment utilized as well as the quality requirements necessary to prove the integrity of the data. SOPs are reviewed or revised every twelve months or sooner if necessary. The review/revision is documented in the Master SOP Logbook filed in the QA/QC Office. All SOPs are available in the LIMS under the Documents and SOPs menu.

Hand written corrections or alterations to SOPs are not permitted. In the event that a correction is needed and a revision is not immediately cossible, a corrective action report will be generated documenting the correction or alteration, signed by the section Technical Director and the QA/QC Officer and will be scanned into the current SOP and will document the change until a new revision is possible.

Controlled documents such as calibration tummary forms, analysis bench sheets, etc. are tracked as appendices in SOPs, through the controlled Document Logbook with copies available through the LIMS or through the MOAL as bound logbooks.

Each HEAL test method SOF shall include or reference the following topics where applicable:

Identification of the test method:

Applicable matrix or matrices;

Limits of detection and quantitation;

Scope and application, including parameters to be analyzed;

Summary of the test method:

Definitions:

Interferences:

Safety;

Equipment and supplies;

Reagents and standards:

Page 28 of 59 Quality Assurance Plan 9.9 Effective August 13<sup>th</sup>, 2014 Sample collection, preservation, shipment and storage;

Quality control parameters;

Calibration and standardization;

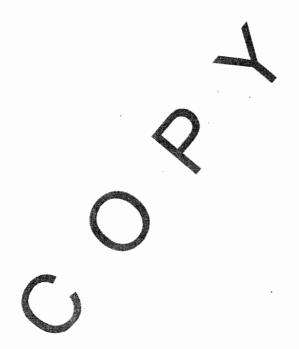
Procedure;

Data analysis and calculations;

Method performance;

Pollution prevention;

Data assessment and acceptance criteria for quality control measures;


Corrective actions for out-of-control data;

Contingencies for handling out-of-control or unacceptable data;

Waste management;

References; and

Any tables, diagrams, flowcharts and validation data.



#### 7.0 Calibration

All equipment and instrumentation used at HEAL are operated, maintained and calibrated according to manufacturers' guidelines, as well as criteria set forth in applicable analytical methodology. Personnel who have been properly trained in their procedures perform the operation and calibration. Brief descriptions of the calibration processes for our major laboratory equipment and instruments are found below.

#### **Thermometers**

The thermometers in the laboratory are used to measure the temperatures of the refrigerators, freezers, ovens, water baths, incubators, hot blocks, ambient laboratory conditions, TCLP Extractions, digestion blocks, and samples at the time of log-in. All NIST traceable thermometers are either removed from use upon their documented expiration date or they are checked annually with a NIST-certified thermometer and a correction factor is noted on each thermometer log. See the most current Login SOP for detailed procedures on this calibration procedure.

Data Loggers are used to record refrigerator temperatures. These data loggers are calibrated quarterly with NIST-certified thermometers.

The NIST thermometer should be recalibrated at least every five years or whenever the thermometer has been exposed to temperature extremes.

# Refrigerators/Freezers

Each laboratory refrigerator or freezer contains thermometer capable of measuring to a minimum precision of 0.1°C. The thermometers are kept with the bulb immersed in liquid. Each day of use, the temperatures of the refrigerators are recorded to insure that the refrigerators are within the required designated range. Samples are stored separately from the standards to reduce the risk of contamination.

See the current Catastrophic Failure SOP for the procedure regarding how to handle failed refrigerators or freezers.

#### Ovens

The ovens contain thermometers graduated by 1° C. The ovens are calibrated quarterly against NIST thermometers and checked each day of use as required and in whatever way is dictated by or appropriate for the method in use.

### **Analytical and Table Top Balances**

The table top balances are capable of weighing to a minimum precision of 0.01 grams. The analytical balances are capable of weighing to a minimum precision of 0.0001 grams. Records are kept of daily calibration checks for the balances in use. Working weights are used in these checks. The balances are annually certified by an outside source and the certifications are on file with the QA/QCO.

Balances, unless otherwise indicated by method specific SOPs, will be checked each day of use with at least two weights that will bracket the working range of the balance for the day. Daily balance checks will be done using working weights that are calibrated annually against Class S weights. Class S weights are calibrated by an external provider as required. The Class S weights are used once a year, or more frequently if required, to assign values to the Working Weights. During the daily balance checks, the working weights are compared to their assigned values and must page in order to validate the calibration of the balance. The assigned values, as well as the daily checks, for the working weights are recorded in the balance logbook for each balance.

#### Instrument Calibration

An instrument calibration is the relationship between the known concentrations of a set of calibration standards introduced into an analytical instrument and the measured response they produce. Calibration curve standards are a prepared series of aliquots at various known concentration levels from a parmary source reference standard. Specific mathematical types of calibration techniques are outlined in SW-846 8000B and/or 8000C. The entire initial calibration must be performed prior to sample analyses.

The lowest standard in the calibration curve must be at or below the required reporting limit.

Refer to the current SOP to determine the minimum requirement for calibration points.

Most compounds tend to be linear and a linear approach should be favored when linearity is suggested by the calibration data. Non-linear calibration should be considered only when a linear approach cannot be applied. It is not acceptable to use an alternate calibration procedure when a compound fails to perform in the usual manner. When this occurs, it is indicative of instrument issues or operator error.

If a non-linear calibration curve fit is employed, a minimum of six calibration levels must be used for second-order (quadratic) curves.

When more than 5 levels of standards are analyzed in anticipation of using second-order calibration curves, all calibration points MUST be used regardless of the calibration option employed. The highest or lowest calibration point may be excluded for the purpose of narrowing the calibration range and meeting the requirements for a specific calibration option. Otherwise, unjustified exclusion of calibration data is expressly forbidden.

Analytical methods vary in QC acceptance criteria. HEAL follows the method specific guidelines for QC acceptance. The specific acceptance criteria are outlined in the analytical methods and their corresponding SOPs.

#### pH Meter

The pH meter measures to a precision of 0.01 pH units. The pH calibration logbook contains the calibration before each use, or each day of use, if used more than once per day. It is calibrated using a minimum of 3 certified buffers. Also available with the pH meter is a magnetic stirrer with a temperature sensor. See the current pH SOP (SM4500 H+ B) for specific details regarding calibration of the pH probe.

### Other Analytical Instrumentation and Equipment

The conductivity probe is calibrated as needed and checked daily when in use.

Eppendorf (or equivalent brands) pipettes are checked avimetrically prior to use.

#### **Standards**

All of the source reference standards used are ordered from a reliable commercial vendor. A Certificate of Analysis (CoA), which verifies the quality of the standard, accompanies the standards from the vendor. The Certificates of Analysis are dated and stored on file by the Technical Directors or their designee. These standards are traceable to the National Institute of Standards (NIST). When salts are purchased and used as standards the certificate of purity must be obtained from the vendor and filed with the CoAs.

All standard solutions, calibration curve preparations, and all other quality control solutions are labeled in a manner that can be traced back to the original source reference standard. All source reference standards are entered into the LIMS with an appropriate description of the standard. Dilutions of the source reference standard (or any mixes of the source standards) are fully tracked in the LIMS. Standards are labeled with the date opened for use and with an expiration date.

As part of the quality assurance procedures at HEAL, analysts strictly adhere to manufacturer recommendations for storage times/expiration dates and policies of analytical standards and quality control solutions.

#### Reagents

HEAL ensures that the reagents used are of acceptable quality for their intended purpose. This is accomplished by ordering high quality reagents and adhering to good laboratory practices so as to minimize contamination or chemical degradation. All reagents must meet any specifications noted in the analytical method. Refer to the current Purchase of Consumables SOP for details on how this is accomplished and documented.

Upon receipt, all reagents are assigned a separate ID number, and logged into the LIMS. All reagents shall be labeled with the date received into the laboratory and again with the date opened for use. Recommended shelf life, as defined by the manufacturer, shall be documented and controlled. Dilutions or solutions prepared shall be clearly labeled, dated, and initialed. These solutions are traceable back to their primary reagents and do not extend beyond the expiration date listed for the primary reagent.

All gases used with an instrument shall meet specifications of the manufacturer. All safety requirements that relate to maximum and/or minimum allowed pressure, fitting types, and leak test frequency, shall be followed. When a new tank of gas is placed in use, it shall be checked for leaks and the date put in use will be written in the instrument maintenance logbook.

HEAL continuously monitors the quality of the reagent water and provides the necessary indicators for maintenance of the purification systems in order to assure that the quality of laboratory reagent water meets established criteria or all analytical methods. The majority of HEAL methods utilize medium quality deionized reagent water maintained at a resistivity greater than  $1M\Omega$  in accordance with SM1080.

Reagent blank samples are also analyzed to ensure that no contamination is present at detectable levels. The frequency of reagent blank analysis is typically the same as calibration verification samples. Refrigerator corage blanks are stored in the volatiles refrigerator for a period of one week and analyzed and replaced once a week.

#### 8.0 Maintenance

Maintenance logbooks are kept for each major instrument and all support equipment in order to document all repair and maintenance. In the front of the logbook, the following information is included:

Unique Name of the Item or Equipment
Manufacturer
Type of Instrument
Model Number
Serial Number
Date Received and Date Placed into Service
Location of Instrument
Condition of Instrument Upon Receipt

For routine maintenance, the following information shall be included in the log:

Maintenance Date
Maintenance Description
Maintenance Performed by Initials

A manufacturer service agreement (or equivalent) covers most major instrumentation to assure prompt and reliable response to maintenant peeds beyond HEAL instrument operator capabilities.

Refer to the current Maintenance and Troubleshooting SOP for each section in the laboratory for further information.

### 9.0 Data Integrity

For HEAL's policy on ethics and data integrity, see section 3.0 of this document. Upon being hired, and annually thereafter, all employees at HEAL undergo documented data integrity training. All new employees sign an Ethics and Data Integrity Agreement, documenting their understanding of the high standards of integrity required at HEAL and outlining their responsibilities in regards to ethics and data integrity. See the current Document Control Logbook for a copy of this agreement.

In instances of ethical concern, analysts are required to report the known or suspected concern to their Technical Director, the Laboratory Manager, or the QA/QCO. This will be done in a confidential and receptive environment, allowing all employees to privately discuss ethical issues or report items of ethical concern.

Once reported and documented, the ethical concern will be immediately elevated to the Laboratory Manager and the need for an investigation, analyst remediation, or termination will be determined on a case-by-case basis.

All reported instances of ethical concern will be thoroughly descripented and handled in a manner sufficient to rectify any breaches in data integrity with an emphasis on preventing similar incidences from happening in the future.

### 10.0 Quality Control

# **Internal Quality Control Checks**

HEAL utilizes various internal quality control checks, including duplicates, matrix spikes, matrix spike duplicates, method blanks, laboratory control spikes, laboratory control spike duplicates, surrogates, internal standards, calibration standards, quality control charts, proficiency tests and calculated measurement uncertainty.

Refer to the current method SOP to determine the frequency and requirements of all quality controls. In the event that the frequency of analysis is not indicated in the method specific SOP, duplicate samples, laboratory control spikes (LCS), Method Blanks (MB), and matrix spikes and matrix spike duplicates (MS/MSD) are analyzed for every batch of twenty samples.

When sample volume is limited on a test that requires an MS/MSD an LCSD shall be analyzed to demonstrate precision and accuracy and when possible a sample duplicate will be analyzed.

Duplicates are identical tests repeated for the same sample or matrix spike in order to determine the precision of the test method. A Relative Percent Difference (RPD) is calculated as a measure of this precision. Unless indicated in the SOP, the default acceptance limit is </= 20%.

Matrix Spikes and Matrix Spike Duplicates are spiked samples (MS/MSD) that are evaluated with a known added quantity of a target compound. This is to help determine the accuracy of the analyses and to determine the matrix effects on analyte recovery. A percent recovery is calculated to assess the quality of the accuracy. In the event that the acceptance criteria is not outlined in the SOP, a default limit of 70 130% will be utilized. When an MSD is employed an RPD is calculated and when not indicated in the SOP shall be acceptable at

In an effort to evaluate all received matricies, MS/MSD samples are chosen randomly. Notable exceptions to this policy are when a client requests the MS/MSD be analyzed utilizing their sample or in the event the matrix requires such a significant dilution that utilizing it as an MS/MSD is impractical.

When appropriate for the method, a Method Blank should be analyzed with each batch of samples processed to assess contamination levels in the laboratory. MBs consist of all the reagents measured and treated as they are with samples, except without the samples. This enables the laboratory to ensure clean reagents and procedures. Guidelines should be in place for accepting or rejecting data based on the level of contamination in the blank. In the event that these guidelines are not dictated by the SOP or in client specific work plans, the MB should be less than the MDL reported for the analyte being reported.

It is important to note that the LIMS qualifies samples for Method Blank failures when the amount in the blank is greater than the sample's listed PQL.

A Laboratory Control Spike and Laboratory Control Spike Duplicate (LCS/LCSD) are reagent blanks, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. It is generally used to establish intra-laboratory or analyst-specific precision and bias or to assess the performance of all or a portion of the measurement system. Guidelines are outlined in each SOP for the frequency and pass fail requirements for LCS and LCSDs. These limits can be set utilizing control charts as discussed below.

Surrogates are utilized when dictated by method and are substances with properties that mimic the analytes of interest. The surrogate is an analyte that is unlikely to be found in environmental samples. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for surrogates.

Internal Standards are utilized when dictated by the method and are known amounts of standard added to a test portion of a sample as a reference for evaluating and controlling the precision and bias of the applied analytical method. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for Internal Standards.

Proficiency Test (PT) Samples are samples provided by an unbiased third party. They are typically analyzed twice a year, between five and seven months apart, or at any other interval as defined in the method SOP. They contain a pre-determined concentration of the target compound, which is unknown to HEAL. HEAL's hanagement and all analysts shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance criteria, sequence of analytical steps, number of replicates and other procedures as used when analyzing routine samples. PT results are reported as normal samples, within the working range of the associated calibration curve. In the event at analyte concentration is less than the PQL, the result shall be reported as less than the PQL.

With regards to analyzing PT Samples HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seek accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall not attempt to obtain the assigned value of any PT sample from the PT Provider.

Upon receiving a Not Acceptable PT result for any analyte, a root cause analysis is conducted and the cause of the failure determined and corrected. As defined by TNI, two

out of the past three PTs must be acceptable to maintain accreditation for any given analyte. If this requirement is not met, a successful history will be reestablished by the analysis of an additional PT sample. For accredited tests, the PT provider will be notified, when the PT is for corrective action purposes. The analysis dates of successive PT samples for the same TNI accredited analyte shall be at least fifteen days apart.

Calibration standards are standards run to calibrate. Once the calibration is established the same standards can be analyzed as Continuing Calibration Verifications (CCV), used to confirm the consistency of the instrumentation. Calibration standards can be utilized at the beginning and end of each batch, or more frequently as required. Typically Continuing Calibration Blanks (CCB) are run in conjunction with CCVs. Refer to the current method SOP for frequency and pass/fail requirements of CCVs and CCBs.

Control Limits are limits of acceptable ranges of the values of quality control checks. The control limits approximate a 99% confidence interval around the mean recovery. Any matrix spike, surrogate, or LCS results outside of the control limits require further evaluation and assessment. This should begin with the comparison of the results from the samples or matrix spike with the LCS results. If the recoveries of the analytes in the LCS are outside of the control limits, then the problem may lie with the application of the extraction, with cleanup procedures, or with the chromatographic procedure. The problem has been identified and addressed, corrective action may include reanalysis of samples or reextraction followed by reanalysis. When the LCS results are within the control limits, the issue may be related to the sample matrix or to the use of an inappropriate extraction, cleanup, and/or determinative method for the matex. If the results are to be used for regulatory compliance monitoring, then steps must be taken to demonstrate that the analytes of concern can be determined in the sample matrix at the levels of interest. Data generated with laboratory control samples that fall outside of the established control limits are judged to be generated during an "out of-control" situation. These data are considered suspect and shall be repeated or reported with qualifiers.

Control limits are to be updated only by Technical Directors, Section Supervisors or the Quality Assurance Officer. Control limits should be established and updated according to the requirements of the method being utilized. When the method does not specify, and control limits are to be generated or updated for a test, the following guidelines shall be utilized.

Limits should typically be generated utilizing the most recent 20-40 data values. In order to obtain an even distribution across multiple instruments and to include more than a single day's worth of data, surrogate limits should be generated using around 100 data values. The data values used shall not reuse values that were included in the previous Control Limit update. The data values shall also be reviewed by the LIMS for any Grubbs Outliers, and if identified, the outliers must be removed prior to generating new limits. The results used to update control limits should meet all other QC criteria associated with the determinative method. For example, MS/MSD recoveries from a GC/MS procedure should be generated from samples analyzed after a valid tune and a valid initial calibration that includes all

analytes of interest. Additionally, no analyte should be reported when it is beyond the working range of the calibration currently in use. MS/MSD and surrogate limits should be generated using the same set of extraction, cleanup, and analysis procedures.

All generated limits should be evaluated for appropriateness. Where limits have been established for MS/MSD samples, the LCS/LCSD limits should fall within those limits, as the LCS/LCSD are prepared in a clean matrix. Surrogate limits should be updated using all sample types and should be evaluated to ensure that all instruments as well as a reasonable dispersion across days are represented by the data. LCS/LCSD recovery limits should be evaluated to verify that they are neither inappropriately wide nor unreasonably tight. The default LCS/LCSD acceptance limits of 70-130% and RPD of 20% (or those limits specified by the method for LCS/LCSD and/or CCV acceptability), should be used to help make this evaluation. Technical directors may choose to use warning limits when they feel their generated limits are too wide, or default LCS limits when they feel their limits have become arbitrarily tight.

Once new Control Limits have been established and updated in the LIMS, the Control Charts shall be printed and reviewed by the appropriate section supervisor and primary analyst performing the analysis for possible trends and compared to the previous Control Charts. The technical director initials the control charts, including that they have been reviewed and that the updated Limits have been determined to be accurate and appropriate. Any manual alterations to the limits will be documented and justified on the printed control chart. These initialed charts are then filed in the QA/QCO office.

Once established, control limits should be reviewed after every 20-30 data values and updated at least every six months, provided that there are sufficient points to do so. The limits used to evaluate results shall be those in place at the time that the sample was analyzed. Once limits are updated, those limits apply to all subsequent analyses.

When updating surrogate control limits, all that regardless of sample/QC type, shall be updated together and assigned one set of limits for the same method/matrix.

In the event that there are insufficient data points to update limits that are over a year old, the default limits, as established in the method or SOP, shall be re-instated. Refer to the requirements in SW-846 method 3000B and 8000C for further guidance on generating control limits.

Calculated Measurement Uncertainty is calculated annually using LCSs in order to determine the laboratory specific uncertainty associated with each test method. These uncertainty values are available to our clients upon request and are utilized as a trending tool internally to determine the effectiveness of new variables introduced into the procedure over time.

### **Client Requested QC**

Occasionally certain clients will require QC that is not defined by or covered in the SOPs. These special requests will be issued to all analysts and data reviewers in writing and the analysts and data reviewers will be provided with guidance on how to properly document the client requested deviation/QC in their preparation and analytical batches.

### Precision, Accuracy, Detection Levels

#### Precision

The laboratory uses sample duplicates, laboratory control spike duplicates, and matrix spike duplicates to assess precision in terms of relative percent difference (RPD). HEAL requires the RPD to fall within the 99% confidence interval of established control charts or an RPD of less than 20% if control charts are not available. RPD's greater than these limits are considered out-of-control and require an appropriate response.

RPD = 2 x (Sample Result – Duplicate Result) X 100 4
(Sample Result + Duplicate Result)

# **Accuracy**

The accuracy of an analysis refers to the difference between the calculated value and the actual value of a measurement. The accuracy of a laboratory result is evaluated by comparing the measured arount of QC reference material recovered from a sample and the known amount added. Control limits can be established for each analytical method and sample patrix. Recoveries are assessed to determine the method efficiency and/or the matrix effect.

Analytical accuracy is expressed as the Percent Recovery (%R) of an analyte or parameter. A known amount of analyte is added to an environmental sample before the sample is prepared and subsequently analyzed. The equation used to calculate percent recovery is:

%Recovery = {(concentration\* recovered)/(concentration\* added)} X 100

HEAL requires that the Percent Recovery to fall within the 99 % confidence interval of established control limits. A value that falls outside of the confidence interval requires a warning and process evaluation. The confidence intervals are calculated by determining the mean and sample standard deviation. If control limits are not available, the range of 80 to 120% is used unless the specific method dictates

<sup>\*</sup>or amount

otherwise. Percent Recoveries outside of this range mandate additional action such as analyses by Method of Standard Additions, additional sample preparation(s) where applicable, method changes, and out-of-control action or data qualification.

#### **Detection Limit**

Current practices at HEAL define the Detection Limit (DL) as the smallest amount that can be detected above the baseline noise in a procedure within a stated confidence level.

HEAL presently utilizes an Instrument Detection Limit (IDL), a Method Detection Limit (MDL), and a Practical Quantitation Limit (PQL). The relationship between these levels is approximately

IDL: MDL: PQL = 1:5:5.

The IDL is a measure of the sensitivity of an analytical instrument. The IDL is the amount which, when injected, produces a detectable signal in 99% of the analyses at that concentration. An IDL can be considered the minimum level of analyte concentration that is detectable above random baseline noise.

The MDL is a measure of the sensitivity of an analytical method. MDL studies are required annually for each quality system matrix, technology and analyte, unless indicated otherwise in the referenced method. An MDL determination (as required in 40CFR part 136 Appendix B) consists of replicate spiked samples carried through all necessary preparation steps. The spike concentration is three times the standard deviation of three replicates of spikes. At least seven replicates are spiked and analyzed and their standard deviation (s) salculated. Routine variability is critical in passing the 10 times rule and is best achieved by running the MDLs over different days and when possible over several caloration events. Standard Methods and those methods used for drinking water analysis must have MDL studies that are performed over a period of at least three days in order to include day to day variations. The method detection limit (MDL) can be calculated using the standard deviation according to the formula

$$MDL = s * t (99\%),$$

where t (99%) is the Student's t-value for the 99% confidence interval. The t-value depends on the number of trials used in calculating the sample standard deviation, so choose the appropriate value according to the number of trials.

| Number of Trials | t(99%) |
|------------------|--------|
| 6                | 3.36   |
| 7                | 3.14   |
| 8                | 3.00   |
| 9                | 2.90   |

Page 41 of 59 Quality Assurance Plan 9.9 Effective August 13<sup>th</sup>, 2014

The calculated MDL must not be less than 10 times the spiked amount or the study must be performed again with a lower concentration.

Where there are multiple MDL values for the same test method in the LIMS the highest MDL value is utilized.

The PQL is significant because different laboratories can produce different MDLs although they may employ the same analytical procedures, instruments and sample matrices. The PQL is about two to five times the MDL and represents a practical, and routinely achievable, reporting level with a good certainty that the reported value is reliable. It is often determined by regulatory limits. The reported PQL for a sample is dependent on the dilution factor utilized during sample analysis.

In the event that an analyte will not be reported less than the PQL, an MDL study is not required and a PQL check shall be done, at least annually, in place of the MDL study. The PQL check shall consist of a QC sample spiked at or below the PQL. All sample-processing and analysis steps of the analytical method shall be included in the PQL check and shall be done for each quality system matrix, technology, and analyte. A successful check is one where the recovery of each analyte is within the established method acceptance criteria. When this criterion is not defined by the method or SOP, a default limit of +/-50% shall be utilized.

### **Quality Control Parameter Calculations**

### Mean

The sample mean is also known as the atthmetic average. It can be calculated by adding all of the appropriate values together, and dividing this sum by the number of values.

Average =  $(\Sigma x_l) / n$ 

 $x_l$  = the value x in the  $l^{th}$  trial n = the number of trials

#### **Standard Deviation**

The sample standard deviation, represented by s, is a measure of dispersion. The dispersion is considered to be the difference between the average and each of the

values  $x_i$ . The variance,  $s^2$ , can be calculated by summing the squares of the differences and dividing by the number of differences. The sample standard deviation, s, can be found by taking the square root of the variance.

Standard deviation = s = 
$$\left[\sum (x_1 - average)^2 / (n-1)\right]^{\frac{1}{2}}$$

### Percent Recovery (LCS and LCSD)

Percent Recovery = (Spike Sample Result) X100 (Spike Added)

### Percent Recovery (MS, MSD)

Percent Recovery = (Spike Sample Result – Sample Result) X100 (Spike Added)

#### **Control Limits**

Control Limits are calculated by the LIMS using the average percent recovery (x), and the standard deviation (s).

Upper Control Limit = x + 3sLower Control Limit = x - 3s

These control limits approximate a 95% confidence interval around the mean recovery.

#### **Grubbs Outliers**

Grubbs Outliers are calculated by the LIMS during the generation of control limits and uncertainties. An outlier is an observation that appears to deviate markedly from other observations in the sample set and are removed, unless documented otherwise.

Identify both the lowest and highest values in the sample set. Use the following equations to determine the T values.

$$T = \frac{x_{\text{max}} - x_{\text{mean}}}{\text{cfor the largest value}}$$

Page 43 of 59 Quality Assurance Plan 9.9 Effective August 13<sup>th</sup>, 2014

$$T = \frac{x_{mean} - x_{min}}{sd}$$
 (for the smallest value)

Compare the T values to the Grubbs' critical value table. If either value of T is greater than the critical value (assuming a 5% risk) for the sample size, the point(s) must be dropped then the calculation repeated for both the lowest and highest value using the new mean and standard deviation.

The Grubbs test is repeated until there are no longer any outliers detected. Keep in mind you must have at least 20 data points available to generate your limits.

#### RPD (Relative Percent Difference)

Analytical precision is expressed as a percentage of the difference between the results of duplicate samples for a given analyst. Relative percent difference (RPD) is calculated as follows:

RPD = 2 x (Sample Result – Duplicate Result) X 100 (Sample Result + Duplicate Result)

### **Uncertainty Measurements**

Uncertainty, as defined by ISO, is the parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurement. Ultimately, uncertainty measurements are used to state how good a test result is and a allow the end user of the data to properly interpret their reported data. All procedures allow for some uncertainty. For most analyses, the components and estimates of uncertainty are reduced by following well-established test methods. To further reduce uncertainty, results generally are not reported below the lowest calibration point (PQL) or above the highest calibration point (UQL). Understanding that there are many influential quantities affecting a measurement result, so many in fact that it is impossible to identify all of them, HEAL calculates measurement uncertainty at least annually using LCSs. These estimations of measurement uncertainty are kept on file in the method folders in the QA/QC office.

Measurement Uncertainty contributors are those that may be determined statistically. These shall be generated by estimating the overall uncertainty in the entire analytical process by measuring the dispersion of values obtained from laboratory control samples over time. At least 20 of the most recent LCS data points are gathered. The standard deviation(s) is calculated using these LCS data points. Since it can be

assumed that the possible estimated values of the spikes are approximately normally distributed with approximate standard deviation(s), the unknown value of the spike is believed to lie in 95% confidence interval, corresponding to an uncertainty range of +/- 2(s).

Calculate standard deviation (s) and 95% confidence interval according to the following formulae:

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{(n-1)}}$$

Where: s = standard deviation x = number in series  $\overline{x} = calculated$  mean of series n = number of samples taken

95% confidence =  $2 \times s$ 

Example: Assuming that after gathering 20 of the most recent LCS and for Bromide, we have calculated the standard deviations of the values and achieved a result of 0.0326, our measurement of uncertainty for Bromide (at 95% confidence =  $2 \times s$ ) is 0.0652.

### **Total Nitrogen**

Total nitrogen is calculated as follows:

Total Nitrogen = TKN + NO<sub>2</sub> + NO<sub>3</sub>

## Langelier Saturation Index

The Langelier Saturation Index (USI) is calculated as follows:

Solids Factor (SF) =(Log10[TDS] - 1) / 10 Ca Hardness Factor (HF) = Log10([Ca] x 2.497) - 0.4 Alkalinity Factor (AF) = Log10[Alkalinity] Temp. Factor (TF) = -13.12 x Log10( $^{\circ}$ C + 273) + 34.55 pHs (pH @ saturation) =(9.3 + SF + TF) - (HF + AF) LSI = pH - pH<sub>s</sub>

#### **Calibration Calculations**

1. Response Factor or Calibration Factor:

$$RF = ((A_x)(C_{is}))/((A_{is})(C_x))$$

$$CF=(A_x)/(C_x)$$

a. Average RF or CF

$$RF_{AVE} = \sum RF_i / n$$

b. Standard Deviation

s = SQRT { 
$$[\Sigma (RF_i - RF_{AVE})^2] / (n-1)$$
 }

c. Relative Standard Deviation

#### Where:

A<sub>x</sub> = Area of the compound

 $C_x$  = Concentration of the compound

Ais = Area of the internal standard

Cis = Concentration of the internal standard

n = number of pairs of data

RF<sub>i</sub> = Response Factor (or other determined value)

RF<sub>AVE</sub> = Average of all the response factors

 $\Sigma$  = the sum of all the individual values

## 2. Linear Regression



a. Slope (m)

$$\mathbf{m} = (\mathbf{n} \Sigma \mathbf{x}_i \mathbf{y}_i - (\mathbf{n} \Sigma \mathbf{x}_i)^* (\mathbf{n} \Sigma \mathbf{y}_i)) / (\mathbf{n} \Sigma \mathbf{x}_i^2 - (\Sigma \mathbf{x}_i)^2)$$

b. Intercept (b)

$$b = y_{AVE} - m^*(x_{AVE})$$

c. Correlation Coefficient (cc)

Page 46 of 59 Quality Assurance Plan 9.9 Effective August 13<sup>th</sup>, 2014

$$\begin{array}{l} \text{CC (r) = } \{ \ \Sigma((x_i \!\!-\! x_{ave})^*(y_i \!\!-\! y_{ave})) \ \} \ / \ \{ \ \text{SQRT}((\Sigma(x_i \!\!-\! x_{ave})^2)^*(\Sigma(y_i \!\!-\! y_{ave})^2)) \ \} \\ \text{Or} \\ \text{CC (r) = } [(\Sigma w \ ^* \Sigma wxy) - (\Sigma wx \ ^* \Sigma wy)] \ / \ (\text{sqrt}(\ (\ [(\Sigma w \ ^* \Sigma wx^2) - (\Sigma wx \ ^* \Sigma wx)] \ ^* \ [(\Sigma w \ ^* \Sigma wy^2) - (\Sigma wy \ ^* \Sigma wy)])))] \\ \end{array}$$

#### d. Coefficient of Determination

$$COD(r^2) = CC*CC$$

#### Where:

y = Response (Area) Ratio  $A_x/A_{is}$ 

 $x = Concentration Ratio C_x/C_{is}$ 

m = slope

b = intercept

n = number of replicate x,y pairs

 $x_i$  = individual values for independent variable

y<sub>i</sub> = individual values for dependent variable

 $\Sigma$  = the sum of all the individual values

 $x_{ave}$  = average of the x values

 $y_{ave}$  = average of the y values

w = weighting factor, for equal weighting w=1



### 3. Quadratic Regression

$$y = ax^2 + bx + c$$

#### a. Coefficient of Determination

COD (r<sup>2</sup>) = 
$$(\Sigma(y_i - y_{ave})^2 - \{[(n-1)/(n-p)] * [\Sigma(y_i - Y_i)^2]\}) / \Sigma(y_i - y_{ave})^2$$

#### Where:

y = Response (Area) Ratio A<sub>x</sub>/A<sub>is</sub>

 $x = Concentration Ratio C_x/C_{is}$ 

 $a = x^2$  coefficient

b = x coefficient

c = intercept

y<sub>i</sub> = individual values for each dependent variable

 $x_i$  = individual values for each independent variable

 $y_{ave}$  = average of the y values

n = number of pairs of data

p = number of parameters in the polynomial equation (I.e., 3 for third order, 2 for second order)

Page 47 of 59 Quality Assurance Plan 9.9 Effective August 13<sup>th</sup>, 2014

$$Yi = ((2*a*(C_x/C_{is})^2)-b^2+b+(4*a*c))/(4a)$$

### b. Coefficients (a,b,c) of a Quadratic Regression

$$a = S_{(x2y)}S_{(xx)} - S_{(xy)}S_{(xx2)} / S_{(xx)}S_{(x2x2)} - [S_{(xx2)}]^2$$

$$b = S_{(xy)}S_{(x2x2)} - S_{(x2y)}S_{(xx2)} / S_{(xx)}S_{(x2x2)} - [S_{(xx2)}]^{2}$$

$$c = [(\Sigma yw)/n] - b^*[(\Sigma xw)/n] - a^*[\Sigma(x^2w)/n]$$

#### Where:

n = number of replicate x,y pairs

x = x values

y = y values

 $w = S^{-2} / (\Sigma S^{-2}/n)$ 

 $S_{(xx)} = (\Sigma x^2 w) - [(\Sigma x w)^2 / n]$ 

 $S_{(xy)} = (\Sigma xyw) - [(\Sigma xw)^*(\Sigma yw) / n]$ 

 $S_{(xx2)} = (\Sigma x^3 w) - [(\Sigma x w)^* (\Sigma x^2 w) / n]$ 

 $S_{(x2y)} = (\Sigma x^2 yw) - [(\Sigma x^2 w)^*(\Sigma yw) / n]$ 

 $S_{(x2x2)} = (\Sigma x^4 w) - [(\Sigma x^2 w)^2 / n]$ 

Or If unweighted calibration, w=1

 $S(xx) = (Sx^2) - [(Sx)^2 / n]$ 

S(xy) = (Sxy) - [(Sx)\*(Sy) / n]

S(xx2) = (Sx3) - [(Sx)\*(Sx2) / n]

S(x2y) = (Sx2y) - [(Sx2)\*(Sy) / n]

S(x2x2) = (Sx4) - [(Sx2)2 / n]

## Weighting

Weighting of 1/x or  $1/x^2$  is permissible for linear calibrations. Weighting shall not be employed for quadratic calibrations. When weighting, use the above equations by substituting x for 1/x or 1/x.

#### **Concentration Calculations**

#### On-Column Concentration for Average RRF Calibration using Internal Standard

On-Column Concentration  $C_x = ((A_x)(C_{is}))/((A_{is})(RF_{AVE}))$ 

#### On-Column Concentration for Average CF Calibration using External Standard

On-Column Concentration  $C_x = (A_x)/(CF_{AVF})$ 

#### On-Column Concentration for Linear Calibration

Page 48 of 59 Quality Assurance Plan 9.9 Effective August 13<sup>th</sup>, 2014 If determining an external standard, then exclude the A<sub>is</sub> and C<sub>is</sub> for internal standards On-Column Concentration  $C_x = ((Absolute\{[(A_x)/(A_{is})] - b\})/m) * C_{is}$ 

Where: m = slope

b = intercept

 $A_x = Area of the Sample$ 

C<sub>is</sub> = Concentration of the Internal Standard

A<sub>is</sub> = Area of the Internal Standard

#### **On-Column Concentration for Quadratic Calibration**

If determining an external standard, then exclude the Ais and Cis for internal standards On-Column Concentration =  $[(+SQRT(b^2-(4*a*(c-y)))-b)/(2*a)] * C_{is}$ 

Where:  $a = x^2$  coefficient

b = x coefficient

c = intercept

 $y = Area Ratio = A_x/A_{is}$ 

C<sub>is</sub> = Concentration of the Internal Standard

#### Final Concentration (Wet Weight)

Concentration for Extracted Samples = (On-Column Conc)(Diletion)(Final Volume) (Initial Amount)(Injection Volume)

Concentration for Purged Samples = (On-Column Conc)(Funger Amount)(Dilution)

(Purged Amount)

#### **Dry Weight Concentration**

Dry Weight Concentration = Final Concentration Wet Veight \*100 % Solids

#### **Percent Difference**

% Difference= Absolute(Continuing Calibration RRF - Average RRF) \* 100 rage R

#### **Percent Drift**

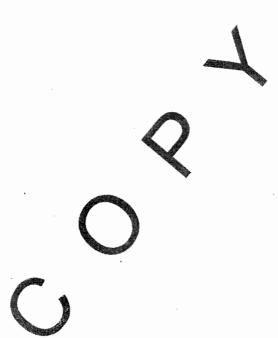
% Drift= Absolute(Calculated Concentration - Theoretical Concentration) Theoretical Concentration

#### **Dilution Factor**

Dilution Factor =(Volume of Solvent + Solute) / Volume of Solute

#### Relative Retention Time

RRT =RT of Compound / RT of ISTD


Page 49 of 59 Quality Assurance Plan 9.9 Effective August 13th, 2014

### **Breakdown Percent**

Breakdown = <u>Area of DDD + Area of DDE</u> Average (DDT, DDE and DDD)

-or-

<u>Area of Endrin Ketone + Area of Endrin Aldehyde</u> Average (Endrin, Endrin Ketone, Endrin Aldehyde)



Page 50 of 59 Quality Assurance Plan 9.9 Effective August 13<sup>th</sup>, 2014

#### 11.0 Data Reduction, Validation, Reporting, and Record Keeping

All data reported must be of the highest possible accuracy and quality. During the processes of data reduction, validation, and report generation, all work is thoroughly checked to insure that error is minimized.

#### Data Reduction

The analyst who generated the data usually performs the data reduction. The calculations include evaluation of surrogate recoveries (where applicable), and other miscellaneous calculations related to the sample quantitation.

If the results are computer generated, then the formulas must be confirmed by hand calculations, at minimum, one per batch.

See the current Data Validation SOP for details regarding data reduction.

#### **Validation**

A senior analyst, most often the section supervisor, validates the data. All data undergoes peer review. If an error is detected, it is brought to the analyst's attention so that he or she can rectify the error, and perform further checks to ensure that all data for that batch is sound. Previous and/or common mistakes are stangently monitored throughout the validation process. Data is reported using appropriate significant figure criteria. In most cases, two significant digits are utilized, but three significant digits can be used in QC calculations. Significant digits are not bundled until after the last step of a sample calculation. All final reports undergo a review by the laboratory manager, the project manager, or their designee, to provide a located review of all results before they are released to the client.

If data is to be manually transferred between media, the transcribed data is checked by a peer. This includes data typing complete data entry, chromatographic data transfer, data table inclusion to a cover letter, of when data results are combined with other data fields.

All hand-written data from run logs, analytical standard logbooks, hand-entered data logbooks, or on instrument-generated chromatograms, are systematically archived should the need for future retrieval arise.

See the current Data Validation SOP for details regarding data validation.

#### Reports and Records

All records at HEAL are retained and maintained through the procedures outlined in the most recent version of the Records Control SOP.

Sample reports are compiled by the Laboratory Information Management System (LIMS). Most data is transferred directly from the instruments to the LIMS. After being processed by the analyst and reviewed by a data reviewer, final reports are approved and signed by the senior laboratory management. A comparative analysis of the data is performed at this point. For example, if TKN and NH3 are analyzed on the same sample, the NH3 result should never be greater than the TKN result. Lab results and reports are released only to appropriately designated individuals. Release of the data can be by fax, email, electronic deliverables, or mailed hard copy.

When a project is completed, the final report, chain of custody, any relevant supporting data, and the quality assurance/control worksheets are scanned as a .pdf file onto the main server. Original client folders are kept on file and are arranged by project number. Additionally, all electronic data is backed up routinely on the IEAL main server. The backup includes raw data, chromatograms, and report documents. Hard copies of chromatograms are stored separately according to the instrument and the analysis date. All records and analytical data reports are retained in a secure location as permanent records for a minimum period of five years (unless specified otherwise in a client contract). Access to archived information shall be documental with an access log. Access to archived electronic reports and data will be password protected. In the event that HEAL transfers ownership or terminates business practices, complete records will be maintained or transferred according to the client's instructions.

After issuance, the original report shall rehain anchanged. If a correction to the report is necessary, then an additional document shall be issued. This document shall have a title of "Addendum to Test Report or Correction to Original Report", or equivalent. Demonstration of original report integrity comes in two forms. First, the report date is included on each page of the final report. Second, each page is numbered in sequential order, making the addition or omission of any data page(s) readily detectable.

#### 12.0 Corrective Action

Refer to the most recent version of the Data Validation SOP for the procedure utilized in filling out a Corrective Action Report. A blank copy of the corrective action report is available in the current Document Control Logbook.

The limits that have been defined for data acceptability also form the basis for corrective action initiation. Initiation of corrective action occurs when the data generated from continuing calibration standard, sample surrogate recovery, laboratory control spike, matrix spike, or sample duplicates exceed acceptance criteria. If corrective action is necessary, the analyst or the section supervisor will coordinate to take the following guidelines into consideration in order to determine and correct the measurement system deficiency:

Check all calculations and data measurements systems (Calibrations, reagents, instrument performance checks, etc.).

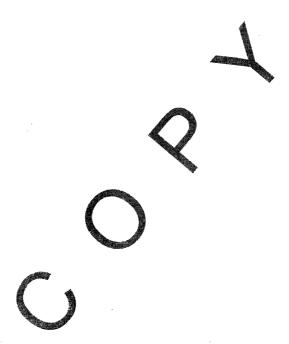
Assure that proper procedures were followed.

Unforeseen problems that arise during sample preparation and/or sample analysis that lead to treating a sample differently from documented procedures shall be documented with a corrective action report. The section supervisor and laboratory manager shall be made aware of the problem at the time of the occurrence. See the appropriate SOP regarding departures from documented procedures.

Continuing calibration standards below acceptance orieria cannot be used for reporting analytical data unless method specific criteria states otherwise.

Continuing calibration standards above acceptance criteria can be used to report data as long as the failure is isolated to a single standard and the corresponding samples are non-detect for the failing analyte.

Samples with non-compliant surrogate recoveries should be reanalyzed, unless deemed unnecessary by the supervisor for matrix, historical data, or other analysis-related anomalies.


Laboratory and Matrix Spike acceptance criteria vary significantly depending on method and matrix. Analysts and supervisors meet and discuss appropriate corrective action measures as spike failures occur.

In the event that results must be reported with associated QC failures, the data must be qualified appropriately to notify the end user of the QC failure.

Sample duplicates with RPD values outside control limits require supervisor evaluation and possible reanalysis.

A second mechanism for initiation of corrective action is that resulting from Quality Assurance performance audits, system audits, inter- and intra-laboratory comparison studies. Corrective Actions initiated through this mechanism will be monitored and coordinated by the laboratory QA/QCO.

All corrective action forms are entered in the LIMS and included with the raw data for peer review, signed by the technical director of the section and included in the case narrative to the client whose samples were affected. All Corrective action forms in the LIMS are reviewed by the QA/QCO.



#### 13.0 Quality Assurance Audits, Reports and Complaints

### Internal/External Systems' Audits, Performance Evaluations, and Complaints

Several procedures are used to assess the effectiveness of the quality control system. One of these methods includes internal performance evaluations, which are conducted by the use of control samples, replicate measurements, and control charts. External performance audits, which are conducted by the use of inter-laboratory checks, such as participation in laboratory evaluation programs and performance evaluation samples available from a NELAC-accredited Proficiency Standard Vendor, are another method.

Proficiency samples will be obtained twice per year from an appropriate vendor for all tests and matrices for which we are accredited and for which PTs are available. HEAL participates in soil, waste water, drinking water, and underground storage tank PT studies. Copies of results are available upon request. HEAL's management and all analysts shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities, and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance criteria, sequence of analytical steps, number of replicates, and other procedures as used when analyzing routine samples.

With regards to analyzing PT Samples, HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seek accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall not attempt to obtain the assigned value of any PT sample from the PT Provider.

Internal Audits are performed annually by the QA/QCO in accordance with the current Internal Audit SOP. The system audit consists of a qualitative inspection of the QA system in the laboratory and an assessment of the adequacy of the physical facilities for sampling, calibration, and measurement. This audit includes a careful evaluation and review of laboratory quality control procedures. Internal audits are performed using the guidelines outlined below, which include, but are not limited to:

- Review of staff qualifications, demonstration of capability, and personnel training programs
- 2. Storage and handling of reagents, standards, and samples
- 3. Standard preparation logbook and LIMS procedures
- 4. Extraction logbooks
- 5. Raw data logbooks
- 6. Analytical logbooks or batch printouts and instrument maintenance logbooks

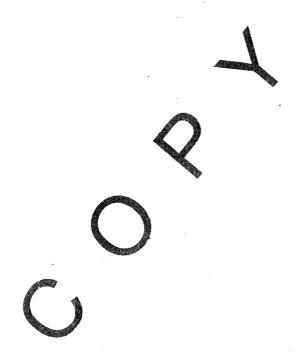
- 7. Data review procedures
- 8. Corrective action procedures
- Review of data packages, which is performed regularly by the lab manager/QA Officer.

The QA/QCO will conduct these audits on an annual basis.

#### **Management Reviews**

HEAL management shall periodically, and at least annually, conduct a review of the laboratory's quality system and environmental testing activities to ensure their continuing suitability and effectiveness, and to introduce necessary changes or improvements. The review shall take account of:

- 1. the suitability and implementation of policies and procedures
- 2. reports from managerial and supervisory personnel
- 3. the outcome of recent internal audits
- 4. corrective and preventive actions
- 5. assessments by external bodies
- 6. the results of inter-laboratory comparisons or proficiency tests
- 7. changes in volume and type of work
- 8. client feed back
- 9. complaints
- 10. other relevant factors, such as laboratory health and safety, QC activities, resources, and staff training.


Findings from management reviews and the actions that arise from them shall be recorded and any corrective actions that arise shall be completed in an appropriate and agreed upon timescale.

### Complaints

Complaints from clients are documented and given to the laboratory manager. The lab manager shall review the information and contact the client. If doubt is raised concerning the laboratory's policies or procedures, then an audit of the section or sections may be performed. All records of complaints and subsequent actions shall be maintained in the client compliant logbook for five years unless otherwise stated.

### Internal and External Reports

The QA/QCO is responsible for preparation and submission of quality assurance reports to the appropriate management personnel as problems and issues arise. These reports include the assessment of measurement systems, data precision and accuracy, and the results of performance and system audits. Additionally, they include significant QA problems, corrective actions, and recommended resolution measures. Reports of these Quality Assurance Audits describe the particular activities audited, procedures utilized in the examination and evaluation of laboratory records, and data validation procedures. Finally, there are procedures for evaluating the performance of Quality Control and Quality Assurance activities, and laboratory deficiencies and the implementation of corrective actions with the review requirements.



### 14.0 References (Analytical Protocols Utilized at HEAL)

- 1. Analytical Chemistry of PCB's. Erickson, Mitchell D., CRC Press, Inc. 1992.
- Diagnosis & Improvement of Saline & Alkali Soils, Agriculture Handbook No. 60, USDA, 1954
- 3. <u>Environmental Perspective on the Emerging Oil Shale Industry</u>, EPA Oil & Shale Research Group.
- 4. <u>Field and Laboratory Methods Applicable to Overburdens and Mine Soils, USEPA, EPA-600/2-78-054, March 1978</u>
- 5. Handbook of Chemistry and Physics, 62nd Edition, CRC Press, Inc. 1981-1982.
- 6. <u>Handbook on Reference Methods for Soil Testing.</u> The Council on Soil Testing & Plant Analysis, 1980 and 1992
- 7. <u>Laboratory Procedures for Analyses of Oilfield Waste.</u> Department of Natural Resources, Office of Conservation, Injection and Mining Division, Louisiana, August 1988
- 8. <u>Langelier index calculation.</u> <u>http://www.corrosion-doctors.org/Natural</u>Waters/Langelier.htm.
- 9. <u>Manual for the Certification of Laboratories Analyzing Drip king Water, Criteria and procedures Quality Assurance Fifth Edition, U.S. Environmental Protection Agency, January 2005.</u>
- 10. Manual of Operating Procedures for the Analysis of Selected Soil, Water, Plant Tissue and Wastes Chemical and physical Parameter. Soil, Water, and Plant Analysis Laboratory, Dept. of Soil and Water Science, The University of Arizona, August 1989
- 11. The Merck Index, Eleventh Edition Merck & Co., Inc. 1989.
- 12. <u>Methods for Chemical Analysis of Water and Wastes</u>, USEPA, EPA-600/4-79-020, March 1979 and as amended December, 1992 (EPA-600/4-82-055)
- 13. <u>Methods for the Determination of Metals in Environmental Samples</u>, USEPA, EPA-600/4-91-010, June 1991
- 14. <u>Methods of Soil Analysis</u>: Parts 1 & 2, 2nd Edition, Agronomy Society of America, Monograph 9
- 15. Polycyclic Aromatic Hydrocarbons in Water Systems, CRC Press, Inc.

- 16. <u>Procedures for Collecting Soil Samples and Methods of Analysis for Soil Survey.</u> USDA Soil Conservation Service, SSIR No. 1
- 17. Quality Systems for Analytical Services, Revision 2.2, U.S. Department of Energy, October 2006.
- 18. <u>Sampling Procedures and Chemical Methods in Use at the U.S. Salinity Laboratory for Characterizing Salt-Affected Soils and Water.</u> USDA Salinity Laboratory.
- 19. <u>Soil Survey Laboratory Methods Manual.</u> Soil Survey Laboratory Staff. Soil Survey Investigations Report No. 42, version 2.0, August 1992.
- 20. Soil Testing Methods Used at Colorado State University for the Evaluation of Fertility, Salinity and Trace Element Toxicity, Technical Bulletin LT B88-2 January, 1988
- 21. Standard Methods for the Examination of Water and Wastewater: AOHA, AWWA, and WPCG; 20th Edition, 1999.
- 22. <u>Technical Notes on Drinking Water Methods</u>, U.S. Environmental Protection Agency, October 1994.
- 23. <u>Test Methods for Evaluating Solid Waste: Physical/Chemical Methods</u>, USEPA SW-846, 3rd Edition, Updates I, II, IIA, IIB, III, December, 1996.



January 16, 2015

Carl Chavez New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Dr Santa Fe, NM 87505

UPS Tracking #: 12 801 839 03 6418 9271

RE: Western Refining Southwest, Inc. - Bloomfield Terminal 2014 Annual Class I Well Report Non-Hazardous Injection Well Permit # - UIC-CL-009 API # - 30- 45-29002

Mr. Chavez,

Western Refining Southwest, Inc. – Bloomfield Terminal ("Western") is submitting the 2014 Annual Class I Well Report documenting the operations of the facility's Class I non-hazardous injection well during 2014. The well is located in the NE/4, SE/4 of Section 27, Township 29 North, Range 11West, NMPM, San Juan County, New Mexico and is operated by Western Refining Southwest, Inc.

If you need more information, please contact me at (505) 632-8013.

For Weave

Ron Weaver

Regional Terminals Manager Western Refining Southwest, Inc.

Cc: Brandon Powell (NMOCD Aztec District Office) Randy Schmaltz (WNR – Bloomfield) Allen Hains – Western Refining (WNR - El Paso)

# ANNUAL CLASS I WELL REPORT

Waste Disposal Well #1 January – December 2014



Western Refining Southwest, Inc.
Bloomfield Terminal
Bloomfield, New Mexico
Permit # - UIC-CL1-009
API # - 30-45-29002

Submitted January 16, 2015



January 16, 2015

Carl Chavez
New Mexico Oil Conservation Division
Environmental Bureau
1220 South St. Francis Dr
Santa Fe, NM 87505

UPS Tracking #: 12 881 839 03 6418 9271

RE: Western Refining Southwest, Inc. - Bloomfield Terminal 2014 Annual Class I Well Report
Non-Hazardous Injection Well
Permit # - UIC-CL-009
API # - 30- 45-29002

Mr. Chavez,

Western Refining Southwest, Inc. – Bloomfield Terminal ("Western") is submitting the 2014 Annual Class I Well Report documenting the operations of the facility's Class I non-hazardous injection well during 2014. The well is located in the NE/4, SE/4 of Section 27, Township 29 North, Range 11West, NMPM, San Juan County, New Mexico and is operated by Western Refining Southwest, Inc.

If you need more information, please contact me at (505) 632-8013.

Sincerely,

Ron Weaver

Regional Terminals Manager Western Refining Southwest, Inc.

Cc: Brandon Powell (NMOCD Aztec District Office) Randy Schmaltz (WNR – Bloomfield) Allen Hains – Western Refining (WNR - El Paso)

## Certification

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

Ron Weaver

Regional Terminals Manager

# TABLE OF CONTENTS

| EXECUT            | IVE SUMMARY                                                     | 1  |
|-------------------|-----------------------------------------------------------------|----|
| 1.0<br>1.1        | INTRODUCTION                                                    |    |
| 2.0               | SUMMARY OF ACTIVITIES                                           | 4  |
| 3.0<br>3.1<br>3.2 | INJECTION VOLUME Injection Volume Injection Well Down-Time      | 6  |
| 4.0               | SAMPLING AND CHEMICAL ANALYSIS                                  | 7  |
| 5.0<br>5.1        | TESTING AND MAINTENANCE ACTIVITIES Mechanical Integrity Testing |    |
| 6.0<br>6.1<br>6.2 | WELL EVALUATION  Well Evaluation  Area of Review (AOR)          | 9  |
| 7.0<br>7.1<br>7.2 | CONCLUSIONS AND RECOMMENDATIONS Conclusions Recommendations     | 10 |
| 8.0               | REFERENCES                                                      | 12 |

### LIST OF FIGURES

Figure 1 Site Location Map Figure 2 Well Schematic

Figure 3 Disposal Well and Area Wells

### LIST OF TABLES

Table 1 Monthly Injection Well Report

Table 2 Area of Review

Table 3 2014 Quarterly Analytical Summary

### LIST OF APPENDICES

Appendix A C-103 Sundry Reports

Appendix B Laboratory Analytical Reports

Appendix C Laboratory Quality Assurance Plan

### **EXECUTIVE SUMMARY**

This report provides a summary of activities conducted in 2014 on Waste Disposal Well #1 (WDW-#1) at the Western Refining Bloomfield ("Western") facility. The following is a summary of well operations and well testing activities performed in 2014.

#### **Operational Summary**

**Injection Volume -** The volume injected into the disposal well during 2014 was 10,090,472 gallons. Western suspended refining operations at the Bloomfield Refinery on November 23, 2009. The facility currently operates as a Bulk Terminal. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation.

Sampling and Chemical Analyses - Injection fluids samples were collected on a quarterly basis for chemical analysis, with the following exception. A quarterly sample was not collected during the second quarter of 2014 due to the fact that the injection well was not in operation from March through June 2014. Quarterly samples were collected during the 1<sup>st</sup>, 3<sup>rd</sup>, and 4<sup>th</sup> quarters of 2014. Analytical results did not exhibit characteristics of being a hazardous waste.

Maintenance Operations - No down-hole maintenance activities were conducted in 2014. However, the above-ground valve tree was replaced in July 2014. New Mexico Oil Conservation Division (NMOCD) was notified and a representative observed the field work performed. The field work included temporarily installing a bridge plug down-hole at approximately 3,221 feet below grade surface in order to depressive the injection well above ground piping. The bridge plug was removed the same day.

**Mechanical Integrity Tests** - The 2014 well testing program was witnessed by a representative of the New Mexico Oil Conservation Division (NMOCD) and included a High-Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrity Test. Results of these tests prove that the operational integrity of the well is sound.

**Area of Review (AOR)** - No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of WDW #1.

### Recommendations

Western will continue the routine monitoring, maintenance, and testing programs which include quarterly chemical analysis of injection fluids, mechanical integrity testing, and Bradenhead testing. Western will continue to utilize the maximum operating injection pressure at the wellhead as permitted by Discharge Permit GW-130.

#### 1.0 INTRODUCTION

This report provides a summary of activities conducted during 2014 on Waste Disposal Well #1 (WDW #1). The disposal well is part of the Western Bloomfield Terminal facility operations. The facility is located south of Bloomfield, New Mexico in San Juan County. The well location is depicted in Figure 1. The physical address of the facility is as follows:

#### **Bloomfield Terminal**

#50 County Road 4990 Bloomfield, NM 87413

The Bloomfield Terminal is located on approximately 263 acres. Bordering the facility is a combination of federal and private properties. Public property managed by the Bureau of Land Management lies to the south. The majority of undeveloped land in the vicinity of the facility is used extensively for oil and gas production and, in some instances, grazing, U.S. Highway 550 is located approximately one-half mile west of the facility. The topography of the main portion of the site is generally flat with steep bluffs to the north.

WDW #1 is owned by San Juan Refining Company, a New Mexico corporation. It is operated by Western Refining Southwest, Inc. formerly known as Giant Industries Arizona, Inc. an Arizona corporation.

#### Well Information 1.1

Well Name & Number:

OCD UIC:

OCD Discharge Plan Permit Number:

Well Classification:

API Number:

Legal Location:

Physical Address:

Waste Disposal Well #1

UIC-CL1-009

GW-130

Class I Non-hazardous

30-045-29002

1250 FEL, 2442FSL, I Sec 27 T298 R11P #50 Road 4990, Bloomfield, NM 87413

### 2.0 SUMMARY OF ACTIVITIES

The following list of activities was conducted in 2014 on WDW #1 located at the Bloomfield facility:

| • | 01/23/14 | 1st Quarter 2014 Sampling Event   |
|---|----------|-----------------------------------|
| • | 07/14/14 | Replaced Valves on Injection Well |
| • | 07/28/14 | 3rd Quarter 2014 Sampling Event   |
| • | 09/18/14 | Bradenhead Test                   |
| • | 09/18/14 | High-Pressure Shut-Down Test      |
| • | 09/18/14 | Mechanical Integrity Test         |
| • | 10/02/14 | 4th Quarter 2014 Sampling Event   |

An analytical sample was not collected during the second quarter of 2014 due to the fact that the injection well was not operational for the quarter. Quarterly samples collected for laboratory analysis were submitted to Hall Environmental Laboratories located in Albuquerque, New Mexico. Copies of the analytical reports are provided in Appendix B. A summary of the analytical results is provided in Table 3.

The valve tree assembly located at the top of the injection well was replaced as a routine maintenance activity. NMOCD was contacted and an associated C-103 Sundry Report was submitted to document the event. A representative of the NMOCD was on-site to witness the field activities. Replacement of the above-ground valves required that the injection well be temporarily plugged using an appropriately sized bridge plug. The plug was place at approximately 3,221 feet below ground surface. The bridge plug was removed the same-day once the replacement valve assembly was installed. Copies of the respective C-103 Reports and corresponding correspondence between Western and NMOCD is provided in Appendix A.

A representative of New Mexico Oil Conservation Division (NMOCD) was on-site to witness the Bradenhead Test, High-Pressure Shut-Down Test, and Mechanical Integrity Test on September 18, 2014. A copy of the test reports is provided in Appendix A.

The Annual Pressure Fall-Off Test was not conducted in 2014. In an e-mail to Western from NMOCD dated August 2, 2012, it states that Fall-Off Test frequency requirements

are being evaluated by NMOCD and operators will be notified by NMOCD when a Fall-Off Test is required. Western did not receive notification from NMOCD that a Fall-Off Test was required for 2014.

### 3.0 INJECTION VOLUME

The Monthly Injection Well Report summarizing injection volumes and well performance parameters is presented as Table 1.

### 3.1 Injection Volume

The volume injected into the disposal well during 2014 was 10,090,472 gallons. Throughout 2014 the injection well operated within the operational limits of less than 1,150 psi.

### 3.2 Injection Well Down-Time

The injection well was down approximately 5,010 hours in 2014. Decreased volume of facility produced water during 2014 resulted in extended periods in which the injection well was not operational. General maintenance activities on the injection well equipment up-stream of the injection well also contributed to the injection well down-time during 2014.

### 4.0 SAMPLING AND CHEMICAL ANALYSIS

Samples were collected of the injection water on a quarterly basis and analyzed for the following per Item #9 of the Bloomfield Refinery Class I (Non-Hazardous) Disposal Well UIC-CL1-009 (GW-130) Discharge Permit Renewal dated March 23, 2004:

- Volatile Organic Compounds (VOCs);
- Semi-Volatile Organic Compounds (SVOCs);
- General Chemistry Parameters (included calcium, potassium, magnesium, sodium, bicarbonate, carbonate, chloride, sulfate, total dissolved solids, pH, and conductivity);
- RCRA 8 Metals; and
- RCRA Characteristics for Ignitability, Corrosivity, and Reactivity.

Second quarter samples were not collected due to the well not being operational during that time. First quarter samples were collected January 23, 2014. Third quarter samples were collected July 28, 2014. Fourth quarter samples were collected October 1, 2014. A summary of the analytical results is provided in Table 3.

All quarterly samples collected for laboratory analysis were submitted to Hall Environmental Analysis Laboratory located in Albuquerque, NM. The analytical results conclude that the injected water did not exhibit characteristics of hazardous waste. The respective quarterly analytical reports and Laboratory Quality Assurance Plan are provided in Appendices B and C, respectively.

## 5.0 TESTING AND MAINTENANCE ACTIVITIES

In addition to the conducting general preventative maintenance activities on the injection well equipment, the following testing and well maintenance activities were conducted during 2014:

- Mechanical Integrity Testing (including high-pressure shutdown and Bradenhead Testing).
- Valve Tree Replacement

All activities were conducted following NMOCD approval, and such documentation is provided in Appendix A. The following is a brief summary of the testing and well maintenance activities conducted in 2014.

### 5.1 Mechanical Integrity Testing

A representative of New Mexico Oil Conservation Division (NMOCD) was on-site to witness a High Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrity Test (MIT) on September 18, 2014. All tests were witnessed by Monica Kuehling of NMOCD-Aztec. The MIT held at 638 psi for 30 minutes, therefore confirming the integrity of the well. A copy of the Test Reports is provided in Appendix A.

## 5.2 Valve Tree Replacement

Western replaced in-kind the valve tree assembly located at the injection wellhead. Western contracted Phoenix Services to place a temporary bridge plug at 3,221 ft down in the well to seal-off the well properly prior to removing the valve tree assembly. WSI was contracted and performed the valve tree replacement. Once the Valve Tree was replaced Phoenix Services retrieved the bridge plug.

### 6.0 WELL EVALUATION

#### 6.1 Well Evaluation

In 2014, the injection well operated normally and within the operation limit of 1,150 psi. The down-time of well operations is mostly contributed to the decrease in produced water at the Bloomfield facility.

### 6.2 Area of Review (AOR)

The Area of Review data was updated in the 2011 Annual Bottom hole Pressure Surveys and Pressure Fall-Off Tests for Waste Disposal Well #1Report (Cobb & Associates, 2011). At that time, no new wells were found in the one-mile radius.

Fifty-eight wells were found within a one-mile radius of WDW #1, which injects water into the Mesaverde formation. The wells and status are spotted on an area map, Figure 3, with a well number listed with the well data in Table 2. Of these wells, 15 have been plugged and abandoned. Four wells are classified as dry holes and are believed to be plugged and abandoned. Twenty-four wells produce petroleum from shallow zones. One well is an Entrada injection well. Fourteen wells produce petroleum from the Dakota and Gallup zones, which are deeper than the Mesaverde interval used for injection purposes. No wells are producing from the injection interval within a one-mile radius of WDW #1.

Twenty-four of the 59 wells have penetrated the injection zone. Of these, three have been plugged. Five wells are currently producing from shallow zones and 14 wells produce from deep zones. There are two injection wells including WDW #1 and Ashcroft SWD #1 well.

No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of WDW #1.

### 7.0 CONCLUSIONS AND RECOMMENDATIONS

The following is a summary of well operations and well testing activities performed in 2014.

### 7.1 Conclusions

**Injection Volume -** The volume injected into the disposal well during 2014 was 10,090,472 gallons. Western suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation.

Sampling and Chemical Analyses - Injection fluids samples were collected for chemical analysis on a quarterly basis when the well was operational. Analytical results did not exhibit characteristics of hazardous waste.

**Maintenance Operations** - No down-hole maintenance activities were conducted in 2014. The above-ground valves were preplaced as part of general preventative maintenance activities for the injection well.

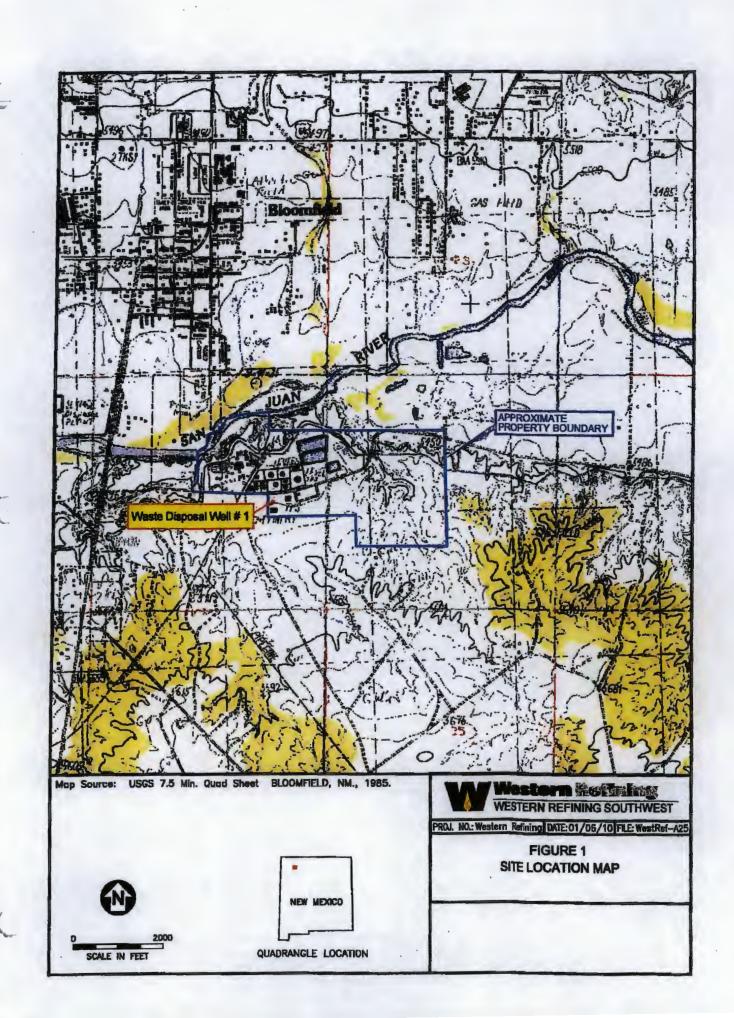
**Mechanical Integrity Tests -** The 2014 well testing program witnessed by a representative of OCD included a High-Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrity Test. Results of these tests prove that the operational integrity of the well is sound.

**Well Evaluation** – The injection well operated normally within the operational limit of 1,150 psi throughout 2014.

**Area of Review (AOR) -** No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of WDW #1.

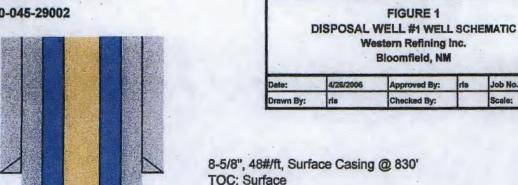
### 7.2 Recommendations

Western will continue the routine monitoring, maintenance, and testing programs which include quarterly chemical analysis of injection fluids, high-pressure shut-down testing, mechanical integrity testing, and Bradenhead testing in 2014. Western will continue to utilize the maximum operating injection pressure at the wellhead as permitted by Discharge Permit GW-130.


#### 8.0 REFERENCES

Cobb & Associates, 2009a, Evaluation of Disposal Well #1 Bloomfield Refinery, August 26, 2009.

Cobb & Associates, 2011, 2011 Annual Bottom hole Pressure Surveys and Pressure Fall-Off Tests for Waste Disposal Well #1Report December 21, 2011.


Bloomfield Refinery Class I (Non-Hazardous) Disposal Well UIC-CL1-009 (GW-130) Discharge Permit Renewal dated March 23, 2004.

#### **FIGURES**



#### **WESTERN REFINING DISPOSAL WELL #1** NW, SW SECTION 26, T29N, R11W

NO.: 30-045-29002



SUBSURFACE HOUSTON, TX SOUTH BRID, IN BATON ROUGE, LA

Job No.: 70F5830

NA

Tubing: 2-7/8", Acid Resistant Fluoroline Cement Lined Wt of Tubing: 6.5 #/ft

Wt of Tubing Lined: 7.55 #/ft

Hole Size: 11.0"

Tubing ID: 2.128" Tubing Drift ID: 2.000"

Minimum ID @ Packer: ~1.87" estimated

Packer: Unknown Packer Type @ 3221' Could be a Guiberson or similar model Uni-6

Perforations: 3276' - 3408' 4JSPF 0.5 EHD Top of the Cliff House Formation: 3276'

Fill was cleaned out of well on 4/20/06 Fill was orginally tagged at 3325'

Perforations: 3435' - 3460' 4JSPF 0.5 EHD Top of the Menefee Formation: 3400'

RBP: 3520'

5-1/2", 15.5#/ft, Production Casing @3600'

**TOC: Surface** Hole Size: 7-7/8"

Figure 3

#### **TABLES**

TABLE 1

# WESTERN REFINING SOUTHWEST, INC. - BLOOMFIELD TERMINAL P.O. BOX 159

# BLOOMFIELD, NEW MEXICO 87413

MONTHLY INJECTION WELL REPORT DISCHARGE PLAN GW-130 NE1/4 SE1/4 SECTION 27, T29N, R11W NMPM, SAN JUAN COUNTY, NEW MEXICO

| TO SOLAR         AMOUNT         DOWN-         INIECTION PRESSIRE         ANNILAR PRESSURE         ANAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FROM RATES         TO SQLAR         AMMOUNT         DOWN-         INJECTION PRESSURE         AMILIADA PRESSURE         AMILIADA PRESSURE         FILOM RATE (FROM RATE)         FIROM RATE (FRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | AMOUNT                  | AMOUNT     | TOTALIZER  | _       |        |                        |        |        |                 |        |       | ON-LINE    |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------|------------|------------|---------|--------|------------------------|--------|--------|-----------------|--------|-------|------------|-------|
| EVAP PONDS         INJECTED         TIME         MAX         MIN         AvG         MAX         MIN         AvG         MAX         MIN         AvG         MAX         MIN         AvG         MAX         MIN         PSIAJ         (FILLONS)         (FILLONS)         (FIRS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EVAP PONDS         INJECTED         TIME         MAX         MIN         AVG         MAX         MIN         MAX         MIN         MAX         MIN         GGPMJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | OF WATER                | TO SOLAR   | AMOUNT     | -NWOQ   | ≥      | <b>UECTION PRESSUR</b> | щ      | 7      | ANNULAR PRESSUR | ίĒ     |       | FLOW RATES |       |
| CALLONS    (FARS)                                                                                                                                                                                                                                                                                                                                                          | CALLONS    CALLONS | PERIOD     | FROM RIVER              | EVAP PONDS | INJECTED   | TIME    | MAX    | MIN                    | AVG    | MAX    | NIE             | AVG    | MAX   | NIΣ        | AVG   |
| 513,408         481,592         579         998         0         210         259         67         199         59         0           486,247         314,733         486         924         0         287         296         143         214         47         0           1,130,830         170         744         815         793         772         128         128         148         0         0           1,439,000         0         720         794         772         178         761         164         148         0         0         0           1,863,000         0         720         766         756         761         164         148         155         0         0         0           1,863,000         0         720         766         756         761         164         148         155         0         0         0           1,863,000         0         720         766         756         761         164         148         155         0         0         0           1,863,000         0         1,503,139         435         1081         874         203         144         109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 513,408         481,592         579         998         0         210         259         67         199         59         0         210         259         67         199         59         0         210         259         67         199         59         0         287         296         143         214         47         0         0           1,190,830         170         744         815         778         786         182         128         148         0         0         0           1,439,000         0         744         778         766         772         178         118         115         118         0         0         0         0         0         0         744         778         766         772         178         118         155         0         0         0         0         0         0         1448         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2014       | (GALLONS)               | (GALLONS)  | (GALLONS)  | (HRS)   | (PSIA) | (PSIA)                 | (PSIA) | (PSIA) | (PSIA)          | (PSIA) | (GPM) | (GPM)      | (GPM) |
| 513,408         481,592         579         998         0         210         259         67         199         59         0         0           486,247         314,753         486         924         0         287         256         143         214         47         0         0           1,150,830         170         744         815         78         786         772         178         115         148         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         1,439,000         1,503,130         744         778         766         772         178         115         152         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$13,408         481,592         579         998         0         210         259         67         199         59         0           486,247         314,753         486         924         0         287         296         143         214         47         0         0           1,150,830         170         744         815         778         786         128         128         148         0         0         0           1,483,000         0         720         794         778         766         771         178         115         152         0         0         0           1,483,000         0         720         766         756         761         164         148         155         0         0         0         0         0         720         148         155         0         0         0         0         0         0         0         148         155         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                         |            |            |         |        |                        |        |        |                 |        |       |            |       |
| 486,247         314,753         486         924         0         287         296         143         214         47         0         0           1,130,830         170         744         815         738         803         271         166         197         0         0         0           1,477,000         0         720         738         778         786         182         188         0         0         0         0         0         0         0         744         778         766         772         178         115         148         0         0         0         0         0         1,503,130         435.5         1113         0         814         207         148         155         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td>486,247         924         0         287         296         143         214         47         0           1,190,830         170         744         815         793         803         271         166         197         0         0           1,477,000         0         720         724         778         778         772         178         115         148         0         0         0           1,439,000         0         744         778         766         772         178         115         152         0         0         0         0         0         744         778         766         772         178         115         152         0         0         0         0         0         1,503,130         766         756         761         164         188         155         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0&lt;</td><td>JAN</td><td>403</td><td>513,408</td><td>481,592</td><td>579</td><td>866</td><td>0</td><td>210</td><td>259</td><td>67</td><td>199</td><td>59</td><td>0</td><td>11</td></t<> | 486,247         924         0         287         296         143         214         47         0           1,190,830         170         744         815         793         803         271         166         197         0         0           1,477,000         0         720         724         778         778         772         178         115         148         0         0         0           1,439,000         0         744         778         766         772         178         115         152         0         0         0         0         0         744         778         766         772         178         115         152         0         0         0         0         0         1,503,130         766         756         761         164         188         155         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JAN        | 403                     | 513,408    | 481,592    | 579     | 866    | 0                      | 210    | 259    | 67              | 199    | 59    | 0          | 11    |
| 1,190,830         170         744         815         793         783         271         166         197         0         0         0           1,477,000         0         720         793         778         786         182         128         148         0         0         0           1,439,000         0         744         778         766         772         178         115         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,190,830         170         744         815         793         803         271         166         197         0         0         0           1,447,000         0         720         793         778         786         182         128         148         0         0         0           1,439,000         0         744         778         766         772         178         115         152         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td>FEB</td><td>1,708</td><td>486,247</td><td>314,753</td><td>486</td><td>924</td><td>0</td><td>287</td><td>296</td><td>143</td><td>214</td><td>47</td><td>0</td><td>6.8</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FEB        | 1,708                   | 486,247    | 314,753    | 486     | 924    | 0                      | 287    | 296    | 143             | 214    | 47    | 0          | 6.8   |
| 1,437,000         0         720         793         778         786         182         128         148         0         0         0           1,483,000         0         744         778         766         772         178         115         152         0         0         0           1,863,000         0         720         766         756         761         164         148         155         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,477,000         0         720         793         778         786         182         128         148         0         0         0           1,439,000         0         744         778         766         772         178         115         115         0         0         0           1,863,000         0         720         766         766         761         164         148         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MAR        | 0                       | 1,190,830  | 170        | 744     | 815    | 793                    | 803    | 271    | 166             | 197    | 0     | 0          | 0     |
| 1,477,000         0         720         793         778         786         182         128         148         0         0         0         0           1,439,000         0         744         778         766         772         178         115         152         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td>1,477,000         0         720         793         778         786         182         128         148         0         0         0           1,439,000         0         744         778         766         772         178         115         152         0         0         0           1,863,000         0         720         766         756         761         164         148         155         0         0         0           794,870         1,503,130         435.5         1113         0         814         207         148         167         91         0         0           2,885,553         1,308,447         26         981         854         928         214         109         168         80         0         0           0         2,146,832         70.5         1113         908         1035         181         139         164         65         0         0           0         2,102,489         0         1113         908         1057         208         139         161         58         15           1,296,879         242,121         355         1028         879         271</td> <td></td>                                                              | 1,477,000         0         720         793         778         786         182         128         148         0         0         0           1,439,000         0         744         778         766         772         178         115         152         0         0         0           1,863,000         0         720         766         756         761         164         148         155         0         0         0           794,870         1,503,130         435.5         1113         0         814         207         148         167         91         0         0           2,885,553         1,308,447         26         981         854         928         214         109         168         80         0         0           0         2,146,832         70.5         1113         908         1035         181         139         164         65         0         0           0         2,102,489         0         1113         908         1057         208         139         161         58         15           1,296,879         242,121         355         1028         879         271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                         |            |            |         |        |                        |        |        |                 |        |       |            |       |
| 1,489,000         0         744         778         766         772         178         115         152         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,439,000         0         744         778         766         772         178         115         156         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | APR        | 0                       | 1,477,000  | 0          | 720     | 793    | 778                    | 786    | 182    | 128             | 148    | 0     | 0          | 0     |
| 1,863,000         0         720         766         756         761         164         148         155         0         0         0         0           794,870         1,503,130         435.5         1113         0         814         207         148         167         91         0         0           2,885,553         1,308,447         26         981         854         928         214         109         168         37         0         0           0         2,146,832         70.5         1124         843         1035         181         130         164         65         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,863,000         0         720         766         756         761         164         148         155         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MAY        | 0                       | 1,439,000  | 0          | 744     | 778    | 766                    | 772    | 178    | 115             | 152    | 0     | 0          | 0     |
| 794,870         1,503,130         435.5         1113         0         814         207         148         167         91         0           2,885,553         1,308,447         26         981         854         928         214         109         168         80         0           0         2,146,832         70.5         1124         843         1035         181         139         164         65         0           0         2,102,489         0         1113         908         1057         208         139         161         58         15           1,296,879         242,121         355         1028         850         879         271         147         218         42         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 794,870         1,503,130         435.5         1113         0         814         207         148         167         91         0           2,885,553         1,308,447         26         981         854         928         214         109         168         87         0           0         2,146,832         70.5         1124         843         1035         181         130         164         65         0           0         2,102,489         0         1113         908         1057         208         139         161         58         15           1,296,879         242,121         355         1028         850         879         271         147         218         42         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NUL        | 0                       | 1,863,000  | 0          | 720     | 766    | 756                    | 761    | 164    | 148             | 155    | 0     | 0          | 0     |
| 794,870         1,503,130         435.5         1113         0         814         207         148         167         91         0         0           2,885,553         1,308,447         26         981         854         928         214         109         164         80         0         0           2,885,553         1,308,447         26         981         854         928         214         109         168         37         0         0           0         2,146,832         70.5         1124         843         1035         181         139         164         65         0         0           1,296,879         242,121         355         1028         850         879         271         147         218         42         0         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 794,870         1,503,130         435.5         1113         0         814         207         148         167         91         0           2,885,553         1,308,447         26         981         854         928         214         109         168         80         0           0         2,146,832         70.5         1124         843         1035         181         130         164         65         0           0         2,102,489         0         1113         908         1057         208         139         161         58         15           1,296,879         242,121         355         1028         850         879         271         147         218         42         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                         |            |            |         |        |                        |        |        |                 |        |       |            |       |
| 0         1,990,938         130         1081         809         947         203         132         164         80         0         0           2,885,553         1,308,447         26         981         854         928         214         109         168         37         0         0           0         2,146,832         70.5         1124         843         1035         181         130         164         65         0         0           0         2,102,489         0         1113         908         1057         208         139         161         58         15           1,296,879         242,121         355         1028         850         879         271         147         218         42         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0         1,990,938         130         1081         809         947         203         132         164         80         0           2,885,553         1,308,447         26         981         854         928         214         109         168         37         0           0         2,146,832         70.5         1124         843         1035         181         130         164         65         0           0         2,102,489         0         1113         908         1057         208         139         161         58         15           1,296,879         242,121         355         1028         850         879         271         147         218         42         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JUL        | 0                       | 794,870    | 1,503,130  | 435.5   | 1113   | 0                      | 814    | 207    | 148             | 167    | 91    | 0          | 32.2  |
| 2,885,553         1,308,447         26         981         928         214         109         168         37         0           0         2,146,832         70.5         1124         843         1035         181         130         164         65         0           0         2,102,489         0         1113         908         1057         208         139         161         58         15           1,296,879         242,121         355         1028         850         879         271         147         218         42         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,885,553         1,308,447         26         981         928         214         109         168         37         0           0         2,146,832         70.5         1124         843         1035         181         130         164         65         0           0         2,102,489         0         1113         908         1057         208         139         161         58         15           1,296,879         242,121         355         1028         850         879         271         147         218         42         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AUG        | 0                       | 0          | 1,990,938  | 130     | 1081   | 809                    | 947    | 203    | 132             | 164    | 80    | 0          | 43    |
| 0 2,146,832 70.5 1124 843 1035 181 130 164 65 0 0 0 2,102,489 0 1113 908 1057 208 139 161 58 15 15 1028 850 879 271 147 218 42 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 2,146,832 70.5 1124 843 1035 181 130 164 65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SEP        | 0                       | 2,855,553  | 1,308,447  | 26      | 981    | 854                    | 928    | 214    | 109             | 168    | 37    | 0          | 30.4  |
| 0 2,146,832 70.5 1124 843 1035 181 130 164 65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 2,146,832 70.5 1124 843 1035 181 130 164 65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                         |            |            |         |        |                        |        |        |                 |        |       |            |       |
| 0 2,102,489 0 1113 908 1057 208 139 161 58 15 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 2,102,489 0 1113 908 1057 208 139 161 58 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ОСТ        | 0                       | 0          | 2,146,832  | 70.5    | 1124   | 843                    | 1035   | 181    | 130             | 164    | 65    | 0          | 48    |
| 1,296,879 242,121 355 1028 850 879 271 147 218 42 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,296,879 242,121 355 1028 850 879 271 147 218 42 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NOV        | 0                       | 0          | 2,102,489  | 0       | 1113   | 806                    | 1057   | 208    | 139             | 161    | 58    | 15         | 47    |
| 10,090,472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10,090,472 gallons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DEC        | 2,058                   | 1,296,879  | 242,121    | 355     | 1028   | 850                    | 879    | 271    | 147             | 218    | 42    | 0          | 5.3   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | otal amour | nt injected in 2014 is: |            | 10,090,472 | gallons |        |                        |        |        |                 |        |       |            |       |

| Pen.<br>Zone          | Yes              | Yes             | 8               | Yes             | 8                 | 2              | 2                        | 2                    | Yes                          | Yes             | 2                           | Yes                     | Yes                     | Š                           | Yes            | ž                       | Yes                      | Yes                          | Yes          | £                | ę            | 2                    | 2                       | Yes                  |
|-----------------------|------------------|-----------------|-----------------|-----------------|-------------------|----------------|--------------------------|----------------------|------------------------------|-----------------|-----------------------------|-------------------------|-------------------------|-----------------------------|----------------|-------------------------|--------------------------|------------------------------|--------------|------------------|--------------|----------------------|-------------------------|----------------------|
| Status                | Z                | P&A             | Shallow         | Deep            | P&A               | CBM            | CBM                      | P&A                  | Shallow                      | Shallow         | Shallow                     | Deep                    | Deep                    | Shallow                     | CBM            | P&A                     | CBM                      | Deep                         | Deep         | CBM              | Shallow      | Shallow              | P&A                     | Deep                 |
| RESERVOIR             | MESAVERDE        | DAKOTA          | CHACRA          | GALLUP          | PICTURED CLIFFS   | FRUITLAND COAL | FRUITLAND COAL           |                      | CHACRA                       | PICTURED CLIFFS | FRUITLAND SAND              | DAKOTA                  | DAKOTA                  | CHACRA                      | FRUITLAND COAL |                         | FRUITLAND COAL           | DAKOTA                       | GALLUP       | FRUITLAND COAL   | CHACRA       | CHACRA               | PICTURED CLIFFS         | GALLUP               |
| OPERATOR              | WESTERN REFINING | BP AMERICA      | XTO ENERGY, INC | XTO ENERGY, INC | Pre-Ongard        | HOLCOMB O&G    | H-27-29N-11W HOLCOMB O&G | Pre-Ongard           | H-27-29N-11W XTO ENERGY, INC | Burlington      | F-27-29N-11W MANANA GAS INC | Burlington              | Burlington              | F-27-29N-11W MANANA GAS INC | Burlington     | Pre-Ongard              | F-26-29N-11W HOLCOMB O&G | F-26-29N-11W XTO ENERGY, INC | Burlington   | Burlington       | Burlington   | ENERGEN              | Pre-Ongard              | ENERGEN              |
| ULSTR                 | I-27-29N-11W     | I-27-29N-11W    | I-27-29N-11W    | I-27-29N-11W    | I-27-29N-11W      | I-27-29N-11W   | H-27-29N-11W             | H-27-29N-11W         | H-27-29N-11W                 | K-27-29N-11W    | F-27-29N-11W                | F-27-29N-11W Burlington | M-26-29N-11W Burlington | F-27-29N-11W                | L-27-29N-11W   | C-27-29N-11W Pre-Ongard | F-26-29N-11W             | F-26-29N-11W                 | A-34-29N-11W | N-26-29N-11W     | A-34-29N-11W | N-26-29N-11W ENERGEN | M-27-29N-11W Pre-Ongard | C-34-29N-11W ENERGEN |
| P&A Date              |                  | 19-Jan-94       |                 |                 | 18-Oct-82         |                |                          | 18-Aug-55            |                              |                 |                             |                         |                         |                             |                | 09-Nov-78               |                          |                              |              |                  |              |                      | 27-Jun-75               |                      |
| <u>Total</u><br>Depth | 3514             | 6298            | 2839            | 6177            | 1717              | 1714           | 1689                     | 1800                 | 6262                         | 5808            | 1354                        | 6160                    | 6348                    | 2710                        | 6214           | 800                     | 4030                     | 6242                         | 6148         | 1760             | 2857         | 2869                 | 1747                    | 5970                 |
| Perf                  | 3514             | 6298            | 2839            | 5646            |                   | 1714           | 1689                     |                      | 2810                         | 1770            | 1354                        | 6160                    | 6348                    | 2710                        | 1661           |                         | 1645                     | 6242                         | 6148         | 1760             | 2857         | 2869                 | 1747                    | 5970                 |
| Perf                  | 3276             | 6157            | 2827            | 5314            |                   | 1543           | 1483                     |                      | 2701                         | 1680            | 1326                        | 6024                    | 6176                    | 2578                        | 1388           |                         | 1462                     | 9809                         | 9809         | 1468             | 2747         | 2746                 | 1664                    | 5326                 |
| APINO                 | 30-045-29002     | 30-045-07825    | 30-045-23554    | 30-045-30833    | 30-045-07812      | 30-045-34463   | 30-045-34409             | 30-045-07883         | 30-045-24084                 | 30-045-25673    | 30-045-27361                | 30-045-24673            | 30-045-12003            | 30-045-27365                | 30-045-07835   | 30-045-07896            | 30-045-25329             | 30-045-24083                 | 30-045-25657 | 100 30-045-31118 | 30-045-24574 | 30-045-24572         | 30-045-07903            | 30-045-25707         |
| ##                    | -                | -               | -               | #               | -                 | <b>-</b>       | 7                        | 8                    | Ħ                            | 8               | -                           | Ħ                       | -                       | -                           | <b>~</b>       | -                       | -                        | 1                            | 16           | 100              | 6            | 6                    | -                       | 15                   |
| . WELLNAME            | DISPOSAL         | DAVIS GAS COM F | DAVIS GAS COM G | DAVIS GAS COM F | Davis Pooled Unit | JACQUE         | JACQUE                   | Davis PU/FB Umbarger | DAVIS GAS COM F              | CONGRESS        | LAUREN KELLY                | MANGUM                  | CALVIN                  | MARIAN S                    | MANGUM         | Black Diamond           | DAVIS GAS COM J          | SULLIVAN GAS COM D           | CONGRESS     | CALVIN           | SUMMIT       | CONGRESS             | Garland "B"             | SUMMIT               |
| Miles to<br>DW1       | 0.00             | 0.11            | 0.12            | 0.15            | 0.16              | 0.18           | 0.23                     | 0.23                 | 0.24                         | 0.41            | 0.49                        | 0.49                    | 0.51                    | 0.52                        | 0.55           | 0.56                    | 0.57                     | 0.58                         | 09.0         | 0.64             | 0.64         | 0.64                 | 0.64                    | 0.65                 |
| Map<br>Seq.           | -                | 8               | က               | 4               | Ŋ                 | 9              | 7                        | œ                    | 6                            | 10              | =                           | 12                      | 13                      | 4                           | 15             | 16                      | 17                       | 18                           | 19           | 20               | 21           | 22                   | 23                      | 24                   |

| Pen.<br>Zone             | Š                    | Yes          | Š                       | Š                           | 2                           | Yes                         | 8                       | Š                           | 8<br>8                      | Yes                         | Š                           | 8               | 8                       | Yes          | Yes                          | 8                         | Yes          | ₽.                      | Yes          | Yes          | Yes                          | 2               | Yes                     | 2                       |
|--------------------------|----------------------|--------------|-------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------|-------------------------|--------------|------------------------------|---------------------------|--------------|-------------------------|--------------|--------------|------------------------------|-----------------|-------------------------|-------------------------|
| Status                   | Shallow              | Deep         | Shallow                 | Shallow                     | P&A                         | P&A                         | P&A                     | Shallow                     | CBM                         | Deep                        | Shallow                     | Shallow         | DRY                     | Deep         | Deep                         | Shallow                   | Deep         | DRY                     | Shallow      | Deep         | 2                            | P&A             | Deep                    | DRY                     |
| RESERVOIR                | CHACRA               | GALLUP       | PICTURED CLIFFS         | CHACRA                      | FRUITLAND SAND              | DAKOTA                      | (N/A)                   | CHACRA                      | FRUITLAND COAL              | DAKOTA                      | FRUITLAND SAND              | PICTURED CLIFFS | FARMINGTON              | DAKOTA       | DAKOTA                       | FARMINGTON, NORTH Shallow | DAKOTA       | FARMINGTON              | CHACRA (     | GALLUP       | MORRISON BLUFF EN            | PICTURED CLIFFS | DAKOTA                  |                         |
| OPERATOR                 | ENERGEN              | Burlington   | Burlington              | P-22-29N-11W MANANA GAS INC | O-22-29N-11W JOHN C PICKETT | P-22-29N-11W MANANA GAS INC | Pre-Ongard              | N-22-29N-11W MANANA GAS INC | CHAPARRAL O&G   | Pre-Ongard              | Burlington   | B-26-29N-11W XTO ENERGY, INC | D-34-29N-11W MCELVAIN O&G | Burlington   | Pre-Ongard              | Burlington   | Burlington   | B-26-29N-11W XTO ENERGY, INC | CHAPARRAL O&G   | Burlington              | Pre-Ongard              |
| ULSTR                    | M-27-29N-11W ENERGEN | K-26-29N-11W | M-27-29N-11W Burlington | P-22-29N-11W                |                             | P-22-29N-11W                | M-26-29N-11W Pre-Ongard | N-22-29N-11W                | N-22-29N-11W                | N-22-29N-11W                | N-22-29N-11W                | G-34-29N-11W    | M-23-29N-11W Pre-Ongard | J-26-29N-11W | B-26-29N-11W                 | D-34-29N-11W              | F-34-29N-11W | O-23-29N-11W Pre-Ongard | E-35-29N-11W | C-35-29N-11W | B-26-29N-11W                 | E-35-29N-11W    | G-34-29N-11W Burlington | P-28-29N-11W Pre-Ongard |
| P&A Date                 |                      |              |                         |                             | 02-Mar-00                   | 14-Jun-99                   | 11-Nov-58               |                             |                             |                             |                             |                 |                         |              |                              |                           |              |                         |              |              |                              | 18-Dec-99       |                         |                         |
| Total<br>Depth           | 2790                 | 5870         | 1678                    | 2754                        | 1466                        | 6274                        | 1917                    | 2732                        | 1608                        | 6226                        | 1410                        | 1736            | 2335                    | 6430         | 6160                         | 1525                      | 6347         | 2015                    | 6328         | 5943         | 7382                         | 1790            | 6340                    | 870                     |
| Perf.<br>Bottom          | 2790                 | 5870         | 1678                    | 2754                        | 1466                        | 6274                        |                         | 2732                        | 1608                        | 6226                        | 1410                        | 1736            |                         | 6430         | 6160                         | 1064                      | 6347         |                         | 2906         | 5943         | 7070                         | 1790            | 6340                    |                         |
| Pert                     | 2668                 | 5295         | 1648                    | 2627                        | 1380                        | 6072                        |                         | 2622                        | 1440                        | 6052                        | 1390                        | 1726            |                         | 6172         | 6047                         | 1060                      | 6202         |                         | 2784         | 5369         | 6952                         | 1776            | 6171                    |                         |
| APINO                    | 30-045-24573         | 30-045-25612 | 30-045-21732            | 30-045-26721                | 30-045-07959                | 30-045-07961                | 30-045-07776            | 30-045-26731                | 30-045-34312                | 30-045-07940                | 30-045-13089                | 30-045-20755    | 30-545-02123            | 30-045-33093 | 30-045-07733                 | 30-045-24834              | 30-045-24835 | 30-545-02124            | 30-045-24837 | 30-045-25675 | 30-045-30788                 | 30-045-20752    | 30-045-07672            | 30-045-07751            |
| #1                       | က                    | က            | 쓨                       | 7                           | -                           | -                           | -                       | -                           | -                           | -                           | 2                           | 7               | က                       | Ħ            | -                            | 11                        | 7E           | 4                       | 4            | 15           | -                            | -               | သ                       | -                       |
| WELLNAME                 | 0.65 GARLAND         | CALVIN       | GARLAND B               | NANCY HARTMAN               | GRACE PEARCE                | HARTMAN                     | Davis                   | MARY JANE                   | ROYAL FLUSH                 | COOK                        | COOK                        | SHELLY          | HARE                    | CALVIN       | SULLIVAN GAS COM D           | ELLEDGE FEDERAL 34        | CONGRESS     | HARE                    | CONGRESS     | CONGRESS     | ASHCROFT SWD                 | LEA ANN         | CONGRESS                | 0.94 Viles EE           |
| Map Miles to<br>Seq. DW1 | 0.65                 | 0.67         | 0.68                    | 0.70                        | 0.71                        | 0.72                        | 0.73                    | 0.75                        | 92.0                        | 0.79                        | 0.79                        | 0.82            | 0.82                    | 0.84         | 0.85                         | 0.85                      | 0.89         | 0.90                    | 0.90         | 0.90         | 0.90                         | 0.90            | 0.94                    | 0.94                    |
| Map<br>Seq.              | 25                   | 56           | 27                      | 78                          | 59                          | 30                          | 31                      | 32                          | 33                          | 34                          | 35                          | 36              | 37                      | 38           | 39                           | 40                        | 4            | 45                      | 43           | 4            | 45                           | 46              | 47                      | 48                      |

| Pen.<br>Ini.<br>Zone       | 2                       | 2                                 | <u>0</u>                | Yes                          | 2                                 | 2                                 | 2                            | 2                        | Yes                     | 2                          | 8              |
|----------------------------|-------------------------|-----------------------------------|-------------------------|------------------------------|-----------------------------------|-----------------------------------|------------------------------|--------------------------|-------------------------|----------------------------|----------------|
| Status                     | P&A                     | P&A                               | P&A                     | Deep                         | P&A                               | P&A                               | Shallow                      | CBM                      | P&A                     | Shallow                    | DRY            |
| RESERVOIR                  | PICTURED CLIFFS         | PICTURED CLIFFS                   |                         | DAKOTA                       | PICTURED CLIFFS                   | PICTURED CLIFFS                   | CHACRA                       | FRUITLAND COAL           | DAKOTA                  | PICTURED CLIFFS            | FRUITLAND SAND |
| OPERATOR                   | Pre-Ongard              | Pre-Ongard                        | Pre-Ongard              | A-28-29N-11W XTO ENERGY, INC | Pre-Ongard                        | Pre-Ongard                        | B-26-29N-11W XTO ENERGY, INC | K-23-29N-11W HOLCOMB O&G | BP AMERICA              | E-34-29N-11W CHAPARRAL 0&G | Pre-Ongard     |
| ULSTR                      | G-26-29N-11W Pre-Ongard | 05-May-78 A-28-29N-11W Pre-Ongard | A-28-29N-11W Pre-Ongard | A-28-29N-11W                 | 31-Aug-53 G-26-29N-11W Pre-Ongard | 30-Oct-53 J-34-29N-11W Pre-Ongard | B-26-29N-11W                 | K-23-29N-11W             | K-23-29N-11W BP AMERICA | E-34-29N-11W               | -34-29N-11W    |
| P&A Date                   | 23-Jun-55               | 05-May-78                         | 05-Jun-78               |                              | 31-Aug-53                         | 30-Oct-53                         |                              |                          | 10-Mar-97               |                            |                |
| Perf Total<br>Bottom Depth | 006                     | 1600                              | 009                     | 6125                         | 1420                              | 8                                 | 2761                         | 2761                     | 6182                    | 1731                       | FrtInd         |
| Perf<br>Bottom             |                         |                                   |                         | 6125                         |                                   |                                   | 2761                         | 1648                     | 6182                    | 1731                       |                |
| Perf                       |                         |                                   |                         | 6023                         |                                   |                                   | 2750                         | 1470                     | 6154                    | 1712                       |                |
| APINO                      | 30-045-29107            | 30-045-07895                      | 30-045-07762            | 30-045-07894                 | 30-045-07870                      | 30-045-07674                      | 30-045-23163 2750            | 30-045-23550 1470        | 30-045-07985            | 30-045-20609               | 30-545-02151   |
| #1                         | ¥                       | 7                                 | က                       | -                            | -                                 | -                                 | -                            | -                        | -                       | -                          | 7              |
| WELLNAME                   | Suliivan                | Madsen Selby Pooled Unit          | Masden-Selby            | MASDEN GAS COM               | Sullivan                          | CONGRESS                          | EARL B SULLIVAN              | STATE GAS COM BS         | PEARCE GAS COM          | CHAPARRAL                  | CONGRESS       |
| Miles to<br>DW1            | 0.95                    | 0.97 N                            | 0.97 N                  | 0.97 N                       | 0.97                              | 0.98                              | 0.98 E                       | 0.99                     | 0.99 F                  | 0.99                       | 0.99           |
| Map Seq.                   | 49                      | 20                                | 51                      | 52                           | 53                                | 54                                | 55                           | 26                       | 22                      | 28                         | 29             |

| Pen Inj. Zone | 윙      | 12  | 4   | 0        | 2   | 44      | 0    | 35    |
|---------------|--------|-----|-----|----------|-----|---------|------|-------|
| Pen In        | Yes    | ო   | 0   | 7        | 7   | က       | 4    | 24    |
| Total         | Wells  | 15  | 4   | 7        | 7   | 11      | 14   | 29    |
|               | Status | P&A | Dry | <u>2</u> | CBM | Shallow | Deep | Total |

Injection Well 2014 Quarterly Analytical Summary

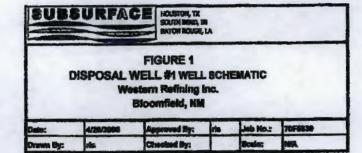
|                                                  | Toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10           | 2-10        | 2-10                     | 44b O                    |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|--------------------------|--------------------------|
| Volatile Organic Compounds (ug/L)                | Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/23/2014    | 2nd Quarter | 3rd Quarter<br>7/28/2014 | 4th Quarter<br>10/1/2014 |
| 1,1,1,2-Tetrachloroethane                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 10         | na          | < 2.0                    | < 5.0                    |
| 1,1,1-Trichloroethane                            | TOTAL TALK A SERVICE AND A SER | < 10         | па          | < 2.0                    | < 5.0                    |
| 1,1,2,2-Tetrachloroethane                        | THE THE PARTY AND THE PARTY AN | < 20         | па          | < 4.0                    | < 10                     |
| 1,1,2-Trichloroethane                            | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 10         | na          | < 2.0                    | < 5.0                    |
| 1,1-Dichloroethane                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | na          | < 2.0                    | < 5.0                    |
| 1,1-Dichloroethene                               | CONTROL OF THE REAL PROPERTY AND ADDRESS OF THE PARTY AND ADDRESS OF TH | < 10         | na          | < 2.0                    | < 5.0                    |
| 1,1-Dichloropropene                              | 100 C  | < 10         | na          | < 2.0                    | < 5.0                    |
| 1,2,3-Trichlorobenzene                           | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 10         | na          | < 2.0                    | < 5.0                    |
| 1,2,3-Trichloropropane                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 20         | na na       | < 4.0                    | < 10                     |
| 1,2,4-Trichlorobenzene<br>1,2,4-Trimethylbenzene | Water the transfer of the state | < 10<br>< 10 | na          | < 2.0<br>< 2.0           | < 5.0<br>< 5.0           |
| 1,2-Dibromo-3-chloropropane                      | eraperonen er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 20         | na<br>na    | < 4.0                    | < 10                     |
| 1,2-Dibromoethane (EDB)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | na          | < 2.0                    | < 5.0                    |
| 1,2-Dichlorobenzene                              | A Contraction of the Contraction | < 10         | na          | < 2.0                    | < 5.0                    |
| 1,2-Dichloroethane (EDC)                         | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 10         | na          | < 2.0                    | < 5.0                    |
| 1,2-Dichloropropane                              | a month of the second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 10         | па          | < 2.0                    | < 5.0                    |
| 1,3,5-Trimethylbenzene                           | THE PART ASSESSMENT OF THE PART OF THE PAR | < 10         | na          | < 2.0                    | < 5.0                    |
| 1,3-Dichlorobenzene                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | na          | < 2.0                    | < 5.0                    |
| 1,3-Dichloropropane                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | na          | < 2.0                    | < 5.0                    |
| 1,4-Dichlorobenzene                              | 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 10         | na          | < 2.0                    | < 5.0                    |
| 1-Methylnaphthalene                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 40         | na          | < 8.0                    | < 20                     |
| 2,2-Dichloropropane                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 20         | na na       | < 4.0                    | < 10                     |
| 2-Butanone                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200          | na          | < 20                     | < 50                     |
| 2-Chlorotoluene                                  | and an an an assessment and a state of the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 10         | na          | < 2.0<br>< 20            | < 5.0<br>< 50            |
| 2-Hexanone 2-Methylnaphthalene                   | error arrows were as a second region from a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100        | na<br>na    | < 8.0                    | < 20                     |
| 4-Chlorotoluene                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | na na       | < 2.0                    | < 5.0                    |
| 4-Isopropyltoluene                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | na          | < 2.0                    | < 5.0                    |
| 4-Methyl-2-pentanone                             | THE STATE OF THE STATE OF THE STATE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 100        | na          | < 20                     | < 50                     |
| Acetone                                          | 6181 MAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1400         | na          | 85                       | 120                      |
| Benzene                                          | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 10         | na          | < 2.0                    | < 5.0                    |
| Bromobenzene                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | na          | < 2.0                    | < 5.0                    |
| Bromodichloromethane                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | na          | < 2.0                    | < 5.0                    |
| Bromoform                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | па          | < 2.0                    | < 5.0                    |
| Bromomethane                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 30         | na          | < 6.0                    | < 15                     |
| Carbon disulfide                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 100        | na          | < 20                     | < 50                     |
| Carbon Tetrachloride                             | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 10         | na          | < 2.0                    | < 5.0<br>< 5.0           |
| Chlorobenzene                                    | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 10         | na          | <2.0<br><4.0             | < 10                     |
| Chloroethane<br>Chloroform                       | 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 10         | na<br>na    | < 2.0                    | < 5.0                    |
| Chloromethane                                    | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 30         | na          | < 6.0                    | < 15                     |
| cis-1,2-DCE                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | na na       | < 2.0                    | < 5.0                    |
| cis-1,3-Dichloropropene                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | na          | < 2.0                    | < 5.0                    |
| Dibromochloromethane                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | па          | < 2.0                    | < 5.0                    |
| Dibromomethane                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | na          | < 2.0                    | < 5.0                    |
| Dichlorodifluoromethane                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | па          | < 2.0                    | < 5.0                    |
| Ethylbenzene                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | na          | < 2.0                    | < 5.0                    |
| Hexachlorobutadiene                              | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 10         | na          | < 2.0                    | < 5.0                    |
| Isopropylbenzene                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | па          | < 2.0                    | < 5.0                    |
| Methyl tert-butyl ether (MTBE)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | na          | < 2.0                    | < 5.0                    |
| Methylene Chloride                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 30         | na          | < 6.0                    | < 15                     |
| Naphthalene<br>n-Butylbenzene                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 30<br>< 10 | na<br>na    | < 4.0<br>< 6.0           | < 10<br>< 15             |
| n-Propylbenzene                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 20         | na<br>na    | < 2.0                    | < 5.0                    |
| sec-Butylbenzene                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | na na       | < 2.0                    | < 5.0                    |
| Styrene                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | па          | < 2.0                    | < 5.0                    |
| tert-Butylbenzene                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | na          | < 2.0                    | < 5.0                    |
| Tetrachloroethene (PCE)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | na          | < 2.0                    | < 5.0                    |
| Toluene                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | na          | < 2.0                    | < 5.0                    |
| trans-1,2-DCE                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | na          | < 2.0                    | < 5.0                    |
| trans-1,3-Dichloropropene                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | na          | < 2.0                    | < 5.0                    |
| Trichloroethene (TCE)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | na          | < 2.0                    | < 5.0                    |
| Trichlorofluoromethane                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10         | na          | < 2.0                    | < 5.0                    |
| Vinyl chloride                                   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 10         | na          | < 2.0                    | < 5.0                    |
| Xylenes, Total                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 15         | na          | < 3.0                    | < 7.5                    |

Injection Well
2014 Quarterly Analytical Summary

|                                              | Toxicity<br>Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1st Quarter  | 2nd Quarter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3rd Quarter    | 4th Quarter  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|
| emi-Volatile Organic Compounds (ug/L)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Land Salas     | 974 IŞMI     |
| 1,2,4-Trichlorobenzene                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| 1,2-Dichlorobenzene                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| 1,3-Dichlorobenzene                          | 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 50<br>< 50 | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100<br>< 100 | < 10<br>< 10 |
| 1,4-Dichlorobenzene                          | /300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| 1-Methylnaphthalene<br>2,4,5-Trichlorophenol | A CONTRACTOR AND A STREET,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 50         | na<br>па                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 100          | < 10         |
| 2,4,5-11ichlorophenol                        | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 50         | MANAGEMENT OF THE PROPERTY OF THE PARTY OF T | < 100          | < 10         |
| 2,4-Dichlorophenol                           | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 100        | na<br>na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 200          | < 20         |
| 2,4-Dientorophenol                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | па                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| 2,4-Dimtrophenol                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 100        | ла                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 200          | < 20         |
| 2,4-Dinitrotoluene                           | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 50         | na na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 100          | < 10         |
| 2,6-Dinitrotoluene                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | па                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| 2-Chloronaphthalene                          | ar illustrate about total control of the control of | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| 2-Chlorophenol                               | NACH CANCEL SALE METERS - LONGSON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| 2-Methylnaphthalene                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| 2-Methylphenol                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 200          | < 20         |
| 2-Nitroaniline                               | AND AND A THE PROPERTY OF THE  | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| 2-Nitrophenol                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | па                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| 3,3'-Dichlorobenzidine                       | entretter 181 ft. 116 de brakeliet i erre inging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 50         | па                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 210            | < 10         |
| 3+4-Methylphenol                             | man and the first property of the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| 3-Nitroaniline                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| 4,6-Dinitro-2-inethylphenol                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 100        | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 200          | < 20         |
| 4-Bromophenyl phenyl ether                   | we come to the one of the con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| 4-Chloro-3-methylphenol                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| 4-Chloroaniline                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| 4-Chlorophenyl phenyl ether                  | **** *** * *** *** *** *** ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| 4-Nitroaniline                               | a managama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| 4-Nitrophenol                                | THE RESERVE OF THE PERSON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Acenaphthene                                 | and the depletion of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Acenaphthylene                               | wa.w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Aniline                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Anthracene                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | па                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Azobenzene                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Benz(a)anthracene                            | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Benzo(a)pyrene                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Benzo(b)fluoranthene                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Benzo(g,h,i)perylene                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Benzo(k)fluoranthene                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | па                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Benzoic acid                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 100        | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 200          | < 40         |
| Benzyl alcohol                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Bis(2-chloroethoxy)methane                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Bis(2-chloroethyl)ether                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Bis(2-chloroisopropyl)ether                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Bis(2-ethylhexyl)phthalate                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Butyl benzyl phthalate                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Carbazole                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | па                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Chrysene                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | па                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Dibenz(a,h)anthracene                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Dibenzofuran                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Diethyl phthalate                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Dimethyl phthalate                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Di-n-butyl phthalate                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | па                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Di-n-octyl phthalate                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 20         |
| Fluoranthene                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Fluorene                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Hexachlorobenzene                            | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Hexachlorobutadiene                          | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Hexachlorocyclopentadiene                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | па                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Hexachloroethane                             | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 50         | па                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Indeno(1,2,3-cd)pyrene                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Isophorone                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Naphthalene                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | па                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Nitrobenzene                                 | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| N-Nitrosodimethylamine                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| N-Nitrosodi-n-propylamine                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| N-Nitrosodiphenylamine                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Pentachlorophenol                            | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 100        | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 200          | < 20         |
| Phenanthrene                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Phenol                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Pyrene                                       | was a title of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |
| Pyridine                                     | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 50         | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 100          | < 10         |

Injection Well 2014 Quarterly Analytical Summary

|                                          | Toxicity<br>Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1st Quarter | 2nd Quarter | 3rd Quarter | 4th Quarter |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|
| eneral Chemistry (mg/L unless otherwi    | se stated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |             |             |             |
| Specific Conductance (umhos/cm)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7100        | na          | 1900        | 1100        |
| Chloride                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2400        | na          | 510         | 220         |
| Sulfate                                  | Andrew Control Management Control of the Control of | 35          | na          | 41          | 26          |
| Total Dissolved Solids                   | THE RESERVE THE PARTY OF THE PA | 5240        | na          | 1380        | 742         |
| pH (pH Units)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.25        | na          | 7.10        | 7.08        |
| Bicarbonate (As CaCO3)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 380         | na          | 220         | 150         |
| Carbonate (As CaCO3)                     | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <2.0        | na          | <2.0        | <2.0        |
| Calcium                                  | William Street Commence of the Control of the Contr | 490         | na          | 480         | 110         |
| Magnesium                                | MARINE SECTION AND A REAL PROPERTY AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75          | na          | 99          | 23          |
| Potassium                                | 1,000,000,000,000,000,000,000,000,000,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37          | na          | 36          | 8.2         |
| Sodium                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000        | na          | 1100        | 220         |
| Total Alkalinity (as CaCO3)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 380         | na          | 220         | 150         |
| otal Metals (mg/L)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |             |             |
| Arsenic                                  | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.020     | na          | < 0.020     | < 0.020     |
| Barium                                   | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.56        | na          | 0.63        | 0.20        |
| Cadmium                                  | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.0020    | na          | < 0.0020    | < 0.0020    |
| Chromium                                 | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.0060    | na          | < 0.0060    | < 0.0060    |
| Lead                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.0050    | na          | < 0.0050    | < 0.0050    |
| Selenium                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.050     | na          | < 0.050     | < 0.050     |
| Silver                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.0050    | na          | < 0.0050    | < 0.0050    |
| Mercury                                  | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.0010    | na          | < 0.00020   | < 0.00020   |
| gnitability, Corrosivity, and Reactivity |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |             |             |
| Reactive Cyanide (mg/L)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1.0        | na          | <1.0        | <1.0        |
| Reactive Sulfide (mg/kg)                 | The second section of the second section of the second section of the second section s | 1.6         | na          | <1.0        | 3.0         |
| Ignitability (°F)                        | < 140° F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | >200        | na          | >200        | >200        |
| Corrosivity (ph Units)                   | < 2 or ≥ 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.25        | na          | 7.44        | 6.82        |


Notes: na = A water sample was not collected during the 2nd quarter of 2014 because the well was not operational.

#### APPENDIX A

| Submit 1 Copy To Appropriate District                                                                                                                         | State of New Me                                                                                     | xico                                        |                                             | Form C-103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Office<br><u>District I</u> – (575) 393-6161                                                                                                                  | Energy, Minerals and Natu                                                                           | ral Resources                               |                                             | Revised July 18, 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1625 N. French Dr., Hobbs, NM 88240                                                                                                                           |                                                                                                     |                                             | WELL API NO.                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u>District II</u> - (575) 748-1283<br>811 S. First St., Artesia, NM 88210                                                                                    | OIL CONSERVATION                                                                                    | DIVISION                                    | 30-045-29002-00                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| District III - (505) 334-6178                                                                                                                                 | 1220 South St. Fran                                                                                 |                                             | 5. Indicate Type of                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1000 Rio Brazos Rd., Aztec, NM 87410                                                                                                                          | Santa Fe, NM 87                                                                                     |                                             | STATE 6. State Oil & Ga                     | FEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>District IV</u> - (505) 476-3460<br>1220 S. St. Francis Dr., Santa Fe, NM                                                                                  | Santa 1'0, 14141 07                                                                                 | 303                                         | o. State Off & Gas                          | s Lease No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 87505                                                                                                                                                         |                                                                                                     |                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SUNDRY NOTI<br>(DO NOT USE THIS FORM FOR PROPOS<br>DIFFERENT RESERVOIR. USE "APPLIC<br>PROPOSALS.)                                                            | CES AND REPORTS ON WELLS<br>SALS TO DRILL OR TO DEEPEN OR PLI<br>CATION FOR PERMIT" (FORM C-101) FO | JG BACK TO A                                |                                             | Unit Agreement Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1. Type of Well: Oil Well                                                                                                                                     | Gas Well 🛛 Other                                                                                    |                                             | 8. Well Number #                            | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2. Name of Operator                                                                                                                                           |                                                                                                     |                                             | 9. OGRID Numbe                              | er 037218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Western Refining Southwest, Inc                                                                                                                               | Bloomfield Terminal                                                                                 |                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ol> <li>Address of Operator</li> <li>County Road 4990, Bloomfield,</li> </ol>                                                                                | NM 87401                                                                                            |                                             | 10. Pool name or                            | Wildcat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4. Well Location                                                                                                                                              |                                                                                                     |                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I .                                                                                                                                                           | 42 feet from the South                                                                              | line and 12                                 | 250 feet from the                           | East line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                               |                                                                                                     | Range 11                                    | NMPM                                        | County: San Juan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Section 27                                                                                                                                                    | 11. Elevation (Show whether DR,                                                                     |                                             |                                             | County. Sair Juan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                               | 11. Elevation (Show whether DA,                                                                     | RKD, KI, OK, etc.)                          | **************************************      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                               |                                                                                                     |                                             |                                             | And the second s |
| 12 Charle A                                                                                                                                                   | ppropriate Box to Indicate N                                                                        | nture of Notice I                           | Denort or Other                             | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12. Check A                                                                                                                                                   | appropriate Box to indicate is                                                                      | ature of Nonce, i                           | Report of Other                             | Jaia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NOTICE OF IN                                                                                                                                                  | TENTION TO:                                                                                         | SUBS                                        | SEQUENT REF                                 | PORT OF:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PERFORM REMEDIAL WORK                                                                                                                                         | PLUG AND ABANDON                                                                                    | REMEDIAL WORK                               |                                             | ALTERING CASING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TEMPORARILY ABANDON                                                                                                                                           | CHANGE PLANS                                                                                        | COMMENCE DRIL                               | LING OPNS.                                  | P AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PULL OR ALTER CASING                                                                                                                                          | MULTIPLE COMPL                                                                                      | CASING/CEMENT                               | JOB 🔲                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DOWNHOLE COMMINGLE                                                                                                                                            |                                                                                                     |                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CLOSED-LOOP SYSTEM                                                                                                                                            |                                                                                                     |                                             |                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| OTHER: Replace wellhead                                                                                                                                       |                                                                                                     | OTHER:                                      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                               | eted operations. (Clearly state all p<br>rk). SEE RULE 19.15.7.14 NMAC<br>ompletion.                |                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Western is requesting permission to re<br>Western will have to place a temporal<br>assembly. Phoenix Services has been<br>perform the valve tree replacement. | ry bridge plug down in the well to a contracted by Western to perform                               | seal-off the well pro<br>the down hole wire | perly prior to remove<br>line work. WSI has | ring the valve tree<br>s been contracted to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Phoenix Services will run fu                                                                                                                                  | bing gauges down hole to verify the                                                                 | e exact size of the tu                      | hing.                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                               | plug will selected and place at app                                                                 |                                             | •                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                               | ocked-in, WSI will commence repla                                                                   |                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                               | l, Phoenix Services will retrieve the                                                               |                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>The well will then return to:</li> </ul>                                                                                                             | normal operations.                                                                                  |                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pending OCD approval, Western wor<br>questions regarding this project, please                                                                                 |                                                                                                     |                                             | e week of June 30 <sup>th</sup> ,           | 2014. If you have any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Spud Date:                                                                                                                                                    | Rig Release Da                                                                                      | te-                                         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Spud Date.                                                                                                                                                    | Tag Kolouso Bu                                                                                      |                                             |                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                                                                                     |                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I hereby certify that the information a                                                                                                                       | hove is true and complete to the he                                                                 | et of my knowledge                          | and belief                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thereby certify that the information a                                                                                                                        | bove is true and complete to the be                                                                 | st of tily knowledge                        | and belief.                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                               | TITLE ENV                                                                                           |                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Type or print name Kelly Robin                                                                                                                                | ASov E-mail address:                                                                                | Kelly, robinson                             | <u>@war.cou</u> PHO                         | DNE: 505 - 632-4161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A PART OF THE TAX                                                                                                                                             | ALIANA IN                                                                                           |                                             | 75.47                                       | יפוי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| APPROVED BY:                                                                                                                                                  | TITLE                                                                                               |                                             | DAT                                         | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Conditions of Approval (if any):                                                                                                                              |                                                                                                     |                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## WESTERN REFINING DISPOSAL WELL #1 NESE SECTION 27, T29N, R11W API No. 30-045-29002





8-5/8", 48#/ft, Surface Casing @ 830"

TOC: Surface Hole Size: 11.0"

Tubing: 2-7/8", Acid Resistant Fluoroline Cement Lined

Wt of Tubing: 6.5 #/ft Wt of Tubing Lined: 7.55 #/ft

Tubing ID: 2.128"
Tubing Drift ID: 2.000"

Minimum ID @ Packer: ~1,87" estimated

Packer: Unknown Packer Type @ 3221'
Could be a Gulberson or similar model Uni-6

Perforations: 3276' - 3408' 4JSPF 0.5 EHD Top of the Cliff House Formation: 3276'

Fill was cleaned out of well on 4/20/06 Fill was orginally tagged at 3325'

Perforations: 3435' - 3460' 4JSPF 0.5 EHD Top of the Menefee Formation: 3400'

RBP: 3520'

5-1/2", 15.5#/ft, Production Casing @3600"

TOC: Surface Hole Size: 7-7/8\*

#### Robinson, Kelly

From:

Chavez, Carl J, EMNRD [CarlJ.Chavez@state.nm.us]

Sent:

Wednesday, July 09, 2014 9:06 AM

To:

Robinson, Kelly

Subject:

RE: (UICI-009) Preliminary Notification of C-103 UIC Class I (NH) Injection Well Valve

Replacement Project - Western Refining Bloomfield Facility (GW-130) - Reschedule

Received. Thank you.

#### Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department Oil Conservation Division, Environmental Bureau 1220 South St. Francis Drive, Santa Fe, New Mexico 87505

O: (505) 476-3490

E-mail: <u>CarlJ.Chavez@State.NM.US</u>
Web: <u>http://www.emnrd.state.nm.us/ocd/</u>

"Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of

the Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at

http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental



From: Robinson, Kelly [mailto:Kelly.Robinson@wnr.com]

Sent: Wednesday, July 09, 2014 9:04 AM

To: Perrin, Charlie, EMNRD

Cc: Kuehling, Monica, EMNRD; Powell, Brandon, EMNRD; Chavez, Carl J, EMNRD; Schmaltz, Randy; Krakow, Matt;

Krakow, Bob (CTR); Hawkins, Larry; Weaver, Ron

Subject: RE: (UICI-009) Preliminary Notification of C-103 UIC Class I (NH) Injection Well Valve Replacement Project -

Western Refining Bloomfield Facility (GW-130)

Good Morning Sir,

We were just notified this morning that Phoenix Services was called to perform an emergency job at a different location. Therefore, they had to re-schedule the work to be done at the Western Refining Bloomfield facility for Monday, July 14th, 2014. They expect to be on-site by 7am Monday to perform a safety orientation prior to commencement of field activities.

Our apologies for any inconvenience this rescheduling may have caused. If you have any guestions, please let me know.

Thank you, Sir!

Kelly R. Robinson | Environmental Supervisor

Western Refining | 111 County Road 4990 | Bloomfield, NM87413 (o) 505-632-4166 | (c) 505-801-5616 | (e) kelly.robinson@wnr.com From: Robinson, Kelly

Sent: Tuesday, July 08, 2014 1:09 PM

To: 'Perrin, Charlie, EMNRD'

Cc: Kuehling, Monica, EMNRD; Powell, Brandon, EMNRD; Chavez, Carl J, EMNRD; Schmaltz, Randy; Krakow, Matt;

Krakow, Bob (CTR); Hawkins, Larry; Weaver, Ron

Subject: RE: (UICI-009) Preliminary Notification of C-103 UIC Class I (NH) Injection Well Valve Replacement Project -

Western Refining Bloomfield Facility (GW-130)

Good Afternoon Sir.

We just received confirmation this afternoon that Phoenix Services will be on-site Friday morning (July 11, 2014) starting at 7am to install the bridge plug at the Bloomfield facility injection well. If you have any questions, please feel free to contact me anytime.

Thank you and have a great day!

Kelly R. Robinson | Environmental Supervisor

Western Refining | 111 County Road 4990 | Bloomfield, NM87413 (o) 505-632-4166 | (c) 505-801-5616 | (e) kelly.robinson@wnr.com

From: Perrin, Charlie, EMNRD [mailto:charlie.perrin@state.nm.us]

Sent: Wednesday, July 02, 2014 3:35 PM

To: Robinson, Kelly

Cc: Kuehling, Monica, EMNRD; Powell, Brandon, EMNRD; Chavez, Carl J, EMNRD

Subject: RE: (UICI-009) Preliminary Notification of C-103 UIC Class I (NH) Injection Well Valve Replacement Project -

Western Refining Bloomfield Facility (GW-130)

Thank you ma'am.

From: Robinson, Kelly [mailto:Kelly.Robinson@wnr.com]

**Sent:** Wednesday, July 02, 2014 3:15 PM

To: Perrin, Charlie, EMNRD

Cc: Kuehling, Monica, EMNRD; Powell, Brandon, EMNRD; Chavez, Carl J, EMNRD

Subject: RE: (UICI-009) Preliminary Notification of C-103 UIC Class I (NH) Injection Well Valve Replacement Project -

Western Refining Bloomfield Facility (GW-130)

Good Afternoon Sir!

My apologies on the incorrect information included in the initial submittal. Attached is a revised C-103 that includes the respective corrections to both the well long and the C-103 form. I did verify with the contractor that the valve tree replacement will not disturb the annulus seal. I will notify OCD a minimum of 24 hours prior to the commencement of field activities. We are in-contact with the contractor currently to try and set a permanent schedule.

I appreciate your time and feedback on the information provided.

If you have any questions, please don't hesitate to contact me at your convenience.

I will be in-touch once the contractor provides their availability to do the field work.

Thanks Sir!

Kelly R. Robinson

**Environmental Supervisor** 

#### **Western** Refining

111 County Road 4990

#### Bloomfield, NM87413

- (o) 505-632-4166
- (c) 505-801-5616
- (f) 505-632-4024
- (e) kelly.robinson@wnr.com

From: Perrin, Charlie, EMNRD [mailto:charlie.perrin@state.nm.us]

Sent: Wednesday, July 02, 2014 1:04 PM

To: Robinson, Kelly

Cc: Kuehling, Monica, EMNRD; Powell, Brandon, EMNRD; Chavez, Carl J, EMNRD

Subject: FW: (UICI-009) Preliminary Notification of C-103 UIC Class I (NH) Injection Well Valve Replacement Project -

Western Refining Bloomfield Facility (GW-130)

Ms. Robinson,

Greetings:

A review of your submissions indicate incorrect information on both forms.

C-103 reports:

API # 30-045-290002, This is incorrect

Section 24, This is incorrect

The wellbore schematic reports:

Section 26, This is incorrect

Please correct the information and resubmit the forms.

You indicate replacement of the "valve tree", If the annulus seal is broken by removal of the wellhead a Mechanical Integrity Test will be required before the well is returned to use.

Please provide us a minimum of 24 hour notice prior to moving on the well to conduct the work.

If you have any questions please feel free to give me a call @ 505-334-6178 ext 111.

Thanks Charlie

From: Chavez, Carl J, EMNRD

Sent: Wednesday, July 02, 2014 10:39 AM

To: Perrin, Charlie, EMNRD; Powell, Brandon, EMNRD

Cc: Kuehling, Monica, EMNRD

Subject: FW: (UICI-009) Preliminary Notification of C-103 UIC Class I (NH) Injection Well Valve Replacement Project -

Western Refining Bloomfield Facility (GW-130)

Charlie, et. al:

FYI: For your review and approval. Thanks.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Drive, Santa Fe, New Mexico 87505

O: (505) 476-3490

E-mail: <u>CarlJ.Chavez@State.NM.US</u>
Web: <u>http://www.emnrd.state.nm.us/ocd/</u>

"Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of

the Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at

http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental



From: Robinson, Kelly [mailto:Kelly.Robinson@wnr.com]

Sent: Tuesday, July 01, 2014 3:29 PM

To: Chavez, Carl J, EMNRD

Cc: Kuehling, Monica, EMNRD; Schmaltz, Randy; Krakow, Matt; Hains, Allen

Subject: FW: Preliminary Notification of Injection Well Valve Replacement Project - Western Refining Bloomfield Facility

(GW-130)

Good Afternoon sir,

Attached is a completed C-103 Form requesting permission to replace the valve tree at the well head of the Class I Injection Well located at the Western Refining Bloomfield Facility. Pending OCD's approval, Western would like to schedule this work as soon as possible so that Western can resume normal operation of the well.

If you have any questions or would like to discuss this topic in more detail, please feel free to contact me at your convenience.

Thank you, Sir, for your time. Have a great evening!

#### Kelly R. Robinson

**Environmental Supervisor** 

#### Western Refining

111 County Road 4990 Bloomfield, NM87413

- (o) 505-632-4166
- (c) 505-801-5616
- (f) 505-632-4024
- (e) kelly.robinson@wnr.com

From: Robinson, Kelly

**Sent:** Thursday, June 19, 2014 12:28 PM **To:** 'Carl Chavez (<u>carlJ.Chavez@state.nm.us</u>)'

Cc: Kuehling'; 'Brandon Powell (brandon.powell@state.nm.us)'; Schmaltz, Randy; Krakow, Matt

Subject: Preliminary Notification of Injection Well Valve Replacement Project - Western Refining Bloomfield Facility (GW-

130)

#### Good Afternoon Sir!

I appreciate you taking the time to talk with me earlier this morning. As we had discussed this morning, Western is developing a Project to replace in-kind the valve tree at the well head of the Class I Injection Well located at the Western Refining Bloomfield facility. This project will not involve any down-hole work in the well; however we will be required to temporarily plug the well in order to replace the entire valve tree, which includes replacing the main shut-off valve at the top of the well casing. Once the valve replacement is completed, the well will be returned to normal operations.

We are currently finalizing a contract with the contractor who will perform this work. Based on our conversation this morning, Western will submit a Sundry Notice (C-103) to NMOCD outlining in-detail what the project entails, and the anticipated schedule for completion of the work. This completed form will be submitted directly to the NMOCD District 3 office, as well as a copy will be sent to your attention.

If you have any questions or concerns until such time that the C-103 is submitted for OCD's review, please do not hesitate to contact me.

Sincerely,

#### Kelly R. Robinson

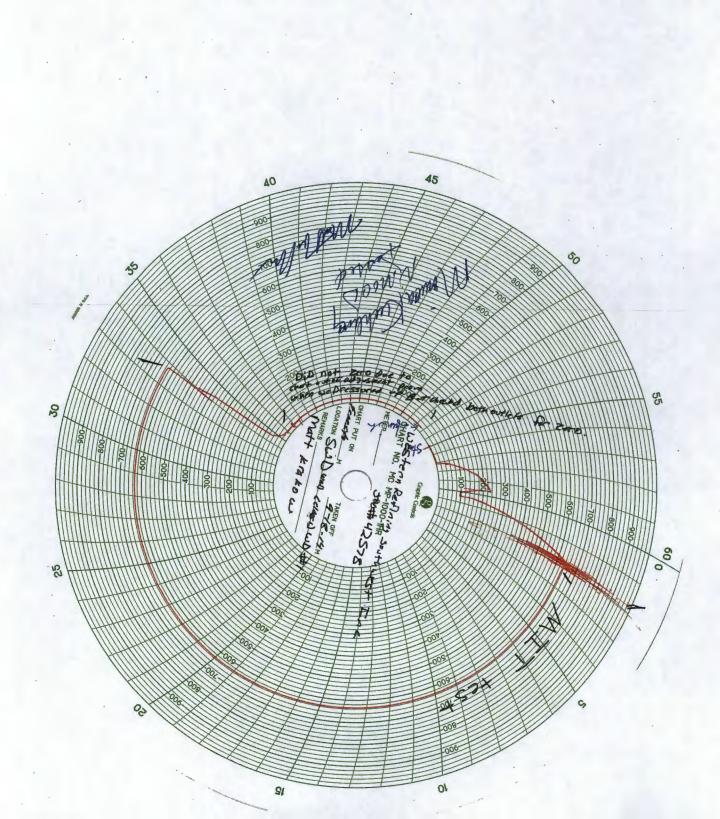
**Environmental Supervisor** 

#### **Western** Refining

111 County Road 4990 Bloomfield, NM87413

- (o) 505-632-4166
- (c) 505-801-5616
- (f) 505-632-4024
- (e) kelly.robinson@wnr.com

| Submit 1 Copy To Appropriate District Office                                         | State of New Me                                                                                      | xico                  | Form C-103                                                 |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------|
| <u>District I</u> – (575) 393-6161                                                   | Encrgy, Minerals and Natur                                                                           | ral Resources         | Revised August 1, 2011                                     |
| 1625 N. French Dr., Hobbs, NM 88240                                                  |                                                                                                      |                       | WELL API NO.                                               |
| <u>District II</u> – (575) 748-1283<br>811 S. Iärst St., Artesia, NM 88210           | OIL CONSERVATION                                                                                     | DIVISION              | 30-045-29002-00                                            |
| District III - (505) 334-6178                                                        | 1220 South St. Fran                                                                                  | cis Dr.               | 5. Indicate Type of Lease  STATE FEE   FEE                 |
| 1000 Rio Brazos Rd., Aztec, NM 87410<br><u>District IV</u> – (505) 476-3460          | Santa Fe, NM 87                                                                                      |                       | 6. State Oil & Gas Lease No.                               |
| 1220 S. St. Francis Dr., Santa Fe, NM                                                | 54                                                                                                   |                       | N/A                                                        |
| 87505                                                                                |                                                                                                      |                       |                                                            |
| (DO NOT USE THIS FORM FOR PROPO                                                      | ICES AND REPORTS ON WELLS<br>SALS TO DRILL OR TO DEEPEN OR PLL<br>CATION FOR PERMIT" (FORM C-101) FO | JG BACK TO A          | 7. Lease Name or Unit Agreement Name Disposal              |
| 1. Type of Well: Oil Well                                                            | Gas Well Other - (Disposal W                                                                         | Vell)                 | 8. Well Number: #001                                       |
|                                                                                      | efining Co. / Western Refining South                                                                 |                       | 9. OGRID Number: 037218                                    |
| Bloomfield Refinery                                                                  | Timing Co. 7 W Oslow Morning Court                                                                   | Troot, moi            | J. GOME Hamosi Spiels                                      |
| 3. Address of Operator                                                               |                                                                                                      |                       | 10. Pool name or Wildcat:                                  |
| #50 Road 4990, Bloomfield, NM,                                                       | 87413                                                                                                |                       | Blanco/Mesa Verde                                          |
| 4. Well Location                                                                     |                                                                                                      |                       |                                                            |
|                                                                                      | feet from the south                                                                                  | line and 125          | 50 feet from the East line                                 |
| Section 27                                                                           |                                                                                                      | Range 11 W            | NMPM County San Juan                                       |
| Section 27                                                                           | 11. Elevation (Show whether DR,                                                                      |                       |                                                            |
|                                                                                      | 11. Elevation (Show whether DK,                                                                      | KKD, K1, OK, etc.)    |                                                            |
| gradienski po i stori og se stori postete i 1911. ki i 14 godinski i konstjenski 191 |                                                                                                      |                       |                                                            |
| 12. Check                                                                            | Appropriate Box to Indicate Na                                                                       | ature of Notice,      | Report or Other Data                                       |
| NOTICE OF IN                                                                         | NTENTION TO:                                                                                         | SHR                   | SEQUENT REPORT OF:                                         |
| PERFORM REMEDIAL WORK □                                                              | PLUG AND ABANDON                                                                                     | REMEDIAL WOR          |                                                            |
| TEMPORARILY ABANDON                                                                  | CHANGE PLANS                                                                                         | COMMENCE DRI          |                                                            |
| PULL OR ALTER CASING                                                                 |                                                                                                      | CASING/CEMENT         |                                                            |
| DOWNHOLE COMMINGLE                                                                   | _                                                                                                    |                       | _                                                          |
|                                                                                      |                                                                                                      |                       |                                                            |
| OTHER: Annual MIT, Bradenhead                                                        |                                                                                                      | OTHER:                |                                                            |
| <ol><li>Describe proposed or comp</li></ol>                                          | oleted operations. (Clearly state all p                                                              | ertinent details, and | d give pertinent dates, including estimated date           |
| of starting any proposed w                                                           | ork). SEE RULE 19.15.7.14 NMAC                                                                       | C. For Multiple Cor   | mpletions: Attach wellbore diagram of                      |
| proposed completion or rec                                                           | completion.                                                                                          |                       |                                                            |
| Western Refining Southwest Inc -                                                     | Bloomfield Terminal requests norm                                                                    | ission to parform th  | e annual MIT and Bradenhead test on the                    |
| Class Liniection well referenced abo                                                 | ove The tests will be performed on                                                                   | Thursday Septemb      | per 18 <sup>th</sup> , 2014. Monica Kuehling has agreed to |
| be here to monitor the tests.                                                        | 770. The lesis will be performed on                                                                  | rimisony, ocpicini    | oci 10 , 2014. Monica Ruching has agreed to                |
|                                                                                      |                                                                                                      |                       |                                                            |
|                                                                                      |                                                                                                      |                       |                                                            |
|                                                                                      |                                                                                                      |                       |                                                            |
|                                                                                      |                                                                                                      |                       |                                                            |
| Spud Date:                                                                           | Rig Release Da                                                                                       | te:                   |                                                            |
|                                                                                      |                                                                                                      |                       |                                                            |
|                                                                                      |                                                                                                      |                       |                                                            |
| I hereby certify that the information                                                | above is true and complete to the be                                                                 | st of my knowledge    | e and belief.                                              |
| 2                                                                                    | n                                                                                                    |                       |                                                            |
| SIGNATURE Not ( 1                                                                    | Mr. TITLE CO.                                                                                        | vironmental Coordi    | natorDATE_9-3-14                                           |
| SIGNATURE 2 VICE V 10                                                                | TITLE En                                                                                             | vironmental Coordi    | nator DATE / 3 / 7                                         |
| Type or print nameMatthew Kr                                                         | akow F-mail address                                                                                  | · matt krakow@        | wnr.com PHONE: 505-632-4169                                |
| For State Use Only                                                                   | D-man address                                                                                        | ·IIIdit.AI dAUW(U     | WIII.COM 111014B. <u>303-032-4103</u>                      |
|                                                                                      | ·                                                                                                    |                       |                                                            |
| APPROVED BY:                                                                         | TITLE                                                                                                |                       | DATE                                                       |
| Conditions of Approval (if any):                                                     |                                                                                                      |                       |                                                            |


OIL CONSERVATION DIVISION AZTEC DISTRICT OFFICE 1000 RIO BRAZOS ROAD AZTEC NM 87410

(505) 334-6178 FAX: (505) 334-6170 http://emnrd.state.nm.us/ocd/District III/3distric.htm

#### BRADENHEAD TEST REPORT

(submit 1 copy to above address)

| Date o      | f Test   | 9             | 18-1                  | 4                   | _Operator   | Sanjun             | CAPI           | [ #30-0                       |                  |
|-------------|----------|---------------|-----------------------|---------------------|-------------|--------------------|----------------|-------------------------------|------------------|
| Proper      | ty Nar   | ne_5          | WS.                   | We                  | ell No      | Location: U        | Unit I Section | 1#30-0n                       | ange <u></u> [ [ |
| Well S      | status(  | Shut-In       | or Produ              | icing) Initia       | al PSI: Tu  | bing 890 Interr    | nediate //     | Casing 200 Bradenhe           | ad Z             |
| OPE         | N BRA    | ADENH         | EAD AN                | D INTERM            | EDIATE 7    | TO ATMOSPHE        | RE INDIVIDUA   | ALLY FOR 15 MINUTE            | S EACH           |
| Testing     | ВН       | Braden<br>Int | PRESSU<br>head<br>Csg | RE<br>INTERI<br>Int | M<br>Csg    |                    |                | HARACTERISTICS D INTERMEDIATE |                  |
| TIME 5 min_ | 0        |               | 198                   |                     | Csg         | Steady Flow        |                |                               |                  |
| 10 min_     | 0        |               | 198                   |                     |             | Surges             |                |                               |                  |
| 15 min_     | 0        |               | 194                   |                     |             | Down to Nothin     | ng /           |                               |                  |
| 20 min_     |          |               |                       |                     |             | Nothing            |                |                               |                  |
| 25 min_     |          |               |                       |                     |             | Gas                |                |                               |                  |
| _ 30 min_   |          |               |                       |                     |             | Gas & Water        |                |                               | _                |
| *4          |          |               |                       |                     |             | Water              |                |                               |                  |
| If brade    | nhead i  | lowed w       | ater, chec            | k all of the        | description | s that apply below | <u>:</u>       |                               |                  |
|             | CLEAR    | \             | FRESH_                | SA                  | ĹTY         | SULFUR             | _BLACK         |                               |                  |
| 5 MINU      | TE SH    | UT-IN P       | RESSUR                | E BR                | ADENHEA     | .D                 | INTERMEDIA     | TE/A                          |                  |
| REMAR       | KS: B    | H-d           | own                   | to me               | thin        | 9 in 4 4           | conds          | - ofened =                    | Slow             |
|             |          |               |                       |                     |             |                    |                |                               |                  |
| Ву          | Pall     | Ty            | Mr                    |                     | W           | itness [ V www     | ca Cul         | eluiz                         |                  |
|             | (Positio | n)            |                       |                     |             |                    |                |                               |                  |
| E-mail ad   | dress    |               |                       |                     |             |                    |                |                               |                  |





## NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

#### MECHANICAL INTEGRITY TEST REPORT

(TA OR UIC)

|                  | A E /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | •              |                                                   |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|---------------------------------------------------|
| Date of Test_    | 9-18-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Operator                 |                | API # 30-0                                        |
| Property Name    | e Swo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Well#_                   | Loc            | cation: Unit <u>I Sec 27</u> Twn <u>29</u> Rge // |
| Land Type:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | Well Type:     |                                                   |
|                  | State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 71             | Water Injection                                   |
|                  | ederal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | Sal            | lt Water Disposal                                 |
|                  | rivate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                | Gas Injection                                     |
|                  | ndian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | P              | roducing Oil/Gas                                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                | essure obervation                                 |
| Tamananila, A    | handanad Wall (W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\overline{\mathcal{C}}$ | TA Erminos     |                                                   |
| Temporarity A    | bandoned Well (Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | _ TA Expires:_ |                                                   |
| Casing Pres.     | $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The CI Dre               | es             | Max. Inj. Pres.                                   |
| Bradenhead Pro   | es ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | res            | Wax. Hij. 1 les                                   |
| Tubing Pres.     | <u> (480                                   </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10g. III. 11             | V3             |                                                   |
| Int. Casing Pres |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                |                                                   |
| int. Casing 110  | S. — (P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                |                                                   |
| Pressured annu   | lus up to (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsi for                  | 30 mins        | Test passed failed                                |
|                  | 145 up 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , <u>o</u> poi: 101      |                | 1 oso pussous surrou                              |
| REMARKS:         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                |                                                   |
| -                | Dacker Det                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W 3221                   |                |                                                   |
| ×                | ray Cococc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | im just                  |                |                                                   |
|                  | forDu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 3208-3                 | 276            |                                                   |
| . 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U .                      |                |                                                   |
| ( Mut 17         | Thurs at 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20/16-1                  |                |                                                   |
| 2                | WITH HOUSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2111                     | - 11,100       | Dull blatdo a                                     |
| THACE            | witcher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | me Juan                  | ctfluct - V    | vacional 40 0                                     |
| By World         | uff / Compared to the state of | Witnes                   | s / / buca     | (Cuchling                                         |
| (-)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                        | (2,1,2,1,2,0)  |                                                   |
| (Positio         | on)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                |                                                   |
| (1 031110        | ,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                | Revised 02-11-02                                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                |                                                   |

#### **APPENDIX B**



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 13, 2014

Kelly Robinson

Western Refining Southwest, Inc.

#50 CR 4990

Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: Injection Well 1-23-2014

OrderNo.: 1401A07

#### Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 1/24/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <a href="www.hallenvironmental.com">www.hallenvironmental.com</a> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109

#### Analytical Report Lab Order 1401A07

Date Reported: 2/13/2014

#### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

Project: Injection Well 1-23-2014 Collection Date: 1/23/2014 8:35:00 AM

Lab ID: 1401A07-001 Matrix: AQUEOUS Received Date: 1/24/2014 10:15:00 AM

| Analyses                                | Result   | RL Qu    | ıal Units    | DF  | Date Analyzed                                | Batch  |
|-----------------------------------------|----------|----------|--------------|-----|----------------------------------------------|--------|
| EPA METHOD 300.0: ANIONS                |          |          |              |     | Analyst                                      | : JRR  |
| Chloride                                | 2400     | 100      | mg/L         | 200 | 1/27/2014 7:14:18 PM                         | R16337 |
| Sulfate "                               | 35       | 5.0      | mg/L         | 10  | 1/24/2014 8:01:43 PM                         | R16313 |
| EPA METHOD 7470: MERCURY                |          |          |              |     | Analyst                                      | : DBD  |
| Mercury                                 | ND       | 0.0010   | mg/L         | 5   | 1/30/2014 1:52:43 PM                         | 11463  |
| EPA 6010B: TOTAL RECOVERABLE            | METALS   |          |              |     | Analyst                                      | : ELS  |
| Arsenic                                 | ND       | 0.020    | mg/L         | 1   | 1/29/2014 11:20:46 AM                        | 11432  |
| Barium                                  | 0.56     | 0.020    | mg/L         | 1   | 1/29/2014 11:20:46 AM                        |        |
| Cadmium                                 | ND       | 0.0020   | mg/L         | 1   | 1/29/2014 11:20:46 AM                        |        |
| Calcium                                 | 490      | 5.0      | mg/L         | 5   | 1/29/2014 11:22:17 AM                        |        |
| Chromium                                | ND       | 0.0060   | mg/L         | 1   | 1/29/2014 11:20:46 AM                        |        |
| Lead                                    | ND       | 0.0050   | mg/L         | 1   | 1/29/2014 11:20:46 AM                        |        |
| Magnesium                               | 75       | 1.0      | mg/L         | 1   | 1/29/2014 11:20:46 AM                        |        |
| Potassium                               | 37       | 1.0      | mg/L         | 1   | 1/29/2014 11:20:46 AM                        |        |
| Selenium                                | ND       | 0.050    | mg/L         | 1   | 1/29/2014 11:20:46 AM                        |        |
| Silver                                  | ND       | 0.0050   | mg/L         | 1   | 1/29/2014 11:20:46 AM                        |        |
| Sodium                                  | 1000     | 20       | mg/L         | 20  | 1/29/2014 11:50:27 AM                        |        |
| EPA METHOD 8270C: SEMIVOLATIL           |          |          | 3-           |     | Analyst                                      |        |
| Acenaphthene                            | ND       | 50       | μg/L         | 1   | 1/30/2014 7:14:30 PM                         | 11420  |
| Acenaphthylene                          | ND       | 50       | μg/L         | 1   | 1/30/2014 7:14:30 PM                         | 11420  |
| Aniline                                 | ND       | 50       | μg/L         | 1   | 1/30/2014 7:14:30 PM                         | 11420  |
| Anthracene                              | ND       | 50       | μg/L<br>μg/L | 1   | 1/30/2014 7:14:30 PM                         | 11420  |
| Azobenzene                              | ND       | 50       | μg/L         | 1   | 1/30/2014 7:14:30 PM                         | 11420  |
|                                         | ND<br>ND | 50       | μg/L         | 1   | 1/30/2014 7:14:30 PM                         | 11420  |
| Benz(a)anthracene Benzo(a)pyrene        | ND<br>ND | 50       |              | 1   |                                              | 11420  |
| Benzo(b)fluoranthene                    | ND<br>ND | 50<br>50 | μg/L.        | 1   | 1/30/2014 7:14:30 PM<br>1/30/2014 7:14:30 PM | 11420  |
| Benzo(g,h,i)perylene                    | ND<br>ND | 50       | μg/L<br>μg/L | 1   | 1/30/2014 7:14:30 PM                         | 11420  |
| Benzo(k)fluoranthene                    | ND<br>ND | 50<br>50 | μg/L<br>μg/L | 1   | 1/30/2014 7:14:30 PM                         | 11420  |
| Benzoic acid                            | ND<br>ND | 100      | μg/L         | 1   | 1/30/2014 7:14:30 PM                         | 11420  |
| Benzyl alcohol                          | ND       | 50       | μg/L         | 1   | 1/30/2014 7:14:30 PM                         | 11420  |
| Bis(2-chloroethoxy)methane              | ND<br>ND | 50       | μg/L         | 1   | 1/30/2014 7:14:30 PM                         | 11420  |
| Bis(2-chloroethyl)ether                 | ND       | 50       | μg/L         | 1   | 1/30/2014 7:14:30 PM                         | 11420  |
| Bis(2-chloroisopropyl)ether             | ND       | 50<br>50 | μg/L         | 1   | 1/30/2014 7:14:30 PM                         | 11420  |
| Bis(2-ethylhexyl)phthalate              | ND       | 50       | μg/L         | 1   | 1/30/2014 7:14:30 PM                         | 11420  |
| 4-Bromophenyl phenyl ether              | ND<br>ND | 50<br>50 | μg/L         | 1   | 1/30/2014 7:14:30 PM                         | 11420  |
| Butyl benzyl phthalate                  | ND       | 50<br>50 | μg/L<br>μg/L | 1   | 1/30/2014 7:14:30 PM                         | 11420  |
| Carbazole                               | ND<br>ND | 50<br>50 |              | 1   | 1/30/2014 7:14:30 PM                         | 11420  |
| ,                                       | ND<br>ND | 50<br>50 | μg/L         | 1   |                                              | 11420  |
| 4-Chloro-3-methylphenol 4-Chloroaniline | ND<br>ND |          | μg/L         | 1   | 1/30/2014 7:14:30 PM                         |        |
| 4-Chloroaniine                          | ND       | 50       | μg/L         | 7   | 1/30/2014 7:14:30 PM                         | 11420  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 17

- P Sample pH greater than 2.
- RL Reporting Detection Limit

#### Analytical Report

Lab Order 1401A07

Date Reported: 2/13/2014

#### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

**Project:** Injection Well 1-23-2014

Lab ID: 1401A07-001

Matrix: AQUEOUS

**Collection Date:** 1/23/2014 8:35:00 AM

Client Sample ID: Injection Well

Received Date: 1/24/2014 10:15:00 AM

| Analyses                    | Result | RL Qu | al Units | DF D  | ate Analyzed        | Batch |
|-----------------------------|--------|-------|----------|-------|---------------------|-------|
| EPA METHOD 8270C: SEMIVOLA  | TILES  |       |          |       | Analyst             | : DAM |
| 2-Chloronaphthalene         | ND     | 50    | μg/L     | 1 1.  | /30/2014 7:14:30 PM | 11420 |
| 2-Chlorophenol              | ND     | 50    | μg/L     | 1 1.  | /30/2014 7:14:30 PM | 11420 |
| 4-Chlorophenyl phenyl ether | ND     | 50    | μg/L     | 1 1.  | /30/2014 7:14:30 PM | 11420 |
| Chrysene                    | ND     | 50    | μg/L     | 1 1   | /30/2014 7:14:30 PM | 11420 |
| Di-n-butyl phthalate        | ND     | 50    | μg/L     | 1 1,  | 30/2014 7:14:30 PM  | 11420 |
| Di-n-octyl phthalate        | ND     | 50    | μg/L     | 1 1   | /30/2014 7:14:30 PM | 11420 |
| Dibenz(a,h)anthracene       | ND     | 50    | μg/L     | 1 1/  | 30/2014 7:14:30 PM  | 11420 |
| Dibenzofuran                | ND     | 50    | μg/L     | 1 1/  | 30/2014 7:14:30 PM  | 11420 |
| 1,2-Dichlorobenzene         | , ND   | 50    | μg/L     | 1 1/  | 30/2014 7:14:30 PM  | 11420 |
| 1,3-Dichlorobenzene         | ND     | 50    | μg/L     | 1 1/  | 30/2014 7:14:30 PM  | 11420 |
| 1,4-Dichlorobenzene         | ND     | 50    | μg/L     | 1 1/  | 30/2014 7:14:30 PM  | 11420 |
| 3,3'-Dichlorobenzidine      | ND     | 50    | μg/L     | 1 1/  | 30/2014 7:14:30 PM  | 11420 |
| Diethyl phthalate           | ND     | 50    | μg/L     | 1 1/  | 30/2014 7:14:30 PM  | 11420 |
| Dimethyl phthalate          | ND     | 50    | μg/L     | 1 1/  | 30/2014 7:14:30 PM  | 11420 |
| 2,4-Dichlorophenol          | ND     | 100   | μg/L     | 1 1/  | 30/2014 7:14:30 PM  | 11420 |
| 2,4-Dimethylphenol          | ND     | 50    | μg/L     | 1 1/  | 30/2014 7:14:30 PM  | 11420 |
| 4,6-Dinitro-2-methylphenol  | ND     | 100   | μg/L     | 1 1/  | 30/2014 7:14:30 PM  | 11420 |
| 2,4-Dinitrophenol           | ND     | 100   | μg/L     |       | 30/2014 7:14:30 PM  | 11420 |
| 2,4-Dinitrotoluene          | ND     | 50    | μg/L     | 1 1/  | 30/2014 7:14:30 PM  | 11420 |
| 2,6-Dinitrotoluene          | ND     | 50    | μg/L     | 1 1/  | 30/2014 7:14:30 PM  | 11420 |
| Fluoranthene                | ND     | 50    | μg/L     | 1 1/  | 30/2014 7:14:30 PM  | 11420 |
| Fluorene                    | ND     | 50    | μg/L     | 1 1/  | 30/2014 7:14:30 PM  | 11420 |
| Hexachlorobenzene           | ND     | 50    | μg/L     | 1 1/  | 30/2014 7:14:30 PM  | 11420 |
| Hexachiorobutadiene         | ND     | 50    | μg/L     | 1 1/  | 30/2014 7:14:30 PM  | 11420 |
| Hexachlorocyclopentadiene   | ND     | 50    | μg/L     | 1 1/  | 30/2014 7:14:30 PM  | 11420 |
| Hexachloroethane            | €ND    | 50    | μg/L     |       | 30/2014 7:14:30 PM  | 11420 |
| Indeno(1,2,3-cd)pyrene      | ND     | 50    | μg/L     | 1 1/3 | 30/2014 7:14:30 PM  | 11420 |
| Isophorone                  | ND     | 50    | μg/L     | 1 1/3 | 30/2014 7:14:30 PM  | 11420 |
| 1-Methylnaphthalene         | ND     | 50    | μg/L     | 1 1/3 | 30/2014 7:14:30 PM  | 11420 |
| 2-Methylnaphthalene         | ND     | 50    | μg/L     | 1 1/3 | 30/2014 7:14:30 PM  | 11420 |
| 2-Methylphenol              | ND     | 50    | μg/L     | 1 1/3 | 30/2014 7:14:30 PM  | 11420 |
| 3+4-Methylphenol            | ND     | 50    | μg/L     | 1 1/3 | 30/2014 7:14:30 PM  | 11420 |
| N-Nitrosodi-n-propylamine   | ND     | 50    | μg/L     | 1 1/3 | 30/2014 7:14:30 PM  | 11420 |
| N-Nitrosodimethylamine      | ND     | 50    | μg/L     | 1 1/3 | 30/2014 7:14:30 PM  | 11420 |
| N-Nitrosodiphenylamine      | ND     | 50    | μg/L     | 1 1/3 | 30/2014 7:14:30 PM  | 11420 |
| Naphthalene                 | ND     | 50    | μg/L     | 1 1/3 | 30/2014 7:14:30 PM  | 11420 |
| 2-Nitroaniline              | ND     | 50    | μg/L     | 1 1/3 | 30/2014 7:14:30 PM  | 11420 |
| 3-Nitroaniline              | ND     | 50    | μg/L     | 1 1/3 | 30/2014 7:14:30 PM  | 11420 |
| 4-Nitroaniline              | ND     | 50    | μg/L     | 1 1/3 | 30/2014 7:14:30 PM  | 11420 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 17

- P Sample pH greater than 2.
- RL Reporting Detection Limit

#### **Analytical Report**

#### Lab Order 1401A07

Date Reported: 2/13/2014

#### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Injection Well 1-23-2014

**Lab ID:** 1401A07-001

Project:

Client Sample ID: Injection Well

**Collection Date:** 1/23/2014 8:35:00 AM

Received Date: 1/24/2014 10:15:00 AM

| Analyses                       | Result | RL Q      | ual Units | DF | Date Analyzed        | Batch  |
|--------------------------------|--------|-----------|-----------|----|----------------------|--------|
| EPA METHOD 8270C: SEMIVOLA     | TILES  |           |           |    | Analyst              | : DAM  |
| Nitrobenzene                   | ND     | 50        | μg/L      | 1  | 1/30/2014 7:14:30 PM | 11420  |
| 2-Nitrophenol                  | ND     | 50        | μg/L      | 1  | 1/30/2014 7:14:30 PM | 11420  |
| 4-Nitrophenol                  | ND     | 50        | μg/L      | 1  | 1/30/2014 7:14:30 PM | 11420  |
| Pentachlorophenol              | ND     | 100       | μg/L      | 1  | 1/30/2014 7:14:30 PM | 11420  |
| Phenanthrene                   | ND     | 50        | μg/L      | 1  | 1/30/2014 7:14:30 PM | 11420  |
| Phenol                         | ND     | 50        | μg/L      | 1  | 1/30/2014 7:14:30 PM | 11420  |
| Pyrene                         | ND     | 50        | μg/L      | 1  | 1/30/2014 7:14:30 PM | 11420  |
| Pyridine                       | ND     | 50        | μg/L      | 1  | 1/30/2014 7:14:30 PM | 11420  |
| 1,2,4-Trichlorobenzene         | ND     | 50        | μg/L      | 1  | 1/30/2014 7:14:30 PM | 11420  |
| 2,4,5-Trichlorophenol          | ND     | 50        | μg/L      | 1  | 1/30/2014 7:14:30 PM | 11420  |
| 2,4,6-Trichlorophenol          | ND     | 50        | μg/L      | 1  | 1/30/2014 7:14:30 PM | 11420  |
| Surr: 2-Fluorophenol           | 66.2   | 22.7-98   | %REC      | 1  | 1/30/2014 7:14:30 PM | 11420  |
| Surr: Phenol-d5                | 54.5   | 23.4-74.9 | %REC      | 1  | 1/30/2014 7:14:30 PM | 11420  |
| Surr: 2,4,6-Tribromophenol     | 97.6   | 23.3-111  | %REC      | 1  | 1/30/2014 7:14:30 PM | 11420  |
| Surr: Nitrobenzene-d5          | 86.5   | 36.8-111  | %REC      | 1  | 1/30/2014 7:14:30 PM | 11420  |
| Surr: 2-Fluorobiphenyl         | 86.4   | 38.3-110  | %REC      | 1  | 1/30/2014 7:14:30 PM | 11420  |
| Surr: 4-Terphenyl-d14          | 73.7   | 52.1-116  | %REC      | 1  | 1/30/2014 7:14:30 PM | 11420  |
| EPA METHOD 8260B: VOLATILES    | 6      |           |           |    | Analyst              | : DJF  |
| Benzene                        | ND     | 10        | μg/L      | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Toluene                        | ND     | 10        | μg/L      | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Ethylbenzene                   | ND     | 10        | μg/L      | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Methyl tert-butyl ether (MTBE) | ND     | 10        | μg/L      | 10 | 1/31/2014 3:25:28 PM | R16441 |
| 1,2,4-Trimethylbenzene         | ND     | 10        | µg/∟      | 10 | 1/31/2014 3:25:28 PM | R16441 |
| 1,3,5-Trimethylbenzene         | ND     | 10        | μg/L      | 10 | 1/31/2014 3:25:28 PM | R16441 |
| 1,2-Dichloroethane (EDC)       | ND     | 10        | μg/L      | 10 | 1/31/2014 3:25:28 PM | R16441 |
| 1,2-Dibromoethane (EDB)        | ND     | 10        | μg/L      | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Naphthalene                    | ND     | 20        | μg/L      | 10 | 1/31/2014 3:25:28 PM | R16441 |
| 1-Methylnaphthalene            | ND     | 40        | μg/L      | 10 | 1/31/2014 3:25:28 PM | R16441 |
| 2-Methylnaphthalene            | ND     | 40        | μg/L      | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Acetone                        | 1400   | 100       | μg/L      | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Bromobenzene                   | ND     | 10        | μg/L      | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Bromodichloromethane           | ND     | 10        | μg/L      | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Bromoform                      | ND     | 10        | μg/L      | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Bromomethane                   | ND     | 30        | μg/L      | 10 | 1/31/2014 3:25:28 PM | R16441 |
| 2-Butanone                     | 200    | 100       | μg/L      | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Carbon disulfide               | ND     | 100       | μg/L      | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Carbon Tetrachloride           | ND     | 10        | μg/L      | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Chlorobenzene                  | ND     | 10        | μg/L      | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Chloroethane                   | ND     | 20        | μg/L      | 10 | 1/31/2014 3:25:28 PM | R16441 |

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 17

- P Sample pH greater than 2.
- RL Reporting Detection Limit

#### **Analytical Report**

Lab Order 1401A07

Date Reported: 2/13/2014

#### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Injection Well

Project: Injection Well 1-23-2014

Collection Date: 1/23/2014 8:35:00 AM Lab ID: 1401A07-001 Matrix: AQUEOUS Received Date: 1/24/2014 10:15:00 AM

| Analyses                    | Result | RL ( | Qual Units    | DF   | Date Analyzed        | Batch  |
|-----------------------------|--------|------|---------------|------|----------------------|--------|
| EPA METHOD 8260B: VOLATILES |        |      |               |      | Analyst              | : DJF  |
| Chloroform                  | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R1644  |
| Chloromethane               | ND     | 30   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R1644  |
| 2-Chlorotoluene             | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R1644  |
| 4-Chlorotoluene             | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R1644  |
| cis-1,2-DCE                 | ND     | 10   | μ <b>g</b> /L | 10   | 1/31/2014 3:25:28 PM | R1644  |
| cis-1,3-Dichloropropene     | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R1644  |
| 1,2-Dibromo-3-chloropropane | ND     | 20   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R1644  |
| Dibromochloromethane        | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R1644  |
| Dibromomethane              | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R1644  |
| 1,2-Dichlorobenzene         | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R1644  |
| 1,3-Dichlorobenzene         | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R1644  |
| 1,4-Dichlorobenzene         | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R1644  |
| Dichlorodifluoromethane     | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R1644  |
| 1,1-Dichloroethane          | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R16441 |
| 1,1-Dichloroethene          | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R1644  |
| 1,2-Dichloropropane         | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R1644  |
| 1,3-Dichloropropane         | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R1644  |
| 2,2-Dichloropropane         | ND     | 20   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R1644  |
| 1,1-Dichloropropene         | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R16441 |
| Hexachlorobutadiene         | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R16441 |
| 2-Hexanone                  | ND     | 100  | μg/L          | 10   | 1/31/2014 3:25:28 PM | R16441 |
| Isopropyibenzene            | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R16441 |
| 4-Isopropyltoluene          | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R16441 |
| 4-Methyl-2-pentanone        | ND     | 100  | μg/L          | 10   | 1/31/2014 3:25:28 PM | R16441 |
| Methylene Chloride          | ND     | 30   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R16441 |
| n-Butylbenzene              | ND     | 30   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R16441 |
| n-Propylbenzene             | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R16441 |
| sec-Butylbenzene            | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R16441 |
| Styrene                     | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R16441 |
| tert-Butylbenzene           | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R16441 |
| 1,1,1,2-Tetrachloroethane   | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R16441 |
| 1,1,2,2-Tetrachloroethane   | ND     | 20   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R16441 |
| Tetrachloroethene (PCE)     | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R16441 |
| trans-1,2-DCE               | ND     | 10   | μg/L          | . 10 | 1/31/2014 3:25:28 PM | R16441 |
| trans-1,3-Dichloropropene   | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R16441 |
| 1,2,3-Trichlorobenzene      | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R16441 |
| 1,2,4-Trichlorobenzene      | ND     | 10   | μ <b>g/</b> L | 10   | 1/31/2014 3:25:28 PM | R16441 |
| 1,1,1-Trichloroethane       | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R16441 |
| 1,1,2-Trichloroethane       | ND     | 10   | μg/L          | 10   | 1/31/2014 3:25:28 PM | R16441 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 17

- P Sample pH greater than 2.
- RL Reporting Detection Limit

#### Analytical Report Lab Order 1401A07

Date Reported: 2/13/2014

#### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

 Project:
 Injection Well 1-23-2014
 Collection Date: 1/23/2014 8:35:00 AM

 Lab ID:
 1401A07-001
 Matrix: AQUEOUS
 Received Date: 1/24/2014 10:15:00 AM

| Analyses                     | Result | RL (   | Qual | Units        | DF | Date Analyzed        | Batch  |
|------------------------------|--------|--------|------|--------------|----|----------------------|--------|
| EPA METHOD 8260B: VOLATILES  |        |        |      |              |    | Analyst              | : DJF  |
| Trichloroethene (TCE)        | ND     | 10     |      | μ <b>g/L</b> | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Trichlorofluoromethane       | ND     | 10     |      | μg/L         | 10 | 1/31/2014 3:25:28 PM | R16441 |
| 1,2,3-Trichloropropane       | ND     | 20     |      | μg/L         | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Vinyl chloride               | ND     | 10     |      | μg/L         | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Xylenes, Total               | ND     | 15     |      | μg/L         | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Surr: 1,2-Dichloroethane-d4  | 100    | 70-130 |      | %REC         | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Surr: 4-Bromofluorobenzene   | 86.4   | 70-130 |      | %REC         | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Surr: Dibromofluoromethane   | 98.8   | 70-130 |      | %REC         | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Surr: Toluene-d8             | 101    | 70-130 |      | %REC         | 10 | 1/31/2014 3:25:28 PM | R16441 |
| SM2510B: SPECIFIC CONDUCTANO | E      |        |      |              |    | Analyst              | : SRM  |
| Conductivity                 | 7100   | 0.010  |      | µmhos/cm     | 1  | 1/24/2014 5:53:17 PM | R16304 |
| SM4500-H+B: PH               |        |        |      |              |    | Analyst              | : SRM  |
| pН                           | 6.25   | 1.68   | Н    | pH units     | 1  | 1/24/2014 5:53:17 PM | R16304 |
| SM2320B: ALKALINITY          |        |        |      |              |    | Analyst              | : SRM  |
| Bicarbonate (As CaCO3)       | 380    | 20     |      | mg/L CaCO3   | 1  | 1/24/2014 5:53:17 PM | R16304 |
| Carbonate (As CaCO3)         | ND     | 2.0    |      | mg/L CaCO3   | 1  | 1/24/2014 5:53:17 PM | R16304 |
| Total Alkalinity (as CaCO3)  | 380    | 20     |      | mg/L CaCO3   | 1  | 1/24/2014 5:53:17 PM | R16304 |
| SM2540C MOD: TOTAL DISSOLVED | SOLIDS |        |      |              |    | Analyst              | KS     |
| Total Dissolved Solids       | 5240   | 100    | *    | mg/L         | 1  | 1/28/2014 5:33:00 PM | 11406  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page
- P Sample pH greater than 2.
- Page 5 of 17
- RL Reporting Detection Limit

#### Anatek Labs, Inc.

1282 Aituras Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

140128036

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109 Project Name:

1401A07

Attn:

ANDY FREEMAN

#### **Analytical Results Report**

Sample Number

140128036-001

Sampling Date 1/23/2014

Date/Time Received 1/28/2014 12:18 PM

Client Sample ID

1401A07-001E / INJECTION WELL

Sampling Time 8:35 AM

. .\_...

Matrix

Water

Sample Location

Comments

| Parameter          | Result | Units    | PQL | Analysis Date | Analyst | Method    | Qualifier |
|--------------------|--------|----------|-----|---------------|---------|-----------|-----------|
| Cyanide (reactive) | ND     | mg/L     | 1   | 2/12/2014     | CRW     | SW846 CH7 |           |
| Flashpoint         | >200   | °F       |     | 2/4/2014      | KFG     | EPA 1010  |           |
| pН                 | 5,89   | ph Units |     | 1/31/2014     | AJT     | EPA 150.1 |           |
| Reactive sulfide   | 1.57   | mg/L     | 1   | 1/29/2014     | AJT     | SW846 CH7 |           |

**Authorized Signature** 

John Coddington, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND

Not Detected

NOT Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

#### QC SUMMARY REPORT

#### Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07

13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

| Sample ID | MB |
|-----------|----|
|-----------|----|

SampType: MBLK

TestCode: EPA Method 300.0: Anions

TestCode: EPA Method 300.0: Anions

Client ID: PBW

Batch ID: R16313

**PQL** 

RunNo: 16313

%REC LowLimit

Prep Date: Analyte

Analysis Date: 1/24/2014

Result

SeqNo: 470380

Units: mg/L HighLimit

%RPD **RPDLimit** 

Quai

Sulfate

ND 0.50

Sample ID LCS Client ID: LCSW

SampType: LCS

RunNo: 16313

Batch ID: R16313

Units: mg/L

Prep Date: Analyte

Analysis Date: 1/24/2014

SeqNo: 470381

%RPD

Result **PQL**  SPK value SPK Ref Val %REC

SPK value SPK Ref Val

LowLimit 96.0

HighLimit 110 **RPDLimit** 

Qual

Sulfate

Sample ID MB

9.6 0.50 10.00 0

TestCode: EPA Method 300.0: Anions

Client ID: Prep Date:

SampType: MBLK Batch ID: R16337 Analysis Date: 1/27/2014

**PQL** 

RunNo: 16337 SeqNo: 471000

Units: mg/L

Analyte

0.50 ND

Result

SPK value SPK Ref Val %REC LowLimit HighLimit

%RPD **RPDLimit**  Qual

Chloride

SampType: LCS

TestCode: EPA Method 300.0: Anions

Client ID:

Sample ID LCS

LCSW

Batch ID: R16337

0.50

RunNo: 16337

92.6

110

Prep Date:

Analysis Date: 1/27/2014

SegNo: 471001

Units: mg/L

Page 6 of 17

Qual

Analyte Chloride

Result PQL

4.6

SPK value SPK Ref Val

5.000

%REC LowLimit

HighLimit

90

%RPD

**RPDLimit** 

Qualifiers:

Value exceeds Maximum Contaminant Level.

Ε Value above quantitation range

Analyte detected below quantitation limits

0 RSD is greater than RSDlimit

R RPD outside accepted recovery limits Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Sample pH greater than 2.

RLReporting Detection Limit

#### **QC SUMMARY REPORT**

#### Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07

13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

| Sample ID 5ml rb               | SampT      | npType: MBLK TestCode: EPA Method 82 |             |               |          |           | nod 8260B: VOLATILES |          |      |  |  |  |
|--------------------------------|------------|--------------------------------------|-------------|---------------|----------|-----------|----------------------|----------|------|--|--|--|
| Client ID: PBW                 | Batch      | ID: <b>R16441</b>                    | F           | RunNo: 16441  |          |           |                      |          |      |  |  |  |
| Prep Date:                     | Analysis D | ate: 1/31/2014                       | 5           | SeqNo: 474209 |          |           | Units: µg/L          |          |      |  |  |  |
| Analyte                        | Result     | PQL SPK value                        | SPK Ref Val | %REC          | LowLimit | HighLimit | %RPD                 | RPDLimit | Qual |  |  |  |
| Benzene                        | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| Toluene                        | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| Ethylbenzene                   | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| Methyl tert-butyl ether (MTBE) | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| 1,2,4-Trimethylbenzene         | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| 1,3,5-Trimethylbenzene         | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| 1,2-Dichloroethane (EDC)       | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| 1,2-Dibromoethane (EDB)        | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| Naphthalene                    | ND         | 2.0                                  |             |               |          |           |                      |          |      |  |  |  |
| 1-Methylnaphthalene            | ND         | 4.0                                  |             |               |          |           |                      |          |      |  |  |  |
| 2-Methylnaphthalene            | ND         | 4.0                                  |             |               |          |           |                      |          |      |  |  |  |
| Асетопе                        | ND         | 10                                   |             |               |          |           |                      |          |      |  |  |  |
| Bromobenzene                   | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| Bromodichloromethane           | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| Bromoform                      | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| Bromomethane                   | ND         | 3.0                                  |             |               |          |           |                      |          |      |  |  |  |
| 2-Butanone                     | ND         | 10                                   | ,           |               |          |           |                      |          |      |  |  |  |
| Carbon disulfide               | ND         | 10                                   |             |               |          |           |                      |          |      |  |  |  |
| Carbon Tetrachloride           | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| Chlorobenzene                  | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| Chloroethane                   | ND         | 2.0                                  |             |               |          |           |                      |          |      |  |  |  |
| Chloroform                     | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| Chloromethane                  | ND         | 3.0                                  |             |               |          |           |                      |          |      |  |  |  |
| 2-Chlorotoluene                | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| 4-Chlorotoluene                | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| cis-1,2-DCE                    | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| cis-1,3-Dichloropropene        | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| 1,2-Dibromo-3-chloropropane    | ND         | 2.0                                  |             |               |          |           |                      |          |      |  |  |  |
| Dibromochloromethane           | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| Dibromomethane                 | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| 1,2-Dichlorobenzene            | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| 1,3-Dichlorobenzene            | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| 1,4-Dichlorobenzene            | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| Dichlorodifluoromethane        | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| 1,1-Dichloroethane             | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| 1,1-Dichloroethene             | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| 1,2-Dichloropropane            | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| 1,3-Dichloropropane            | ND         | 1.0                                  |             |               |          |           |                      |          |      |  |  |  |
| 2,2-Dichloropropane            | ND         | 2.0                                  |             |               |          |           |                      |          |      |  |  |  |
| Z,Z Distilotopiopario          | 110        | 2,0                                  |             |               |          |           |                      |          |      |  |  |  |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 7 of 17

#### **QC SUMMARY REPORT**

#### Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07

13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

| Sample ID 5ml rb            | SampT      | SampType: MBLK TestCode: EPA Metho |         |             |               |          | 8260B: VOL  | ATILES |          |      |
|-----------------------------|------------|------------------------------------|---------|-------------|---------------|----------|-------------|--------|----------|------|
| Client ID: PBW              | Batch      | Batch ID: R16441                   |         |             | tunNo: 10     | 6441     |             |        |          |      |
| Prep Date:                  | Analysis D | ate: 1/31/2                        | 014     | S           | SeqNo: 474209 |          | Units: µg/L |        |          |      |
| Analyte                     | Result     | PQL SP                             | K value | SPK Ref Val | %REC          | LowLimit | HighLimit   | %RPD   | RPDLimit | Qual |
| 1,1-Dichloropropene         | · ND       | 1.0                                |         |             |               |          |             |        |          |      |
| Hexachlorobutadiene         | ND         | 1.0                                |         |             |               |          |             |        |          |      |
| 2-Hexanone                  | ND         | 10                                 |         |             |               |          |             |        |          |      |
| Isopropylbenzene            | ND         | 1.0                                |         |             |               |          |             |        |          |      |
| 4-Isopropyltoluene          | ND         | 1.0                                |         |             |               |          |             |        |          |      |
| 4-Methyl-2-pentanone        | ND         | 10                                 |         |             |               |          |             |        |          |      |
| Methylene Chloride          | ND         | 3.0                                |         |             |               |          |             |        |          |      |
| n-Butylbenzene              | ND         | 3.0                                |         |             |               |          |             |        |          |      |
| n-Propylbenzene             | ND         | 1.0                                |         |             |               |          |             |        |          |      |
| sec-Butylbenzene            | ND         | 1.0                                |         |             |               |          |             |        |          |      |
| Styrene                     | ND         | 1.0                                |         |             |               |          |             |        |          |      |
| tert-Butylbenzene           | ND         | 1.0                                |         |             |               |          |             |        |          |      |
| 1,1,1,2-Tetrachloroethane   | ND         | 1.0                                |         |             |               |          |             |        |          |      |
| 1,1,2,2-Tetrachloroethane   | ND         | 2.0                                |         |             |               |          |             |        |          |      |
| Tetrachloroethene (PCE)     | ND         | 1.0                                |         |             |               |          |             |        |          |      |
| trans-1,2-DCE               | ND         | 1.0                                |         |             |               |          |             |        |          |      |
| trans-1,3-Dichloropropene   | ND         | 1.0                                |         |             |               |          |             |        |          |      |
| 1,2,3-Trichlorobenzene      | ND         | 1.0                                |         |             |               |          |             |        |          |      |
| 1,2,4-Trichlorobenzene      | ND         | 1.0                                |         |             |               |          |             |        |          |      |
| 1,1,1-Trichloroethane       | ND         | 1.0                                |         |             |               |          |             |        |          |      |
| 1,1,2-Trichloroethane       | ND         | 1.0                                |         |             |               |          |             |        |          |      |
| Trichloroethene (TCE)       | ND         | 1.0                                |         |             |               |          |             |        |          |      |
| Trichlorofluoromethane      | ND         | 1.0                                |         |             |               |          |             |        |          |      |
| 1,2,3-Trichloropropane      | ND         | 2.0                                |         |             |               |          |             |        |          |      |
| Vinyl chloride              | ND         | 1.0                                |         |             |               |          |             |        |          |      |
| Xylenes, Total              | ND         | 1.5                                |         |             |               |          |             |        |          |      |
| Surr: 1,2-Dichloroethane-d4 | 10         |                                    | 10.00   |             | 101           | 70       | 130         |        |          |      |
| Surr: 4-Bromofluorobenzene  | 8.4        |                                    | 10.00   |             | 84.4          | 70       | 130         |        |          |      |
| Surr: Dibromofluoromethane  | 9.3        |                                    | 10.00   |             | 93.4          | 70       | 130         |        |          |      |
| Surr: Toluene-d8            | 9.3        |                                    | 10.00   |             | 93.0          | 70       | 130         |        |          |      |

| Sample ID 100ng Ics | SampT            | ype: LC | S         | Tes           | TestCode: EPA Method 8260B: VOLATILES |          |             |      |          |      |
|---------------------|------------------|---------|-----------|---------------|---------------------------------------|----------|-------------|------|----------|------|
| Client ID: LCSW     | Batch ID: R16441 |         |           | F             | RunNo: 16441                          |          |             |      |          |      |
| Prep Date:          | Analysis D       | ate: 1/ | 31/2014   | SeqNo: 474213 |                                       |          | Units: µg/L |      |          |      |
| Analyte             | Result           | PQL     | SPK value | SPK Ref Val   | %REC                                  | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Benzene             | 21               | 1.0     | 20.00     | . 0           | 107                                   | 70       | 130         |      |          |      |
| Toluene             | 20               | 1.0     | 20.00     | 0             | 101                                   | 82.2     | 124         |      |          |      |
| Chlorobenzene       | 18               | 1.0     | 20.00     | 0             | 92.5                                  | 70       | 130         |      |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- D Court IV and the O
- P Sample pH greater than 2. RL Reporting Detection Limit

Page 8 of 17

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07 13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

| Sample ID 100ng Ics         | SampT      | ype: LC                  | s         | Tes          | tCode: El | PA Method  | 8260B: VOL  | ATILES |          |      |
|-----------------------------|------------|--------------------------|-----------|--------------|-----------|------------|-------------|--------|----------|------|
| Client ID: LCSW             | Batch      | ID: <b>R1</b>            | 6441      | F            | RunNo: 1  | 6441       |             |        |          |      |
| Prep Date:                  | Analysis D | Analysis Date: 1/31/2014 |           |              | SeqNo: 4  | 74213      | Units: µg/L |        |          |      |
| Analyte                     | Result     | PQL                      | SPK value | SPK Ref Val  | %REC      | LowLimit   | HighLimit   | %RPD   | RPDLimit | Qual |
| 1,1-Dichloroethene          | 24         | 1.0                      | 20.00     | 0 119 83.5   |           |            | 155         |        |          |      |
| Trichloroethene (TCE)       | 19         | 1.0                      | 20.00     | 0            | 93.4      | <b>7</b> 0 | 130         |        |          |      |
| Surr: 1,2-Dichloroethane-d4 | 10         |                          | 10.00     |              | 100       | 70         | 130         |        |          |      |
| Surr: 4-Bromofluorobenzene  | 8.8        |                          | 10.00     |              | 88.1      | 70         | 130         |        |          |      |
| Surr: Dibromofluoromethane  | 8.1 10.00  |                          | 80.7 70   |              | 130       |            |             |        |          |      |
| Surr: Toluene-d8 10 10.0    |            |                          | 10.00     | ) 101 70 130 |           |            |             |        |          |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 9 of 17

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07

13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

| Sample ID mb-11420          | SampTy      | /pe: MBLK        | Tes               | tCode: EPA Met      | hod 8270C: Semi | volatiles |          |      |
|-----------------------------|-------------|------------------|-------------------|---------------------|-----------------|-----------|----------|------|
| Client ID: PBW              | Batch       | ID: <b>11420</b> | I                 | RunNo: <b>16402</b> |                 |           |          |      |
| Prep Date: 1/27/2014        | Analysis Da | ate: 1/30/201    | 14                | SeqNo: 473422       | Units: µg/L     |           |          |      |
| Analyte                     | Result      | PQL SPK          | value SPK Ref Val | %REC LowLi          | mit HighLimit   | %RPD      | RPDLimit | Qual |
| Acenaphthene                | ND          | 10               |                   |                     |                 |           |          |      |
| Acenaphthylene              | ND          | 10               |                   |                     |                 |           |          |      |
| Aniline                     | ND          | 10               |                   |                     |                 |           |          |      |
| Anthracene                  | ND          | 10               |                   |                     |                 |           |          |      |
| Azobenzene                  | ND          | 10               |                   |                     |                 |           |          |      |
| Benz(a)anthracene           | ND          | 10               |                   |                     |                 |           |          |      |
| Benzo(a)pyrene              | ND          | 10               |                   |                     |                 |           |          |      |
| Benzo(b)fluoranthene        | ND          | 10               |                   |                     |                 |           |          |      |
| Benzo(g,h,i)perylene        | ND          | 10               |                   |                     |                 |           |          |      |
| Benzo(k)fluoranthene        | ND          | 10               |                   |                     |                 |           |          |      |
| Benzoic acid                | ND          | 20               |                   |                     |                 |           |          |      |
| Benzyl alcohol              | ND          | 10               |                   |                     |                 |           |          |      |
| Bis(2-chloroethoxy)methane  | ND          | 10               |                   |                     |                 |           |          |      |
| Bis(2-chloroethyl)ether     | ND          | 10               |                   |                     |                 |           |          |      |
| Bis(2-chloroisopropyl)ether | ND          | 10               |                   |                     |                 |           |          |      |
| Bis(2-ethylhexyl)phthalate  | ND          | 10               |                   |                     |                 |           |          |      |
| 4-Bromophenyl phenyl ether  | ND          | 10               |                   |                     |                 |           |          |      |
| Butyl benzyl phthalate      | ND          | 10               |                   |                     |                 |           |          |      |
| Carbazole                   | ND          | 10               |                   |                     |                 |           |          |      |
| 4-Chloro-3-methylphenol     | ND          | 10               |                   |                     |                 |           |          |      |
| 4-Chloroaniline             | ND          | 10               |                   |                     |                 |           |          |      |
| 2-Chioronaphthalene         | ND T        | 10               |                   |                     |                 |           |          |      |
| 2-Chlorophenol              | ND          | 10               |                   |                     |                 |           |          |      |
| 4-Chlorophenyl phenyl ether | ND          | 10               |                   |                     |                 |           |          |      |
| Chrysene                    | ND          | 10               |                   |                     |                 |           |          |      |
| Di-n-butyl phthalate        | ND          | 10               |                   |                     |                 |           |          |      |
| Di-n-octyl phthalate        | ND          | 10               |                   |                     |                 |           |          |      |
| Dibenz(a,h)anthracene       | ND          | 10               |                   |                     |                 |           |          |      |
| Dibenzofuran                | ND          | 10               |                   |                     |                 |           |          |      |
| 1,2-Dichlorobenzene         | ND          | 10               |                   |                     |                 |           |          |      |
| 1,3-Dichlorobenzene         | ND          | 10               |                   |                     |                 |           |          |      |
| 1,4-Dichlorobenzene         | ND          | 10               |                   |                     |                 |           |          |      |
| 3,3'-Dichlorobenzidine      | ND          | 10               |                   |                     |                 |           |          |      |
| Diethyl phthalate           | ND          | 10               |                   |                     |                 |           |          |      |
| Dimethyl phthalate          | ND          | 10               |                   |                     |                 |           |          |      |
| 2,4-Dichlorophenol          | ND          | 20               |                   |                     |                 |           |          |      |
| 2,4-Dimethylphenol          | ND          | 10               |                   |                     |                 |           |          |      |
| 4,6-Dinitro-2-methylphenol  | ND          | 20               |                   |                     |                 |           |          |      |
| 2,4-Dinitrophenol           | ND          | 20               |                   |                     |                 |           |          |      |
|                             |             |                  |                   |                     |                 |           |          |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range Е
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit 0
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded H
- ND Not Detected at the Reporting Limit

Reporting Detection Limit

- Sample pH greater than 2. P
- Page 10 of 17

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07 13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

| Sample ID mb-11420         | SampTy | pe: MBLK         | Test        | Code: EPA Method | 8270C: Semi | volatiles |          |      |
|----------------------------|--------|------------------|-------------|------------------|-------------|-----------|----------|------|
| Client ID: PBW             |        | ID: <b>11420</b> |             | unNo: 16402      |             |           |          |      |
| Prep Date: 1/27/2014       |        | te: 1/30/2014    |             | eqNo: 473422     | Units: µg/L |           |          |      |
| Analyte                    | Result | PQL SPK value    | SPK Ref Val | %REC LowLimit    | HighLimit   | %RPD      | RPDLimit | Qual |
| 2,4-Dinitrotoluene         | ND     | 10               |             |                  |             |           |          |      |
| 2,6-Dinitrotoluene         | ND     | 10               | •           |                  |             |           |          |      |
| Fluoranthene               | ND     | 10               |             |                  |             |           |          |      |
| Fluorene                   | ND     | 10               |             |                  |             |           |          |      |
| Hexachlorobenzene          | ND     | 10               |             |                  |             |           |          |      |
| Hexachlorobutadiene        | ND     | 10               |             |                  |             |           |          |      |
| Hexachlorocyclopentadiene  | ND     | 10               |             |                  |             |           |          |      |
| Hexachloroethane           | ND     | 10               |             |                  |             |           |          |      |
| Indeno(1,2,3-cd)pyrene     | ND     | 10               |             |                  |             |           |          |      |
| Isophorone                 | ND     | 10               |             |                  |             |           |          |      |
| 1-Methylnaphthalene        | ND     | 10               |             |                  |             |           |          |      |
| 2-Methylnaphthalene        | ND     | 10               |             |                  |             |           |          |      |
| 2-Methylphenol             | ND     | 10               |             |                  |             |           |          |      |
| 3+4-Methylphenol           | ND     | 10               |             |                  |             |           |          |      |
| N-Nitrosodi-n-propylamine  | ND     | 10               |             |                  |             |           |          |      |
| N-Nitrosodimethylamine     | ND     | 10               |             |                  |             |           |          |      |
| N-Nitrosodiphenylamine     | ND     | 10               |             | ,                |             |           |          |      |
| Naphthalene                | ND     | 10               |             |                  |             |           |          |      |
| 2-Nitroaniline             | ND     | 10               |             |                  |             |           |          |      |
| 3-Nitroaniline             | ND     | 10               |             |                  |             |           |          |      |
| 4-Nitroaniline             | ND     | 10               |             |                  |             |           |          |      |
| Nitrobenzene               | ND     | 10               |             |                  |             |           |          |      |
| 2-Nitrophenol              | ND     | 10               |             |                  |             |           |          |      |
| 4-Nitrophenol              | ND     | 10               |             |                  |             |           |          |      |
| Pentachlorophenol          | ND     | 20               |             |                  |             |           |          |      |
| Phenanthrene               | ND     | 10               |             |                  |             |           |          |      |
| Phenol                     | ND     | 10               |             |                  |             |           |          |      |
| Pyrene                     | ND     | 10               |             |                  |             |           |          |      |
| Pyridine                   | ND     | 10               |             |                  |             |           |          |      |
| 1,2,4-Trichlorobenzene     | ND     | 10               |             |                  |             |           |          |      |
| 2,4,5-Trichlorophenol      | ND     | 10               |             |                  |             |           |          |      |
| 2,4,6-Trichlorophenol      | ND .   | 10               |             |                  |             |           |          |      |
| Surr: 2-Fluorophenol       | 120    | 200.0            |             | 60.4 22.7        | 98          |           |          |      |
| Surr: Phenol-d5            | 91     | 200.0            |             | 45.4 23.4        | 74.9        |           |          |      |
| Surr: 2,4,6-Tribromophenol | 150    | 200.0            |             | 74.9 23.3        | 111         |           |          |      |
| Surr: Nitrobenzene-d5      | 81     | 100.0            |             | 80.7 36.8        | 111         |           |          |      |
| Surr: 2-Fluorobiphenyl     | 77     | 100.0            |             | 76.6 38.3        | 110         |           |          |      |
| Surr: 4-Terphenyl-d14      | 74     | 100.0            |             | 73.9 52.1        | 116         |           |          |      |
|                            | • •    | 100.0            |             | . 0.0            | 110         |           |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 11 of 17

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07

13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

| Sample ID Ics-11420                                                                                                                                                                                                                                          | SampT                                                                       | ype: LC          | s                                                                          | Test                | Code: El                                                                                 | PA Method                                                                                              | 8270C: Semi                                                                        | volatiles |                    |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------|--------------------|------|
| Client ID: LCSW                                                                                                                                                                                                                                              | Batch                                                                       | ı ID: 114        | <b>1</b> 20                                                                | R                   | unNo: 10                                                                                 | 6402                                                                                                   |                                                                                    |           |                    |      |
| Prep Date: 1/27/2014                                                                                                                                                                                                                                         | Analysis D                                                                  | ate: 1/          | 30/2014                                                                    | S                   | eqNo: 4                                                                                  | 73423                                                                                                  | Units: µg/L                                                                        |           |                    |      |
| Analyte                                                                                                                                                                                                                                                      | Result                                                                      | PQL              | SPK value                                                                  | SPK Ref Val         | %REC                                                                                     | LowLimit                                                                                               | HighLimit                                                                          | %RPD      | RPDLimit           | Qual |
| Acenaphthene                                                                                                                                                                                                                                                 | 72                                                                          | 10               | 100.0                                                                      | 0                   | 72.4                                                                                     | 48                                                                                                     | 101                                                                                |           |                    |      |
| 4-Chloro-3-methylphenol                                                                                                                                                                                                                                      | 130                                                                         | 10               | 200.0                                                                      | 0                   | 67.2                                                                                     | 47.9                                                                                                   | 109                                                                                |           |                    |      |
| 2-Chlorophenol                                                                                                                                                                                                                                               | 70                                                                          | 10               | 200.0                                                                      | 0                   | 35.0                                                                                     | 40                                                                                                     | 105                                                                                |           |                    | S    |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                          | 60                                                                          | 10               | 100.0                                                                      | 0                   | 60.3                                                                                     | 40.8                                                                                                   | 94.3                                                                               |           |                    |      |
| 2,4-Dinitrotoluene                                                                                                                                                                                                                                           | 63                                                                          | 10               | 100.0                                                                      | 0                   | 63.2                                                                                     | 28.3                                                                                                   | 131                                                                                |           |                    |      |
| N-Nitrosodi-n-propylamine                                                                                                                                                                                                                                    | 80                                                                          | 10               | 100.0                                                                      | 0                   | 79.7                                                                                     | 46.2                                                                                                   | 119                                                                                |           |                    |      |
| -Nitrophenol                                                                                                                                                                                                                                                 | 16                                                                          | 10               | 200.0                                                                      | 0                   | 8.02                                                                                     | 10.5                                                                                                   | 67.9                                                                               |           |                    | S    |
| Pentachiorophenol                                                                                                                                                                                                                                            | 31                                                                          | 20               | 200.0                                                                      | 0                   | 15.5                                                                                     | 22.4                                                                                                   | 81.1                                                                               |           |                    | S    |
| Phenol                                                                                                                                                                                                                                                       | 67                                                                          | 10               | 200.0                                                                      | 0                   | 33.4                                                                                     | 21.4                                                                                                   | 72.9                                                                               |           |                    |      |
| Ругепе                                                                                                                                                                                                                                                       | 66                                                                          | 10               | 100.0                                                                      | 0                   | 65.9                                                                                     | 46.9                                                                                                   | 109                                                                                |           |                    |      |
| ,2,4-Trichlorobenzene                                                                                                                                                                                                                                        | 68                                                                          | 10               | 100.0                                                                      | 0                   | 67.8                                                                                     | 43.1                                                                                                   | 98.4                                                                               |           |                    |      |
| Surr: 2-Fluorophenol                                                                                                                                                                                                                                         | 36                                                                          |                  | 200.0                                                                      |                     | 18.0                                                                                     | 22.7                                                                                                   | 98                                                                                 |           |                    | S    |
| Surr: Phenol-d5                                                                                                                                                                                                                                              | 65                                                                          |                  | 200.0                                                                      |                     | 32.3                                                                                     | 23.4                                                                                                   | 74.9                                                                               |           |                    |      |
| Surr: 2,4,6-Tribromophenol                                                                                                                                                                                                                                   | 72                                                                          |                  | 200.0                                                                      |                     | 36.2                                                                                     | 23.3                                                                                                   | 111                                                                                |           |                    |      |
| Surr: Nitrobenzene-d5                                                                                                                                                                                                                                        | 74                                                                          |                  | 100.0                                                                      |                     | 73.5                                                                                     | 36.8                                                                                                   | 111                                                                                |           |                    |      |
| Surr: 2-Fluorobiphenyl                                                                                                                                                                                                                                       | 74                                                                          |                  | 100.0                                                                      |                     | 73.9                                                                                     | 38.3                                                                                                   | 110                                                                                |           |                    |      |
| Surr: 4-Terphenyl-d14                                                                                                                                                                                                                                        | 80                                                                          |                  | 100.0                                                                      |                     | 80.0                                                                                     | 52.1                                                                                                   | 116                                                                                |           |                    |      |
| Sample ID mb-11513                                                                                                                                                                                                                                           | SampT                                                                       | ype: MB          | LK                                                                         | Test                | Code: EF                                                                                 | PA Method                                                                                              | 8270C: Semi                                                                        | volatiles |                    |      |
| Client ID: PBW                                                                                                                                                                                                                                               | Batch                                                                       | ID: 115          | 513                                                                        | R                   | unNo: 16                                                                                 | 6496                                                                                                   |                                                                                    |           |                    |      |
|                                                                                                                                                                                                                                                              |                                                                             |                  |                                                                            |                     |                                                                                          |                                                                                                        |                                                                                    |           |                    |      |
| Prep Date: 1/31/2014                                                                                                                                                                                                                                         | Analysis D                                                                  | ate: 2/3         | 3/2014                                                                     | S                   | eqNo: 47                                                                                 | 75097                                                                                                  | Units: %REC                                                                        |           |                    |      |
| •                                                                                                                                                                                                                                                            | Analysis D<br>Result                                                        | ate: <b>2/</b> 3 |                                                                            | S<br>SPK Ref Val    | eqNo: <b>4</b> 7                                                                         | 75097<br>LowLimit                                                                                      | Units: %REG                                                                        | %RPD      | RPDLimit           | Qual |
| •                                                                                                                                                                                                                                                            | -                                                                           |                  |                                                                            |                     | •                                                                                        |                                                                                                        |                                                                                    |           | RPDLimit           | Qual |
| Analyte                                                                                                                                                                                                                                                      | Result                                                                      |                  | SPK value                                                                  |                     | %REC                                                                                     | LowLimit                                                                                               | HighLimit                                                                          |           | RPDLimit           | Qual |
| Analyte<br>Surr: 2-Fluorophenol                                                                                                                                                                                                                              | Result<br>110                                                               |                  | SPK value<br>200.0                                                         |                     | %REC<br>54.9                                                                             | LowLimit<br>22.7                                                                                       | HighLimit<br>98                                                                    |           | RPDLimit           | Qual |
| Analyte Surr: 2-Fluorophenol Surr: Phenol-d5                                                                                                                                                                                                                 | Result<br>110<br>93                                                         |                  | SPK value<br>200.0<br>200.0                                                |                     | %REC<br>54.9<br>46.5                                                                     | LowLimit 22.7 23.4                                                                                     | HighLimit<br>98<br>74.9                                                            |           | RPDLimit           | Qual |
| Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol                                                                                                                                                                                      | Result<br>110<br>93<br>130                                                  |                  | SPK value<br>200.0<br>200.0<br>200.0                                       |                     | %REC<br>54.9<br>46.5<br>65.6                                                             | 22.7<br>23.4<br>23.3                                                                                   | HighLimit<br>98<br>74.9<br>111                                                     |           | RPDLimit           | Qual |
| Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5                                                                                                                                                                | Result 110 93 130 77                                                        |                  | SPK value<br>200.0<br>200.0<br>200.0<br>100.0                              |                     | %REC<br>54.9<br>46.5<br>65.6<br>77.3                                                     | 22.7<br>23.4<br>23.3<br>36.8                                                                           | HighLimit<br>98<br>74.9<br>111<br>111                                              |           | RPDLimit           | Qual |
| Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl                                                                                                                                         | Result 110 93 130 77 71 72                                                  |                  | SPK value<br>200.0<br>200.0<br>200.0<br>100.0<br>100.0                     | SPK Ref Val         | %REC<br>54.9<br>46.5<br>65.6<br>77.3<br>70.6<br>71.6                                     | 22.7<br>23.4<br>23.3<br>36.8<br>38.3<br>52.1                                                           | 98<br>74.9<br>111<br>111<br>110                                                    | %RPD      | RPDLimit           | Qual |
| Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14                                                                                                                   | Result  110 93 130 77 71 72  SampT                                          | PQL              | SPK value<br>200.0<br>200.0<br>200.0<br>100.0<br>100.0<br>100.0            | SPK Ref Val         | %REC<br>54.9<br>46.5<br>65.6<br>77.3<br>70.6<br>71.6                                     | 22.7<br>23.4<br>23.3<br>36.8<br>38.3<br>52.1                                                           | HighLimit  98  74.9  111  111  110  116                                            | %RPD      | RPDLimit           | Qual |
| Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513                                                                                               | Result  110 93 130 77 71 72  SampT                                          | PQL<br>ype: LC:  | SPK value 200.0 200.0 200.0 100.0 100.0 58                                 | SPK Ref Val         | %REC<br>54.9<br>46.5<br>65.6<br>77.3<br>70.6<br>71.6                                     | 22.7<br>23.4<br>23.3<br>36.8<br>38.3<br>52.1                                                           | HighLimit  98  74.9  111  111  110  116                                            | %RPD      | RPDLimit           | Qual |
| Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14  Sample ID Ics-11513 Client ID: LCSW                                                                              | Result 110 93 130 77 71 72 SampT Batch                                      | PQL<br>ype: LC:  | SPK value 200.0 200.0 200.0 100.0 100.0 100.0 \$ \$513 3/2014              | SPK Ref Val         | %REC<br>54.9<br>46.5<br>65.6<br>77.3<br>70.6<br>71.6<br>Code: EF                         | 22.7<br>23.4<br>23.3<br>36.8<br>38.3<br>52.1                                                           | HighLimit  98  74.9  111  111  110  116  8270C: Semin                              | %RPD      | RPDLimit  RPDLimit | Qual |
| Analyte  Sur: 2-Fluorophenol  Surr: Phenol-d5  Surr: 2,4,6-Tribromophenol  Surr: Nitrobenzene-d5  Surr: 2-Fluorobiphenyl  Surr: 4-Terphenyl-d14  Sample ID Ics-11513  Client ID: LCSW  Prep Date: 1/31/2014                                                  | Result  110 93 130 77 71 72  SampT Batch Analysis D                         | ype: LC:         | SPK value 200.0 200.0 200.0 100.0 100.0 100.0 \$ \$513 3/2014              | SPK Ref Val  Test R | %REC<br>54.9<br>46.5<br>65.6<br>77.3<br>70.6<br>71.6<br>Code: EF<br>unNo: 18             | 22.7<br>23.4<br>23.3<br>36.8<br>38.3<br>52.1<br>PA Method<br>6496<br>75098                             | HighLimit  98  74.9  111  111  110  116  8270C: Semin                              | %RPD      |                    |      |
| Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14  Sample ID Ics-11513 Client ID: LCSW Prep Date: 1/31/2014  Analyte                                                | Result  110 93 130 77 71 72  SampT Batch Analysis D Result                  | ype: LC:         | SPK value 200.0 200.0 200.0 100.0 100.0 5 513 8/2014 SPK value             | SPK Ref Val  Test R | %REC<br>54.9<br>46.5<br>65.6<br>77.3<br>70.6<br>71.6<br>Code: EF<br>unNo: 16<br>eqNo: 47 | LowLimit 22.7 23.4 23.3 36.8 38.3 52.1  PA Method 6496 75098 LowLimit                                  | HighLimit  98  74.9  111  111  110  116  8270C: Semin                              | %RPD      |                    |      |
| Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14  Sample ID Ics-11513 Client ID: LCSW Prep Date: 1/31/2014  Analyte Surr: 2-Fluorophenol                           | Result  110 93 130 77 71 72  SampT Batch Analysis D Result 100              | ype: LC:         | SPK value 200.0 200.0 200.0 100.0 100.0 100.0 S 513 3/2014 SPK value 200.0 | SPK Ref Val  Test R | %REC 54.9 46.5 65.6 77.3 70.6 71.6  Code: EF unNo: 18 eqNo: 47 %REC 49.8                 | LowLimit 22.7 23.4 23.3 36.8 38.3 52.1  PA Method 6496 75098 LowLimit 22.7                             | HighLimit  98  74.9  111  111  110  116  8270C: Semin  Units: %REC                 | %RPD      |                    |      |
| Analyte  Surr: 2-Fluorophenol  Surr: Phenol-d5  Surr: 2,4,6-Tribromophenol  Surr: Nitrobenzene-d5  Surr: 2-Fluorobiphenyl  Surr: 4-Terphenyl-d14  Sample ID Ics-11513  Client ID: LCSW  Prep Date: 1/31/2014  Analyte  Surr: 2-Fluorophenol  Surr: Phenol-d5 | Result  110  93  130  77  71  72  SampT  Batch  Analysis D  Result  100  85 | ype: LC:         | SPK value 200.0 200.0 200.0 100.0 100.0 5 3/2014 SPK value 200.0 200.0     | SPK Ref Val  Test R | %REC 54.9 46.5 65.6 77.3 70.6 71.6 Code: EF unNo: 16 eqNo: 47 %REC 49.8 42.3             | 22.7<br>23.4<br>23.3<br>36.8<br>38.3<br>52.1<br>2A Method<br>6496<br>75098<br>LowLimit<br>22.7<br>23.4 | HighLimit  98  74.9  111  110  116  8270C: Semiv  Units: %REC  HighLimit  98  74.9 | %RPD      |                    |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range E
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit O
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded H
- Not Detected at the Reporting Limit ND

Reporting Detection Limit

- Sample pH greater than 2.

Page 12 of 17

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07

13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

Sample ID Ics-11513

SampType: LCS

TestCode: EPA Method 8270C: Semivolatiles

Client ID: LCSW

Prep Date: 1/31/2014

RunNo: 16496

Batch ID: 11513

Units: %REC

HighLimit

Analyte

Analysis Date: 2/3/2014 SPK value SPK Ref Val

SampType: LCSD

SeqNo: 475098

**RPDLimit** 

Qual

Surr: 4-Terphenyl-d14

Result

100.0

52.1

116

%RPD

61

%REC 61.4

TestCode: EPA Method 8270C: Semivolatiles

LowLimit

| Sample ID  | lcsd-11513 |
|------------|------------|
| Client ID: | LCSS02     |
| n          |            |

Batch ID: 11513

RunNo: 16496

| Prep Date: 1/31/2014       | Analysis D | ate: 2/ | 3/2014    | S           | SeqNo: 4 | 75099    | Units: %RE | C    |          |      |
|----------------------------|------------|---------|-----------|-------------|----------|----------|------------|------|----------|------|
| Analyte                    | Result     | PQL     | SPK value | SPK Ref Val | %REC     | LowLimit | HighLimit  | %RPD | RPDLimit | Qual |
| Surr: 2-Fluorophenol       | 110        |         | 200.0     | *****       | 54.1     | 22.7     | 98         | 0    | 0        |      |
| Surr: Phenol-d5            | 90         |         | 200.0     |             | 44.9     | 23.4     | 74.9       | 0    | 0        |      |
| Surr: 2,4,6-Tribromophenol | 160        |         | 200.0     |             | 79.0     | 23.3     | 111        | 0    | 0        |      |
| Surr: Nitrobenzene-d5      | 89         |         | 100.0     |             | 88.8     | 36.8     | 111        | 0    | 0        |      |
| Surr: 2-Fluorobiphenyl     | 83         |         | 100.0     |             | 83.1     | 38.3     | 110        | 0    | 0        |      |
| Surr: 4-Terphenyl-d14      | 70         |         | 100.0     |             | 70.1     | 52.1     | 116        | 0    | 0        |      |

#### Qualifiers:

Value exceeds Maximum Contaminant Level.

Value above quantitation range Ε

Analyte detected below quantitation limits

0 RSD is greater than RSDlimit

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 13 of 17

Sample pH greater than 2. Reporting Detection Limit

#### Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07

13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

Sample ID MB-11463

SampType: MBLK

TestCode: EPA Method 7470: Mercury

Client ID: PBW Batch ID: 11463

RunNo: 16401

SPK value SPK Ref Val %REC LowLimit

Units: mg/L

Prep Date: Analyte

Client ID:

Client ID:

Prep Date:

Client ID:

Prep Date: 1/29/2014

Analysis Date: 1/30/2014 **PQL** 

SegNo: 473049

HighLimit

%RPD RPDLimit

Qual

Mercury

ND 0.00020

Sample ID LCS-11463

Prep Date: 1/29/2014

LCSW

SampType: LCS

Batch ID: 11463 Analysis Date: 1/30/2014

RunNo: 16401 SeqNo: 473050

Units: mg/L

Analyte

**PQL** 

0.0047

Result

0.0046

0.0045

SPK value SPK Ref Val %REC

94.3

LowLimit

TestCode: EPA Method 7470: Mercury

HighLimit 120 %RPD **RPDLimit** 

Qual

Mercury

Sample ID 1401A07-001CMS

1/29/2014

SampType: MS

TestCode: EPA Method 7470: Mercury

Injection Well 1/29/2014

Batch ID: 11463

**PQL** 

0.0010

Batch ID: 11463

Analysis Date: 1/30/2014

0.00020

RunNo: 16401

Analyte

Analysis Date: 1/30/2014

0.005000

0.005000

0.005000

SeqNo: 473069 %REC

Units: mg/L HighLimit

**RPDLimit** %RPD

Qual

Mercury

Sample 1D 1401A07-001CMSD

Injection Well

SampType: MSD

TestCode: EPA Method 7470: Mercury

SPK value SPK Ref Val

RunNo: 16401

90.1

LowLimit

Units: mg/L

125

**RPDLimit** Qual

Analyte Mercury

PQL SPK value SPK Ref Val 0.0010

%REC

SeqNo: 473070

LowLimit HighLimit

%RPD

1.02

20

Qualifiers:

S

Value exceeds Maximum Contaminant Level.

Value above quantitation range Ε

Analyte detected below quantitation limits

RSD is greater than RSDlimit 0

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

Sample pH greater than 2. P

Reporting Detection Limit

Page 14 of 17

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07

13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

| Sample ID MB-11432   | Samp     | Туре: М   | BLK       | Tes         | tCode: E | PA 6010B: | Total Recove | rable Met | als      |      |  |  |
|----------------------|----------|-----------|-----------|-------------|----------|-----------|--------------|-----------|----------|------|--|--|
| Client ID: PBW       | Bato     | ch ID: 11 | 432       | F           | RunNo: 1 | 6372      |              |           |          |      |  |  |
| Prep Date: 1/28/2014 | Analysis | Date: 1/  | 29/2014   | 8           | SeqNo: 4 | 72096     | Units: mg/L  |           |          |      |  |  |
| Analyte              | Result   | PQL.      | SPK value | SPK Ref Val | %REC     | LowLimit  | HighLimit    | %RPD      | RPDLimit | Qual |  |  |
| Arsenic              | ND       | 0.020     |           | -,          |          |           |              |           |          |      |  |  |
| Barium               | ND       | 0.020     |           |             |          |           |              |           |          |      |  |  |
| Cadmium              | ND       | 0.0020    |           |             |          |           |              |           |          |      |  |  |
| Calcium              | ND       | 1.0       |           |             |          |           |              |           |          |      |  |  |
| Chromium             | ND       | 0.0060    |           |             |          |           |              |           |          |      |  |  |
| Lead                 | ND       | 0.0050    |           |             |          |           |              |           |          |      |  |  |
| Magnesium            | ND       | 1.0       |           |             |          |           |              |           |          |      |  |  |
| Potassium            | ND       | 1.0       |           |             |          |           |              |           |          |      |  |  |
| Selenium             | ND       | 0.050     |           |             |          |           |              |           |          |      |  |  |
| Silver               | ND       | 0.0050    |           |             |          |           |              |           |          |      |  |  |
| Sodium               | ND       | 1.0       |           |             |          |           |              |           |          |      |  |  |

| Sample ID LCS-11432  | SampT      | Type: LC  | S         | Tes         | Code: El | PA 6010B: | Total Recover | able Meta | als      |      |
|----------------------|------------|-----------|-----------|-------------|----------|-----------|---------------|-----------|----------|------|
| Client ID: LCSW      | Batch      | h ID: 114 | 432       | F           | tunNo: 1 | 6372      |               |           |          |      |
| Prep Date: 1/28/2014 | Analysis D | Date: 1/  | 29/2014   | S           | eqNo: 4  | 72097     | Units: mg/L   |           |          |      |
| Analyte              | Result     | PQL       | SPK value | SPK Ref Val | %REC     | LowLimit  | HighLimit     | %RPD      | RPDLimit | Qual |
| Arsenic              | 0.43       | 0.020     | 0.5000    | 0           | 85.6     | 80        | 120           |           |          |      |
| Barium               | 0.43       | 0.020     | 0.5000    | 0           | 85.5     | 80        | 120           |           |          |      |
| Cadmium              | 0.42       | 0.0020    | 0.5000    | 0           | 84.3     | 80        | 120           |           |          |      |
| Calcium              | 45         | 1.0       | 50.00     | 0           | 89.1     | 80        | 120           |           |          |      |
| Chromium             | 0.43       | 0.0060    | 0.5000    | 0           | 85.3     | 80        | 120           |           |          |      |
| Lead                 | 0.42       | 0.0050    | 0.5000    | 0           | 84.4     | 80        | 120           |           |          |      |
| Magnesium            | 45         | 1.0       | 50.00     | 0           | 90.0     | 80        | 120           |           |          |      |
| Potassium            | 44         | 1.0       | 50.00     | 0           | 88.6     | 80        | 120           |           |          |      |
| Selenium             | 0.42       | 0.050     | 0.5000    | 0           | 83.4     | 80        | 120           |           |          |      |
| Silver               | 0.089      | 0.0050    | 0.1000    | 0           | 88.7     | 80        | 120           |           |          |      |
| Sodium               | 45         | 1.0       | 50.00     | 0           | 89.3     | 80        | 120           |           |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 15 of 17

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07 13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

Sample ID mb-1

SampType: MBLK

TestCode: SM2320B: Alkalinity

Client ID: PBW

Batch ID: R16304

**PQL** 

**PQL** 

RunNo: 16304

HighLimit

Units: mg/L CaCO3

Prep Date:

Result

Analysis Date: 1/24/2014

SeqNo: 470197

%RPD

**RPDLimit** Qual

Analyte Total Alkalinity (as CaCO3)

20

Sample ID Ics-1 Client ID: LCSW SampType: LCS Batch ID: R16304

TestCode: SM2320B: Alkalinity

RunNo: 16304

Prep Date:

Analysis Date: 1/24/2014

SeqNo: 470198

Units: mg/L CaCO3

Analyte

**RPDLimit** Qual

Result 82

20

0

103

%RPD

Total Alkalinity (as CaCO3)

80.00

SPK value SPK Ref Val %REC LowLimit

LowLimit

HighLimit

SPK value SPK Ref Val %REC

110

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

Analyte detected below quantitation limits J

RSD is greater than RSDlimit 0

RPD outside accepted recovery limits R

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Η

Not Detected at the Reporting Limit ND

Sample pH greater than 2.

Reporting Detection Limit

Page 16 of 17

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07 13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Analyte

Injection Well 1-23-2014

Sample ID MB-11406

SampType: MBLK

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW

Batch ID: 11406

Result

RunNo: 16349

Prep Date: 1/27/2014

Analysis Date: 1/28/2014

**PQL** 

SeqNo: 471302

Units: mg/L HighLimit

%RPD **RPDLimit** 

Qual

Total Dissolved Solids

ND 20.0

Sample ID LCS-11406

LCSW

SampType: LCS Batch ID: 11406

RunNo: 16349

Prep Date: 1/27/2014

Analysis Date: 1/28/2014

SeqNo: 471303 %REC

Units: mg/L

%RPD **RPDLimit** 

Qual

Total Dissolved Solids

20.0

**PQL** 

1000

SPK value SPK Ref Val

101

TestCode: SM2540C MOD: Total Dissolved Solids

LowLimit

120

Analyte

Client ID:

Result 1010

0

SPK value SPK Ref Val %REC LowLimit

HighLimit

Qualifiers:

Value exceeds Maximum Contaminant Level.

Spike Recovery outside accepted recovery limits

Value above quantitation range E

Analyte detected below quantitation limits

0 RSD is greater than RSDlimit

R RPD outside accepted recovery limits В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Sample pH greater than 2.

RLReporting Detection Limit Page 17 of 17



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

### Sample Log-In Check List

| Client Name: Western Refining Southw Work Order Nun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nber: 1401A07                   |                                        | RcptNo:                    |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------|----------------------------|------------------|
| Received by/date: LM GIQ4/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 | • • •                                  |                            |                  |
| Logged By: Michelie Garcla 1/24/2014 10:15:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O AM                            | Michael Gan                            | uie                        |                  |
| Completed By: Michelle Garcia 1/24/2014 12:54:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 PM                            | Mitall Gon                             |                            |                  |
| Reviewed By: AT0//27/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | , , ,                                  |                            |                  |
| Chain of Custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                                        |                            |                  |
| 1 Custody seals intact on sample bottles?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes i. i                        | No i                                   | Not Present                |                  |
| 2. Is Chain of Custody complete?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yes 🟏                           | No :                                   | Not Present                |                  |
| 3. How was the sample delivered?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Courier                         |                                        |                            |                  |
| Log In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                                        |                            |                  |
| 4. Was an attempt made to cool the samples?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes 🗹                           | No 🗆                                   | na 🗆                       |                  |
| 5. Were all samples received at a temperature of >0° C to 6.0°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes 🔽                           | No 🗆                                   | na 🗆                       |                  |
| 6. Sample(s) in proper container(s)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes 🗹                           | No 🖂                                   |                            |                  |
| 7. Sufficient sample volume for indicated test(s)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes 🔀                           | No 🗔                                   |                            |                  |
| 8. Are samples (except VOA and ONG) properly preserved?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes 🗹                           | No []                                  |                            |                  |
| 9. Was preservative added to bottles?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes 🗌                           | No 🗹                                   | na 🗆                       |                  |
| 10.VOA vials have zero headspace?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes 🗹                           | No 🗆                                   | No VOA Vials               |                  |
| 11. Were any sample containers received broken?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                             | No 🗹                                   | # of preserved             | _                |
| 12. Does paperwork match bottle labels?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes 🗹                           | No 🗆                                   | bottles checked<br>for pH: | 12 unless noted) |
| (Note discrepancies on chain of custody) 13. Are matrices correctly identified on Chain of Custody?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes 🗸                           | No 🗀                                   | Adjusted                   | 00               |
| 14. Is it clear what analyses were requested?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes 🗹                           | No 🗔                                   |                            |                  |
| 15. Were all holding times able to be met? (If no, notify customer for authorization.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes 🗹                           | No 🗌                                   | Checked by:                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                        |                            |                  |
| Special Handling (If applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                               |                                        |                            |                  |
| 16. Was client notified of all discrepancies with this order?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes 🗌                           | No 🗆                                   | NA 🗹                       |                  |
| Person Notified: Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | te:                             |                                        |                            |                  |
| By Whom: Via                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a: [ˈeMail [ˈ]F                 | hone [ ] Fax                           | in Person                  |                  |
| Regarding:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | فمع معاملها مع إنها معاما              |                            |                  |
| Client Instructions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | ······································ | <u></u>                    |                  |
| 17. Additional remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                        |                            |                  |
| 18. Cooler Information    President Security Production   President Security   President Secu | اد التارات در روههودهیپرو را رز | المراضعاتون ووطيع                      |                            |                  |
| Goder No Temp C Condition Seal Intact Seal No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Seal Date                       | Signed By                              |                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                        |                            |                  |

|                         | ANALYSTS LABORATORY      | www hallanvironmental com    | 4901 Hawkins NE - Albuquerque, NM 87109 | Tel. 505-345-3975 Fax 505-345-4107 | ınal                  | (*0              | 904,80<br>S)<br>ack-up    | H) B3<br>SIM3, Mg,<br>IO <sub>2</sub> , F<br>II<br>IO <sub>2</sub> , F<br>II<br>IO <sub>2</sub> , F<br>II | 270<br>Ca<br>N <sub>16</sub> (<br>A)<br>(A) | tals to the second of the seco | FPH (Metho FDB (Metho ACRA 8 Met Acra 68310 o ACRA 8 Met Acra 68310 o | X                | ×                | ×                | ×                | ×                  | ×                | ×                | ×                |  |   |        | •                 |                            | if necessary, samples submitted to Hall Environmental may be subcontracted to other advertible aboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report. |
|-------------------------|--------------------------|------------------------------|-----------------------------------------|------------------------------------|-----------------------|------------------|---------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|--------------------|------------------|------------------|------------------|--|---|--------|-------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                          |                              | 301 Hav                                 | el. 505                            |                       |                  | JW / O                    | <b>PG</b>                                                                                                 | 0                                           | 19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 83108 Hq1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                  | ×                |                  |                    |                  |                  |                  |  |   |        | .;<br>::          |                            | . Any sub                                                                                                                                                                                                                        |
|                         |                          |                              | 4                                       | μ.                                 |                       | _                |                           |                                                                                                           |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ITM + X3T8<br>ITM + X3T8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                | $\vdash$         | -                | _                |                    | -                |                  |                  |  | + | -      | Remarks:          |                            | possibility                                                                                                                                                                                                                      |
|                         | 48                       | n Well                       | 4100                                    |                                    |                       |                  |                           |                                                                                                           | No.                                         | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HEAL No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -001             | 1001             | 1001             | 180              | 1001               | 100              | 100-             | ·                |  |   |        | Date Time    <br> | ON CANATION                | ories. This serves as nolice of this                                                                                                                                                                                             |
| Time:                   | □ Rush                   | : Injectic                   | 1.23                                    |                                    |                       | ger:             |                           | 76                                                                                                        | N/es                                        | erature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Preservativ<br>e Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 豆                | Amber            | Amber            | Amber            | H <sub>2</sub> SO₄ | FONH.            | Na OH            | Zn Acutate       |  |   |        | c lace            | . V                        | dredited laborat                                                                                                                                                                                                                 |
| Turn-Around Time:       | X Standard               | Project Name: Injection Well |                                         | Project #:                         |                       | Project Manager: |                           | Sampler (7)                                                                                               | On Ice:                                     | Sample Temperature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Container<br>Type and #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5-VOA            | 1 - liter        | 1-500 ml         | 1-500 ml         | 1-250 ml           | 1-500 ml         | 1-500 ml         | 1-500 mt         |  |   |        | Medical by        | Received by:               | ontracted to other ac                                                                                                                                                                                                            |
| Chain-of-Custody Record | ning                     |                              | 50 CR 4990                              | Bloomfield, NM 87413               | 35                    |                  | See   A (Full Validation) |                                                                                                           |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Request ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Injection Well     | Injection Well   | Injection Well   | Injection Well   |  |   |        | of Kralen         | Mistry North               | nitted to Hall Environmental may be subx                                                                                                                                                                                         |
| of-Cu                   | n Refii                  |                              | 50 CF                                   | field, N                           | 32-41                 |                  | L                         | J                                                                                                         |                                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H <sub>2</sub> 0   | H <sub>2</sub> 0 | H <sub>2</sub> 0 | H <sub>2</sub> 0 |  |   |        | Notification by   | Relinquished by:  Mischary | rmples subr                                                                                                                                                                                                                      |
| hain-                   | Nester                   |                              | Mailing Address:                        | Bloom                              | Phone #: 505-632-4135 | Fax#:            | ackage:                   | 3                                                                                                         | (Type)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8:35 H20         |                  |                  |                  |                    |                  |                  | -                |  |   | -1     |                   | T S                        | ecessary, st                                                                                                                                                                                                                     |
| .ਹ                      | Client: Western Refining |                              | Mailing /                               |                                    | Phone #               | email or Fax#:   | QA/QC Package:            | Other                                                                                                     | X EDD (Type)                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-33-4           | -                |                  | -                |                    |                  |                  | -                |  |   | $\neg$ | -                 | 1 23 14                    | <u>≠</u>                                                                                                                                                                                                                         |



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 1407D12

August 15, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4166 FAX (505) 632-3911

RE: Injection Well 7-28-14 3rd QTR

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 7/29/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <a href="www.hallenvironmental.com">www.hallenvironmental.com</a> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1407D12

### Hall Environmental Analysis Laboratory, Inc. Date Reported: 8/15/2014

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

 Project:
 Injection Well 7-28-14 3rd QTR
 Collection Date: 7/28/2014 9:30:00 AM

 Lab ID:
 1407D12-001
 Matrix: AQUEOUS
 Received Date: 7/29/2014 7:55:00 AM

| Analyses                      | Result | RL (    | Qual Units | DF | Date Analyzed        | Batch  |
|-------------------------------|--------|---------|------------|----|----------------------|--------|
| EPA METHOD 300.0: ANIONS      |        |         |            |    | Analyst              | : LGP  |
| Chloride                      | 510    | 25      | mg/L       | 50 | 8/4/2014 5:04:09 PM  | R20363 |
| Sulfate                       | 41     | 2.5     | mg/L       | 5  | 7/29/2014 4:17:43 PM | R20236 |
| EPA METHOD 7470: MERCURY      |        |         |            |    | Analyst              | : MMD  |
| Mercury                       | ND     | 0.00020 | mg/L       | 1  | 8/4/2014 2:43:32 PM  | 14571  |
| EPA 6010B: TOTAL RECOVERABLE  | METALS |         |            |    | Analyst              | : ELS  |
| Arsenic                       | ND     | 0.020   | mg/L       | 1  | 8/2/2014 2:09:02 PM  | 14549  |
| Barium                        | 0.63   | 0.020   | mg/L       | 1  | 8/2/2014 2:09:02 PM  | 14549  |
| Cadmium                       | ND     | 0.0020  | mg/L       | 1  | 8/2/2014 2:09:02 PM  | 14549  |
| Calcium                       | 480    | 5.0     | mg/L       | 5  | 8/2/2014 2:10:49 PM  | 14549  |
| Chromium                      | ND     | 0.0060  | mg/L       | 1  | 8/2/2014 2:09:02 PM  | 14549  |
| Lead                          | ND     | 0.0050  | mg/L       | 1  | 8/2/2014 2:09:02 PM  | 14549  |
| Magnesium                     | 99     | 1.0     | mg/L       | 1  | 8/2/2014 2:09:02 PM  | 14549  |
| Potassium                     | 36     | 1.0     | mg/L       | 1  | 8/2/2014 2:09:02 PM  | 14549  |
| Selenium                      | ND     | 0.050   | mg/L       | 1  | 8/2/2014 2:09:02 PM  | 14549  |
| Silver                        | ND     | 0.0050  | mg/L       | 1  | 8/2/2014 2:09:02 PM  | 14549  |
| Sodium                        | 1100   | 20      | mg/L       | 20 | 8/2/2014 3:24:50 PM  | 14549  |
| EPA METHOD 8270C: SEMIVOLATIL | .ES    |         |            |    | Analyst              | DAM    |
| Acenaphthene                  | ND     | 100     | μg/L       | 1  | 7/31/2014 8:37:47 PM | 14520  |
| Acenaphthylene                | ND     | 100     | μg/L       | 1  | 7/31/2014 8:37:47 PM | 14520  |
| Aniline                       | ND     | 100     | μg/L       | 1  | 7/31/2014 8:37:47 PM | 14520  |
| Anthracene                    | ND     | 100     | μg/L       | 1  | 7/31/2014 8:37:47 PM | 14520  |
| Azobenzene                    | ND     | 100     | μg/L       | 1  | 7/31/2014 8:37:47 PM | 14520  |
| Benz(a)anthracene             | ND     | 100     | μg/L       | 1  | 7/31/2014 8:37:47 PM | 14520  |
| Benzo(a)pyrene                | ND     | 100     | μg/L       | 1  | 7/31/2014 8:37:47 PM | 14520  |
| Benzo(b)fluoranthene          | ND     | 100     | μg/L       | 1  | 7/31/2014 8:37:47 PM | 14520  |
| Benzo(g,h,i)perylene          | ND     | 100     | μg/L       | 1  | 7/31/2014 8:37:47 PM | 14520  |
| Benzo(k)fluoranthene          | ND     | 100     | μg/L       | 1  | 7/31/2014 8:37:47 PM | 14520  |
| Benzoic acid                  | ND     | 200     | μg/L       | 1  | 7/31/2014 8:37:47 PM | 14520  |
| Benzyl alcohol                | ND     | 100     | μg/L       | 1  | 7/31/2014 8:37:47 PM | 14520  |
| Bis(2-chloroethoxy)methane    | ND     | 100     | μg/L       | 1  | 7/31/2014 8:37:47 PM | 14520  |
| Bis(2-chloroethyl)ether       | ND     | 100     | μg/L       | 1  | 7/31/2014 8:37:47 PM | 14520  |
| Bis(2-chloroisopropyl)ether   | ND     | 100     | μg/L       | 1  | 7/31/2014 8:37:47 PM | 14520  |
| Bis(2-ethylhexyl)phthalate    | ND     | 100     | μg/L       | 1  | 7/31/2014 8:37:47 PM | 14520  |
| 4-Bromophenyl phenyl ether    | ND     | 100     | μg/L       | 1  | 7/31/2014 8:37:47 PM | 14520  |
| Butyl benzyl phthalate        | ND     | 100     | μg/L       | 1  | 7/31/2014 8:37:47 PM | 14520  |
| Carbazole                     | ND     | 100     | μg/L       | 1  | 7/31/2014 8:37:47 PM | 14520  |
| 4-Chloro-3-methylphenol       | ND     | 100     | μg/L       | 1  | 7/31/2014 8:37:47 PM | 14520  |
| 4-Chloroaniline               | ND     | 100     | μg/L       | 1  | 7/31/2014 8:37:47 PM | 14520  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 20

- P Sample pH greater than 2.
- RL Reporting Detection Limit

#### Lab Order 1407D12

Date Reported: 8/15/2014

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

Project: Injection Well 7-28-14 3rd QTR Collection Date: 7/28/2014 9:30:00 AM

Lab ID: 1407D12-001 Matrix: AQUEOUS Received Date: 7/29/2014 7:55:00 AM

| Analyses                    | Result | RL Qu | al Units | DF | Date Analyzed        | Batch |
|-----------------------------|--------|-------|----------|----|----------------------|-------|
| EPA METHOD 8270C: SEMIVOLA  | ATILES |       | <u> </u> |    | Analyst              | : DAM |
| 2-Chloronaphthalene         | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 2-Chlorophenol              | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 4-Chiorophenyl phenyl ether | ND     | 100   | μg/L.    | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Chrysene                    | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Di-n-butyl phthalate        | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Di-n-octyl phthalate        | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Dibenz(a,h)anthracene       | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Dibenzofuran                | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 1,2-Dichlorobenzene         | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 1,3-Dichlorobenzene         | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 1,4-Dichlorobenzene         | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 3,3'-Dichlorobenzidine      | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Diethyl phthalate           | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Dimethyl phthalate          | ND     | 100   | μg/L.    | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 2,4-Dichlorophenol          | ND     | 200   | μg/L.    | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 2,4-Dimethylphenol          | ND     | 100   | μg/L.    | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 4,6-Dinitro-2-methylphenol  | ND     | 200   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 2,4-Dinitrophenol           | ND     | 200   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 2,4-Dinitrotoluene          | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 2,6-Dinitrotoluene          | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Fluoranthene                | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Fluorene                    | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Hexachlorobenzene           | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Hexachlorobutadiene         | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Hexachlorocyclopentadiene   | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Hexachloroethane            | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Indeno(1,2,3-cd)pyrene      | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Isophorone                  | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 1-Methylnaphthalene         | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 2-Methylnaphthalene         | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 2-Methylphenol              | ND     | 200   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 3+4-Methylphenol            | 210    | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| N-Nitrosodi-n-propylamine   | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| N-Nitrosodimethylamine      | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| N-Nitrosodiphenylamine      | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Naphthalene                 | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 2-Nitroaniline              | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 3-Nitroaniline              | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 4-Nitroaniline              | ND     | 100   | μg/L     | 1  | 7/31/2014 8:37:47 PM | 14520 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 20

- P Sample pH greater than 2.
- RL Reporting Detection Limit

#### Lab Order 1407D12

Date Reported: 8/15/2014

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 7-28-14 3rd QTR

**Lab ID:** 1407D12-001

Client Sample ID: Injection Well

Collection Date: 7/28/2014 9:30:00 AM

Matrix: AQUEOUS Received Date: 7/29/2014 7:55:00 AM

| Analyses                       | Result | RL        | Qual | Units | DF | Date Analyzed        | Batch |
|--------------------------------|--------|-----------|------|-------|----|----------------------|-------|
| EPA METHOD 8270C: SEMIVOLAT    | ILES   |           |      |       |    | Analyst              | : DAM |
| Nitrobenzene                   | ND     | 100       |      | μg/L  | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 2-Nitrophenol                  | ND     | 100       |      | μg/L  | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 4-Nitrophenol                  | ND     | 100       |      | μg/L  | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Pentachlorophenol              | ND     | 200       |      | μg/L  | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Phenanthrene                   | ND     | 100       |      | μg/L  | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Phenol                         | ND     | 100       |      | μg/L  | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Pyrene                         | ND     | 100       |      | μg/L  | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Pyridine                       | ND     | 100       |      | μg/L  | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 1,2,4-Trichlorobenzene         | ND     | 100       |      | μg/L  | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 2,4,5-Trichlorophenol          | ND     | 100       |      | μg/L  | 1  | 7/31/2014 8:37:47 PM | 14520 |
| 2,4,6-Trichiorophenol          | ND     | 100       |      | μg/L  | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Surr: 2-Fluorophenol           | 0      | 12.1-85.8 | s    | %REC  | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Surr: Phenol-d5                | 0      | 17.7-65.8 | S    | %REC  | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Surr: 2,4,6-Tribromophenol     | 0      | 26-138    | S    | %REC  | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Surr: Nitrobenzene-d5          | 0      | 47.5-119  | S    | %REC  | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Surr: 2-Fluorobiphenyl         | 0      | 48.1-106  | S    | %REC  | 1  | 7/31/2014 8:37:47 PM | 14520 |
| Surr: 4-Terphenyl-d14          | 0      | 44-113    | s    | %REC  | 1  | 7/31/2014 8:37:47 PM | 14520 |
| EPA METHOD 8260B: VOLATILES    |        |           |      |       |    | Analyst              | DJF   |
| Benzene                        | ND     | 2.0       |      | μg/L  | 2  | 7/31/2014 1:41:17 PM | R2029 |
| Toluene                        | ND     | 2.0       |      | μg/L  | 2  | 7/31/2014 1:41:17 PM | R2029 |
| Ethylbenzene                   | ND     | 2.0       |      | μg/L  | 2  | 7/31/2014 1:41:17 PM | R2029 |
| Methyl tert-butyl ether (MTBE) | ND     | 2.0       |      | μg/L  | 2  | 7/31/2014 1:41:17 PM | R2029 |
| 1,2,4-Trimethylbenzene         | ND     | 2.0       |      | μg/L  | 2  | 7/31/2014 1:41:17 PM | R2029 |
| 1,3,5-Trimethylbenzene         | ND     | 2.0       |      | μg/L  | 2  | 7/31/2014 1:41:17 PM | R2029 |
| 1,2-Dichloroethane (EDC)       | ND     | 2.0       |      | μg/L  | 2  | 7/31/2014 1:41:17 PM | R2029 |
| 1,2-Dibromoethane (EDB)        | ND     | 2.0       |      | μg/L  | 2  | 7/31/2014 1:41:17 PM | R2029 |
| Naphthalene                    | ND     | 4.0       |      | μg/L  | 2  | 7/31/2014 1:41:17 PM | R2029 |
| 1-Methylnaphthalene            | ND     | 8.0       |      | μg/L  | 2  | 7/31/2014 1:41:17 PM | R2029 |
| 2-Methylnaphthalene            | ND     | 8.0       |      | μg/L  | 2  | 7/31/2014 1:41:17 PM | R2029 |
| Acetone                        | 85     | 20        |      | μg/L  | 2  | 7/31/2014 1:41:17 PM | R2029 |
| Bromobenzene                   | ND     | 2.0       |      | µg/L  | 2  | 7/31/2014 1:41:17 PM | R2029 |
| Bromodichloromethane           | ND     | 2:0       |      | μg/L  | 2  | 7/31/2014 1:41:17 PM | R2029 |
| Bromoform                      | ND     | 2.0       |      | μg/L  | 2  | 7/31/2014 1:41:17 PM | R2029 |
| Bromomethane                   | ND     | 6.0       |      | μg/L  | 2  | 7/31/2014 1:41:17 PM | R2029 |
| 2-Butanone                     | ND     | 20        |      | μg/L  | 2  | 7/31/2014 1:41:17 PM | R2029 |
| Carbon disulfide               | ND     | 20        |      | μg/L  | 2  | 7/31/2014 1:41:17 PM | R2029 |
| Carbon Tetrachloride           | ND     | 2.0       |      | μg/L  | 2  | 7/31/2014 1:41:17 PM | R2029 |
| Chlorobenzene                  | ND     | 2.0       |      | μg/L  | 2  | 7/31/2014 1:41:17 PM | R2029 |
| Chloroethane                   | ND     | 4.0       |      | μg/L  | 2  | 7/31/2014 1:41:17 PM | R2029 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 20

- P Sample pH greater than 2.
- RL Reporting Detection Limit

### Lab Order 1407D12

Date Reported: 8/15/2014

#### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Injection Well

 Project:
 Injection Well 7-28-14 3rd QTR
 Collection Date: 7/28/2014 9:30:00 AM

 Lab ID:
 1407D12-001
 Matrix: AQUEOUS
 Received Date: 7/29/2014 7:55:00 AM

Result **RL Qual Units DF** Date Analyzed Batch Analyses **EPA METHOD 8260B: VOLATILES** Analyst: DJF Chloroform ND 2.0 μg/L 2 7/31/2014 1:41:17 PM R20298 2 7/31/2014 1:41:17 PM R20298 Chloromethane ND 6.0 μg/L 2-Chlorotoluene 2.0 2 7/31/2014 1:41:17 PM R20298 ND μg/L 2 7/31/2014 1:41:17 PM R20298 4-Chlorotoluene ND 2.0 μg/L 2 R20298 cis-1,2-DCE ND 2.0 7/31/2014 1:41:17 PM μg/L cis-1,3-Dichloropropene ND 2.0 μg/L 2 7/31/2014 1:41:17 PM R20298 μg/L 1,2-Dibromo-3-chloropropane ND 4.0 2 7/31/2014 1:41:17 PM R20298 Dibromochloromethane ND 2.0 μg/L 2 7/31/2014 1:41:17 PM R20298 Dibromomethane ND 2.0 μg/L 2 7/31/2014 1:41:17 PM R20298 1,2-Dichlorobenzene ND 2.0 2 7/31/2014 1:41:17 PM R20298 μg/L 1,3-Dichlorobenzene ND 2.0 2 7/31/2014 1:41:17 PM R20298 μg/L 1,4-Dichlorobenzene ND 2.0 2 7/31/2014 1:41:17 PM R20298 μg/L 2.0 2 7/31/2014 1:41:17 PM R20298 Dichlorodifluoromethane ND μg/L 1.1-Dichloroethane ND 2.0 μg/L 2 7/31/2014 1:41:17 PM R20298 2 1,1-Dichloroethene ND 2.0 μg/L 7/31/2014 1:41:17 PM R20298 1,2-Dichloropropane ND 2.0 μg/L 2 7/31/2014 1:41:17 PM R20298 1,3-Dichloropropane ND 2.0 μg/L 2 7/31/2014 1:41:17 PM R20298 2,2-Dichloropropane ND 4.0 μg/L 2 7/31/2014 1:41:17 PM R20298 1,1-Dichloropropene ND 2.0 2 7/31/2014 1:41:17 PM R20298 μg/L R20298 Hexachlorobutadiene ND 2.0 μg/L 2 7/31/2014 1:41:17 PM 2-Hexanone ND 20 μg/L 2 7/31/2014 1:41:17 PM R20298 2.0 2 7/31/2014 1:41:17 PM R20298 Isopropylbenzene ND μg/L 4-Isopropyltoluene ND 2.0 2 7/31/2014 1:41:17 PM R20298 μg/L ND 20 2 R20298 4-Methyl-2-pentanone μg/L 7/31/2014 1:41:17 PM Methylene Chloride ND 6.0 μg/L 2 7/31/2014 1:41:17 PM R20298 n-Butylbenzene ND 6.0 μg/L 2 7/31/2014 1:41:17 PM R20298 R20298 n-Propylbenzene ND 2.0 μg/L 2 7/31/2014 1:41:17 PM sec-Butylbenzene ND 2.0 μg/L 2 7/31/2014 1:41:17 PM R20298 Styrene ND 2.0 2 7/31/2014 1:41:17 PM R20298 µg/L tert-Butylbenzene ND 2.0 2 7/31/2014 1:41:17 PM R20298 μg/L 1.1.1.2-Tetrachloroethane ND 2.0 2 7/31/2014 1:41:17 PM R20298 μg/L 1,1,2,2-Tetrachloroethane ND 4.0 2 R20298 µg/L 7/31/2014 1:41:17 PM Tetrachloroethene (PCE) ND 2.0 μg/L 2 7/31/2014 1:41:17 PM R20298 μg/L trans-1,2-DCE ND 2.0 2 7/31/2014 1:41:17 PM R20298 trans-1,3-Dichloropropene ND 2.0 μg/L 2 7/31/2014 1:41:17 PM R20298 ND 1,2,3-Trichlorobenzene 2.0 μg/L 2 7/31/2014 1:41:17 PM R20298 1,2,4-Trichlorobenzene ND 2.0 µg/L 2 7/31/2014 1:41:17 PM R20298 1,1,1-Trichloroethane 7/31/2014 1:41:17 PM R20298 ND 2.0 μg/L 1,1,2-Trichloroethane ND 7/31/2014 1:41:17 PM R20298 2.0 μg/L

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 20

- P Sample pH greater than 2.
- RL Reporting Detection Limit

## Analytical Report Lab Order 1407D12

Date Reported: 8/15/2014

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 7-28-14 3rd QTR

1407D12-001

Lab ID:

Matrix: AQUEOUS

Collection Date: 7/28/2014 9:30:00 AM Received Date: 7/29/2014 7:55:00 AM

Client Sample ID: Injection Well

| Analyses                     | Result | RL (   | Qual | Units        | DF | Date Analyzed         | Batch  |
|------------------------------|--------|--------|------|--------------|----|-----------------------|--------|
| EPA METHOD 8260B: VOLATILES  |        |        |      |              |    | Analyst               | : DJF  |
| Trichloroethene (TCE)        | ND     | 2.0    |      | μg/L         | 2  | 7/31/2014 1:41:17 PM  | R20298 |
| Trichlorofluoromethane       | ND     | 2.0    |      | μg/L         | 2  | 7/31/2014 1:41:17 PM  | R20298 |
| 1,2,3-Trichloropropane       | ND     | 4.0    |      | μg/L         | 2  | 7/31/2014 1:41:17 PM  | R20298 |
| Vinyl chloride               | ND     | 2.0    |      | μ <b>g/L</b> | 2  | 7/31/2014 1:41:17 PM  | R20298 |
| Xylenes, Total               | ND     | 3.0    |      | μg/L         | 2  | 7/31/2014 1:41:17 PM  | R20298 |
| Surr: 1,2-Dichloroethane-d4  | 92.4   | 70-130 |      | %REC         | 2  | 7/31/2014 1:41:17 PM  | R20298 |
| Surr: 4-Bromofluorobenzene   | 95.4   | 70-130 |      | %REC         | 2  | 7/31/2014 1:41:17 PM  | R20298 |
| Surr: Dibromofluoromethane   | 100    | 70-130 |      | %REC         | 2  | 7/31/2014 1:41:17 PM  | R20298 |
| Surr: Toluene-d8             | 93.6   | 70-130 |      | %REC         | 2  | 7/31/2014 1:41:17 PM  | R20298 |
| SM2510B: SPECIFIC CONDUCTANO | E      |        |      |              |    | Analyst               | : JRR  |
| Conductivity                 | 1900   | 0.010  |      | µmhos/cm     | 1  | 7/29/2014 12:08:01 PM | R20245 |
| SM4500-H+B: PH               |        |        |      |              |    | Analyst               | : JRR  |
| pН                           | 7.10   | 1.68   | Н    | pH units     | 1  | 7/29/2014 12:08:01 PM | R20245 |
| SM2320B: ALKALINITY          |        |        |      |              |    | Analyst               | : JRR  |
| Bicarbonate (As CaCO3)       | 220    | 20     |      | mg/L CaCO3   | 1  | 7/29/2014 12:08:01 PM | R20245 |
| Carbonate (As CaCO3)         | ND     | 2.0    |      | mg/L CaCO3   | 1  | 7/29/2014 12:08:01 PM | R20245 |
| Total Alkalinity (as CaCO3)  | 220    | 20     |      | mg/L CaCO3   | 1  | 7/29/2014 12:08:01 PM | R20245 |
| SM2540C MOD: TOTAL DISSOLVED | SOLIDS |        |      |              |    | Analyst               | : KS   |
| Total Dissolved Solids       | 1380   | 200    | *    | mg/L         | 1  | 7/30/2014 5:19:00 PM  | 14475  |

#### Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 5 of 20
- P Sample pH greater than 2.
- RL Reporting Detection Limit

## Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

**Client:** 

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

140730036

Address:

4901 HAWKINS NE SUITE D

**Project Name:** 

1407D12

**ALBUQUERQUE, NM 87109** 

Attn:

ANDY FREEMAN

#### **Analytical Results Report**

Sample Number

140730036-001

Sampling Date 7/28/2014

Date/Time Received 7/30/2014 12:25 PM

1407D12-001E / INJECTION WELL

Client Sample ID Matrix

Sampling Time 9:30 AM

Comments

| Parameter          | Result | Units    | PQL | Analysis Date | Analyst | Method      | Qualifier |
|--------------------|--------|----------|-----|---------------|---------|-------------|-----------|
| Cyanide (reactive) | NĐ     | mg/L     | 1   | 8/12/2014     | CRW     | SW846 CH7   |           |
| Flashpoint         | >200   | °F       |     | 8/5/2014      | KFG     | EPA 1010    |           |
| pН                 | 7.44   | ph Units |     | 8/5/2014      | АЛТ     | SM 4500pH-B |           |
| Reactive sulfide   | ND     | mg/L     | 1   | 8/1/2014      | AJT     | SW846 CH7   |           |

**Authorized Signature** 

MCL

EPA's Maximum Contaminant Level

ND

Not Detected

PQL

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soll/solid results are reported on a dry-weight basis unless otherwise noted.

# Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

140730036

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109 Project Name:

1407D12

Attn:

ANDY FREEMAN

# Analytical Results Report Quality Control Data

| Lab Control Sa     | mple                                  |                |              |                |         |          |             |               |                |                                       |                 |
|--------------------|---------------------------------------|----------------|--------------|----------------|---------|----------|-------------|---------------|----------------|---------------------------------------|-----------------|
| Parameter          |                                       | LCS Resul      | t Unit       | s LC           | S Spike | %Rec     | AR          | %Rec          | Prep           | Date                                  | Analysis Date   |
| Reactive sulfide   |                                       | 0.16           | mg/l         | <u>.</u>       | 0.2     | 80.0     | 76          | 0-130         | 8/1/           | 2014                                  | 8/1/2014        |
| Cyanide (reactive) |                                       | 0.505          | mg/l         |                | 0.5     | 101.0    | 80          | 0-120         | 8/12           | /2014                                 | 8/12/2014       |
| Lab Control Sa     | mple Duplicate                        |                |              |                |         |          |             |               |                | · · · · · · · · · · · · · · · · · · · |                 |
| Parameter          | - •                                   | LCSD<br>Result | Units        | LCSD           | %Rec    | %RP      |             | AR<br>%RPD    | Prep I         | Data                                  | Analysis Date   |
| Reactive suifide   | · · · · · · · · · · · · · · · · · · · | 0.18           | mg/L         | Spike<br>0.2   | 90.0    | 11.8     | -           | 0-25          | 8/1/2          |                                       | 8/1/2014        |
| Matrix Spike       |                                       |                |              |                |         | <u> </u> |             |               |                | 1.40.                                 |                 |
| Sample Number      | Parameter                             |                | Sample       | MS             | 11_1    |          | MS          | 0/ Pag        | AR             | Bass Bat                              | . Amelyain Date |
| 140730036-001      | Reactive sulfide                      |                | Result<br>ND | Result<br>0.22 | Unit    | _        | pike<br>0.2 | %Rec<br>110.0 | %Rec<br>70-130 | Prep Dat<br>8/1/2014                  | •               |
| 140730036-001      | Cyanide (reactive)                    |                | ND           | 0.919          | mg/l    | _        | 1           | 91.9          | 80-120         |                                       |                 |
| Matrix Spike Du    | uplicate                              |                |              |                |         |          |             |               |                |                                       |                 |
| •                  | •                                     | . MSD          |              | MSD            |         |          |             | AR            |                |                                       |                 |
| Parameter          |                                       | Result         | Units        | Spike          |         |          | RPD         | %RPE          |                | p Date                                | Analysis Date   |
| Cyanide (reactive) |                                       | 0.906          | mg/L         | 1              | 90      | .6       | 1.4         | 0-25          | 8/1            | 2/2014                                | 8/12/2014       |
| Method Blank       |                                       |                |              |                |         |          |             |               |                |                                       |                 |
| Parameter          |                                       |                | Re           | sult           | Ur      | nits     |             | PQL           | Pr             | ep Date                               | Analysis Date   |
| Cyanide (reactive) |                                       |                | N            | 1D             | m       | g/L      |             | 1             | 8/1            | 2/2014                                | 8/12/2014       |
| Reactive sulfide   |                                       |                | 1            | ND             | m       | g/L      |             | 1             | 8/             | 1/2014                                | 8/1/2014        |

AR

Acceptable Range

ИD

Not Detected

PQL

Practical Quantitation Limit

RPD

Relative Percentage Difference

#### Comments:

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatak Labs WA: EPA:WA00169; ID:WA00169; WA:C586; MT:Cert0095; FL(NELAP): E871099

Thursday, August 14, 2014

Page 1 of 1

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

| Client:<br>Project: |      | Western Refining Southwest, Inc.<br>Injection Well 7-28-14 3rd QTR |                     |          |               |      |          |      |  |
|---------------------|------|--------------------------------------------------------------------|---------------------|----------|---------------|------|----------|------|--|
| Sample ID           | МВ   | SampType: MBLK                                                     | TestCode: EPA       | Method   | 300.0: Anions |      |          |      |  |
| Client ID:          | PBW  | Batch ID: R20236                                                   | RunNo: 202          | 36       |               |      |          |      |  |
| Prep Date:          |      | Analysis Date: 7/29/2014                                           | SeqNo: <b>588</b>   | 153      | Units: mg/L   |      |          |      |  |
| Analyte             |      | Result PQL SPK va                                                  | K Ref Val %REC L    | owLimit  | HighLimit     | %RPD | RPDLimit | Qual |  |
| Sulfate             |      | ND 0.50                                                            |                     |          |               |      |          |      |  |
| Sample ID           | LCS  | SampType: LCS                                                      | TestCode: EPA       | Method   | 300.0: Anions |      |          |      |  |
| Client ID:          | LCSW | Batch ID: R20236                                                   | RunNo: <b>202</b> 3 | 36       |               |      |          |      |  |
| Prep Date:          |      | Analysis Date: 7/29/2014                                           | SeqNo: 588          | 154      | Units: mg/L   |      |          |      |  |
| Analyte             |      | Result PQL SPK va                                                  | K Ref Val %REC L    | owLimit  | HighLimit     | %RPD | RPDLimit | Qual |  |
| Sulfate             |      | 9.7 0.50 10.                                                       | 0 97.4              | 90       | 110           |      |          | -    |  |
| Sample ID           | МВ   | SampType: MBLK                                                     | TestCode: EPA       | Method   | 300.0: Anions |      |          |      |  |
| Client ID:          | PBW  | Batch ID: <b>R20236</b>                                            | RunNo: 2023         | 36       |               |      |          |      |  |
| Prep Date:          |      | Analysis Date: 7/29/2014                                           | SeqNo: <b>588</b> 2 | 211      | Units: mg/L   |      |          |      |  |
| Analyte             |      | Result PQL SPK val                                                 | K Ref Val %REC L    | .owLimit | HighLimit     | %RPD | RPDLimit | Qual |  |
| Sulfate             |      | ND 0.50                                                            |                     |          |               |      |          |      |  |
| Sample ID           | LCS  | SampType: LCS                                                      | TestCode: EPA       | Method   | 300.0: Anions |      |          |      |  |
| Client ID:          | LCSW | Batch ID: R20236                                                   | RunNo: 2023         | 36       |               |      |          |      |  |
| Prep Date:          |      | Analysis Date: 7/29/2014                                           | SeqNo: 5882         | 212      | Units: mg/L   |      |          |      |  |
| Analyte             |      | Result PQL SPK val                                                 | K Ref Val %REC L    | .owLimit | HighLimit     | %RPD | RPDLimit | Qual |  |
| Sulfate             |      | 9.6 0.50 10.                                                       | 0 95.6              | 90       | 110           |      |          |      |  |
| Sample ID           | MB   | SampType: MBLK                                                     | TestCode: EPA       | Method   | 300.0: Anions |      |          |      |  |
| Client ID:          | PBW  | Batch ID: R20363                                                   | RunNo: 2036         | 63       |               |      |          |      |  |
| Prep Date:          |      | Analysis Date: 8/4/2014                                            | SeqNo: <b>592</b> 1 | 146      | Units: mg/L   |      |          |      |  |
| Analyte             |      | Result PQL SPK val                                                 | K Ref Val %REC L    | .owLimit | HighLimit     | %RPD | RPDLimit | Qual |  |
| Chloride            |      | ND 0.50                                                            |                     |          |               |      |          |      |  |
| Sample ID           | LCS  | SampType: LCS                                                      | TestCode: EPA       | Method   | 300.0: Anions |      |          |      |  |
| Client ID:          | LCSW | Batch ID: R20363                                                   | RunNo: <b>2036</b>  | 63       |               |      |          |      |  |
| Prep Date:          |      | Analysis Date: 8/4/2014                                            | SeqNo: <b>5921</b>  | 147      | Units: mg/L   |      |          |      |  |

#### Qualifiers:

Analyte

Chloride

Value exceeds Maximum Contaminant Level.

Result

4.7

**PQL** 

0.50

SPK value SPK Ref Val

5.000

- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- RSD is greater than RSDlimit 0
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank

%REC · LowLimit

94.2

HighLimit

110

%RPD

- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 6 of 20

**RPDLimit** 

Qual

- P Sample pH greater than 2.
- Reporting Detection Limit

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

Sample ID MB

SampType: MBLK

TestCode: EPA Method 300.0: Anions

TestCode: EPA Method 300.0: Anions

Client ID: PBW Batch ID: R20363

RunNo: 20363

Analysis Date: 8/5/2014

SeqNo: 592208

%REC LowLimit

Units: mg/L HighLimit

%RPD

**RPDLimit** Qual

Analyte Chloride

Prep Date:

Result PQL ND 0.50

Sample ID LCS

SampType: LCS

Client ID: LCSW

Batch ID: R20363

RunNo: 20363

Prep Date: Analyte

Analysis Date: 8/5/2014 **PQL** 

SeqNo: 592209

Units: mg/L

SPK value SPK Ref Val %REC 0

93.8

LowLimit HighLimit %RPD

**RPDLimit** 

5.000

Qual

Chloride

Result

SPK value SPK Ref Val

4.7

0.50

110

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit 0
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Sample pH greater than 2. Reporting Detection Limit RL

Page 7 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12 15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

| Sample ID 5mL rb            | SampT      | уре: М  | BLK       | Tes         | ATILES                    |          |           |      |          |      |
|-----------------------------|------------|---------|-----------|-------------|---------------------------|----------|-----------|------|----------|------|
| Client ID: PBW              | Batch      | ID: R2  | 20230     | F           | RunNo: 2                  | 0230     |           |      |          |      |
| Prep Date:                  | Analysis D | ate: 7/ | /29/2014  | S           | SeqNo: 587928 Units: %REC |          |           |      |          |      |
| Analyte                     | Result     | PQL     | SPK value | SPK Ref Val | %REC                      | LowLimit | HighLimit | %RPD | RPDLimit | Qual |
| Surr: 1,2-Dichloroethane-d4 | 9.1        |         | 10.00     |             | 91.3                      | 70       | 130       |      |          |      |
| Surr: 4-Bromofluorobenzene  | 9.3        |         | 10.00     |             | 93.2                      | 70       | 130       |      |          |      |
| Surr: Dibromofluoromethane  | 10         |         | 10.00     |             | 102                       | ` 70     | 130       |      |          |      |
| Surr: Toluene-d8            | 9.7        |         | 10.00     |             | 96.7                      | 70       | 130       |      |          |      |

| Sample ID 100ng Ics         | SampT      | SampType: LCS TestCode: EPA Method 8260B: VOLATILES |           |             |          |          |           |      |          |      |
|-----------------------------|------------|-----------------------------------------------------|-----------|-------------|----------|----------|-----------|------|----------|------|
| Client ID: LCSW             | Batch      | ID: R2                                              | 20230     | F           | RunNo: 2 | 0230     |           |      |          |      |
| Prep Date:                  | Analysis D | ate: 7                                              | /29/2014  | S           |          |          |           |      |          |      |
| Analyte                     | Result     | PQL                                                 | SPK value | SPK Ref Val | %REC     | LowLimit | HighLimit | %RPD | RPDLimit | Qual |
| Surr: 1,2-Dichloroethane-d4 | 9.9        |                                                     | 10.00     |             | 98.6     | 70       | 130       |      |          |      |
| Surr. 4-Bromofluorobenzene  | 9.5        |                                                     | 10.00     |             | 95.4     | 70       | . 130     |      |          |      |
| Surr: Dibromofluoromethane  | 11         |                                                     | 10.00     |             | 107      | 70       | 130       |      |          |      |
| Surr: Toluene-d8            | 9.4        |                                                     | 10.00     |             | 94.3     | . 70     | 130       |      |          |      |

| Sample ID 5ml rb               | SampT      | ype: Mi       | BLK       | TestCode: EPA Method 8260B: VOLATILES |          |          |             |      |          |      |
|--------------------------------|------------|---------------|-----------|---------------------------------------|----------|----------|-------------|------|----------|------|
| Client ID: PBW                 | Batch      | ID: <b>R2</b> | 0298      | R                                     | RunNo: 2 | 0298     |             |      |          |      |
| Prep Date:                     | Analysis D | ate: 7/       | 31/2014   | S                                     | SeqNo: 5 | 89943    | Units: µg/L |      |          |      |
| Analyte                        | Result     | PQL           | SPK value | SPK Ref Val                           | %REC     | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Benzene                        | ND         | 1.0           |           |                                       |          |          |             |      |          |      |
| Toluene                        | ND         | 1.0           |           |                                       |          |          |             |      |          |      |
| Ethylbenzene                   | ND         | 1.0           |           |                                       |          |          |             |      |          |      |
| Methyl tert-butyl ether (MTBE) | ND         | 1.0           |           |                                       |          |          |             |      |          |      |
| 1,2,4-Trimethylbenzene         | ND         | 1.0           |           |                                       |          |          |             |      |          |      |
| 1,3,5-Trimethylbenzene         | ND         | 1.0           |           |                                       |          |          |             |      |          |      |
| 1,2-Dichloroethane (EDC)       | ND         | 1.0           |           |                                       |          |          |             |      |          |      |
| 1,2-Dibromoethane (EDB)        | ND         | 1.0           |           |                                       |          |          |             |      |          |      |
| Naphthalene                    | ND         | 2.0           |           |                                       |          |          |             |      |          |      |
| 1-Methylnaphthalene            | ND         | 4.0           |           |                                       |          |          |             |      |          |      |
| 2-Methylnaphthalene            | ND         | 4.0           |           |                                       |          |          |             |      |          |      |
| Acetone                        | ND         | 10            |           |                                       |          |          |             |      |          |      |
| Bromobenzene                   | ND         | 1.0           |           |                                       |          |          |             |      |          |      |
| Bromodichloromethane           | ND         | 1.0           |           |                                       |          |          |             |      |          |      |
| Bromoform                      | ND         | 1.0           |           |                                       |          |          |             |      |          |      |
| Bromomethane                   | ND         | 3.0           |           |                                       |          |          |             |      |          |      |
| 2-Butanone                     | ND         | 10            |           |                                       |          |          |             |      |          |      |
| Carbon disulfide               | ND         | 10            |           |                                       |          |          |             |      |          |      |
| Carbon Tetrachloride           | ND         | 1.0           |           |                                       |          |          |             |      |          |      |
| Chlorobenzene                  | ND         | 1.0           |           |                                       |          |          |             |      |          |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Η Holding times for preparation or analysis exceeded
- NDNot Detected at the Reporting Limit
- Sample pH greater than 2. Reporting Detection Limit

Page 8 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

| Sample ID 5ml rb            | SampT      | уре: МЕ       | BLK       | Tes         | tCode: El | PA Method | 8260B: VOL  | ATILES |          |      |
|-----------------------------|------------|---------------|-----------|-------------|-----------|-----------|-------------|--------|----------|------|
| Client ID: PBW              | Batch      | ID: <b>R2</b> | 0298      | F           | RunNo: 2  | 0298      |             |        |          |      |
| Prep Date:                  | Analysis D | ate: 7/       | 31/2014   | S           | SeqNo: 5  | 89943     | Units: µg/L |        |          |      |
| Analyte                     | Result     | PQL           | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |
| Chloroethane                | ND         | 2.0           |           |             |           |           |             |        |          |      |
| Chloroform                  | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Chloromethane               | ND         | 3.0           |           |             |           |           |             |        |          |      |
| 2-Chlorotoluene             | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 4-Chlorotoluene             | ND         | 1.0           |           |             |           |           |             |        |          |      |
| cis-1,2-DCE                 | ND         | 1.0           |           |             |           |           |             |        |          |      |
| cis-1,3-Dichloropropene     | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,2-Dibromo-3-chloropropane | ND         | 2.0           |           |             |           |           |             |        |          |      |
| Dibromochloromethane        | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Dibromomethane              | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,2-Dichlorobenzene         | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,3-Dichlorobenzene         | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,4-Dichlorobenzene         | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Dichlorodifluoromethane     | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,1-Dichloroethane          | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,1-Dichloroethene          | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,2-Dichloropropane         | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,3-Dichloropropane         | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 2,2-Dichloropropane         | ND         | 2.0           |           |             |           |           |             |        |          |      |
| 1,1-Dichloropropene         | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Hexachlorobutadiene         | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 2-Hexanone                  | ND         | 10            |           |             |           |           |             |        |          |      |
| Isopropylbenzene            | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 4-Isopropyitoluene          | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 4-Methyl-2-pentanone        | ND         | 10            |           |             |           |           |             |        |          |      |
| Methylene Chloride          | ND         | 3.0           |           |             |           |           |             |        |          |      |
| n-Butylbenzene              | ND         | 3.0           |           |             |           |           |             |        |          |      |
| n-Propyibenzene             | ND         | 1.0           |           |             |           |           |             |        |          |      |
| sec-Butylbenzene            | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Styrene                     | ND         | 1.0           |           |             |           |           |             |        |          |      |
| tert-Butylbenzene           | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,1,1,2-Tetrachloroethane   | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,1,2,2-Tetrachloroethane   | ND         | 2.0           |           |             |           |           |             |        |          |      |
| Tetrachloroethene (PCE)     | ND         | 1.0           |           |             |           |           |             |        |          |      |
| trans-1,2-DCE               | ND         | 1.0           |           |             |           |           |             |        |          |      |
|                             |            |               |           |             |           |           |             |        |          |      |
| trans-1,3-Dichloropropene   | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,2,3-Trichlorobenzene      | ND         | 1.0           |           |             |           |           |             |        | ,        |      |
| 1,2,4-Trichlorobenzene      | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,1,1-Trichloroethane       | ND         | 1.0           |           |             |           |           |             |        |          |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
- Sample pH greater than 2.
- Reporting Detection Limit

Page 9 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

| Sample ID 5ml rb            | SampT      | уре: МЕ       | BLK       | Tes         | tCode: El | PA Method | 8260B: VOL  | ATILES |          |      |
|-----------------------------|------------|---------------|-----------|-------------|-----------|-----------|-------------|--------|----------|------|
| Client ID: PBW              | Batch      | 1D: <b>R2</b> | 0298      | F           | RunNo: 2  | 0298      |             |        |          |      |
| Prep Date:                  | Analysis D | ate: 7/       | 31/2014   | S           | SeqNo: 5  | 89943     | Units: µg/L |        |          |      |
| Analyte                     | Result     | PQL           | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |
| 1,1,2-Trichloroethane       | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Trichloroethene (TCE)       | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Trichlorofluoromethane      | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,2,3-Trichloropropane      | ND         | 2.0           |           |             |           |           |             |        |          |      |
| Vinyl chloride              | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Xylenes, Total              | ND         | 1.5           |           |             |           |           |             |        |          |      |
| Surr: 1,2-Dichloroethane-d4 | 8.8        |               | 10.00     |             | 88.2      | 70        | 130         |        |          |      |
| Surr: 4-Bromofluorobenzene  | 9.9        |               | 10.00     |             | 98.9      | 70        | 130         |        |          |      |
| Surr: Dibromofluoromethane  | 10         |               | 10.00     |             | 102       | 70        | 130         |        |          |      |
| Surr: Toluene-d8            | 9.9        |               | 10.00     |             | 98.9      | 70        | 130         |        |          |      |

| Sample ID 100ng Ics         | SampT      | ype: LC       | S         | Tes         | tCode: E | ATILES   |             |      |          |      |
|-----------------------------|------------|---------------|-----------|-------------|----------|----------|-------------|------|----------|------|
| Client ID: LCSW             | Batch      | 1D: <b>R2</b> | 0298      | R           | RunNo: 2 | 0298     |             |      |          |      |
| Prep Date:                  | Analysis D | ate: 7/       | 31/2014   | S           | SeqNo: 5 | 89945    | Units: µg/L |      |          |      |
| Analyte                     | Result     | PQL           | SPK value | SPK Ref Val | %REC     | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Benzene                     | 20         | 1.0           | 20.00     | 0           | 102      | 70       | 130         |      |          |      |
| Toluene                     | 21         | 1.0           | 20.00     | 0           | 107      | 80       | 120         |      |          |      |
| Chlorobenzene               | 20         | 1.0           | 20.00     | 0           | 99.3     | 70       | 130         |      |          |      |
| 1,1-Dichloroethene          | 22         | 1.0           | 20.00     | 0           | 110      | 82.6     | 131         |      |          |      |
| Trichloroethene (TCE)       | 21         | 1.0           | 20.00     | 0           | 103      | 70       | 130         |      |          |      |
| Surr: 1,2-Dichloroethane-d4 | 9.2        |               | 10.00     |             | 91.6     | 70       | 130         |      |          |      |
| Surr: 4-Bromofluorobenzene  | 10         |               | 10.00     |             | 100      | 70       | 130         |      |          |      |
| Surr: Dibromofluoromethane  | 10         |               | 10.00     |             | 101      | 70       | 130         |      |          |      |
| Surr: Toluene-d8            | 9.4        |               | 10.00     |             | 94.3     | 70       | 130         |      |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Not Detected at the Reporting
- P Sample pH greater than 2.RL Reporting Detection Limit

Page 10 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#: 1407D12

15-Aug-14

Western Refining Southwest, Inc.

Client: Western Refining Southwest, Inc Project: Injection Well 7-28-14 3rd QTR

| Sample ID mb-14520          | SampT      | ype: MI       | BLK       | Tes         | tCode: E | PA Method | 8270C: Semi | olatiles |          |      |
|-----------------------------|------------|---------------|-----------|-------------|----------|-----------|-------------|----------|----------|------|
| Client ID: PBW              | Batch      | ID: <b>14</b> | 520       | F           | RunNo: 2 | 0300      |             |          |          |      |
| Prep Date: 7/31/2014        | Analysis D | ate: 7        | 31/2014   | 8           | SeqNo: 5 | 90031     | Units: µg/L |          |          |      |
| Analyte                     | Result     | PQL           | SPK value | SPK Ref Val | %REC     | LowLimit  | HighLimit   | %RPD     | RPDLimit | Qual |
| Acenaphthene                | ND         | 10            |           |             |          |           |             |          |          |      |
| Acenaphthylene              | ND         | 10            |           |             |          |           |             |          |          |      |
| Aniline                     | ND         | 10            |           |             |          |           |             |          |          |      |
| Anthracene                  | ND         | 10            |           |             |          |           |             |          |          |      |
| Azobenzene                  | ND         | 10            |           |             |          |           |             |          |          |      |
| Benz(a)anthracene           | ND         | 10            |           |             |          |           |             |          |          |      |
| Benzo(a)pyrene              | ND         | 10            |           |             |          |           |             |          |          |      |
| Benzo(b)fluoranthene        | ND         | 10            |           |             |          |           |             |          |          |      |
| Benzo(g,h,i)perylene        | ND         | 10            |           |             |          |           |             |          |          |      |
| Benzo(k)fluoranthene        | ND         | 10            |           |             |          |           |             |          |          |      |
| Benzoic acid                | ND         | 20            |           |             |          |           |             |          |          |      |
| Benzyl alcohol              | ND         | 10            |           |             |          |           |             |          |          |      |
| Bis(2-chloroethoxy)methane  | ND         | 10            |           |             |          |           |             |          |          |      |
| Bis(2-chloroethyl)ether     | ND         | 10            |           |             |          |           |             |          |          |      |
| Bis(2-chloroisopropyl)ether | ND         | 10            |           |             |          |           |             |          |          |      |
| Bis(2-ethylhexyl)phthalate  | ND         | 10            |           |             |          |           |             |          |          |      |
| 4-Bromophenyl phenyl ether  | ND         | 10            |           |             |          |           |             |          |          |      |
| Butyl benzyl phthalate      | ND         | 10            |           |             |          |           |             |          |          |      |
| Carbazole                   | ND         | 10            |           |             |          |           |             |          |          |      |
| 4-Chloro-3-methylphenol     | ND         | 10            |           |             |          |           |             |          |          |      |
| 4-Chloroaniline             | ND         | 10            |           |             |          |           |             |          |          |      |
| 2-Chloronaphthalene         | ND         | 10            |           |             |          |           |             |          |          |      |
| 2-Chlorophenol              | ND         | 10            |           |             |          |           |             |          |          |      |
| 4-Chlorophenyl phenyl ether | ND         | 10            |           |             |          |           |             |          |          |      |
| Chrysene                    | ND         | 10            |           |             |          |           |             |          |          |      |
| Di-n-butyl phthalate        | ND         | 10            |           |             |          |           |             |          |          |      |
| Di-n-octyl phthalate        | ND         | 10            |           |             |          |           |             |          |          |      |
| Dibenz(a,h)anthracene       | ND         | 10            |           |             |          |           |             |          |          |      |
| Dibenzofuran                | ND         | 10            |           |             |          |           |             |          |          |      |
| 1,2-Dichlorobenzene         | ND         | 10            |           |             |          |           |             |          |          |      |
| 1,3-Dichlorobenzene         | ND         | 10            |           |             |          |           |             |          |          |      |
| 1,4-Dichlorobenzene         | ND         | 10            |           |             |          |           |             |          |          |      |
| 3,3'-Dichlorobenzidine      | ND         | 10            |           |             |          |           |             |          |          |      |
| Diethyl phthalate           | ND         | 10            |           |             |          |           |             |          |          |      |
| Dimethyl phthalate          | ND         | 10            |           |             |          |           |             |          |          |      |
| 2,4-Dichlorophenol          | ND         | 20            |           |             |          |           |             |          |          |      |
| 2,4-Dimethylphenol          | ND         | 10            |           |             |          |           |             |          |          |      |
| 4,6-Dinitro-2-methylphenol  | ND         | 20            |           |             |          |           |             |          |          |      |
| 2,4-Dinitrophenol           | ND         | 20            |           |             |          |           |             |          |          |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 11 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#: 1407D12

15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

| Sample ID mb-14520         | SampT      | ype: Mi       | BLK       | Tes         | tCode: El | PA Method | 8270C: Semi | volatiles |          |      |
|----------------------------|------------|---------------|-----------|-------------|-----------|-----------|-------------|-----------|----------|------|
| Client ID: PBW             | Batch      | ID: <b>14</b> | 520       | F           | RunNo: 2  | 0300      |             |           |          |      |
| Prep Date: 7/31/2014       | Analysis D | ate: ` 7/     | 31/2014   | S           | SeqNo: 5  | 90031     | Units: µg/L |           |          |      |
| Analyte                    | Result     | PQL           | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD      | RPDLimit | Qual |
| 2,4-Dinitrotoluene         | ND         | 10            |           |             |           |           |             |           |          |      |
| 2,6-Dinitrotoluene         | ND         | 10            |           |             |           |           |             |           |          |      |
| Fluoranthene               | ND         | 10            |           |             |           |           |             |           |          | •    |
| Fluorene                   | ND         | 10            |           |             |           |           |             |           |          |      |
| Hexachlorobenzene          | ND         | 10            |           |             |           |           |             |           |          |      |
| Hexachlorobutadiene        | ND         | 10            |           |             |           |           |             |           |          |      |
| Hexachlorocyclopentadiene  | ND         | 10            |           |             |           |           |             |           |          |      |
| Hexachloroethane           | ND         | 10            |           |             |           |           |             |           |          |      |
| Indeno(1,2,3-cd)pyrene     | ND         | 10            |           |             |           |           |             |           |          |      |
| Isophorone                 | ND         | 10            |           |             |           |           |             |           |          |      |
| 1-Methylnaphthalene        | ND         | 10            |           |             |           |           |             |           |          |      |
| 2-Methylnaphthalene        | ND         | 10            |           |             |           |           |             |           |          |      |
| 2-Methylphenol             | ND         | 20            |           |             |           |           |             |           |          |      |
| 3+4-Methylphenol           | ND         | 10            |           |             |           |           |             |           |          |      |
| N-Nitrosodi-n-propylamine  | ND         | 10            |           |             |           |           |             |           |          |      |
| N-Nitrosodimethylamine     | ND         | 10            |           |             |           |           |             |           |          |      |
| N-Nitrosodiphenylamine     | ND         | 10            |           |             |           |           |             |           |          |      |
| Naphthalene                | ND         | 10            |           |             |           |           |             |           |          |      |
| 2-Nitroaniline             | ND         | 10            |           |             |           |           |             |           |          |      |
| 3-Nitroaniline             | ND         | 10            |           |             |           |           |             |           |          |      |
| 4-Nitroanitine             | ND         | 10            |           | •           |           |           |             |           |          |      |
| Nitrobenzene               | ND         | 10            |           |             |           |           |             |           |          |      |
| 2-Nitrophenol              | ND         | 10            |           |             |           |           |             |           | •        |      |
| 4-Nitrophenol              | ND         | 10            |           |             |           |           |             |           |          |      |
| Pentachlorophenol          | ND         | 20            |           |             |           |           |             |           |          |      |
| Phenanthrene               | ND         | 10            |           |             |           |           |             |           |          |      |
| Phenol                     | ND         | 10            |           |             |           |           |             |           |          |      |
| Pyrene                     | ND         | 10            |           |             |           |           |             |           |          |      |
| Pyridine                   | ND         | 10            |           |             |           |           |             |           |          |      |
| 1,2,4-Trichlorobenzene     | ND         | 10            |           |             |           |           |             |           |          |      |
| 2,4,5-Trichlorophenol      | ND         | 10            |           |             |           |           |             |           |          |      |
| 2,4,6-Trichlorophenol      | ND         | 10            |           |             |           |           |             |           |          |      |
| Surr: 2-Fluorophenol       | 130        |               | 200.0     |             | 66.7      | 12.1      | 85.8        |           |          |      |
| Surr: Phenol-d5            | 95         |               | 200.0     |             | 47.4      | 17.7      | 65.8        |           |          |      |
| Surr: 2,4,6-Tribromophenol | 170        |               | 200.0     |             | 86.4      | 26        | 138         |           |          |      |
| Surr: Nitrobenzene-d5      | 84         |               | 100.0     |             | 83.6      | 47.5      | 119         |           |          |      |
| Surr: 2-Fluorobiphenyl     | 84         |               | 100.0     |             | 83.7      | 48.1      | 106         |           |          |      |
| Surr: 4-Terphenyl-d14      | 94         |               | 100.0     |             | 94.5      | 44        | · 113       |           |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.

  RL Reporting Detection Limit

Page 12 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#: 1407D12

15-Aug-14

Client: Western Refining Southwest, Inc. Project: Injection Well 7-28-14 3rd QTR

| Sample ID Ics-14520        | SampType: LCS TestCode: EPA Method 8270C: Semivolatiles |               |           |             |           |             |           |      |          |      |  |  |  |
|----------------------------|---------------------------------------------------------|---------------|-----------|-------------|-----------|-------------|-----------|------|----------|------|--|--|--|
| Client ID: LCSW            | Batch                                                   | 1D: <b>14</b> | 520       | F           | RunNo: 2  | 0300        |           |      |          |      |  |  |  |
| Prep Date: 7/31/2014       | Analysis D                                              | ate: 7/3      | 31/2014   | 8           | 90032     | Units: µg/L |           |      |          |      |  |  |  |
| Analyte                    | Result                                                  | PQL           | SPK value | SPK Ref Val | %REC      | LowLimit    | HighLimit | %RPD | RPDLimit | Qual |  |  |  |
| Acenaphthene               | 87                                                      | 10            | 100.0     | 0           | 87.0      | 50.3        | 109       |      |          |      |  |  |  |
| 4-Chloro-3-methylphenol    | 200                                                     | 10            | 200.0     | 0           | 99.0      | 51.2        | 113       |      |          |      |  |  |  |
| 2-Chlorophenol             | 190                                                     | 10            | 200.0     | 0           | 94.9      | 48.5        | 104       |      |          |      |  |  |  |
| 1,4-Dichlorobenzene        | 80                                                      | 10            | 100.0     | 0           | 79.5      | 39.5        | 106       |      |          |      |  |  |  |
| 2,4-Dinitrotoluene         | 82                                                      | 10            | 100.0     | 0           | 82.3      | 45.4        | 107       |      |          |      |  |  |  |
| N-Nitrosodi-n-propylamine  | 91                                                      | 10            | 100.0     | 0           | 91.0      | 50.4        | 119       |      |          |      |  |  |  |
| 4-Nitrophenol              | 110                                                     | 10            | 200.0     | 0           | 53.6      | 15.5        | 62.2      |      |          |      |  |  |  |
| Pentachlorophenol          | 150                                                     | 20            | 200.0     | 0           | 72.7      | 23.5        | 93.5      |      |          |      |  |  |  |
| Phenol                     | 110                                                     | 10            | 200.0     | 0           | 54.8      | 26.8        | 65.6      |      |          |      |  |  |  |
| Pyrene                     | 96                                                      | 10            | 100.0     | 0           | 95.5      | 54.4        | 108       |      |          |      |  |  |  |
| 1,2,4-Trichlorobenzene     | 78                                                      | 10            | 100.0     | 0           | 78.0      | 39.9        | 106       |      |          |      |  |  |  |
| Surr: 2-Fluorophenol       | 140                                                     |               | 200.0     |             | 72.4      | 12.1        | 85.8      |      |          |      |  |  |  |
| Surr: Phenol-d5            | 100                                                     |               | 200.0     |             | 52.5      | 17.7        | 65.8      |      |          |      |  |  |  |
| Surr: 2,4,6-Tribromophenol | 170                                                     |               | 200.0     |             | 87.0      | 26          | 138       |      |          |      |  |  |  |
| Surr: Nitrobenzene-d5      | 100 100.0                                               |               |           | 101         | 47.5      | 119         |           |      |          |      |  |  |  |
| Surr: 2-Fluorobiphenyl     | 96                                                      |               | 100.0     |             | 96.0 48.1 |             |           |      |          |      |  |  |  |
| Surr: 4-Terphenyl-d14      | 91                                                      |               | 100.0     |             | 90.9      | 44          | 113       |      |          |      |  |  |  |

| Sample ID Icsd-14520       | SampT      | ype: LC | SD        | Tes         | TestCode: EPA Method 8270C: Semivolatiles |          |             |       |          |      |  |  |  |  |  |
|----------------------------|------------|---------|-----------|-------------|-------------------------------------------|----------|-------------|-------|----------|------|--|--|--|--|--|
| Client ID: LCSS02          | Batch      | ID: 14  | 520       | F           | RunNo: 2                                  | 0300     |             |       |          |      |  |  |  |  |  |
| Prep Date: 7/31/2014       | Analysis D | ate: 7/ | 31/2014   | 8           | SeqNo: 5                                  | 90033    | Units: µg/L |       |          |      |  |  |  |  |  |
| Analyte                    | Result     | PQL     | SPK value | SPK Ref Val | %REC                                      | LowLimit | HighLimit   | %RPD  | RPDLimit | Qual |  |  |  |  |  |
| Acenaphthene               | 77         | 10      | 100.0     | 0           | 76.5                                      | 50.3     | 109         | 12.8  | 27.2     |      |  |  |  |  |  |
| 4-Chloro-3-methylphenol    | 190        | 10      | 200.0     | 0           | 93.8                                      | 51.2     | 113         | 5.37  | 25.9     |      |  |  |  |  |  |
| 2-Chlorophenol             | 170        | 10      | 200.0     | 0           | 84.4                                      | 48.5     | 104         | 11.7  | 22.5     |      |  |  |  |  |  |
| 1,4-Dichlorobenzene        | 73         | 10      | 100.0     | 0           | 73.3                                      | 39.5     | 106         | 8.19  | 24.6     |      |  |  |  |  |  |
| 2,4-Dinitrotoluene         | 73         | 10      | 100.0     | 0           | 73.1                                      | 45.4     | 107         | 11.9  | 25.3     |      |  |  |  |  |  |
| N-Nitrosodi-n-propylamine  | 85         | 10      | 100.0     | 0           | 84.9                                      | 50.4     | 119         | 6.98  | 23.6     |      |  |  |  |  |  |
| 4-Nitrophenol              | 110        | 10      | 200.0     | 0           | 52.7                                      | 15.5     | 62.2        | 1.69  | 34.7     |      |  |  |  |  |  |
| Pentachlorophenol          | 150        | 20      | 200.0     | 0           | 72.9                                      | 23.5     | 93.5        | 0.275 | 32.8     |      |  |  |  |  |  |
| Phenol                     | 100        | 10      | 200.0     | 0           | 51.6                                      | 26.8     | 65.6        | 6.05  | 25.5     |      |  |  |  |  |  |
| Pyrene                     | 89         | 10      | 100.0     | 0           | 88.8                                      | 54.4     | 108         | 7.31  | 31.4     |      |  |  |  |  |  |
| 1,2,4-Trichlorobenzene     | 68         | 10      | 100.0     | 0           | 68.4                                      | 39.9     | 106         | 13.1  | 25.9     |      |  |  |  |  |  |
| Surr: 2-Fluorophenol       | 140        |         | 200.0     |             | 68.8                                      | 12.1     | 85.8        | 0     | 0        |      |  |  |  |  |  |
| Surr: Phenol-d5            | 110        |         | 200.0     |             | 53.9                                      | 17.7     | 65.8        | 0     | 0        |      |  |  |  |  |  |
| Surr: 2,4,6-Tribromophenol | 170        |         | 200.0     |             | 86.5                                      | 26       | 138         | 0     | 0        |      |  |  |  |  |  |
| Surr: Nitrobenzene-d5      | 88         |         | 100.0     |             | 88.1                                      | 47.5     | 119         | 0     | 0        |      |  |  |  |  |  |
| Surr: 2-Fluorobiphenyl     | 90         |         | 100.0     |             | 89.9                                      | 48.1     | 106         | 0     | 0        |      |  |  |  |  |  |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Sample pH greater than 2.
- Reporting Detection Limit

Page 13 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

Sample ID Icsd-14520

SampType: LCSD

TestCode: EPA Method 8270C: Semivolatiles

Client ID: LCSS02

Batch ID: 14520

RunNo: 20300

Prep Date: 7/31/2014 Analyte

Analysis Date: 7/31/2014

SeqNo: 590033 Units: µg/L

**PQL** SPK value SPK Ref Val Result

%REC

HighLimit

%RPD

**RPDLimit** 

Qual

90

90.0

44

Surr: 4-Terphenyl-d14

100.0

113

Qualifiers:

Value exceeds Maximum Contaminant Level.

Ε Value above quantitation range

Analyte detected below quantitation limits J

0 RSD is greater than RSDlimit

RPD outside accepted recovery limits R

Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Η

Not Detected at the Reporting Limit ND

Sample pH greater than 2. P

Reporting Detection Limit

Page 14 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12 15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

Sample ID 1407d12-001b dup

SampType: DUP

TestCode: SM2510B: Specific Conductance

Client ID: Injection Well Batch ID: R20245

RunNo: 20245

Prep Date:

Analysis Date: 7/29/2014

SeqNo: 588403

Units: µmhos/cm

Analyte Conductivity Result **PQL**  SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** 

4.30

Qual

20

1800 0.010

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

Analyte detected below quantitation limits

RSD is greater than RSDlimit 0

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Н

ND Not Detected at the Reporting Limit

Sample pH greater than 2.

Reporting Detection Limit

Page 15 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

Sample ID MB-14571

SampType: MBLK

TestCode: EPA Method 7470: Mercury

LowLimit

Client ID: PBW

8/4/2014

Batch ID: 14571

RunNo: 20345

Prep Date: Analyte

Analysis Date: 8/4/2014 PQL SPK value SPK Ref Val %REC

SeqNo: 591482

Units: mg/L HighLimit

%RPD **RPDLimit** 

Qual

Mercury

ND 0.00020

Sample ID LCS-14571 Client ID: LCSW

SampType: LCS Batch ID: 14571 TestCode: EPA Method 7470: Mercury

RunNo: 20345

Prep Date: 8/4/2014 Analysis Date: 8/4/2014

SeqNo: 591483

%REC

Units: mg/L

**RPDLimit** 

Qual

Analyte

0.005000

SPK value SPK Ref Val

%RPD

Mercury

0.0049 0.00020

PQL

98.9

HighLimit

120

#### Qualifiers:

Value exceeds Maximum Contaminant Level.

Ε Value above quantitation range

J Analyte detected below quantitation limits

0 RSD is greater than RSDlimit

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit ND

P Sample pH greater than 2.

Reporting Detection Limit

Page 16 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

| Sample ID M   | IB-14549 | Samp       | Type: ME | BLK       | TestCode: EPA 6010B: Total Recoverable Metals |          |          |             |      |          |      |  |  |  |  |  |
|---------------|----------|------------|----------|-----------|-----------------------------------------------|----------|----------|-------------|------|----------|------|--|--|--|--|--|
| Client ID: PI | BW       | Batc       | h ID: 14 | 549       | F                                             | RunNo: 2 | 0323     |             |      |          |      |  |  |  |  |  |
| Prep Date: 8  | 8/1/2014 | Analysis [ | Date: 8/ | 2/2014    | S                                             | SeqNo: 5 | 90696    | Units: mg/L |      |          |      |  |  |  |  |  |
| Analyte       |          | Result     | PQL      | SPK value | SPK Ref Val                                   | %REC     | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |  |  |  |  |  |
| Arsenic       |          | ND         | 0.020    |           |                                               |          |          |             |      |          |      |  |  |  |  |  |
| Barium        |          | ND         | 0.020    |           |                                               |          |          |             |      |          |      |  |  |  |  |  |
| Cadmium       |          | ND         | 0.0020   |           |                                               |          |          |             |      |          |      |  |  |  |  |  |
| Calcium       |          | ND         | 1.0      |           |                                               |          |          |             |      |          |      |  |  |  |  |  |
| Chromium      |          | ND         | 0.0060   |           |                                               |          |          |             |      |          |      |  |  |  |  |  |
| Lead          |          | ND         | 0.0050   |           |                                               |          |          |             |      |          |      |  |  |  |  |  |
| Magnesium     |          | ND         | 1.0      |           |                                               |          |          |             |      |          |      |  |  |  |  |  |
| Potassium     |          | ND         | 1.0      |           |                                               |          |          |             |      |          |      |  |  |  |  |  |
| Selenium      |          | ND         | 0.050    |           |                                               |          |          |             |      |          |      |  |  |  |  |  |
| Silver        |          | ND         | 0.0050   |           |                                               |          |          |             |      |          |      |  |  |  |  |  |
| Sodium        |          | ND         | 1.0      |           |                                               |          |          |             |      |          |      |  |  |  |  |  |

| Sample ID LCS-14549 | Samp     | Type: LC | S         | TestCode: EPA 6010B: Total Recoverable Metals |          |          |             |      |          |      |  |  |  |  |  |
|---------------------|----------|----------|-----------|-----------------------------------------------|----------|----------|-------------|------|----------|------|--|--|--|--|--|
| Client ID: LCSW     | Bato     | h ID: 14 | 549       | F                                             | RunNo: 2 | 0323     |             |      |          |      |  |  |  |  |  |
| Prep Date: 8/1/2014 | Analysis | Date: 8/ | /2/2014   | 8                                             | SeqNo: 5 | 90697    | Units: mg/L |      |          |      |  |  |  |  |  |
| Analyte             | Result   | PQL      | SPK value | SPK Ref Val                                   | %REC     | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |  |  |  |  |  |
| Arsenic             | 0.50     | 0.020    | 0.5000    | 0                                             | 101      | 80       | 120         |      |          |      |  |  |  |  |  |
| Barium              | 0.50     | 0.020    | 0.5000    | 0                                             | 99.7     | 80       | 120         |      |          |      |  |  |  |  |  |
| Cadmium             | 0.50     | 0.0020   | 0.5000    | 0                                             | 99.7     | 80       | 120         |      |          |      |  |  |  |  |  |
| Calcium             | ND       | 1.0      | 50.00     | 0                                             | 0        | 80       | 120         |      |          | S    |  |  |  |  |  |
| Chromium            | 0.50     | 0.0060   | 0.5000    | 0                                             | 100      | 80       | 120         |      |          |      |  |  |  |  |  |
| Lead                | 0.50     | 0.0050   | 0.5000    | . 0                                           | 99.5     | 80       | 120         |      |          |      |  |  |  |  |  |
| Magnesium           | ND       | 1.0      | 50.00     | 0                                             | 0        | 80       | 120         |      |          | S    |  |  |  |  |  |
| Potassium           | ND       | 1.0      | 50.00     | 0                                             | 0        | 80       | 120         |      |          | S    |  |  |  |  |  |
| Selenium            | 0.52     | 0.050    | 0.5000    | 0                                             | 105      | 80       | 120         |      |          |      |  |  |  |  |  |
| Silver              | 0.085    | 0.0050   | 0.1000    | 0                                             | 84.9     | 80       | 120         |      |          |      |  |  |  |  |  |
| Sodium              | ND       | 1.0      | 50.00     | 0                                             | 0        | 80       | 120         |      |          | S    |  |  |  |  |  |

| Sample ID LCS Cat-14549 | SampT      | ype: LC | s         | TestCode: EPA 6010B: Total Recoverable Metals |          |          |             |      |          |      |  |  |  |  |
|-------------------------|------------|---------|-----------|-----------------------------------------------|----------|----------|-------------|------|----------|------|--|--|--|--|
| Client ID: LCSW         | Batch      | 1D: 14  | 549       | R                                             | RunNo: 2 | 0323     |             |      |          |      |  |  |  |  |
| Prep Date: 8/1/2014     | Analysis D | ate: 8/ | 2/2014    | S                                             | SeqNo: 5 | 90698    | Units: mg/L |      |          |      |  |  |  |  |
| Analyte                 | Result     | PQL     | SPK value | SPK Ref Val                                   | %REC     | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |  |  |  |  |
| Calcium                 | 51         | 1.0     | 50.00     | 0                                             | 102      | 80       | 120         |      |          |      |  |  |  |  |
| Magnesium               | 51         | 1.0     | 50.00     | 0                                             | 101      | 80       | 120         |      |          |      |  |  |  |  |
| Potassium               | 49         | 1.0     | 50.00     | 0                                             | 97.3     | 80       | 120         |      |          |      |  |  |  |  |
| Sodium                  | 50         | 1.0     | 50.00     | 0                                             | 101      | 80       | 120         |      |          |      |  |  |  |  |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 17 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

Sample ID 1407d12-001b dup

SampType: DUP

TestCode: SM4500-H+B: pH

Client ID: Injection Well

Batch ID: R20245 Analysis Date: 7/29/2014 RunNo: 20245 SeqNo: 588388

SPK value SPK Ref Val %REC LowLimit

Units: pH units

Prep Date: Analyte

PQL.

HighLimit %RPD **RPDLimit** 

Qual

1.68

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.

Reporting Detection Limit

Page 18 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#: 1407D12

15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

Sample ID mb-1

SampType: MBLK

TestCode: SM2320B: Alkalinity

Client ID:

PBW

Batch ID: R20245 Analysis Date: 7/29/2014 RunNo: 20245

Prep Date:

**PQL** 

SeqNo: 588355

Units: mg/L CaCO3

Analyte

SPK value SPK Ref Val %REC LowLimit HighLimit

**RPDLimit** 

Qual

Total Alkalinity (as CaCO3)

ND

SampType: LCS

TestCode: SM2320B: Alkalinity

Sample ID Ics-1 Client ID: LCSW

Batch ID: R20245

PQL

20

20

RunNo: 20245

Units: mg/L CaCO3

Prep Date: Analyte

Analysis Date: 7/29/2014

SeqNo: 588356

SPK value SPK Ref Val 0

%REC LowLimit

HighLimit 110 %RPD **RPDLimit** 

Qual

Total Alkalinity (as CaCO3)

Result

80.00

100

%RPD

80

TestCode: SM2320B: Alkalinity

Sample ID mb-2 Client ID: Prep Date:

PBW

SampType: MBLK Batch ID: R20245

Analysis Date: 7/29/2014

PQL

20

RunNo: 20245

SeqNo: 588376

Units: mg/L CaCO3

HighLimit

%RPD

**RPDLimit** Qual

Analyte Total Alkalinity (as CaCO3)

Sample ID Ics-2

Result ND

Result

80

SampType: LCS

TestCode: SM2320B: Alkalinity

Client ID: LCSW

Batch ID: R20245

RunNo: 20245

Prep Date:

Analysis Date: 7/29/2014

SeqNo: 588377

Units: mg/L CaCO3

Qual

Analyte

**PQL** SPK value SPK Ref Val

%REC

LowLimit

HighLimit

%RPD

**RPDLimit** 

Total Alkalinity (as CaCO3)

20

80.00

0

SPK value SPK Ref Val %REC LowLimit

100

90

110

#### Qualifiers:

Value exceeds Maximum Contaminant Level.

Spike Recovery outside accepted recovery limits

- Ε Value above quantitation range J Analyte detected below quantitation limits
- 0 RSD is greater than RSDI imit
- R RPD outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Sample pH greater than 2.
- Reporting Detection Limit RL

Page 19 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Analyte

Analyte

Injection Well 7-28-14 3rd QTR

Sample ID MB-14475

SampType: MBLK

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW

Batch ID: 14475

RunNo: 20257

Prep Date: 7/29/2014

Analysis Date: 7/30/2014

**PQL** 

SeqNo: 588640

Units: mg/L

HighLimit

**RPDLimit** 

%RPD

Qual

Total Dissolved Solids

ND 20.0

Result

Sample ID LCS-14475 Client ID: LCSW

SampType: LCS Batch ID: 14475

RunNo: 20257

Prep Date: 7/29/2014

Analysis Date: 7/30/2014

SeqNo: 588641

Units: mg/L HighLimit

%RPD

Result **PQL** 

1000

SPK value SPK Ref Val %REC LowLimit

102

80

**RPDLimit** 

Qual

Total Dissolved Solids

1020

20.0

SPK value SPK Ref Val

%REC LowLimit

TestCode: SM2540C MOD: Total Dissolved Solids

120

Qualifiers:

Value exceeds Maximum Contaminant Level.

Ε Value above quantitation range

Analyte detected below quantitation limits

RSD is greater than RSDlimit 0

RPD outside accepted recovery limits R

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit ND

Reporting Detection Limit

Sample pH greater than 2.

Page 20 of 20



# Hall Environmental Analysis Laboratory 4901 Hawkins NE . Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

### Sample Log-In Check List

| Client Name: Western Refining Southw Work Order N                                      | umber: 1407D12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | ReptNo: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Received by/date: A 07 29119                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Logged By: Anne Thorne 7/29/2014 7:55:0                                                | 00 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ani Sham                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Completed By: Anne Thorne 7/29/2014                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ane Ilm                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Reviewed By: NG 07/29/14                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Clarke Journal               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chain of Custody                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1. Custody seals intact on sample bottles?                                             | Yes 🗌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No 🗌                         | Not Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2. Is Chain of Custody complete?                                                       | Yes 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No 🗆                         | Not Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3. How was the sample delivered?                                                       | Courier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u>Log In</u>                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4. Was an attempt made to cool the samples?                                            | Yes 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No 🗆                         | NA 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5. Were all samples received at a temperature of >0° C to 6.0°C                        | Yes 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No 🗆                         | NA 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6. Sample(s) in proper container(s)?                                                   | Yes 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No 🗆                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7. Sufficient sample volume for indicated test(s)?                                     | Yes 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No 🗆                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8. Are samples (except VOA and ONG) properly preserved?                                | Yes 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No 🗆                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9. Was preservative added to bottles?                                                  | Yes 🗌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No 🗹                         | NA 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10.VOA vials have zero headspace?                                                      | Yes 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No 🗆                         | No VOA Vials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 11. Were any sample containers received broken?                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No 🗹                         | # of preserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)       | Yes 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No 🗆                         | for pH: (<2)or (12 unless noted)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13. Are matrices correctly identified on Chain of Custody?                             | Yes 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No 🗆                         | Adjusted? 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14. Is it clear what analyses were requested?                                          | Yes 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No 🗆                         | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15. Were all holding times able to be met? (If no, notify customer for authorization.) | Yes 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No 🗌                         | Checked by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Special Handling (if applicable)                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16. Was client notified of all discrepancies with this order?                          | Yes 🗌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No 🗆                         | na 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Person Notified:                                                                       | ate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| By Whom: V                                                                             | 'ia: ☐ eMail ☐ P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hone 🔲 Fax                   | ☐ In Person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Regarding:                                                                             | to the same to the same the same of the sa | and a process of the same of | The state of the s |
| Client Instructions:                                                                   | of all of commenced and and and any and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the second second second | The second second second field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 17. Additional remarks:                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18. Cooler Information  Cooler No Temp C Condition Seaf Intact Seal N  1 1.0 Good Yes  | o Seal Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Signed By                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| INTERNATION NATIONAL DESIGNATION NATIONAL DESIGNATI |                        | www.hallenvironmental.com | 4901 Hawkins NE - Albuquerque, NM 87109 | Tel. 505-345-3975 Fax 505-345-4107 | Analysis Request | (°C)             | SB.S.B.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S. | OB<br>OB<br>OB<br>OB<br>OB<br>OB<br>OB<br>OB<br>OB<br>OB<br>OB<br>OB<br>OB<br>O | 4 TPH<br>4 TPH<br>6 A A A A A A A A A A A A A A A A A A A | (GF)         | BTEX + MT TPH 8015B PPH's (8310 RCRA 8 Me RCRA 1 Me RCRA | . X                             | <b>X</b>         | ×   | X          | ×        | ×            | × | ×                      |  | Remarks:               |                         |                        | If necessary samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------|-----------------------------------------|------------------------------------|------------------|------------------|-----------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------|-----|------------|----------|--------------|---|------------------------|--|------------------------|-------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Turn-Around Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | □ Rush                 | Project Name:             | Injection Well 3nd TR                   | Project #:                         |                  | Project Manager: | 9021                                    |                                                                                 | Bob<br>W GS: The Billion                                  |              | Container Preservative Example X Type and # Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3-10A Hel -cul                  | 1-liter amber 00 | 192 | 1-50ml 100 | 1 H2 SO4 | 1-500ml HNO3 |   | 1-50cm.   Acetaire 700 |  | Date Time              | Chroshelylach Mash 1452 |                        | intracted to other accredited laboratories. This serves as notice of this pos                                                                                                                                                    |
| ord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Client Western ReGuius |                           | Mailing Address: #56 CR 4990            | IN 874/3                           | 11/              |                  | QA/QC Package:                          | Standard 🗆 Level 4 (Full Validation)                                            | Accreditation                                             | □ EDD (Type) | Date Time Matrix Sample Request ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7-28-14 9:30 HaO Injection Well | 1 . 1 . 1        |     |            |          |              |   |                        |  | Date: Relinquished by: | 2811 1452 Robert Kalkon | Time: Relinquished by: |                                                                                                                                                                                                                                  |



Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109
TEL: 505-345-3975 FAX: 505-345-4107
Website: www.hallenvironmental.com

OrderNo.: 1410102

October 23, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4166 FAX (505) 632-3911

RE: Injection Well 4th QTR 10-1-14

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 10/2/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <a href="www.hallenvironmental.com">www.hallenvironmental.com</a> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109



Hall Environmental Analysis Laboratory

4901 Hawkins NE

Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com **Case Narrative** 

WO#:

1410102

Date:

10/23/2014

**CLIENT:** 

Western Refining Southwest, Inc.

Project:

Injection Well 4th QTR 10-1-14

Analytical Notes Regarding EPA Method 8260:

The injection well sample was diluted due to a foamy matrix.

# **Analytical Report**

Lab Order 1410102

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/23/2014

CLIENT: Western Refining Southwest, Inc.

Injection Well 4th QTR 10-1-14

Project:

Lab ID: 1410102-001 Client Sample ID: Injection Well

Collection Date: 10/1/2014 10:00:00 AM

Received Date: 10/2/2014 6:50:00 AM

| Analyses                      | Result | RL Qu   | ıal Units | DF | Date Analyzed         | Batch  |
|-------------------------------|--------|---------|-----------|----|-----------------------|--------|
| EPA METHOD 300.0: ANIONS      |        |         |           |    | Analyst               | : LGP  |
| Chloride                      | 220    | 10      | mg/L      | 20 | 10/2/2014 4:07:13 PM  | R21640 |
| Sulfate                       | 26     | 2.5     | mg/L      | 5  | 10/2/2014 3:54:49 PM  | R21640 |
| EPA METHOD 7470: MERCURY      |        |         |           |    | Analyst               | : MMD  |
| Mercury                       | ND     | 0.00020 | mg/L      | 1  | 10/8/2014 3:02:49 PM  | 15770  |
| EPA 6010B: TOTAL RECOVERABLE  | METALS |         |           |    | Analyst               | ELS    |
| Arsenic                       | ND     | 0.020   | mg/L      | 1  | 10/10/2014 9:26:53 AM | 15825  |
| Barium                        | 0.20   | 0.020   | mg/L      | 1  | 10/10/2014 9:26:53 AM |        |
| Cadmium                       | ND     | 0.0020  | mg/L      | 1  | 10/10/2014 9:26:53 AM | 15825  |
| Calcium                       | 110    | 5.0     | mg/L      | 5  | 10/10/2014 9:28:28 AM |        |
| Chromium                      | ND     | 0.0060  | mg/L      | 1  | 10/10/2014 9:26:53 AM |        |
| Lead                          | ND     | 0.0050  | mg/L      | 1  | 10/10/2014 9:26:53 AM |        |
| Magnesium                     | 23     | 1.0     | mg/L      | 1  | 10/10/2014 9:26:53 AM |        |
| Potassium                     | 8.2    | 1.0     | mg/L      | 1  | 10/10/2014 9:26:53 AM |        |
| Selenium                      | ND     | 0.050   | mg/L      | 1  | 10/10/2014 9:26:53 AM |        |
| Silver                        | ND     | 0.0050  | mg/L      | 1  | 10/10/2014 9:26:53 AM |        |
| Sodium                        | 220    | 5.0     | mg/L      | 5  | 10/10/2014 9:28:28 AM |        |
|                               |        | 5.0     | IIIg/L    | 5  |                       |        |
| EPA METHOD 8270C: SEMIVOLATIL | ES     |         |           |    | Analyst               | DAM    |
| Acenaphthene                  | ND     | 10      | μg/L      | 1  | 10/9/2014 9:16:21 PM  | 15747  |
| Acenaphthylene                | ND     | 10      | μg/L      | 1  | 10/9/2014 9:16:21 PM  | 15747  |
| Aniline                       | ND     | 10      | μg/L      | 1  | 10/9/2014 9:16:21 PM  | 15747  |
| Anthracene                    | ND     | 10      | μg/L      | 1  | 10/9/2014 9:16:21 PM  | 15747  |
| Azobenzene                    | ND     | 10      | μg/L      | 1  | 10/9/2014 9:16:21 PM  | 15747  |
| Benz(a)anthracene             | ND     | 10      | μg/L      | 1  | 10/9/2014 9:16:21 PM  | 15747  |
| Benzo(a)pyrene                | ND ·   | 10      | μg/L      | 1  | 10/9/2014 9:16:21 PM  | 15747  |
| Benzo(b)fluoranthene          | ND     | 10      | μg/L      | 1  | 10/9/2014 9:16:21 PM  | 15747  |
| Benzo(g,h,i)perylene          | ND     | 10      | μg/L      | 1  | 10/9/2014 9:16:21 PM  | 15747  |
| Benzo(k)fluoranthene          | ND     | 10      | μg/L      | 1  | 10/9/2014 9:16:21 PM  | 15747  |
| Benzoic acid                  | ND     | 40      | μg/L      | 1  | 10/9/2014 9:16:21 PM  | 15747  |
| Benzyl alcohol                | ND     | 10      | μg/L      | 1  | 10/9/2014 9:16:21 PM  | 15747  |
| Bis(2-chloroethoxy)methane    | ND     | 10      | μg/L      | 1  | 10/9/2014 9:16:21 PM  | 15747  |
| Bis(2-chloroethyl)ether       | ND     | 10      | μg/L      | 1  | 10/9/2014 9:16:21 PM  | 15747  |
| Bis(2-chloroisopropyl)ether   | ND     | 10      | μg/L      | 1  | 10/9/2014 9:16:21 PM  | 15747  |
| Bis(2-ethylhexyl)phthalate    | ND     | 10      | μg/L      | 1  | 10/9/2014 9:16:21 PM  | 15747  |
| 4-Bromophenyl phenyl ether    | ND     | 10      | μg/L      | 1  | 10/9/2014 9:16:21 PM  | 15747  |
| Butyl benzyl phthalate        | ND     | 10      | μg/L      | 1  | 10/9/2014 9:16:21 PM  | 15747  |
| Carbazole                     | ND     | 10      | μg/L      | 1  | 10/9/2014 9:16:21 PM  | 15747  |
| 4-Chloro-3-methylphenol       | ND     | 10      | μg/L      | 1  | 10/9/2014 9:16:21 PM  | 15747  |
| 4-Chloroaniline               | ND     | 10      | μg/L      | 1  | 10/9/2014 9:16:21 PM  | 15747  |

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range Ε
- Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 2 of 18
- P Sample pH greater than 2.
- RL Reporting Detection Limit

# Analytical Report Lab Order 1410102

Date Reported: 10/23/2014

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

Project: Injection Well 4th QTR 10-1-14 Collection Date: 10/1/2014 10:00:00 AM

Lab ID: 1410102-001 Matrix: AQUEOUS Received Date: 10/2/2014 6:50:00 AM

| Analyses                    | Result | RL Qu | al Units      | DF | Date Analyzed        | Batch  |
|-----------------------------|--------|-------|---------------|----|----------------------|--------|
| EPA METHOD 8270C: SEMIVOLA  | TILES  |       |               |    | Analys               | t: DAM |
| 2-Chloronaphthalene         | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| 2-Chlorophenoi              | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| 4-Chlorophenyl phenyl ether | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| Chrysene                    | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| Di-n-butyl phthalate        | ND.    | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| Di-n-octyl phthalate        | ND     | 20    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| Dibenz(a,h)anthracene       | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| Dibenzofuran                | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| 1,2-Dichlorobenzene         | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| 1,3-Dichlorobenzene         | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| 1,4-Dichlorobenzene         | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| 3,3'-Dichlorobenzidine      | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| Diethyl phthalate           | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| Dimethyl phthalate          | , ND   | · 10  | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| 2,4-Dichlorophenol          | ND     | 20    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| 2,4-Dimethylphenol          | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| 4,6-Dinitro-2-methylphenol  | ND     | 20    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| 2,4-Dinitrophenol           | ND     | 20    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| 2,4-Dinitrotoluene          | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| 2,6-Dinitrotoluene          | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| Fluoranthene                | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| Fluorene                    | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| Hexachlorobenzene           | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| Hexachlorobutadiene         | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| Hexachlorocyclopentadiene   | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| Hexachloroethane            | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| Indeno(1,2,3-cd)pyrene      | ND     | 10    | μ <b>g/</b> L | 1  | 10/9/2014 9:16:21 PM | 15747  |
| Isophoròne                  | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| 1-Methylnaphthalene         | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| 2-Methylnaphthalene         | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| 2-Methylphenol              | ND     | 20    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| 3+4-Methylphenol            | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| N-Nitrosodi-n-propylamine   | . ND   | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| N-Nitrosodimethylamine      | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| N-Nitrosodiphenylamine      | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| Naphthalene                 | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| 2-Nitroaniline              | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| 3-Nitroaniline              | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |
| 4-Nitroaniline              | ND     | 10    | μg/L          | 1  | 10/9/2014 9:16:21 PM | 15747  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 18

- P Sample pH greater than 2.
- RL Reporting Detection Limit

## Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/23/2014

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

Project: Injection Well 4th QTR 10-1-14

Collection Date: 10/1/2014 10:00:00 AM

Lab ID: 1410102-001

Matrix: AQUEOUS

Received Date: 10/2/2014 6:50:00 AM

|                                 |        |           |               | ALLEGATION TO A PROPERTY AND A PARTY AND A |                       |       |  |  |  |
|---------------------------------|--------|-----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|--|--|--|
| Analyses                        | Result | RL Qu     | ial Units     | DF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date Analyzed         | Batch |  |  |  |
| EPA METHOD 8270C: SEMIVOLATILES | <br>3  |           |               | Analyst: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |       |  |  |  |
| Nitrobenzene                    | ND     | 10        | μg/L          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/9/2014 9:16:21 PM  | 15747 |  |  |  |
| 2-Nitrophenol                   | ND     | 10        | μg/L          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/9/2014 9:16:21 PM  | 15747 |  |  |  |
| 4-Nitrophenol                   | ND     | 10        | μg/L          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/9/2014 9:16:21 PM  | 15747 |  |  |  |
| Pentachlorophenol               | ND     | 20        | μg/L          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/9/2014 9:16:21 PM  | 15747 |  |  |  |
| Phenanthrene                    | ND     | 10        | μg/L          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/9/2014 9:16:21 PM  | 15747 |  |  |  |
| Phenol                          | ND     | 10        | μg/L          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/9/2014 9:16:21 PM  | 15747 |  |  |  |
| Pyrene                          | ND     | 10        | μg/L          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/9/2014 9:16:21 PM  | 15747 |  |  |  |
| Pyridine                        | ND     | 10        | μg/L          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/9/2014 9:16:21 PM  | 15747 |  |  |  |
| 1,2,4-Trichlorobenzene          | ND     | 10        | μg/L          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/9/2014 9:16:21 PM  | 15747 |  |  |  |
| 2,4,5-Trichlorophenol           | ND     | 10        | μg/L          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/9/2014 9:16:21 PM  | 15747 |  |  |  |
| 2,4,6-Trichlorophenol           | ND     | 10        | μg/L          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/9/2014 9:16:21 PM  | 15747 |  |  |  |
| Surr: 2-Fluorophenol            | 59.4   | 12.1-85.8 | %REC          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/9/2014 9:16:21 PM  | 15747 |  |  |  |
| Surr: Phenol-d5                 | 52.8   | 17.7-65.8 | %REC          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/9/2014 9:16:21 PM  | 15747 |  |  |  |
| Surr: 2,4,6-Tribromophenol      | 83.8   | 26-138    | %REC          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/9/2014 9:16:21 PM  | 15747 |  |  |  |
| Surr: Nitrobenzene-d5           | 76.3   | 47.5-119  | %REC          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/9/2014 9:16:21 PM  | 15747 |  |  |  |
| Surr: 2-Fluorobiphenyl          | 68.0   | 48.1-106  | %REC          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/9/2014 9:16:21 PM  | 15747 |  |  |  |
| Surr: 4-Terphenyl-d14           | 69.3   | 44-113    | %REC          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/9/2014 9:16:21 PM  | 15747 |  |  |  |
| EPA METHOD 8260B: VOLATILES     |        |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyst               | RAA   |  |  |  |
| Benzene                         | ND     | 5.0       | μg/L          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/2014 10:52:10 PM | R216  |  |  |  |
| Toluene                         | ND     | 5.0       | μg/L          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/2014 10:52:10 PM | R216  |  |  |  |
| Ethylbenzene                    | ND     | 5.0       | μg/L          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/2014 10:52:10 PM |       |  |  |  |
| Methyl tert-butyl ether (MTBE)  | ND     | 5.0       | μg/L          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/2014 10:52:10 PM | R216  |  |  |  |
| 1,2,4-Trimethylbenzene          | ND     | 5.0       | μg/L          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/2014 10:52:10 PM | R216  |  |  |  |
| 1,3,5-Trimethylbenzene          | ND     | 5.0       | μg/L .        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/2014 10:52:10 PM |       |  |  |  |
| 1,2-Dichloroethane (EDC)        | ND     | 5.0       | μ <b>g/</b> L | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/2014 10:52:10 PM |       |  |  |  |
| 1,2-Dibromoethane (EDB)         | ND     | 5.0       | μg/L          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/2014 10:52:10 PM | R216  |  |  |  |
| Naphthalene                     | ND     | 10        | μg/L          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/2014 10:52:10 PM |       |  |  |  |
| 1-Methylnaphthalene             | ND     | 20        | μ <b>g/</b> L | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/2014 10:52:10 PM | R216  |  |  |  |
| 2-Methylnaphthalene             | ND     | 20        | μg/L          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/2014 10:52:10 PM | R216  |  |  |  |
| Acetone                         | 120    | 50        | μg/L          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/2014 10:52:10 PM |       |  |  |  |
| Bromobenzene                    | ND     | 5.0       | μ <b>g</b> /L | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/2014 10:52:10 PM |       |  |  |  |
| Bromodichloromethane            | ND     | 5.0       | μg/L          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/2014 10:52:10 PM |       |  |  |  |
| Bromoform                       | ND     | 5.0       | μg/L          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/2014 10:52:10 PM | R216  |  |  |  |
| Bromomethane                    | ND     | 15        | μg/L          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/2014 10:52:10 PM | R216  |  |  |  |
| 2-Butanone                      | ND     | 50        | μ <b>g/</b> L | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/2014 10:52:10 PM | R216  |  |  |  |
| Carbon disulfide                | ND     | 50        | μg/L          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/2014 10:52:10 PM | R216  |  |  |  |
| Carbon Tetrachloride            | ND     | 5.0       | μg/L          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/2014 10:52:10 PM | R2165 |  |  |  |
| Chlorobenzene                   | ND     | 5.0       | μg/L          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/2014 10:52:10 PM |       |  |  |  |
| Chloroethane                    | ND     | 10        | μg/L          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/2014 10:52:10 PM | R2165 |  |  |  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 18

- P Sample pH greater than 2.
- RL Reporting Detection Limit

#### Analytical Report Lab Order 1410102

Date Reported: 10/23/2014

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Injection Well 4th QTR 10-1-14

**Lab ID:** 1410102-001

Project:

Client Sample ID: Injection Well

**Collection Date:** 10/1/2014 10:00:00 AM

Received Date: 10/2/2014 6:50:00 AM

| Analyses                    | Result | RL Qua | l Units       | DF  | Date Analyzed         | Batch  |
|-----------------------------|--------|--------|---------------|-----|-----------------------|--------|
| EPA METHOD 8260B: VOLATILES |        |        | •             |     | Analyst               | RAA    |
| Chloroform                  | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| Chloromethane               | ND     | 15     | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| 2-Chlorotoluene             | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| 4-Chiorotoluene             | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| cis-1,2-DCE                 | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| cis-1,3-Dichloropropene     | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| 1,2-Dibromo-3-chloropropane | ND     | 10     | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| Dibromochloromethane        | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| Dibromomethane              | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| 1,2-Dichlorobenzene         | ND     | 5.0    | μg/L´         | 5   | 10/3/2014 10:52:10 PM | R21653 |
| 1,3-Dichlorobenzene         | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| 1,4-Dichlorobenzene         | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| Dichlorodifluoromethane     | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| 1,1-Dichloroethane          | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| 1,1-Dichloroethene          | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| 1,2-Dichloropropane         | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| 1,3-Dichloropropane         | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| 2,2-Dichloropropane         | ND     | 10     | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| 1,1-Dichloropropene         | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| Hexachlorobutadiene         | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| 2-Hexanone                  | ND     | 50     | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| Isopropylbenzene            | ND .   | 5.0    | μg/L          | . 5 | 10/3/2014 10:52:10 PM | R21653 |
| 4-isopropyltoluene          | ND .   | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| 4-Methyl-2-pentanone        | ND     | 50     | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| Methylene Chloride          | ND     | 15     | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| n-Butylbenzene              | ND     | 15     | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| n-Propylbenzene             | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| sec-Butylbenzene            | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| Styrene                     | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| tert-Butylbenzene           | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| 1,1,1,2-Tetrachloroethane   | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| 1,1,2,2-Tetrachloroethane   | ND     | 10     | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| Tetrachloroethene (PCE)     | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| trans-1,2-DCE               | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| trans-1,3-Dichloropropene   | ND     | 5.0    | μ <b>g/</b> L | 5   | 10/3/2014 10:52:10 PM | R21653 |
| 1,2,3-Trichlorobenzene      | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| 1,2,4-Trichlorobenzene      | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| 1,1,1-Trichloroethane       | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |
| 1,1,2-Trichloroethane       | ND     | 5.0    | μg/L          | 5   | 10/3/2014 10:52:10 PM | R21653 |

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 5 of 18

- P Sample pH greater than 2.
- RL Reporting Detection Limit

# **Analytical Report**

#### Lab Order 1410102

Date Reported: 10/23/2014

## Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well Collection Date: 10/1/2014 10:00:00 AM

Injection Well 4th QTR 10-1-14 Lab ID: 1410102-001

Matrix: AQUEOUS Received Date: 10/2/2014 6:50:00 AM

| Analyses                       | Result | RL (   | Qual | Units      | DF | Date Analyzed         | Batch  |
|--------------------------------|--------|--------|------|------------|----|-----------------------|--------|
| EPA METHOD 8260B: VOLATILES    |        | -      |      |            |    | Analys                | : RAA  |
| Trichloroethene (TCE)          | ND     | 5.0    |      | μg/L       | 5  | 10/3/2014 10:52:10 PM | R21653 |
| Trichlorofluoromethane         | ND     | 5.0    |      | μg/L       | 5  | 10/3/2014 10:52:10 PM | R21653 |
| 1,2,3-Trichloropropane         | ND     | 10     |      | μg/L       | 5  | 10/3/2014 10:52:10 PM | R21653 |
| Virryi chloride                | ND     | 5.0    |      | μg/L       | 5  | 10/3/2014 10:52:10 PM | R21653 |
| Xylenes, Total                 | ND     | 7.5    |      | μg/L       | 5  | 10/3/2014 10:52:10 PM | R21653 |
| Surr: 1,2-Dichloroethane-d4    | 82.3   | 70-130 |      | %REC       | 5  | 10/3/2014 10:52:10 PM | R21653 |
| Surr: 4-Bromofluorobenzene     | 84.8   | 70-130 |      | %REC       | 5  | 10/3/2014 10:52:10 PM | R21653 |
| Surr: Dibromofluoromethane     | 79.9   | 70-130 |      | %REC       | 5  | 10/3/2014 10:52:10 PM | R21653 |
| Surr: Toluene-d8               | 84.8   | 70-130 |      | %REC       | 5  | 10/3/2014 10:52:10 PM | R21653 |
| SM2510B: SPECIFIC CONDUCTANCE  |        |        |      |            |    | Analyst               | :: JRR |
| Conductivity                   | 1100   | 0.010  |      | µmhos/cm   | 1  | 10/6/2014 5:51:56 PM  | R21715 |
| SM4500-H+B: PH                 |        |        |      |            |    | Analyst               | : JRR  |
| pН                             | 7.08   | 1.68   | Н    | pH units   | 1  | 10/6/2014 5:51:56 PM  | R21715 |
| SM2320B: ALKALINITY            |        |        |      |            |    | Analyst               | : JRR  |
| Bicarbonate (As CaCO3)         | 150    | 20     |      | mg/L CaCO3 | 1  | 10/6/2014 5:51:56 PM  | R21715 |
| Carbonate (As CaCO3)           | ND     | 2.0    |      | mg/L CaCO3 | 1  | 10/6/2014 5:51:56 PM  | R21715 |
| Total Alkalinity (as CaCO3)    | 150    | 20     |      | mg/L CaCO3 | 1  | 10/6/2014 5:51:56 PM  | R21715 |
| SM2540C MOD: TOTAL DISSOLVED S | OLIDS  |        |      |            |    | Analyst               | : KS   |
| Total Dissolved Solids         | 742    | 40.0   | *    | mg/L       | 1  | 10/8/2014 4:42:00 PM  | 15759  |
|                                |        |        |      |            |    |                       |        |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range Е
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit O
- RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 6 of 18

- P Sample pH greater than 2.
- RL Reporting Detection Limit

# Anatek Labs, Inc.

1282 Álturas Drive · Moscow, ID 63843 · (208) 883-2839 · Fax (208) 882-9246 · email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

141003043

Address:

4901 HAWKINS NE SUITE D

**Project Name:** 

1410102

**ALBUQUERQUE, NM 87109** 

Attn:

**ANDY FREEMAN** 

### **Analytical Results Report**

Sample Number

141003043-001

Sampling Date 10/1/2014

Date/Time Received 10/3/2014 1:30 PM

Sampling Time 10:00 AM

Citent Sample ID **Matrix** 

1410102-001E / INJECTION WELL

Sample Location

Comments

| Parameter          | Result | Units    | PQL | Analysis Date | Analyst | Method      | Qualifier |
|--------------------|--------|----------|-----|---------------|---------|-------------|-----------|
| Cyanide (reactive) | ND     | mg/L     | 1   | 10/15/2014    | CRW     | SW846 CH7   |           |
| Flashpoint         | >200   | °F       |     | 10/15/2014    | KFG     | EPA 1010    |           |
| рH                 | 6.82   | ph Units |     | 10/6/2014     | KJS     | SM 4500pH-B |           |
| Reactive suifide   | 3.01   | mg/L     | 1   | 10/15/2014    | HSW     | SW846 CH7   |           |

**Authorized Signature** 

John Coddington, Lab Manager

MCI

EPA's Maximum Contaminant Level

ND

Not Detected

PQL

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

# Anatek Labs, Inc. 1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anatekiabs.com

504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

**Client:** 

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

141003043

Address:

4901 HAWKINS NE SUITE D **ALBUQUERQUE, NM 87109** 

Project Name:

1410102

Attn:

**ANDY FREEMAN** 

Analytical Results Report **Quality Control Data** 

| Lab Control Sample    |               |                  |              |       |       |             |            |            |               |               |
|-----------------------|---------------|------------------|--------------|-------|-------|-------------|------------|------------|---------------|---------------|
| Parameter             | LC\$ Resu     | it Units         | LCS          | Spike | %Rec  | AR          | %Rec       | Prep       | Date          | Analysis Date |
| Reactive sulfide      | 0.180         | mg/L             | . 0          | .2    | 90.0  | 70          | -130       | 10/15      | /2014         | 10/15/2014    |
| Cyanide (reactive)    | 0.519         | mg/l.            |              | .5    | 103.8 | 80          | -120       | 10/15      | /2014         | 10/15/2014    |
| Matrix Spike          |               |                  |              |       |       |             |            |            | <del></del> - |               |
| Sample Number Param   | ater          | Sample<br>Result | MS<br>Result | Uni   | ts    | MS<br>Spike | %Rec       | AR<br>%Rec | Prep Date     | Analysis Date |
| -                     | re sulfide    | 3.01             | 3.77         | mg/   |       | 0.767       | 99.1       | 70-130     | •             | •             |
|                       | e (reactive)  | ND               | 2.41         | mg/   | _     | 2.5         | 96.4       | 80-120     | 10/15/2014    | 10/15/2014    |
| Matrix Spike Duplicat |               |                  | ·.           |       |       |             | <u> </u>   |            |               |               |
| Parameter             | MSD<br>Result | Units            | MSD<br>Spike | %5    | ec ·  | %RPD        | AR<br>%RPI | ) Pre      | ep Date       | Analysis Date |
| Cyanide (reactive)    | 2.41          | mg/L             | 2.5          |       | 5.4   | 0.0         | 0-25       |            | 15/2014       | 10/15/2014    |
| Method Blank          |               |                  |              |       |       |             |            |            |               |               |
| Parameter             |               | Re               | sult         | U     | nits  |             | PQL        | Pi         | rep Date      | Analysis Date |
| Cyanide (reactive)    |               | N                | ID           | m     | ıg/L  |             | 1          | 10/        | 15/2014       | 10/15/2014    |
| Reactive sulfide      |               | N                | ID           |       | ig/L  |             | 1          | 10/        | 15/2014       | 10/15/2014    |

Acceptable Range

Not Detected

PQL

Practical Quantitation Limit Relative Percentage Difference

#### Comments:

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102 23-Oct-14

Client: Project:

Prep Date:

Western Refining Southwest, Inc. Injection Well 4th QTR 10-1-14

Sample ID MB Client ID: PBW

SampType: MBLK

TestCode: EPA Method 300.0: Anions

Batch ID: R21640 RunNo: 21640

Analysis Date: 10/2/2014

SeqNo: 634799 Units: mg/L

%RPD **RPDLimit** Qual SPK value SPK Ref Val %REC LowLimit HighLimit Analyte Result **PQL** 

0.50 ND Chloride Sulfate ND 0.50

Sample ID LCS Client ID: LCSW SampType: LCS Batch ID: R21640 TestCode: EPA Method 300.0: Anions

RunNo: 21640

Units: mg/L Analysis Date: 10/2/2014 SeqNo: 634800

Prep Date: %RPD **RPDLimit** Qual HighLimit SPK value SPK Ref Val %REC LowLimit Analyte Result PQL. 90 110 5.000 0 94.0 4.7 0.50 Chloride 9.7 0.50 10.00 0 96.8 90 110 Sulfate

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range E
- J Analyte detected below quantitation limits
- RSD is greater than RSDlimit 0
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- Reporting Detection Limit RL

Page 7 of 18

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102

23-Oct-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th QTR 10-1-14

| Sample ID 5ml-rb               | SampT      | ype: Mi       | BLK       | Tes         | tCode: El | PA Method | 8260B: VOL  | ATILES |          |      |
|--------------------------------|------------|---------------|-----------|-------------|-----------|-----------|-------------|--------|----------|------|
| Client ID: PBW                 | Batch      | ID: <b>R2</b> | 1653      | F           | RunNo: 2  | 1653      |             |        |          |      |
| Prep Date:                     | Analysis D | ate: 10       | 0/3/2014  | s           | SeqNo: 6  | 36225     | Units: µg/L |        |          |      |
| Analyte                        | Result     | PQL           | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |
| Benzene                        | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Toluene                        | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Ethylbenzene                   | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Methyl tert-butyl ether (MTBE) | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,2,4-Trimethylbenzene         | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,3,5-Trimethylbenzene         | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,2-Dichloroethane (EDC)       | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,2-Dibromoethane (EDB)        | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Naphthalene                    | ND         | 2.0           |           |             |           |           |             |        |          |      |
| 1-Methylnaphthalene            | ND         | 4.0           |           |             |           |           |             |        |          |      |
| 2-Methylnaphthalene            | ND         | 4.0           |           |             |           |           |             |        |          |      |
| Acetone                        | ND         | 10            |           |             |           |           |             |        |          |      |
| Bromobenzene                   | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Bromodichloromethane           | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Bromoform                      | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Bromomethane                   | ND         | 3.0           |           |             |           |           |             |        |          |      |
| 2-Butanone                     | ND         | 10            |           |             |           |           |             |        |          | *    |
| Carbon disulfide               | ND         | 10            |           |             |           |           |             |        |          |      |
| Carbon Tetrachloride           | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Chlorobenzene                  | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Chloroethane                   | ND         | 2.0           |           |             |           |           |             |        |          |      |
| Chloroform                     | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Chloromethane                  | ND         | 3.0           |           |             |           |           |             |        |          |      |
| 2-Chlorotoluene                | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 4-Chlorotoluene                | ND         | 1.0           |           |             |           |           |             |        |          |      |
| cis-1,2-DCE                    | ND         | 1.0           |           |             |           |           |             |        |          |      |
| cis-1,3-Dichloropropene        | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,2-Dibromo-3-chloropropane    | ND         | 2.0           |           |             |           |           |             |        |          |      |
| Dibromochloromethane           | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Dibromomethane                 | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,2-Dichlorobenzene            | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,3-Dichlorobenzene            | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,4-Dichlorobenzene            | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Dichlorodifluoromethane        | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,1-Dichloroethane             | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,1-Dichloroethene             | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,2-Dichloropropane            | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,3-Dichloropropane            | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 2,2-Dichloropropane            | ND         | 2.0           |           |             |           |           |             |        |          |      |
| ,                              |            |               |           |             |           |           |             |        |          |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 8 of 18

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102 23-Oct-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th QTR 10-1-14

| Sample ID 5ml-rb            | SampType: MBLK |               |           | TestCode: EPA Method 8260B: VOLATILES |          |          |             |      |           |      |
|-----------------------------|----------------|---------------|-----------|---------------------------------------|----------|----------|-------------|------|-----------|------|
| Client ID: PBW              | Batch          | ID: <b>R2</b> | 1653      | F                                     | RunNo: 2 | 1653     |             |      |           |      |
| Prep Date:                  | Analysis D     | ate: 10       | /3/2014   | S                                     | SeqNo: 6 | 36225    | Units: µg/L |      |           |      |
| Analyte                     | Result         | PQL           |           | SPK Ref Val                           | %REC     | LowLimit | HighLimit   | %RPD | RPDLimit  | Qual |
| 1,1-Dichloropropene         | ND             | 1.0           | SFK value | SPK Rei Vai                           | MREC     | LOWLITH  | nightimit   | MKFD | KLDFILIII | Quai |
| Hexachlorobutadiene         | ND             | 1.0           |           |                                       |          |          |             |      |           |      |
| 2-Hexanone                  | ND             | 1.0           |           |                                       |          |          |             |      |           |      |
| isopropyibenzene            | ND             | 1.0           |           |                                       |          |          |             |      |           |      |
| 4-Isopropyltoluene          | ND             | 1.0           |           |                                       |          |          |             |      |           |      |
| 4-Methyl-2-pentanone        | ND             | 10            |           |                                       |          |          |             |      |           |      |
| Methylene Chloride          | ND             | 3.0           |           |                                       |          |          |             |      |           |      |
| n-Butylbenzene              | ND             | 3.0           |           |                                       |          |          |             |      |           |      |
| n-Propylbenzene             | ND             | 1.0           |           |                                       |          |          |             |      |           |      |
| sec-Butylbenzene            | ND             | 1.0           |           |                                       |          |          |             |      |           |      |
| Styrene                     | ND             | 1.0           |           |                                       |          |          |             |      |           |      |
| tert-Butylbenzene           | ND             | 1.0           |           |                                       |          |          |             |      |           |      |
| 1,1,1,2-Tetrachloroethane   | ND             | 1.0           |           |                                       |          |          |             |      |           |      |
| 1,1,2,2-Tetrachloroethane   | ND             | 2.0           |           |                                       |          |          |             |      |           |      |
| Tetrachloroethene (PCE)     | ND             | 1.0           |           |                                       |          |          |             |      |           |      |
| trans-1,2-DCE               | ND             | 1.0           |           |                                       |          |          |             |      |           |      |
| trans-1,3-Dichloropropene   | ND             | 1.0           |           |                                       |          |          |             |      |           |      |
| 1,2,3-Trichlorobenzene      | ND             | 1.0           |           |                                       |          |          |             |      |           |      |
| 1,2,4-Trichlorobenzene      | ND             | 1.0           |           |                                       |          |          |             |      |           |      |
| 1,1,1-Trichloroethane       | ND             | 1.0           |           |                                       |          |          |             |      |           |      |
| 1,1,2-Trichloroethane       | ND             | 1.0           |           |                                       |          |          |             |      |           |      |
| Trichloroethene (TCE)       | ND             | 1.0           |           |                                       |          |          |             |      |           |      |
| Trichlorofluoromethane      | ND             | 1.0           |           |                                       |          |          |             |      |           |      |
| 1,2,3-Trichloropropane      | ND             | 2.0           |           |                                       |          |          |             |      |           |      |
| Vinyl chloride              | ND             | 1.0           |           |                                       |          |          |             |      |           |      |
| Xyienes, Total              | ND             | 1.5           |           |                                       |          |          |             |      |           |      |
| Surr: 1,2-Dichloroethane-d4 | 8.0            |               | 10.00     |                                       | 80.4     | 70       | 130         |      |           |      |
| Surr: 4-Bromofluorobenzene  | 10             |               | 10.00     |                                       | 101      | 70       | 130         |      |           |      |
| Surr: Dibromofluoromethane  | 8.0            |               | 10.00     |                                       | 80.5     | 70       | 130         |      |           |      |
| Surr: Toluene-d8            | 8.9            |               | 10.00     |                                       | 89.4     | 70       | 130         |      |           |      |

| Sample ID 100ng Ics | SampT      | S       | Tes       | tCode: El   | ATILES   |          |             |      |          |      |
|---------------------|------------|---------|-----------|-------------|----------|----------|-------------|------|----------|------|
| Client ID: LCSW     | Batch      | ID: R2  | 1653      | F           | RunNo: 2 | 1653     |             |      |          |      |
| Prep Date:          | Analysis D | ate: 10 | 0/3/2014  | 8           | SeqNo: 6 | 36227    | Units: µg/L |      |          |      |
| Analyte             | Result     | PQL     | SPK value | SPK Ref Val | %REC     | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Вепzепе             | 19         | 1.0     | 20.00     | 0           | 96.4     | 70       | 130         |      |          |      |
| Toluene             | 20         | 1.0     | 20.00     | 0           | 98.8     | 80       | 120         |      |          |      |
| Chlorobenzene       | 20         | 1.0     | 20.00     | 0           | 97.9     | 70       | 130         |      |          |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- NO Not Detected at the Reporting Lim
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 9 of 18

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102

23-Oct-14

Client: Project: Western Refining Southwest, Inc. Injection Well 4th QTR 10-1-14

| Sample ID 100ng Ics         | Samp1            | SampType: LCS            |           |             | TestCode: EPA Method 8260B: VOLATILES |          |           |      |          |      |
|-----------------------------|------------------|--------------------------|-----------|-------------|---------------------------------------|----------|-----------|------|----------|------|
| Client ID: LCSW             | Batch ID: R21653 |                          |           | F           | RunNo: 21653                          |          |           |      |          |      |
| Prep Date:                  | Analysis D       | Analysis Date: 10/3/2014 |           |             | SeqNo: 636227 Units:                  |          |           |      |          |      |
| Analyte                     | Result           | PQL                      | SPK value | SPK Ref Val | %REC                                  | LowLimit | HighLimit | %RPD | RPDLimit | Qual |
| 1,1-Dichloroethene          | 21               | 1.0                      | 20.00     | 0           | 105                                   | 82.6     | 131       |      |          |      |
| Trichloroethene (TCE)       | 19               | 1.0                      | 20.00     | 0           | 96.9                                  | 70       | 130       |      |          |      |
| Surr: 1,2-Dichloroethane-d4 | 8.5              |                          | 10.00     |             | 84.9                                  | 70       | 130       |      |          |      |
| Surr: 4-Bromofluorobenzene  | 9.8              |                          | 10.00     |             | 97.7                                  | 70       | 130       |      |          |      |
| Surr: Dibromofluoromethane  | 8.0              |                          | 10.00     |             | 79.7                                  | 70       | 130       |      |          |      |
| Surr: Toluene-d8            | 9.1              |                          | 10.00     |             | 91.1                                  | 70       | 130       |      |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 10 of 18

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102 23-Oct-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th QTR 10-1-14

| Sample ID mb-15747          | SampT       | pe: MBLK         | Tes            | tCode: EF | PA Method | 8270C: Semi | volatiles |          |      |
|-----------------------------|-------------|------------------|----------------|-----------|-----------|-------------|-----------|----------|------|
| Client ID: PBW              | Batch       | ID: <b>15747</b> | Ī              | RunNo: 2  | 1803      |             |           |          |      |
| Prep Date: 10/7/2014        | Analysis Da | ate: 10/9/2014   | :              | SeqNo: 64 | 40784     | Units: µg/L |           |          |      |
| Analyte                     | Result      | PQL SPK va       | ue SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD      | RPDLimit | Qual |
| Acenaphthene                | ND          | 10               |                |           |           |             |           |          |      |
| Acenaphthylene              | ND          | 10               |                |           |           |             |           |          |      |
| Aniline                     | ND          | 10               |                |           |           |             |           |          |      |
| Anthracene                  | ND          | 10               |                |           |           |             |           |          |      |
| Azobenzene                  | ND          | 10               |                |           |           |             |           |          |      |
| Benz(a)anthracene           | ND          | 10               |                |           |           |             |           |          |      |
| Benzo(a)pyrene              | ND          | 10               |                |           |           |             |           |          |      |
| Benzo(b)fluoranthene        | ND          | 10               |                |           |           |             |           |          |      |
| Benzo(g,h,i)perylene        | ND          | 10               |                |           |           |             |           |          |      |
| Benzo(k)fluoranthene        | ND          | 10               |                |           |           |             |           |          |      |
| Benzoic acid                | ND          | 40               |                |           |           |             |           |          |      |
| Benzyl alcohol              | ND          | 10               |                |           |           |             |           |          |      |
| Bis(2-chloroethoxy)methane  | ND          | 10               |                |           |           |             |           |          |      |
| Bis(2-chloroethyl)ether     | ND          | 10               |                |           |           |             |           |          |      |
| Bis(2-chloroisopropyl)ether | ND          | 10               |                |           |           |             |           |          |      |
| Bis(2-ethylhexyl)phthalate  | ND          | 10               |                |           |           |             |           |          |      |
| 4-Bromophenyl phenyl ether  | ND          | 10               |                |           |           |             |           |          |      |
| Butyi benzyl phthalate      | ND          | 10               |                |           |           |             |           |          |      |
| Carbazole                   | ND          | 10               |                |           |           |             |           |          |      |
| 4-Chloro-3-methylphenol     | ND          | 10               |                |           |           |             |           |          |      |
| 4-Chloroaniline             | ND          | 10               |                |           |           |             |           |          |      |
| 2-Chloronaphthalene         | ND          | 10               |                |           |           |             |           |          |      |
| 2-Chloropheno!              | ND          | 10               |                |           |           |             |           |          |      |
| 4-Chlorophenyl phenyl ether | ND          | 10               |                |           |           |             |           |          |      |
| Chrysene                    | ND          | 10               |                |           |           |             |           |          |      |
| Di-n-butyl phthalate        | ND          | 10               |                |           |           |             |           |          |      |
| Di-n-octyl phthalate        | ND          | 20               |                |           |           |             |           |          |      |
| Dibenz(a,h)anthracene       | ND          | 10               |                |           |           |             |           |          |      |
| Dibenzofuran                | ND          | 10               |                |           |           |             |           |          |      |
| 1,2-Dichlorobenzene         | ND          | 10               |                |           |           |             |           |          |      |
| 1,3-Dichlorobenzene         | ND          | 10               |                |           |           |             |           |          |      |
| 1,4-Dichlorobenzene         | ND<br>ND    | 10<br>10         |                |           |           |             |           |          |      |
| 3,3'-Dichlorobenzidine      | ND          | 10               |                |           |           |             |           |          |      |
| Diethyl phthalate           |             |                  |                |           |           |             |           |          |      |
| Dimethyl phthalate          | ND          | 10<br>20         |                |           |           |             |           |          |      |
| 2,4-Dichlorophenol          | ND          |                  |                |           |           |             |           |          |      |
| 2,4-Dimethylphenol          | ND          | 10               |                |           |           |             |           |          |      |
| 4,6-Dinitro-2-methylphenol  | ND          | 20               |                |           |           |             |           |          |      |
| 2,4-Dinitrophenol           | ND          | 20               |                |           |           |             |           |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 11 of 18

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102

23-Oct-14

Client: Project:

Western Refining Southwest, Inc. Injection Well 4th QTR 10-1-14

| Sample ID mb-15747 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles |              |                  |                 |            |             |      |          |      |
|-----------------------------------------------------------------------------|--------------|------------------|-----------------|------------|-------------|------|----------|------|
| Client ID: PBW                                                              |              | ID: <b>15747</b> |                 | 21803      |             |      |          |      |
| Prep Date: 10/7/2014                                                        |              | ate: 10/9/2014   |                 | 640784     | Unite: ua/I |      |          |      |
| Fiep Date. 10/1/2014                                                        | Allalysis Da | ile. 10/9/2014   | Seqivo.         | 040704     | Units: µg/L |      |          |      |
| Analyte                                                                     | Result       |                  | SPK Ref Val %RE | C LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| 2,4-Dinitrotoluene                                                          | ND           | 10               |                 |            |             |      |          |      |
| 2,6-Dinitrotoluene                                                          | ND           | 10               |                 |            |             |      |          |      |
| Fluoranthene                                                                | ND           | 10               |                 |            |             |      |          |      |
| Fluorene                                                                    | ND           | 10               |                 |            |             |      |          |      |
| Hexachlorobenzene                                                           | ND           | 10               |                 |            |             |      |          |      |
| Hexachlorobutadiene                                                         | ND           | 10               |                 |            |             |      |          |      |
| Hexachlorocyclopentadiene                                                   | ND           | 10               |                 |            |             |      |          |      |
| Hexachloroethane                                                            | ND           | 10               |                 |            |             |      |          |      |
| Indeno(1,2,3-cd)pyrene                                                      | ND           | 10               |                 |            |             |      |          |      |
| Isophorone                                                                  | ND           | 10               |                 |            |             |      |          |      |
| 1-Methylnaphthalene                                                         | ND           | 10               |                 |            |             |      |          |      |
| 2-Methylnaphthalene                                                         | ND           | 10               |                 |            |             |      |          |      |
| 2-Methylphenol                                                              | ND           | 20               | ;               |            |             |      |          |      |
| 3+4-Methylphenol                                                            | ND           | 10               |                 |            |             |      |          |      |
| N-Nitrosodi-n-propylamine                                                   | ND           | 10               |                 |            |             |      |          |      |
| N-Nitrosodimethylamine                                                      | ND           | 10               |                 |            |             |      |          |      |
| N-Nitrosodiphenylamine                                                      | ND           | 10               |                 |            |             |      |          |      |
| Naphthalene                                                                 | ND           | 10               |                 |            |             |      |          |      |
| 2-Nitroaniline                                                              | ND           | 10               |                 |            |             |      |          |      |
| 3-Nitroaniline                                                              | ND           | 10               |                 |            |             |      |          |      |
| 4-Nitroanifine                                                              | ND           | 10               |                 |            |             |      |          |      |
| Nitrobenzene                                                                | ND           | 10               |                 |            |             |      |          |      |
| 2-Nitrophenol                                                               | ND           | 10               |                 |            |             |      |          |      |
| 4-Nitrophenol                                                               | ND           | 10               |                 |            |             |      |          |      |
| Pentachlorophenol                                                           | ND           | 20               |                 |            |             |      |          |      |
| Phenanthrene                                                                | ND           | 10               |                 |            |             |      |          |      |
| Phenol                                                                      | ND           | 10               |                 |            |             |      |          |      |
| Pyrene                                                                      | ND           | 10               |                 |            |             |      |          |      |
| Pyridine                                                                    | ND           | 10               |                 |            |             |      |          |      |
| 1,2,4-Trichlorobenzene                                                      | ND           | 10               |                 |            |             |      |          |      |
| 2,4,5-Trichlorophenoi                                                       | ND           | 10               |                 |            |             |      |          |      |
| 2,4,6-Trichlorophenol                                                       | ND           | 10               |                 |            |             |      |          |      |
| Surr: 2-Fluorophenol                                                        | 140          | 200.0            | 68.             | 8 12.1     | 85.8        |      |          |      |
| Surr: Phenol-d5                                                             | 130          | 200.0            | 64.             | 5 17.7     | 65.8        |      |          |      |
| Surr: 2,4,6-Tribromophenol                                                  | 130          | 200.0            | 66.             | 6 26       | 138         |      |          |      |
| Surr: Nitrobenzene-d5                                                       | 79           | 100.0            | 79.             | 4 47.5     | 119         |      |          |      |
| Surr: 2-Fluorobiphenyl                                                      | 75           | 100.0            | 75.             | 3 48.1     | 106         |      |          |      |
| Surr: 4-Terphenyl-d14                                                       | 74           | 100.0            | 74.             |            | 113         |      |          |      |
|                                                                             |              |                  |                 |            |             |      |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 12 of 18

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102

23-Oct-14

Client: Project:

Western Refining Southwest, Inc. Injection Well 4th QTR 10-1-14

| Sample ID Ics-15747        | SampType: LCS TestCode: EPA Method 8270C: Semivolatiles |                 |           |              |          |          |             |      |          |      |
|----------------------------|---------------------------------------------------------|-----------------|-----------|--------------|----------|----------|-------------|------|----------|------|
| Client ID: LCSW            | Batch                                                   | n ID: <b>15</b> | 747       | RunNo: 21803 |          |          |             |      | •        |      |
| Prep Date: 10/7/2014       | Analysis D                                              | oate: 10        | /9/2014   | 8            | SeqNo: 6 | 40785    | Units: µg/L |      |          |      |
| Analyte                    | Result                                                  | PQL             | SPK value | SPK Ref Val  | %REC     | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Acenaphthene               | 77                                                      | 10              | 100.0     | 0            | 76.7     | 47.9     | 114         |      |          |      |
| 4-Chloro-3-methylphenol    | 180                                                     | 10              | 200.0     | 0            | 88.1     | 51.7     | 122         |      |          |      |
| 2-Chlorophenol             | 170                                                     | 10              | 200.0     | 0            | 83.0     | 40.7     | 113         |      |          |      |
| 1,4-Dichlorobenzene        | 70                                                      | 10              | 100.0     | 0            | 70.4     | 39.6     | 99.9        |      |          |      |
| 2,4-Dinitrotoluene         | 69                                                      | 10              | 100.0     | 0            | 68.9     | 40.8     | 113         |      |          |      |
| N-Nitrosodi-n-propylamine  | 81                                                      | 10              | 100.0     | 0            | 81.2     | 51.2     | 111         |      |          |      |
| 4-Nitrophenol              | 130                                                     | 10              | 200.0     | 0            | 64.1     | 15.7     | 86.9        |      |          |      |
| Pentachlorophenol          | 120                                                     | 20              | 200.0     | 0            | 59.2     | 21.6     | 104         |      |          |      |
| Phenol                     | 140                                                     | 10              | 200.0     | 0            | 71.0     | 28.6     | 71.7        |      |          |      |
| Pyrene                     | 73                                                      | 10              | 100.0     | 0            | 73.1     | 54.2     | 128         |      |          |      |
| 1,2,4-Trichlorobenzene     | 71                                                      | 10              | 100.0     | 0            | 71.2     | 40.9     | 101         |      |          |      |
| Surr. 2-Fluorophenol       | 150                                                     |                 | 200.0     |              | 73.2     | 12.1     | 85.8        |      |          |      |
| Suir: Phenol-d5            | 140                                                     |                 | 200.0     |              | 71.8     | 17.7     | 65.8        |      |          | S    |
| Surr. 2,4,6-Tribromophenol | 140                                                     |                 | 200.0     |              | 70.9     | 26       | 138         |      |          |      |
| Surr: Nitrobenzene-d5      | 83                                                      |                 | 100.0     |              | 83.4     | 47.5     | 119         |      |          |      |
| Surr: 2-Fluorobiphenyl     | 0.46                                                    |                 | 100.0     |              | 0.460    | 48.1     | 106         |      |          | S    |
| Surr: 4-Terphenyl-d14      | 75                                                      |                 | 100.0     |              | 75.1     | 44       | 113         |      |          |      |

| Sample ID Icsd-15747       | SampType: LCSD TestCode: EPA Method 8270C: Semivolatiles |               |           |             |              |          |             |      |          |      |  |
|----------------------------|----------------------------------------------------------|---------------|-----------|-------------|--------------|----------|-------------|------|----------|------|--|
| Client ID: LCSS02          | Batch                                                    | ID: <b>15</b> | 747       | F           | RunNo: 2     | 1803     |             |      |          |      |  |
| Prep Date: 10/7/2014       | Analysis D                                               | ate: 10       | )/9/2014  | S           | SeqNo: 6     | 40786    | Units: µg/L |      |          |      |  |
| Analyte                    | Result                                                   | PQL           | SPK value | SPK Ref Val | %REC         | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |  |
| Acenaphthene               | 79                                                       | 10            | 100.0     | 0           | 78.8         | 47.9     | 114         | 2.60 | 27.2     |      |  |
| 4-Chloro-3-methylphenol    | 190                                                      | 10            | 200.0     | 0           | 94.7         | 51.7     | 122         | 7.26 | 25.9     |      |  |
| 2-Chlorophenol             | 160                                                      | 10            | 200.0     | 0           | 80.2         | 40.7     | 113         | 3.52 | 22.5     |      |  |
| 1,4-Dichlorobenzene        | 74                                                       | 10            | 100.0     | 0           | 73.7         | 39.6     | 99.9        | 4.50 | 24.6     |      |  |
| 2,4-Dinitrotoluene         | 73                                                       | 10            | 100.0     | 0           | 73.1         | 40.8     | 113         | 6.00 | 25.3     |      |  |
| N-Nitrosodi-n-propylamine  | 79                                                       | 10            | 100.0     | 0           | 79.0         | 51.2     | 111         | 2.82 | 23.6     |      |  |
| 4-Nitrophenol              | 140                                                      | 10            | 200.0     | 0           | 69.4         | 15.7     | 86.9        | 7.95 | 34.7     |      |  |
| Pentachlorophenol          | 120                                                      | 20            | 200.0     | 0           | 61.6         | 21.6     | 104         | 4.01 | 32.8     |      |  |
| Phenol                     | 140                                                      | 10            | 200.0     | 0           | 68.3         | 28.6     | 71.7        | 3.88 | 25.5     |      |  |
| Pyrene                     | 79                                                       | 10            | 100.0     | 0           | 78.8         | 54.2     | 128         | 7.56 | 31.4     |      |  |
| 1,2,4-Trichlorobenzene     | 76                                                       | 10            | 100.0     | 0           | 75.7         | 40.9     | 101         | 6.10 | 25.9     |      |  |
| Surr: 2-Fluorophenol       | 150                                                      |               | 200.0     |             | <b>7</b> 3.3 | 12.1     | 85.8        | 0    | 0        |      |  |
| Surr: Phenol-d5            | 140                                                      |               | 200.0     |             | 72.3         | 17.7     | 65.8        | 0    | 0        | S    |  |
| Surr: 2,4,6-Tribromophenol | 140                                                      |               | 200.0     |             | 70.9         | 26       | 138         | 0    | 0        |      |  |
| Surr: Nitrobenzene-d5      | 88                                                       |               | 100.0     |             | 88.0         | 47.5     | 119         | 0    | 0        |      |  |
| Surr: 2-Fluorobiphenyl     | 83                                                       |               | 100.0     |             | 83.2         | 48.1     | 106         | 0    | 0        |      |  |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 13 of 18

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102

23-Oct-14

Client: Project:

Western Refining Southwest, Inc. Injection Well 4th QTR 10-1-14

Sample ID Icsd-15747

SampType: LCSD

TestCode: EPA Method 8270C: Semivolatiles

Client ID: LCSS02 Batch ID: 15747

RunNo: 21803

Prep Date: 10/7/2014

Analysis Date: 10/9/2014

Units: µg/L HighLimit

Analyte

Result PQL SegNo: 640786

**RPDLimit** Qual

Surr: 4-Terphenyl-d14

SPK value SPK Ref Val %REC

80.9

113

0

81

100.0

LowLimit

%RPD

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- NDNot Detected at the Reporting Limit
- P Sample pH greater than 2.
- Reporting Detection Limit

Page 14 of 18

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102

23-Oct-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th QTR 10-1-14

Result

Result

Sample ID MB-15770

SampType: MBLK

TestCode: EPA Method 7470: Mercury

Client ID:

PBW

Batch ID: 15770

**PQL** 

RunNo: 21753

Prep Date: 10/7/2014 Analysis Date: 10/8/2014

SegNo: 639033

Units: mg/L HighLimit

**RPDLimit** 

Qual

Analyte Mercury

ND 0.00020

Sample ID LCS-15770

SampType: LCS

TestCode: EPA Method 7470: Mercury

Client ID: LCSW

Batch ID: 15770

RunNo: 21753

Units: mg/L

Prep Date: 10/7/2014

Analysis Date: 10/8/2014

SeqNo: 639034

**RPDLimit** HighLimit %RPD

%RPD

Qual

SPK value SPK Ref Val

LowLimit

80

Mercury

**PQL** 

0

SPK value SPK Ref Val %REC LowLimit

%REC 103

Analyte

0.0051 0.00020 0.005000

120

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range Ε
- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Sample pH greater than 2.
- RLReporting Detection Limit

Page 15 of 18

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102

23-Oct-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th QTR 10-1-14

| Sample ID I  | VIB-15825 | Samp       | Туре: МЕ | IBLK TestCode: EPA 6010B: Total Recoverable Metals |             |          |          |             |      |          |      |
|--------------|-----------|------------|----------|----------------------------------------------------|-------------|----------|----------|-------------|------|----------|------|
| Client ID: F | PBW       | Bato       | h ID: 15 | 325                                                | F           | RunNo: 2 | 1801     |             |      |          |      |
| Prep Date:   | 10/9/2014 | Analysis [ | Date: 10 | /10/2014                                           | 8           | SeqNo: 6 | 40639    | Units: mg/L |      |          |      |
| Analyte      |           | Result     | PQL      | SPK value                                          | SPK Ref Val | %REC     | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Arsenic      |           | ND         | 0.020    |                                                    |             |          |          |             |      |          |      |
| Barium       |           | ND         | 0.020    |                                                    |             |          |          |             |      |          |      |
| Cadmium      |           | ND         | 0.0020   |                                                    |             |          |          |             |      |          |      |
| Calcium      |           | ND         | 1.0      |                                                    |             |          |          |             |      |          |      |
| Chromium     |           | ND         | 0.0060   |                                                    |             |          |          |             |      |          |      |
| Lead         |           | ND         | 0.0050   |                                                    |             |          |          |             |      |          |      |
| Magnesium    |           | ND         | 1.0      |                                                    |             |          |          |             |      |          |      |
| Potassium    |           | ND         | 1.0      |                                                    |             |          |          |             |      |          |      |
| Selenium     |           | ND         | 0.050    |                                                    |             |          |          |             |      |          |      |
| Silver       |           | 0.010      | 0.0050   |                                                    |             |          |          |             |      |          |      |
| Sodium       |           | ND         | 1.0      |                                                    |             |          |          |             |      |          |      |

| Sample ID LCS-15825  | SampType: LCS |           |           | TestCode: EPA 6010B: Total Recoverable Met |          |          |             |      | als      |      |
|----------------------|---------------|-----------|-----------|--------------------------------------------|----------|----------|-------------|------|----------|------|
| Client ID: LCSW      | Bato          | ch ID: 15 | 825       | R                                          | RunNo: 2 | 1801     |             |      |          |      |
| Prep Date: 10/9/2014 | Analysis      | Date: 10  | 0/10/2014 | S                                          | SeqNo: 6 | 40640    | Units: mg/L |      |          |      |
| Analyte              | Result        | PQL       | SPK value | SPK Ref Val                                | %REC     | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Arsenic              | 0.52          | 0.020     | 0.5000    | 0                                          | 104      | 80       | 120         |      |          |      |
| Barium               | 0.49          | 0.020     | 0.5000    | 0                                          | 98.9     | 80       | 120         |      |          |      |
| Cadmium              | 0.49          | 0.0020    | 0.5000    | 0                                          | 98.9     | 80       | 120         |      |          |      |
| Calcium              | 52            | 1.0       | 50.00     | 0                                          | 104      | 80       | 120         |      |          |      |
| Chromium             | 0.48          | 0.0060    | 0.5000    | 0                                          | 96.8     | 80       | 120         |      |          |      |
| Lead                 | 0.49          | 0.0050    | 0.5000    | 0                                          | 97.6     | 80       | 120         |      |          |      |
| Magnesium            | 51            | 1.0       | 50.00     | 0                                          | 103      | 80       | 120         |      |          |      |
| Potassium            | 49            | 1.0       | 50.00     | 0                                          | 98.8     | 80       | 120         |      |          |      |
| Selenium             | 0.50          | 0.050     | 0.5000    | 0                                          | 100      | 80       | 120         |      |          |      |
| Silver               | 0.10          | 0.0050    | 0.1000    | 0                                          | 102      | 80       | 120         |      |          | В    |
| Sodium               | 51            | 1.0       | 50.00     | 0                                          | 101      | 80       | 120         |      |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDIimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 16 of 18

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102

23-Oct-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th QTR 10-1-14

Sample ID mb-1

SampType: MBLK

TestCode: SM2320B: Alkalinity

Client ID:

Batch ID: R21715

RunNo: 21715

Analysis Date: 10/6/2014

Prep Date:

**PQL** 

SeqNo: 637458

Units: mg/L CaCO3

Analyte

Result

SPK value SPK Ref Val %REC LowLimit

**RPDLimit** Qual

Total Alkalinity (as CaCO3)

ND 20

SampType: LCS

TestCode: SM2320B: Alkalinity

Sample ID Ics-1 Client ID: LCSW

Batch ID: R21715

RunNo: 21715

Prep Date:

SeqNo: 637459

Units: mg/L CaCO3

Analyte

Analysis Date: 10/6/2014

20

%REC

HighLimit

HighLimit

%RPD **RPDLimit** Qual

Total Alkalinity (as CaCO3)

Result **PQL** 83

SPK value SPK Ref Val 80.00 0

LowLimit 103

110

90

%RPD

Sample ID mb-2

SampType: MBLK

TestCode: SM2320B: Alkalinity

Client ID: PBW Prep Date:

LCSW

Batch ID: R21715 Analysis Date: 10/6/2014 RunNo: 21715 SeqNo: 637474

Units: mg/L CaCO3

Analyte

Result **PQL** ND 20

**RPDLimit** %RPD

Qual

Total Alkalinity (as CaCO3)

Sample ID Ics-2

SampType: LCS

**PQL** 

TestCode: SM2320B: Alkalinity

RunNo: 21715

HighLimit

Client ID: Prep Date: Batch ID: R21715

Analysis Date: 10/6/2014

SeqNo: 637475

Units: mg/L CaCO3

Analyte

SPK value SPK Ref Val

%REC

LowLimit HighLimit

Result

102

%RPD

**RPDLimit** 

Qual

Total Alkalinity (as CaCO3)

81

20 80.00

SPK value SPK Ref Val %REC LowLimit

110

- Qualifiers: Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0 R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit
- P Sample pH greater than 2.

ND

Reporting Detection Limit

Page 17 of 18

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102

23-Oct-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th QTR 10-1-14

Sample ID MB-15759

SampType: MBLK

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID:

PBW

Batch ID: 15759

RunNo: 21752

Prep Date: 10/7/2014

Analysis Date: 10/8/2014 **PQL** 

SeqNo: 638741

Units: mg/L HighLimit

**RPDLimit** 

Qual

Total Dissolved Solids

ND

SampType: LCS

20.0

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW

Sample ID LCS-15759

Prep Date: 10/7/2014

Batch ID: 15759

RunNo: 21752

SPK value SPK Ref Val %REC LowLimit

Units: mg/L

Qual

Analyte

Result

20.0

1000

101

%REC

Total Dissolved Solids

1010

0

Analyte

**PQL** 

Analysis Date: 10/8/2014

LowLimit

SPK value SPK Ref Val

SeqNo: 638742

120

**RPDLimit** 

%RPD

%RPD

HighLimit

Qualifiers:

Value exceeds Maximum Contaminant Level.

Value above quantitation range

Analyte detected below quantitation limits 0 RSD is greater than RSDlimit

R RPD outside accepted recovery limits Spike Recovery outside accepted recovery limits В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Sample pH greater than 2.

Reporting Detection Limit

ND

Not Detected at the Reporting Limit Page 18 of 18



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

# Sample Log-In Check List

| Clie  | nt Name:           | Western Re                               | efining Southw                   | Work C           | order Numbe  | r. 14101    | 02         |                   |     | ReptNo:         | 1                    |
|-------|--------------------|------------------------------------------|----------------------------------|------------------|--------------|-------------|------------|-------------------|-----|-----------------|----------------------|
| Rece  | eived by/dat       | te:                                      | 21/0/02                          | 1/4              |              |             |            |                   |     |                 |                      |
| Logg  | ed By:             | Anne Tho                                 | me                               | 10/2/2014        | 1 6:50:00 AN | Æ           |            | ame 2             | M-  | _               |                      |
| Com   | pleted By:         | Anne Tho                                 | rne                              | 10/2/2014        | ٠,           |             |            | Ame L<br>Aone L   | A.  | _               |                      |
| Revie | ewed By:           | 1                                        | 4                                | inte             | 2/14         |             |            | -                 |     |                 |                      |
| Chai  | in of Cus          | tody                                     | 1                                | (6-1-1           |              |             |            |                   |     |                 |                      |
| 1. 0  | Custody sea        | als intact on s                          | ample bottles?                   |                  |              | Yes         |            | No                |     | Not Present     |                      |
| 2, 1  | s Chain of         | Custody com                              | plete?                           |                  |              | Yes         | ✓          | No                |     | Not Present     |                      |
| 3. F  | low was the        | e sample deli                            | vered?                           |                  |              | Cour        | <u>ler</u> |                   |     |                 |                      |
| Log   | <u>In</u>          |                                          |                                  |                  |              |             |            |                   |     |                 |                      |
| 4. \  | Was an atte        | empt made to                             | cool the samp                    | les?             |              | Yes         | V          | No                |     | na 🗆            |                      |
| 5. V  | Vere all sar       | mples receive                            | ed at a tempera                  | ture of >0°C     | to 6.0°C     | Yes         | <b>✓</b>   | No                |     | na 🗆            |                      |
| 6. 8  | Sample(s) i        | n proper con                             | tainer(s)?                       |                  |              | Yes         | V          | No                |     |                 |                      |
| 7. S  | Sufficient sa      | ample volume                             | for indicated to                 | est(s)?          |              | Yes         | V          | No                |     |                 |                      |
| 8. A  | re samples         | except VO                                | A and ONG) pro                   | operly preserve  | ed?          | Yes         | V          | No                |     |                 |                      |
| 9. v  | Vas presen         | vative added                             | to bottles?                      |                  |              | Yes         |            | No                | V   | NA 🗆            |                      |
| 10.v  | OA vials h         | ave zero hea                             | dspace?                          |                  |              | Yes         | V          | No                |     | No VOA Vials    |                      |
| 11.1  | <i>N</i> ere any s | ample contai                             | ners received b                  | roken?           |              | Yes         |            | No                | V   | # of preserved  | ~ ^                  |
|       |                    |                                          |                                  |                  |              |             |            |                   |     | bottles checked | 20                   |
|       |                    | work match b<br>cancles on c             | ottle labels?<br>hain of custody | 1                |              | Yes         | <b>V</b>   | No                |     | for pH:         | r (12) unless noted) |
| •     |                    | -                                        | entified on Chai                 |                  |              | Yes         | V          | No                |     | Adjusted?       | NO                   |
|       |                    |                                          | were requested                   |                  |              | Yes         | ✓          | No                |     |                 | <b>₹</b>             |
|       |                    | -                                        | ole to be met?                   |                  |              | Yes         | V          | No                |     | Checked by:     |                      |
| (     | If no, notify      | customer for                             | authorization.)                  |                  |              |             |            |                   | ·   |                 |                      |
| Cmar  | sial Uana          | dline (if on                             | nliachla)                        |                  |              |             |            |                   |     |                 |                      |
|       |                    | <i>iling (if ap</i><br>notified of all o | discrepancies v                  | vith this order? |              | Yes         |            | No                | ·   | NA 🗹            |                      |
|       | Perso              | n Notified:                              | T T                              |                  | Date         |             |            |                   |     | •               | 7                    |
|       | By Wi              |                                          |                                  |                  | . Via:       | i.<br>∏ eMa | il [       | Phone [           | Fax | n Person        |                      |
|       | Regar              |                                          |                                  |                  |              |             |            | at Blancol to the |     |                 |                      |
|       | _                  | Instructions:                            |                                  |                  |              |             |            |                   |     |                 |                      |
| 17.   | Additional r       | emarks:                                  |                                  |                  |              |             |            |                   |     |                 |                      |
| 18. 9 | Cooler Info        | ormation                                 |                                  |                  |              |             |            |                   |     |                 |                      |
|       | Cooler N           |                                          |                                  | Seal Intact      | Seal No      | Seal Da     | ite ;      | Signed B          | ÿ.  |                 |                      |
|       | 1                  | 1.3                                      | Good                             | Yes              |              |             |            |                   |     |                 |                      |

# APPENDIX C



# **Hall Environmental Analysis Laboratory**

# **QUALITY ASSURANCE PLAN**

Effective Date: August 13th, 2014

**Revision 9.9** 

www.hallenvironmental.com

Control Number: 00000157

Approved By:

Andy Freeman

Laboratory Manager

Approved By:

8/12/2014

Carolyn Swanson

Quality Assurance/Quality Control Officer

| Approved By:      |             |
|-------------------|-------------|
|                   |             |
|                   | of l        |
| Ferra             | 8/13/14     |
| lan Cameron       | Date        |
| Assistant Laborat | ory Manager |

John Caldwell Date
Assistant Laboratory Manager
Semi-Volatiles Technical Director

Rene Aguilera Date
Volatiles Technical Director

Tiffany Shaw Date
Metals Technical Director

Stacey McCoy Date
Wet Chemistry Technical Director

Stephanie Shaffers Date
Microbiology Technical Director

# **Table of Contents**

| Section | Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>Page</u> |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.0     | Title Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1           |
| 2.0     | Table of Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3           |
| 3.0     | Introduction Purpose of Document Objectives Policies                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6           |
| 4.0     | Organization and Responsibility Company Certifications Personnel Laboratory Director                                                                                                                                                                                                                                                                                                                                                                                                 | 9           |
|         | Laboratory Manager/ Lead Technical Director Assistant Laboratory Manager Quality Assurance Quality Control Officer Project Managers Technical Directors Health and Safety/Chemical Hygiene Officer Analyst I, II and III Laboratory Technician Sample Control Manager Sample Custodians Sample Disposal Custodian Bookkeeper Administrative Assistant IT Specialist Delegations in the Absence of Key Personnel Laboratory Personnel Qualification and Training Organizational Chart |             |
| 5.0     | Receipt and Handling of Samples Reviewing Requests, Tenders and Contracts Sampling Procedures Containers Preservation Sample Custody Chain-of-Custody Form Receiving Samples                                                                                                                                                                                                                                                                                                         | 21          |

Page 3 of 59 Quality Assurance Plan 9.9 Effective August 13<sup>th</sup>, 2014

|      | Logging in Samples and Storage Disposal of Samples                                                                                                                                                                                                                                                                                                                                                                                  |    |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 6.0  | Analytical Procedures List of Procedures Used Criteria for Standard Operating Procedures                                                                                                                                                                                                                                                                                                                                            | 25 |
| 7.0  | Calibration Thermometers Refrigerators/Freezers Ovens Analytical and Table Top Balances Instrument Calibration pH Meter Other Analytical Instrumentation and Equipment Standards Reagents                                                                                                                                                                                                                                           | 30 |
| 8.0  | Maintenance                                                                                                                                                                                                                                                                                                                                                                                                                         | 34 |
| 9.0  | Data Integrity                                                                                                                                                                                                                                                                                                                                                                                                                      | 35 |
| 10.0 | Quality Control Internal Quality Control Checks Client Requested QC Precision, Accuracy, Detection Levels Precision Accuracy Detection Limit Quality Control Parameter Calculations Mean Standard Deviation Percent Recovery (LCS and LCSD) Percent Recovery (MS, MSD) Control Limits Grubbs Outliers RPD (Relative Percent Difference) Uncertainty Measurements Total Nitrogen Langelier Saturation Index Calibration Calculations | 36 |
|      | Weighting                                                                                                                                                                                                                                                                                                                                                                                                                           |    |

11.0 Data Reduction, Validation, Reporting, and Record Keeping 5

**Concentration Calculations** 

Page 4 of 59 Quality Assurance Plan 9.9 Effective August 13<sup>th</sup>, 2014

**Data Reduction** Validation Reports and Records

| 12.0 | Corrective Action                                                                                                                                                      | 53                               |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 13.0 | Quality Assurance Audits, Reports and Complaints Internal/External Systems' Audits, Performance Evaluation Management Reviews Complaints Internal and External Reports | <b>55</b><br>ons, and Complaints |
| 14.0 | References (Analytical Protocols Utilized at HEAL)                                                                                                                     | 58                               |

#### 3.0 Introduction

#### **Purpose of Document**

The purpose of this Quality Assurance Plan is to formally document the quality assurance policies and procedures of Hall Environmental Analysis Laboratory, Inc. (HEAL), for the benefit of its employees, clients, and accrediting organizations. HEAL continually implements all aspects of this plan as an essential and integral part of laboratory operations in order to ensure that high quality data is produced in an efficient and effective manner.

#### **Objectives**

The objective of HEAL is to achieve and maintain excellence in environmental testing. This is accomplished by developing, incorporating and documenting the procedures and policies specified by each of our accrediting authorities and outlined in this plan. These activities are carried out by a laboratory staff that is analytically competent, well-qualified, and highly trained. An experienced management team, knowledgeable in their area of expertise, monitors them. Finally, a comprehensive quality assurance program governs laboratory practices and ensures that the analytical results are valid, defensible, reproducible, reconstructable and of the highest quality.

HEAL establishes and thoroughly documents its activities to ensure that all data generated and processed will be scientifically valid and of known and documented quality. Routine laboratory activities are detailed in method specific standard operating procedures (SOP). All data reported meets the applicable requirements for the specific method or methods that are referenced, ORELAP, TCEQ, EPA, client specific requirements and/or State Bureaus. In the event that these requirements are ever in contention with each other, it is HEAL's policy to always follow the most prudent requirement available. For specific method requirements refer to HEAL's Standard Operating Procedures (SOP's), EPA methods, Standard Methods 20<sup>th</sup> edition, ASTM methods or state specific methods.

HEAL management ensures that this document is correct in terms of required accuracy and data reproducibility, and that the procedures contain proper quality control measures. HEAL management additionally ensures that all equipment is reliable, well-maintained and appropriately calibrated. The procedures and practices of the laboratory are geared towards not only strictly following our regulatory requirements but also allowing the flexibility to conform to client specific specifications. Meticulous records are maintained for all samples and their respective analyses so that results are well-documented and defensible in a court of law.

The HEAL Quality Assurance/Quality Control Officer (QA/QCO) and upper management are responsible for supervising and administering this quality assurance program, and

ensuring each individual is responsible for its proper implementation. All HEAL management remains committed to the encouragement of excellence in analytical testing and will continue to provide the necessary resources and environment conducive to its achievement.

#### **Policies**

Understanding that quality cannot be mandated, it is the policy of this laboratory to provide an environment that encourages all staff members to take pride in the quality of their work. In addition to furnishing proper equipment and supplies, HEAL stresses the importance of continued training and professional development. Further, HEAL recognizes the time required for data interpretation. Therefore, no analyst should feel pressure to sacrifice data quality for data quantity. Each staff member must perform with the highest level of integrity and professional competence, always being alert to problems that could compromise the quality of their technical work.

Management and senior personnel supervise analysts closely in all operations. Under no circumstance is the willful act or fraudulent manipulation of analytical data condoned. Such acts must be reported immediately to HEAL management. Reported acts will be assessed on an individual basis and resulting actions could result in dismissal. The laboratory staff is encouraged to speak with lab managers or senior management if they feel that there are any undo commercial, financial, or other pressures, which might adversely affect the quality of their work; or in the event that they suspect that data quality has been compromised in any way. HEAL's Quality Assurance/Quality Control Officer is available if any analyst and/or manager wishes to anonymously report any suspected or known breaches in data integrity.

Understanding the importance of meeting customer requirements in addition to the requirements set forth in statutory and regulatory requirements, HEAL shall periodically seek feedback from customers and evaluate the feedback in order to initiate improvements.

All proprietary rights and client information at HEAL (including national security concerns) are considered confidential. No information will be given out without the express verbal or written permission of the client. All reports generated will be held in the strictest of confidence.

HEAL shall continually improve the effectiveness of its management system through the use of the policies and procedures outlined in this Quality Assurance Plan. Quality control results, internal and external audit findings, management reviews, new and continual training and corrective and preventive actions are continually evaluated to identify possible improvements and to ensure that appropriate communication processes are taking place regarding the effectiveness of the management system. HEAL shall ensure that the

integrity of the quality system is maintained when changes to the system are planned and implemented.

This is a controlled document. Each copy is assigned a unique tracking number and when released to a client or accrediting agency the QA/QCO keeps the tracking number on file. This document is reviewed on an annual basis to ensure that it is valid and representative of current practices at HEAL.

#### 4.0 Organization and Responsibility

#### Company

HEAL is accredited in accordance with the 2009 TNI standard (see NELAC accredited analysis list in the QA Department or on the company website), through ORELAP and TCEQ and by the Arizona Department of Health Services. Additionally, HEAL is qualified as defined under the State of New Mexico Water Quality Control Commission regulations and the New Mexico State Drinking Water Bureau. HEAL is a locally owned small business that was established in 1991. HEAL is a full service environmental analysis laboratory with analytical capabilities that include both organic and inorganic methodologies and has performed analyses of soil, water, and air as well as various other matrices for many sites in the region. HEAL's client base includes local, state and federal agencies, private consultants, commercial industries as well as individual homeowners. HEAL has performed as a subcontractor to the state of New Mexico and to the New Mexico Department of Transportation. HEAL has been acclaimed by its customers as producing quality results and as being adaptive to client-specific needs.

The laboratory is divided into an organic section, an inorganic section and a microbiology section. Each section has a designated manager/technical director. The technical directors report directly to the laboratory manager, who oversees all operations.

#### Certifications

ORELAP - NELAC Oregon Primary accrediting authority.

TCEQ - NELAC Texas Secondary accrediting authority.

The Arizona Department of Health Services

The New Mexico Drinking Water Bureau

See our website at <u>www.hallenvironmental.com</u> or the QA Office for copies of current licenses and licensed parameters.

In the event of a certification being revoked or suspended, HEAL will notify, in writing, those clients that require the affected certification.

#### Personnel

HEAL management ensures the competence of all who operate equipment, perform environmental tests, evaluate results, and sign test reports. Personnel performing specific tasks shall be qualified on the basis of appropriate education, training, experience and /or demonstrated skills.

HEAL ensures that all personnel are aware of the relevance and importance of their activities and how each employee contributes to the achievement of the objectives defined throughout this document.

All personnel shall be responsible for complying with HEAL's quality assurance/quality control requirements that pertain to their technical function. Each technical staff member must have a combination of experience and education to adequately demonstrate specific knowledge of their particular function and a general knowledge of laboratory operations, test methods, quality assurance/quality control procedures, and records management.

All employees' training certificates and diplomas are kept on file with demonstrations of capability for each method they perform. An Organizational Chart can be found at the end of this section and a personnel list is available in the current Controlled Document Logbook.

#### **Laboratory Director**

The Laboratory Director is responsible for overall technical direction and business leadership of HEAL. The Laboratory Manager, the Project Manager and Quality Assurance/Quality Control Officer report-directly to the Laboratory Director. Someone with a minimum of 7 years of directly related experience and a bachelor's degree in a scientific or engineering discipline should fill this position.

#### Laboratory Manager/Lead Technical Director

The Laboratory Manager shall exercise day—to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results. The Laboratory Manager shall be experienced in the fields of accreditation for which the laboratory is approved or seeking accreditation. The Laboratory Manager shall certify that personnel with appropriate educational and/or technical background perform all tests for which HEAL is accredited. Such certification shall be documented.

The Laboratory Manager shall monitor standards of performance in quality control and quality assurance and monitor the validity of the analyses performed and data generated at HEAL to assure reliable data.

The Laboratory Manager is responsible for the daily operations of the laboratory. The Laboratory Manager is the lead technical director of the laboratory and, in conjunction with the section technical directors, is responsible for coordinating activities within the laboratory with the overall goal of efficiently producing high quality data within a reasonable time frame.

In events where employee scheduling or current workload is such that new work cannot be incorporated, without missing hold times, the Laboratory Manager has authority to modify employee scheduling, re-schedule projects or, when appropriate, allocate the work to approved subcontracting laboratories.

Additionally, the laboratory manager reviews and approves new analytical procedures and methods, and performs a final review of most analytical results. The Laboratory Manager provides technical support to both customers and HEAL staff.

The Laboratory Manager also observes the performance of supervisors to ensure that good laboratory practices and proper techniques are being taught and utilized, and to assist in overall quality control implementation and strategic planning for the future of the company. Other duties include assisting in establishing laboratory policies that lead to the fulfillment of requirements for various certification programs, assuring that all Quality Assurance and Quality Control documents are reviewed and approved, and assisting in conducting Quality Assurance Audits.

The laboratory manager addresses questions or complaints that cannot be answered by the section managers.

The Laboratory Manager shall have a bachelor's degree in a chemical, environmental, biological sciences, physical sciences or engineering field, and at least five years of experience in the environmental analysis of representative inorganic and organic analytes for which the laboratory seeks or maintains accreditation.

# Assistant Laboratory Manager

The Assistant Laboratory Manager shall aid the Laboratory Manager in exercising day—to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results. The Assistant Laboratory Manager shall be experienced in the fields of accreditation for which the laboratory is approved or seeking accreditation.

The Assistant Laboratory Manager is responsible for helping the Laboratory Manager in the daily operations of the laboratory. In conjunction with the section Technical Directors, the Assistant Laboratory Manager is responsible for coordinating activities within the laboratory with the overall goal of efficiently producing high quality data within a reasonable time frame.

The Assistant Laboratory Manager shall have at least ten years of experience in environmental analysis of representative inorganic and/or organic analytes for which the laboratory seeks or maintains accreditation.

#### **Quality Assurance Quality Control Officer**

The Quality Assurance/Quality Control Officer (QA/QCO) serves as the focal point for QA/QC and shall be responsible for the oversight and/or review of quality control data. The QA/QCO functions independently from laboratory operations and shall be empowered to halt unsatisfactory work and/or prevent the reporting of results generated from an out-of-control measurement system. The QA/QCO shall objectively evaluate data and perform assessments without any outside/managerial influence. The QA/QCO shall have direct access to the highest level of management at which decisions are made on laboratory policy and/or resources. The QA/QCO shall notify laboratory management of deficiencies in the quality system in periodic, independent reports.

The QA/QCO shall have general knowledge of the analytical test methods for which data review is performed and have documented training and/or experience in QA/QC procedures and in the laboratory's quality system. The QA/QCO will have a minimum of a BS in a scientific or related field and a minimum of three years of related experience.

The QA/QCO shall schedule and conduct internal audits as per the Internal Audit SOP at least annually, monitor and trend Corrective Action Reports as per the Data Validation SOP, periodically review control charts for out of control conditions, and initiate any appropriate corrective actions.

The QA/QCO shall oversee the analysis of proficiency testing in accordance with our standards and monitor any corrective actions issued as a result of this testing.

The QA/QCO reviews all standard operating procedures and statements of work in order to assure their accuracy and compliance to method and regulatory requirements.

The QA/QCO shall be responsible for maintaining and updating this quality manual.

#### **Project Managers**

The role of the project manager is to act as a liaison between HEAL and our clients. The Project Manager updates clients on the status of projects in-house, prepares quotations for new work, and is responsible for HEAL's marketing effort.

All new work is assessed by the Project Manager and reviewed with the other managers so as to not exceed the laboratory's capacity. In events where employee scheduling or current workload is such that new work cannot be incorporated without missing hold times, the Project Manager has authority to re-schedule projects.

It is also the duty of the project manager to work with the Laboratory Manager and QA/QCO to insure that before new work is undertaken, the resources required and accreditations requested are available to meet the client's specific needs.

Additionally, the Project Manager can initiate the review of the need for new analytical procedures and methods, and perform a final review of some analytical results. The Project Manager provides technical support to customers. Someone with a minimum of 2 years of directly related experience and a bachelor's degree in a scientific or engineering discipline should fill this position.

#### **Technical Directors**

Technical Directors are full-time members of the staff at HEAL who exercise day-to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results for their department within HEAL. A Technical Director's duties shall include, but not be limited to, monitoring standards of performance in quality control and quality assurance, monitoring the validity of the analyses performed and the data generated in their sections to ensure reliable data, overseeing training and supervising departmental staff, scheduling incoming work for their sections, and monitoring laboratory personnel to ensure that proper procedures and techniques are being utilized. They supervise and implement new Quality Control procedures as directed by the QA/QCO, update and maintain quality control records including, but not limited to, training forms, IDOCs, ADOCPs, and MDLs, and evaluate laboratory personnel in their Quality Control activities. In addition, technical directors are responsible for upholding the spirit and intent of HEAL's data integrity procedures.

As Technical Directors of their associated section, they review analytical data to acknowledge that data meets all criteria set forth for good Quality Assurance practices. Someone with a minimum of 2 years of experience in the environmental analysis of representative analytes for which HEAL seeks or maintains accreditation and a bachelor's degree in a scientific or related discipline should fill this position.

The education requirements for a Technical Director may be waived at the discretion of HEAL's accrediting agencies.

Health and Safety / Chemical Hygiene Officer

Refer to the most recent version of the Health and Safety and Chemical Hygiene Plans for the roles, responsibilities, and basic requirements of the Health and Safety Officer (H&SO) and the Chemical Hygiene Officer (CHO). These jobs can be executed by the same employee.

# Analyst I, II and III

Analysts are responsible for the analysis of various sample matrices including, but not limited to, solid, aqueous, and air, as well as the generation of high quality data in accordance with the HEAL SOPs and QA/QC guidelines in a reasonable time as prescribed by standard turnaround schedules or as directed by the Section Manager or Laboratory Manager.

Analysts are responsible for making sure all data generated is entered in the database in the correct manner and the raw data is reviewed, signed and delivered to the appropriate peer for review. An analyst reports daily to the section manager and will inform them as to material needs of the section specifically pertaining to the analyses performed by the analyst. Additional duties may include preparation of samples for analysis, maintenance of lab instruments or equipment, and cleaning and providing technical assistance to lower level laboratory staff.

The senior analyst in the section may be asked to perform supervisory duties as related to operational aspects of the section. The analyst may perform all duties of a lab technician.

The position of Analyst is a full or part time hourly position and is divided into three levels, Analyst I, II, and III. All employees hired into an Analyst position at HEAL must begin as an Analyst I and remain there at a minimum of three months regardless of their education and experience. Analyst I must have a minimum of an AA in a related field or equivalent experience (equivalent experience means years of related experience can be substituted for the education requirement). An Analyst I is responsible for analysis, instrument operation, including calibration and data reduction. Analyst II must have a minimum of an AA in a related field or equivalent experience and must have documented and demonstrated aptitude to perform all functions of an Analyst II. An Analyst II is responsible for the full analysis of their test methods, routine instrument maintenance, purchase of consumables as dictated by their Technical Director, advanced data reduction, and basic data review. Analyst II may also assist Analyst III in method development and, as dictated by their Technical Director, may be responsible for the review and/or revision of their method specific SOPs. Analyst III must have Bachelor's degree or equivalent experience and must have documented and demonstrated aptitude to perform all functions of an Analyst III. An Analyst III is responsible for all tasks completed by an Analyst I and II as well as advanced data review, non-routine instrument maintenance, assisting their technical director in basic supervisory duties and method development.

# Laboratory Technician

A laboratory technician is responsible for providing support to analysts in the organics, inorganics and disposal departments. Laboratory Technicians can assist analysts in basic sample preparation, general laboratory maintenance, glassware washing, chemical inventories, sample disposal and sample kit preparation. This position can be filled by someone without the education and experience necessary to obtain a position as an analyst.

# Sample Control Manager

The sample control manager is responsible for receiving samples and reviewing the sample login information after it has been entered into the computer. The sample control manager also checks the samples against the chain-of-custody for any sample and/or labeling discrepancies prior to distribution.

The sample control manager is responsible for sending out samples to the sub-contractors along with the review and shipping of field sampling bottle kits. The sample control manager acts as a liaison between the laboratory and field sampling crew to ensure that the appropriate analytical test is assigned. If a discrepancy is noted, the sample control manager or sample custodian will contact the customer to resolve any questions or problems. The sample control manager is an integral part of the customer service team.

This position should be filled by someone with a high school diploma and a minimum of 2 years of related experience and can also be filled by a senior manager.

#### Sample Custodians

Sample Custodians work directly under the Sample Control Manager. They are responsible for sample intake into the laboratory and into the LIMS. Sample Custodians take orders from our clients and prepare appropriate bottle kits to meet the clients' needs. Sample Custodians work directly with the clients in properly labeling and identifying samples as well as properly filling out legal COCs. When necessary, Sample Custodians contact clients to resolve any questions or problems associated with their samples. Sample Custodians are responsible for distributing samples throughout the laboratory and are responsible for notifying analysts of special circumstances such as short holding times or improper sample preservation upon receipt.

# Sample Disposal Custodian

The sample disposal custodian is responsible for characterizing and disposing of samples in accordance to the most recent version of the sample disposal SOP. The sample disposal custodian collects waste from the laboratory and transports it to the disposal warehouse for storage and eventual disposal. The sample disposal custodian is responsible for maintaining the disposal warehouse and following the requirements for documentation, integrity, chemical hygiene and health and safety as set forth in the various HEAL administrative SOPs. The sample disposal custodian is responsible for overseeing any laboratory technicians employed at the disposal warehouse.

This position should be filled by someone with a high school diploma and a minimum of 1 year of related experience.

# Bookkeeper

The Bookkeeper is responsible for the preparation of quarterly financials and quarterly payroll reports. The bookkeeper monitors payables, receivables, deposits, pays all bills and maintains an inventory of administrative supplies. The Bookkeeper completes final data package assembly and oversees the consignment of final reports. The Bookkeeper assists in the project management of drinking water compliance samples for NMED and NMEFC and any other tasks as assigned by the Laboratory Manager. This position should be filled by someone with a degree in accounting or a minimum of a high school diploma and at least 4 years of directly related experience.

#### Administrative Assistant

The Administrative Assistant is responsible for aiding administrative staff in tasks that include but are not limited to: the processing and consignment of final reports, and the generation of client specific spreadsheets. This position should be filled by someone with a minimum of a high school diploma.

## IT Specialist

The IT Specialist is responsible for the induction and maintenance of all hard and software technology not maintained through a service agreement. The IT Specialist follows the requirements of this document, all regulatory documents and the EPAs Good Automated Laboratory Practices. This position should be filled by someone with a degree in a computer related field, or at least two years of directly related experience.

# **Delegations in the Absence of Key Personnel**

Planned absences shall be preceded by notification to the Laboratory Manager. The appropriate staff members shall be informed of the absence. In the case of unplanned absences, the superior shall either assume the responsibilities and duties or delegate the responsibilities and duties to another appropriately qualified employee.

In the event that the Laboratory Manager is absent for a period of time exceeding fifteen consecutive calendar days, another full-time staff member meeting the basic qualifications and competent to temporarily perform this function will be designated. If this absence exceeds thirty-five consecutive calendar days, HEAL will notify ORELAP in writing of the absence and the pertinent qualifications of the temporary laboratory manager.

# **Laboratory Personnel Qualification and Training**

All personnel joining HEAL shall undergo orientation and training. During this period the new personnel shall be introduced to the organization and their responsibilities, as well as the policies and procedures of the company. They shall also undergo on-the-job training and shall work with trained staff. They will be shown required tasks and be observed while performing them.

When utilizing staff undergoing training, appropriate supervision shall be dictated and overseen by the appropriate section technical director. Prior to analyzing client samples, a new employee, or an employee new to a procedure, must meet the following basic requirements. The SOP and Method(s) for the analysis must be read and signed by the employee indicating that they read, understand, and intend to comply with the requirements of the documents. The employee must undergo documented training. Training is conducted by a senior analyst familiar with the procedure and overseen by the section Technical Director. This training is documented by any means deemed appropriate by the trainer and section Technical Director, and kept on file in the employees file located in the QA/QCO's office. The employee must perform a successful Initial Demonstration of Capability (IDOC). See the current Document Control Logbook for the training documents and checklists utilized at HEAL to ensure that all of these requirements are met. Once all of the above requirements are met it is incumbent upon the section Technical Director to determine at which point the employee can begin to perform the test unsupervised. Certification to Complete Work Unsupervised (see the current Document Control Logbook) is then filled out by the employee and technical director.

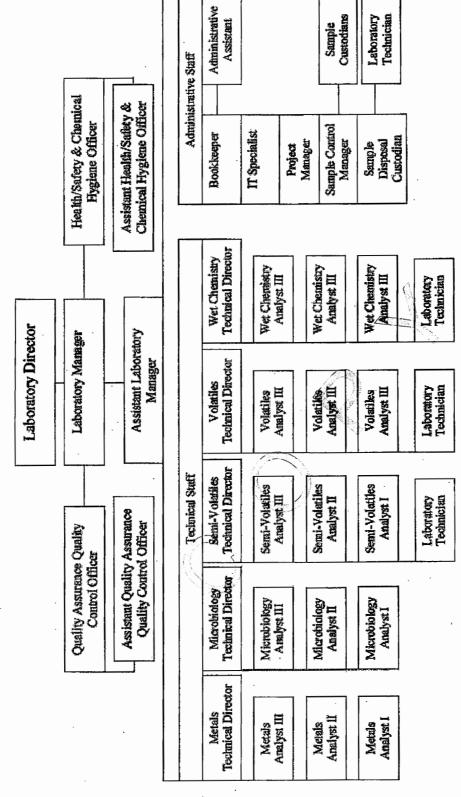
IDOCs are required for all new analysts and methods prior to sample analysis. IDOCs are also required any time there is a change in the instrument, analyte list or method. If more than twelve months have passed since an analyst performed an IDOC and they

have not performed the method and/or have not met the continuing DOC requirements, the analyst must perform an IDOC prior to resuming the test.

All IDOCs shall be documented through the use of the certification form which can be found in the current Document Control Logbook. IDOCs are performed by analyzing four Laboratory Control Spikes (LCSs). Using the results of the LCSs the mean recovery is calculated in the appropriate reporting units and the standard deviations of the population sample (n-1) (in the same units) as well as the relative percent difference for each parameter of interest. When it is not possible or pertinent to determine mean and standard deviations HEAL assesses performance against establish and documented criteria dictated in the method SOP. The mean and standard deviation are compared to the corresponding acceptance criteria for precision and accuracy in the test method (if applicable) or in laboratory-generated acceptance criteria. In the event that the HEAL SOP or test method(s) fail to establish the pass/fail criteria the default limits of +/- 20% for calculated recovery and <20% relative percent difference based on the standard deviation will be utilized. If all parameters meet the acceptance criteria, the IDOC is successfully completed. If any one of the parameters do not meet the acceptance criteria, the performance is unacceptable for that parameter and the analyst must either locate and correct the source of the problem and repeat the test for all parameters of interest or repeat the test for all parameters that failed to meet criteria. Repeat failure, however, confirms a general problem with the measurement system. If this occurs the source of the problem must be identified and the test repeated for all parameters of interest

New employees that do not have prior analysis experience will not be allowed to perform analysis until they have demonstrated attention to detail with minimal errors in the assigned tasks. To ensure a sustained level of quality performance among staff members, continuing demonstration of capability shall be performed at least once a year. These are as an Annual Documentation of Continued Proficiency (ADOCP).

At least once per year an ADOCP must be completed. This is achieved by the acceptable performance of a blind sample (typically by using a PT sample, but can be a single blind (to the analyst) sample), by performing another IDOC, or by summarizing the data of four consecutive laboratory control samples with acceptable levels of precision and accuracy (these limits are those currently listed in the LIMS for an LCS using the indicated test method(s).) ADOCPs are documented using a standard form and are kept on file in each analyst's employee folder. ADOCPs may be demonstrated as an analyst group utilizing LIMS control charting, so long as all listed analysts participated, the results are consecutive and pass the requirements for precision and accuracy.


Each new employee shall be provided with data integrity training as a formal part of their new employee orientation. Each new employee will sign an ethics and data integrity agreement to ensure that they understand that data quality is our main objective. Every HEAL employee recognizes that although turnaround time is

important, quality is put above any pressure to complete the task expediently. Analysts are not compensated for passing QC parameters nor are incentives given for the quantity of work produced. Data Integrity and Ethics training are performed on an annual basis in order to remind all employees of HEAL's policy on data quality. Employees are required to understand that any infractions of the laboratory data integrity procedures will result in a detailed investigation that could lead to very serious consequences including immediate termination, debarment, or civil/criminal prosecution.

Training for each member of HEAL's technical staff is further established and maintained through documentation that each employee has read, understood, and is using the latest version of this Quality Assurance Manual. Training courses or workshops on specific equipment, analytical techniques, or laboratory procedures are documented through attendance sheets, certificates of attendance, training forms, or quizzes. This training documentation is located in analyst specific employee folders in the QA/QCO Office. On the front of all methods, SOPs, and procedures for HEAL, there is a signoff sheet that is signed by all pertinent employees, indicating that they have read, understand, and agree to perform the most recent version of the document.

The effectiveness of training will be evaluated during routine data review, annual employee reviews, and internal and external audits. Repetitive errors, complaints and audit findings serve as indicators that training has been ineffective. When training is deemed to have been ineffective a brief review of the training process will be completed and a re-training conducted as soon as possible.

# HEAL Personnel Chart



Page 20 of 59 Quality Assurance Plan 9.9 Effective August 13<sup>th</sup>, 2014

# 5.0 Receipt and Handling of Samples

# Reviewing Requests, Tenders and Contracts

All contracts and written requests by clients are closely reviewed to ensure that the client's data quality objectives can be met to their specifications. This review includes making sure that HEAL has the resources necessary to perform the tests to the clients specifications.

When HEAL is unable to meet the clients specifications their samples will be subcontracted to an approved laboratory capable of meeting the client's data quality objectives.

# Sampling

#### **Procedures**

HEAL does not provide field sampling for any projects. Sample kits are prepared and provided for clients upon request. The sample kits contain the appropriate sampling containers (with a preservative when necessary), labels, blue ice (The use of "blue ice" by anyone except HEAL personnel is discouraged because it generally does not maintain the appropriate temperature of the sample. If blue ice is used, it should be completely frozen at the time of use, the sample should be chilled before packing, and special notice taken at sample receipt to be certain the required temperature has been maintained.), a cooler, chain-of-custody forms, plastic bags, bubble wrap, and any special sampling instructions. Sample kits are reviewed prior to shipment for accuracy and completeness.

#### Containers

Containers which are sent out for sampling are purchased by HEAL from a commercial source. Glass containers are certified "EPA Cleaned" QA level 1. Plastic containers are certified clean when required. These containers are received with a Certificate of Analysis verifying that the containers have been cleaned according to the EPA wash procedure. Containers are used once and discarded. If the samples are collected and stored in inappropriate containers the laboratory may not be able to accurately quantify the amount of the desired components. In this case, re-sampling may be required.

#### Preservation

If sampling for analyte(s) requires preservation, the sample custodians fortify the containers prior to shipment to the field, or provide the preservative for the sampler to add in the field. The required preservative is introduced into the vials in uniform amounts

and done so rapidly to minimize the risk of contamination. Vials that contain a preservative are labeled appropriately. If the samples are stored with inappropriate preservatives, the laboratory may not be able to accurately quantify the amount of the desired components. In this case re-sampling may be required.

Refer to the current Login SOP and/or the current price book for detailed sample receipt and handling procedures, appropriate preservation and holding time requirements.

# Sample Custody

# Chain-of-Custody Form

A Chain-of-Custody (COC) form is used to provide a record of sample chronology from the field to receipt at the laboratory. HEAL's COC contains the client's name, address, phone and fax numbers, the project name and number, the project manager's name, and the field sampler's name. It also identifies the date and time of sample collection, sample matrix, field sample ID number, number/volume of sample containers, sample temperature upon receipt, and any sample preservative information.

There is also a space to record the HEAL ID number assigned to samples after they are received. Next to the sample information is a space for the client to indicate the desired analyses to be performed. There is a section for the client to indicate the data package level as well as any accreditation requirements. Finally, there is a section to track the actual custody of the samples. The custody section contains lines for signatures, dates and times when samples are relinquished and received. The COC form also includes a space to record special sample related instructions, sampling anomalies, time constraints, and any sample disposal considerations.

It is paramount that all COCs arrive at HEAL complete and accurate so that the samples can be processed and allocated for testing in a timely and efficient manner. A sample chain-of-custody form can be found in the current Document Control Logbook or on line at <a href="https://www.hallenvironmental.com">www.hallenvironmental.com</a>

Should a specific project or client require the use of an internal COC, advanced notification and approval must be obtained. The use of internal COCs are not part of our standard operating procedure.

#### Receiving Samples

Samples are received by authorized HEAL personnel. Upon arrival, the COC is compared to the respective samples. After the samples and COC have been determined to be complete and accurate, the sampler signs over the COC. The HEAL staff member in turn signs the chain-of-custody, also noting the current date, time, and sample temperature. This relinquishes custody of the samples from the sampler and

delegates sample custody to HEAL. The first (white) copy of the COC form is filed in the appropriate sample folder. The second (yellow) copy of the COC form is filed in the COC file in the sample control manager's office. The third (pink) copy of the COC form is given to the person who has relinquished custody of the samples.

# Logging in Samples and Storage

Standard Operating Procedures have been established for the receiving and tracking of all samples (refer to the current HEAL Login SOP). These procedures ensure that samples are received and properly logged into the laboratory and that all associated documentation, including chain of custody forms, is complete and consistent with the samples received. Each sample set is given a unique HEAL tracking ID number. Individual sample locations within a defined sample set are given a unique sample ID suffix-number. Labels with the HEAL numbers, and tests requested, are generated and placed on their respective containers. The pH of preserved, non-volatile samples is checked and noted if out of compliance. Due to the nature of the samples, the pHs of volatiles samples are checked after analysis. Samples are reviewed prior to being distributed for analysis.

All samples received that are requested for compliance, whether on the COC or by contract, will be identified as compliance samples in the LIMS so as to properly notify the analytical staff that they are to be analyzed in accordance with the test method(s) as well as the compliance requirements.

Samples are distributed for analysis based upon the requested tests. In the event that sample volume is limited and different departments at HEAL are required to share the sample, volatile work takes precedence and will always be analyzed first before the sample is sent to any other department for analysis.

Care will be taken to store samples isolated from laboratory contaminants, standards and highly contaminated samples

All samples that require thermal preservation shall be acceptably stored at a temperature range just above freezing to 6 °C unless specified at another range by the SOP and Method.

Each project (sample set) is entered into the Laboratory Information Management System (LIMS) with a unique ID that will be identified on every container. The ID tag includes the Lab ID, Client ID, date and time of collection, and the analysis/analyses to be performed. The LIMS continually updates throughout the lab. Therefore, at any time, an analyst or manager may inquire about a project and/or samples status. For more information about the login procedures, refer to the Sample Login SOP.

# **Disposal of Samples**

Samples are held at HEAL for a minimum of thirty days and then transferred to the HEAL warehouse for disposal. Analytical results are used to characterize their respective sample contamination level(s) so that the proper disposal can be performed. These wastes will be disposed of according to their hazard as well as their type and level of contamination. Refer to the Hall Environmental Analysis Laboratory Chemical Hygiene Plan and current Sample Disposal SOP for details regarding waste disposal.

Waste drums are provided by an outside agency. These drums are removed by the outside agency and disposed of in a proper manner.

The wastes that are determined to be non-hazardous are disposed of as non-hazardous waste in accordance with the Chemical Hygiene Plan and Sample Disposal SOP.

# 6.0 Analytical Procedures

All analytical methods used at HEAL incorporate necessary and sufficient Quality Assurance and Quality Control practices. A Standard Operating Procedure (SOP) is used to provide the necessary criteria to yield acceptable results. These procedures are reviewed at least annually and revised as necessary and are attached as a pdf file in the Laboratory Information Management System (LIMS) for easy access by each analyst. The sample is often consumed or altered during the analytical process. Therefore, it is important that each step in the analytical process be correctly followed in order to yield valid data.

When unforeseen problems arise, the analyst, technical director, and, when necessary, laboratory manager meet to discuss the factors involved. The analytical requirements are evaluated and a suitable corrective action or resolution is established. The client is notified in the case narrative with the final report or before, if the validity of their result is in question.

## List of Procedures Used

Typically, the procedures used by HEAL are EPA approved methodologies or 20<sup>th</sup> edition Standard Methods. However, proprietary methods for client specific samples are sometimes used. On occasion, multiple methods or multiple method revisions are used, in this event the SOP is written to include the requirements of all referenced methods. The following tables list EPA and Standard Methods Method numbers with their corresponding analytes and/or instrument classification.

#### Methods Utilized at HEAL

Drinking Water(DW) Non-Potable Water (NPW) Solids (S)

| Methodology | Matrix    | Title of Method .                                                                                                                 |  |
|-------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------|--|
| 180.1.      | DW<br>NPW | "Turbidity (Nephelometric)"                                                                                                       |  |
| 200.2       | DW<br>NPW | "Sample Preparation Procedure For Spectrochemical Determination of Total Recoverable Elements"                                    |  |
| 200.7       | DW        | "Determination of Metals and Trace Elements in Water and<br>Wastes by Inductively Coupled Plasma-Atomic Emission<br>Spectrometry" |  |
| 200.8       | DW<br>NPW | "Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry."                           |  |
| 245.1       | DW<br>NPW | "Mercury (Manual Cold Vapor Technique)"                                                                                           |  |

| 300.0         | DW<br>NPW<br>S | "Determination of Inorganic Anions by Ion Chromatography"                                                                                                          |  |
|---------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 413.2         | NPW<br>S       | "Oil and Grease"                                                                                                                                                   |  |
| 418.1         | NPW<br>S       | "Petroleum Hydrocarbons (Spectrophotometric, Infrared)"                                                                                                            |  |
| 504.1         | DW             | "EDB, DBCP and 123TCP in Water by Microextraction and Gas Chromatography"                                                                                          |  |
| 524.2         | DW             | "Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry"                                                     |  |
| 552.3         | DW .           | "Determination of Haloacetic Acids and Dalapon in Drinking Water by Ion-Exchange Liquid-Solid Extraction and Gas Chromatography with an Electron Capture Detector" |  |
| 624           | NPW            | Appendix A to Part 136 Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater Method 624-Purgeables"                                         |  |
| 1311          | s              | "Toxicity Characteristic Leaching Procedure"                                                                                                                       |  |
| 1311ZHE       | S              | "Toxicity Characteristic Leaching Procedure"                                                                                                                       |  |
| 166 <b>4A</b> | NPW            | "N-Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated N-Hexane Extractable Material) by Extraction and Gravimetry"                           |  |
| 3005A         | NPW            | "Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by FLAA or ICP Spectroscopy"                                                      |  |
| 3010A         | NPW            | "Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by FLAA or ICP Spectroscopy"                                                         |  |
| 3050B         | S              | "Acid Digestion of Sediment, Sludge, and Soils"                                                                                                                    |  |
| 3510C         | DW<br>NPW      | "Separatory Funnel Liquid-Liquid Extraction"                                                                                                                       |  |
| 3540          | s              | "Soxhlet Extraction"                                                                                                                                               |  |
| 3545          | s              | "Pressurized Fluid Extraction(PFE)"                                                                                                                                |  |
| 3665          | NPW<br>S       | "Sulfuric Acid/Permanganate Cleanup"                                                                                                                               |  |
| 5030B         | NPW            | "Purge-and-Trap for Aqueous Samples"                                                                                                                               |  |
| 5035          | s              | "Closed-System Purge-and-Trap and Extraction for Volatile<br>Organics in Soil and Waste Samples"                                                                   |  |
| 6010B         | NPW<br>S       | "Inductively Coupled Plasma-Atomic Emission Spectrometry"                                                                                                          |  |
|               |                |                                                                                                                                                                    |  |

|               |           | "Mercury in Liquid Waste (Manual Cold-Vapor Technique)"                           |  |
|---------------|-----------|-----------------------------------------------------------------------------------|--|
| 7471A         | S         | "Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)"               |  |
|               | NPW       | "Aromatic and Halogenated Volatiles By Gas                                        |  |
| 8021B         | s         | Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors"  |  |
| 8015D         | NPW       | "Nonhalogenated Volatile Organics by Gas Chromatography"                          |  |
| 00100         | S         | (Gasoline Range and Diesel Range Organics)                                        |  |
| 8081A         | NPW<br>S  | "Organochlorine Pesticides by Gas Chromatography"                                 |  |
| 8082          | NPW<br>S  | "Polychlorinated Biphenyls (PCBs) by Gas Chromatography"                          |  |
| 8260B         | NPW<br>S  | "Volatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS)"     |  |
| 8270C         | NPW<br>S  | "Semivolatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS)" |  |
| 8310          | NPW<br>S  | "Polynuclear Aromatic Hydrocarbons"                                               |  |
| 9060          | NPW       | "Total Organic Carbon"                                                            |  |
| 9067          | NPW<br>S  | "Phenolics (Spectrophotometric, MBTH With Distillation)"                          |  |
| 9095A         | s         | "Paint Filter Liquids Test"                                                       |  |
| H-8167        | DW<br>NPW | "Method 8167 Chlorine, Total"                                                     |  |
| Walkley/Black | s         | FOC/TOC WB                                                                        |  |
| SM2320 B      | DW<br>NPW | "Alkalinity"                                                                      |  |
| SM2340B       | NPW       | "2340 Hardness"                                                                   |  |
| SM2510B       | DW<br>NPW | "2510 Conductivity"                                                               |  |
| SM2540 B      | NPW       | "Total Solids Dried at 103-105° C"                                                |  |
| SM2540 C      | DW<br>NPW | "Total Dissolved Solids Dried at 180° C"                                          |  |
| SM2540 D      | NPW       | "Total Suspended Solids Dried at 103-105° C"                                      |  |
| SM4500-H+B    | DW<br>NPW | "pH Value"                                                                        |  |
|               | NPW<br>S  | "4500-NH3" Ammonia                                                                |  |
| SM4500-Norg   | NPW       | "4500-Norg" Total Kjeldahl Nitrogen (TKN)                                         |  |

| C        | s   |                                             |  |
|----------|-----|---------------------------------------------|--|
| SM5210 B | NPW | "5210 B. 5-day BOD Test"                    |  |
| SM5310 B | DW  | "5310" Total Organic Carbon (TOC)           |  |
| SM9223B  | NPW | "9223 Enzyme Substrate Coliform Test"       |  |
|          | DW  |                                             |  |
| 8000B    | NPW | "Determinative Chromatographic Sengrations" |  |
|          | s   | "Determinative Chromatographic Separations" |  |
| 8000C    | NPW | "Determinative Chromotographic Congretions" |  |
|          | s   | "Determinative Chromatographic Separations" |  |

# **Criteria for Standard Operating Procedures**

HEAL has Standard Operating Procedures (SOPs) for each of the test methods listed above. These SOPs are based upon the listed methods and detail the specific procedure and equipment utilized as well as the quality requirements necessary to prove the integrity of the data. SOPs are reviewed or revised every twelve months or sooner if necessary. The review/revision is documented in the Master SOP Logbook filed in the QA/QC Office. All SOPs are available in the LIMS under the Documents and SOPs menu.

Hand written corrections or alterations to SOPs are not permitted. In the event that a correction is needed and a revision is not immediately possible, a corrective action report will be generated documenting the correction or alteration, signed by the section Technical Director and the QA/QC Officer and will be scanned into the current SOP and will document the change until a new revision is possible.

Controlled documents such as calibration summary forms, analysis bench sheets, etc. are tracked as appendices in SOPs, through the Controlled Document Logbook with copies available through the LIMS or through the MOAL as bound logbooks.

Each HEAL test method SOP shall include or reference the following topics where applicable:

Identification of the test method;

Applicable matrix or matrices;

Limits of detection and quantitation;

Scope and application, including parameters to be analyzed;

Summary of the test method;

Definitions:

Interferences:

Safety:

Equipment and supplies:

Reagents and standards;

Sample collection, preservation, shipment and storage;

Quality control parameters;

Calibration and standardization;

Procedure;

Data analysis and calculations;

Method performance;

Pollution prevention;

Data assessment and acceptance criteria for quality control measures;

Corrective actions for out-of-control data,

Contingencies for handling out-of-control or unacceptable data;

Waste management;

References; and

Any tables, diagrams, flowcharts and validation data.

#### 7.0 Calibration

All equipment and instrumentation used at HEAL are operated, maintained and calibrated according to manufacturers' guidelines, as well as criteria set forth in applicable analytical methodology. Personnel who have been properly trained in their procedures perform the operation and calibration. Brief descriptions of the calibration processes for our major laboratory equipment and instruments are found below.

#### **Thermometers**

The thermometers in the laboratory are used to measure the temperatures of the refrigerators, freezers, ovens, water baths, incubators, hot blocks, ambient laboratory conditions, TCLP Extractions, digestion blocks, and samples at the time of log-in. All NIST traceable thermometers are either removed from use upon their documented expiration date or they are checked annually with a NIST-certified thermometer and a correction factor is noted on each thermometer log. See the most current Login SOP for detailed procedures on this calibration procedure.

Data Loggers are used to record refrigerator temperatures. These data loggers are calibrated quarterly with NIST-certified thermometers.

The NIST thermometer should be recalibrated at least every five years or whenever the thermometer has been exposed to temperature extremes.

## Refrigerators/Freezers

Each laboratory refrigerator or freezer contains a thermometer capable of measuring to a minimum precision of 0.1°C. The thermometers are kept with the bulb immersed in liquid. Each day of use, the temperatures of the refrigerators are recorded to insure that the refrigerators are within the required designated range. Samples are stored separately from the standards to reduce the risk of contamination.

See the current Catastrophic Failure SOP for the procedure regarding how to handle failed refrigerators or freezers.

#### Ovens

The ovens contain thermometers graduated by 1° C. The ovens are calibrated quarterly against NIST thermometers and checked each day of use as required and in whatever way is dictated by or appropriate for the method in use.

# **Analytical and Table Top Balances**

The table top balances are capable of weighing to a minimum precision of 0.01 grams. The analytical balances are capable of weighing to a minimum precision of 0.0001 grams. Records are kept of daily calibration checks for the balances in use. Working weights are used in these checks. The balances are annually certified by an outside source and the certifications are on file with the QA/QCO.

Balances, unless otherwise indicated by method specific SOPs, will be checked each day of use with at least two weights that will bracket the working range of the balance for the day. Daily balance checks will be done using working weights that are calibrated annually against Class S weights. Class S weights are calibrated by an external provider as required. The Class S weights are used once a year, or more frequently if required, to assign values to the Working Weights. During the daily balance checks, the working weights are compared to their assigned values and must pass in order to validate the calibration of the balance. The assigned values, as well as the daily checks, for the working weights are recorded in the balance logbook for each balance.

#### Instrument Calibration

An instrument calibration is the relationship between the known concentrations of a set of calibration standards introduced into an analytical instrument and the measured response they produce. Calibration curve standards are a prepared series of aliquots at various known concentration levels from a primary source reference standard. Specific mathematical types of calibration techniques are outlined in SW-846 8000B and/or 8000C. The entire initial calibration must be performed prior to sample analyses.

The lowest standard in the calibration curve must be at or below the required reporting limit.

Refer to the current SOP to determine the minimum requirement for calibration points.

Most compounds tend to be linear and a linear approach should be favored when linearity is suggested by the calibration data. Non-linear calibration should be considered only when a linear approach cannot be applied. It is not acceptable to use an alternate calibration procedure when a compound fails to perform in the usual manner. When this occurs, it is indicative of instrument issues or operator error.

If a non-linear calibration curve fit is employed, a minimum of six calibration levels must be used for second-order (quadratic) curves.

When more than 5 levels of standards are analyzed in anticipation of using second-order calibration curves, all calibration points MUST be used regardless of the calibration option employed. The highest or lowest calibration point may be excluded for the purpose of narrowing the calibration range and meeting the requirements for a specific calibration option. Otherwise, unjustified exclusion of calibration data is expressly forbidden.

Analytical methods vary in QC acceptance criteria. HEAL follows the method specific guidelines for QC acceptance. The specific acceptance criteria are outlined in the analytical methods and their corresponding SOPs.

### pH Meter

The pH meter measures to a precision of 0.01 pH units. The pH calibration logbook contains the calibration before each use, or each day of use, if used more than once per day. It is calibrated using a minimum of 3 certified buffers. Also available with the pH meter is a magnetic stirrer with a temperature sensor. See the current pH SOP (SM4500 H+ B) for specific details regarding calibration of the pH probe.

# Other Analytical Instrumentation and Equipment

The conductivity probe is calibrated as needed and checked daily when in use.

Eppendorf (or equivalent brands) pipettes are checked gravimetrically prior to use.

#### **Standards**

All of the source reference standards used are ordered from a reliable commercial vendor. A Certificate of Analysis (CoA), which verifies the quality of the standard, accompanies the standards from the vendor. The Certificates of Analysis are dated and stored on file by the Technical Directors or their designee. These standards are traceable to the National Institute of Standards (NIST). When salts are purchased and used as standards the certificate of purity must be obtained from the vendor and filed with the CoAs.

All standard solutions, calibration curve preparations, and all other quality control solutions are labeled in a manner that can be traced back to the original source reference standard. All source reference standards are entered into the LIMS with an appropriate description of the standard. Dilutions of the source reference standard (or any mixes of the source standards) are fully tracked in the LIMS. Standards are labeled with the date opened for use and with an expiration date.

As part of the quality assurance procedures at HEAL, analysts strictly adhere to manufacturer recommendations for storage times/expiration dates and policies of analytical standards and quality control solutions.

# Reagents

HEAL ensures that the reagents used are of acceptable quality for their intended purpose. This is accomplished by ordering high quality reagents and adhering to good laboratory practices so as to minimize contamination or chemical degradation. All reagents must meet any specifications noted in the analytical method. Refer to the current Purchase of Consumables SOP for details on how this is accomplished and documented.

Upon receipt, all reagents are assigned a separate ID number, and logged into the LIMS. All reagents shall be labeled with the date received into the laboratory and again with the date opened for use. Recommended shelf life, as defined by the manufacturer, shall be documented and controlled. Dilutions or solutions prepared shall be clearly labeled, dated, and initialed. These solutions are traceable back to their primary reagents and do not extend beyond the expiration date listed for the primary reagent.

All gases used with an instrument shall meet specifications of the manufacturer. All safety requirements that relate to maximum and/or minimum allowed pressure, fitting types, and leak test frequency, shall be followed. When a new tank of gas is placed in use, it shall be checked for leaks and the date put in use will be written in the instrument maintenance logbook.

HEAL continuously monitors the quality of the reagent water and provides the necessary indicators for maintenance of the purification systems in order to assure that the quality of laboratory reagent water meets established criteria for all analytical methods. The majority of HEAL methods utilize medium quality deionized reagent water maintained at a resistivity greater than  $1M\Omega$  in accordance with SM1080.

Reagent blank samples are also analyzed to ensure that no contamination is present at detectable levels. The frequency of reagent blank analysis is typically the same as calibration verification samples. Refrigerator storage blanks are stored in the volatiles refrigerator for a period of one week and analyzed and replaced once a week.

#### 8.0 Maintenance

Maintenance logbooks are kept for each major instrument and all support equipment in order to document all repair and maintenance. In the front of the logbook, the following information is included:

Unique Name of the Item or Equipment
Manufacturer
Type of Instrument
Model Number
Serial Number
Date Received and Date Placed into Service
Location of Instrument
Condition of Instrument Upon Receipt

For routine maintenance, the following information shall be included in the log:

Maintenance Date
Maintenance Description
Maintenance Performed by Initials

A manufacturer service agreement (or equivalent) covers most major instrumentation to assure prompt and reliable response to maintenance needs beyond HEAL instrument operator capabilities.

Refer to the current Maintenance and Troubleshooting SOP for each section in the laboratory for further information.

# 9.0 Data Integrity

For HEAL's policy on ethics and data integrity, see section 3.0 of this document. Upon being hired, and annually thereafter, all employees at HEAL undergo documented data integrity training. All new employees sign an Ethics and Data Integrity Agreement, documenting their understanding of the high standards of integrity required at HEAL and outlining their responsibilities in regards to ethics and data integrity. See the current Document Control Logbook for a copy of this agreement.

In instances of ethical concern, analysts are required to report the known or suspected concern to their Technical Director, the Laboratory Manager, or the QA/QCO. This will be done in a confidential and receptive environment, allowing all employees to privately discuss ethical issues or report items of ethical concern.

Once reported and documented, the ethical concern will be immediately elevated to the Laboratory Manager and the need for an investigation, analyst remediation, or termination will be determined on a case-by-case basis.

All reported instances of ethical concern will be thoroughly documented and handled in a manner sufficient to rectify any breaches in data integrity with an emphasis on preventing similar incidences from happening in the future.

# 10.0 Quality Control

# **Internal Quality Control Checks**

HEAL utilizes various internal quality control checks, including duplicates, matrix spikes, matrix spike duplicates, method blanks, laboratory control spikes, laboratory control spike duplicates, surrogates, internal standards, calibration standards, quality control charts, proficiency tests and calculated measurement uncertainty.

Refer to the current method SOP to determine the frequency and requirements of all quality controls. In the event that the frequency of analysis is not indicated in the method specific SOP, duplicate samples, laboratory control spikes (LCS), Method Blanks (MB), and matrix spikes and matrix spike duplicates (MS/MSD) are analyzed for every batch of twenty samples.

When sample volume is limited on a test that requires an MS/MSD an LCSD shall be analyzed to demonstrate precision and accuracy and when possible a sample duplicate will be analyzed.

Duplicates are identical tests repeated for the same sample or matrix spike in order to determine the precision of the test method. A Relative Percent Difference (RPD) is calculated as a measure of this precision. Unless indicated in the SOP, the default acceptance limit is </= 20%.

Matrix Spikes and Matrix Spike Duplicates are spiked samples (MS/MSD) that are evaluated with a known added quantity of a target compound. This is to help determine the accuracy of the analyses and to determine the matrix effects on analyte recovery. A percent recovery is calculated to assess the quality of the accuracy. In the event that the acceptance criteria is not outlined in the SOP, a default limit of 70-130% will be utilized. When an MSD is employed an RPD is calculated and when not indicated in the SOP shall be acceptable at

In an effort to evaluate all received matricies, MS/MSD samples are chosen randomly. Notable exceptions to this policy are when a client requests the MS/MSD be analyzed utilizing their sample or in the event the matrix requires such a significant dilution that utilizing it as an MS/MSD is impractical.

When appropriate for the method, a Method Blank should be analyzed with each batch of samples processed to assess contamination levels in the laboratory. MBs consist of all the reagents measured and treated as they are with samples, except without the samples. This enables the laboratory to ensure clean reagents and procedures. Guidelines should be in place for accepting or rejecting data based on the level of contamination in the blank. In the event that these guidelines are not dictated by the SOP or in client specific work plans, the MB should be less than the MDL reported for the analyte being reported.

It is important to note that the LIMS qualifies samples for Method Blank failures when the amount in the blank is greater than the sample's listed PQL.

A Laboratory Control Spike and Laboratory Control Spike Duplicate (LCS/LCSD) are reagent blanks, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. It is generally used to establish intra-laboratory or analyst-specific precision and bias or to assess the performance of all or a portion of the measurement system. Guidelines are outlined in each SOP for the frequency and pass fail requirements for LCS and LCSDs. These limits can be set utilizing control charts as discussed below.

Surrogates are utilized when dictated by method and are substances with properties that mimic the analytes of interest. The surrogate is an analyte that is unlikely to be found in environmental samples. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for surrogates.

Internal Standards are utilized when dictated by the method and are known amounts of standard added to a test portion of a sample as a reference for evaluating and controlling the precision and bias of the applied analytical method. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for Internal Standards.

Proficiency Test (PT) Samples are samples provided by an unbiased third party. They are typically analyzed twice a year, between five and seven months apart, or at any other interval as defined in the method SOP. They contain a pre-determined concentration of the target compound, which is unknown to HEAL. HEAL's management and all analysts shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance criteria, sequence of analytical steps, number of replicates and other procedures as used when analyzing routine samples. PT results are reported as normal samples, within the working range of the associated calibration curve. In the event an analyte concentration is less than the PQL, the result shall be reported as less than the PQL.

With regards to analyzing PT Samples HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seek accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall not attempt to obtain the assigned value of any PT sample from the PT Provider.

Upon receiving a Not Acceptable PT result for any analyte, a root cause analysis is conducted and the cause of the failure determined and corrected. As defined by TNI, two

out of the past three PTs must be acceptable to maintain accreditation for any given analyte. If this requirement is not met, a successful history will be reestablished by the analysis of an additional PT sample. For accredited tests, the PT provider will be notified, when the PT is for corrective action purposes. The analysis dates of successive PT samples for the same TNI accredited analyte shall be at least fifteen days apart.

Calibration standards are standards run to calibrate. Once the calibration is established the same standards can be analyzed as Continuing Calibration Verifications (CCV), used to confirm the consistency of the instrumentation. Calibration standards can be utilized at the beginning and end of each batch, or more frequently as required. Typically Continuing Calibration Blanks (CCB) are run in conjunction with CCVs. Refer to the current method SOP for frequency and pass/fail requirements of CCVs and CCBs.

Control Limits are limits of acceptable ranges of the values of quality control checks. The control limits approximate a 99% confidence interval around the mean recovery. Any matrix spike, surrogate, or LCS results outside of the control limits require further evaluation and assessment. This should begin with the comparison of the results from the samples or matrix spike with the LCS results. If the recoveries of the analytes in the LCS are outside of the control limits, then the problem may lie with the application of the extraction, with cleanup procedures, or with the chromatographic procedure. Once the problem has been identified and addressed, corrective action may include reanalysis of samples or reextraction followed by reanalysis. When the LCS results are within the control limits, the issue may be related to the sample matrix or to the use of an inappropriate extraction, cleanup, and/or determinative method for the matrix. If the results are to be used for regulatory compliance monitoring, then steps must be taken to demonstrate that the analytes of concern can be determined in the sample matrix at the levels of interest. Data generated with laboratory control samples that fall outside of the established control limits are judged to be generated during an "out-of-control" situation. These data are considered suspect and shall be repeated or reported with qualifiers.

Control limits are to be updated only by Technical Directors, Section Supervisors or the Quality Assurance Officer. Control limits should be established and updated according to the requirements of the method being utilized. When the method does not specify, and control limits are to be generated or updated for a test, the following guidelines shall be utilized.

Limits should typically be generated utilizing the most recent 20-40 data values. In order to obtain an even distribution across multiple instruments and to include more than a single day's worth of data, surrogate limits should be generated using around 100 data values. The data values used shall not reuse values that were included in the previous Control Limit update. The data values shall also be reviewed by the LIMS for any Grubbs Outliers, and if identified, the outliers must be removed prior to generating new limits. The results used to update control limits should meet all other QC criteria associated with the determinative method. For example, MS/MSD recoveries from a GC/MS procedure should be generated from samples analyzed after a valid tune and a valid initial calibration that includes all

analytes of interest. Additionally, no analyte should be reported when it is beyond the working range of the calibration currently in use. MS/MSD and surrogate limits should be generated using the same set of extraction, cleanup, and analysis procedures.

All generated limits should be evaluated for appropriateness. Where limits have been established for MS/MSD samples, the LCS/LCSD limits should fall within those limits, as the LCS/LCSD are prepared in a clean matrix. Surrogate limits should be updated using all sample types and should be evaluated to ensure that all instruments as well as a reasonable dispersion across days are represented by the data. LCS/LCSD recovery limits should be evaluated to verify that they are neither inappropriately wide nor unreasonably tight. The default LCS/LCSD acceptance limits of 70-130% and RPD of 20% (or those limits specified by the method for LCS/LCSD and/or CCV acceptability), should be used to help make this evaluation. Technical directors may choose to use warning limits when they feel their generated limits are too wide, or default LCS limits when they feel their limits have become arbitrarily tight.

Once new Control Limits have been established and updated in the LIMS, the Control Charts shall be printed and reviewed by the appropriate section supervisor and primary analyst performing the analysis for possible trends and compared to the previous Control Charts. The technical director initials the control charts, indicating that they have been reviewed and that the updated Limits have been determined to be accurate and appropriate. Any manual alterations to the limits will be documented and justified on the printed control chart. These initialed charts are then filed in the QA/QCO office.

Once established, control limits should be reviewed after every 20-30 data values and updated at least every six months, provided that there are sufficient points to do so. The limits used to evaluate results shall be those in place at the time that the sample was analyzed. Once limits are updated, those limits apply to all subsequent analyses.

When updating surrogate control limits, all data regardless of sample/QC type, shall be updated together and assigned one set of limits for the same method/matrix.

In the event that there are insufficient data points to update limits that are over a year old, the default limits, as established in the method or SOP, shall be re-instated. Refer to the requirements in SW-846 method 8000B and 8000C for further guidance on generating control limits.

Calculated Measurement Uncertainty is calculated annually using LCSs in order to determine the laboratory specific uncertainty associated with each test method. These uncertainty values are available to our clients upon request and are utilized as a trending tool internally to determine the effectiveness of new variables introduced into the procedure over time.

# **Client Requested QC**

Occasionally certain clients will require QC that is not defined by or covered in the SOPs. These special requests will be issued to all analysts and data reviewers in writing and the analysts and data reviewers will be provided with guidance on how to properly document the client requested deviation/QC in their preparation and analytical batches.

# Precision, Accuracy, Detection Levels

#### Precision

The laboratory uses sample duplicates, laboratory control spike duplicates, and matrix spike duplicates to assess precision in terms of relative percent difference (RPD). HEAL requires the RPD to fall within the 99% confidence interval of established control charts or an RPD of less than 20% if control charts are not available. RPD's greater than these limits are considered out-of-control and require an appropriate response.

RPD = 2 x (Sample Result – Duplicate Result) X 100 (Sample Result + Duplicate Result)

# Accuracy

The accuracy of an analysis refers to the difference between the calculated value and the actual value of a measurement. The accuracy of a laboratory result is evaluated by comparing the measured amount of QC reference material recovered from a sample and the known amount added. Control limits can be established for each analytical method and sample matrix. Recoveries are assessed to determine the method efficiency and/or the matrix effect.

Analytical accuracy is expressed as the Percent Recovery (%R) of an analyte or parameter. A known amount of analyte is added to an environmental sample before the sample is prepared and subsequently analyzed. The equation used to calculate percent recovery is:

%Recovery = {(concentration\* recovered)/(concentration\* added)} X 100

\*or amount

HEAL requires that the Percent Recovery to fall within the 99 % confidence interval of established control limits. A value that falls outside of the confidence interval requires a warning and process evaluation. The confidence intervals are calculated by determining the mean and sample standard deviation. If control limits are not available, the range of 80 to 120% is used unless the specific method dictates

otherwise. Percent Recoveries outside of this range mandate additional action such as analyses by Method of Standard Additions, additional sample preparation(s) where applicable, method changes, and out-of-control action or data qualification.

#### **Detection Limit**

Current practices at HEAL define the Detection Limit (DL) as the smallest amount that can be detected above the baseline noise in a procedure within a stated confidence level.

HEAL presently utilizes an Instrument Detection Limit (IDL), a Method Detection Limit (MDL), and a Practical Quantitation Limit (PQL). The relationship between these levels is approximately

IDL: MDL: PQL = 1:5:5.

The IDL is a measure of the sensitivity of an analytical instrument. The IDL is the amount which, when injected, produces a detectable signal in 99% of the analyses at that concentration. An IDL can be considered the minimum level of analyte concentration that is detectable above random baseline noise.

The MDL is a measure of the sensitivity of an analytical method. MDL studies are required annually for each quality system matrix, technology and analyte, unless indicated otherwise in the referenced method. An MDL determination (as required in 40CFR part 136 Appendix B) consists of replicate spiked samples carried through all necessary preparation steps. The spike concentration is three times the standard deviation of three replicates of spikes. At least seven replicates are spiked and analyzed and their standard deviation(s) calculated. Routine variability is critical in passing the 10 times rule and is best achieved by running the MDLs over different days and when possible over several calibration events. Standard Methods and those methods used for drinking water analysis must have MDL studies that are performed over a period of at least three days in order to include day to day variations. The method detection limit (MDL) can be calculated using the standard deviation according to the formula:

$$MDL = s * t (99\%),$$

where t (99%) is the Student's t-value for the 99% confidence interval. The t-value depends on the number of trials used in calculating the sample standard deviation, so choose the appropriate value according to the number of trials.

| Number of Trials | t(99%) |
|------------------|--------|
| 6                | 3.36   |
| 7                | 3.14   |
| 8                | 3.00   |
| 9                | 2.90   |

Page 41 of 59 Quality Assurance Plan 9.9 Effective August 13<sup>th</sup>, 2014 The calculated MDL must not be less than 10 times the spiked amount or the study must be performed again with a lower concentration.

Where there are multiple MDL values for the same test method in the LIMS the highest MDL value is utilized.

The PQL is significant because different laboratories can produce different MDLs although they may employ the same analytical procedures, instruments and sample matrices. The PQL is about two to five times the MDL and represents a practical, and routinely achievable, reporting level with a good certainty that the reported value is reliable. It is often determined by regulatory limits. The reported PQL for a sample is dependent on the dilution factor utilized during sample analysis.

In the event that an analyte will not be reported less than the PQL, an MDL study is not required and a PQL check shall be done, at least annually, in place of the MDL study. The PQL check shall consist of a QC sample spiked at or below the PQL. All sample-processing and analysis steps of the analytical method shall be included in the PQL check and shall be done for each quality system matrix, technology, and analyte. A successful check is one where the recovery of each analyte is within the established method acceptance criteria. When this criterion is not defined by the method or SOP, a default limit of +/-50% shall be utilized.

# **Quality Control Parameter Calculations**

#### Mean

The sample mean is also known as the arithmetic average. It can be calculated by adding all of the appropriate values together, and dividing this sum by the number of values.

Average =  $(\Sigma x_i) / n$ 

 $x_i$  = the value x in the  $i^{th}$  trial  $i^{th}$  trial  $i^{th}$  trial  $i^{th}$ 

# **Standard Deviation**

The sample standard deviation, represented by s, is a measure of dispersion. The dispersion is considered to be the difference between the average and each of the

values  $x_i$ . The variance,  $s^2$ , can be calculated by summing the squares of the differences and dividing by the number of differences. The sample standard deviation, s, can be found by taking the square root of the variance.

Standard deviation = 
$$s = \left[\sum (x_l - average)^2 /(n-1)\right]^{\frac{1}{2}}$$

# Percent Recovery (LCS and LCSD)

# Percent Recovery (MS, MSD)

#### **Control Limits**

Control Limits are calculated by the LIMS using the average percent recovery (x), and the standard deviation (s).

Upper Control Limit = 
$$x + 3s$$
  
Lower Control Limit =  $x - 3s$ 

These control limits approximate a 99% confidence interval around the mean recovery.

#### **Grubbs Outliers**

Grubbs Outliers are calculated by the LIMS during the generation of control limits and uncertainties. An outlier is an observation that appears to deviate markedly from other observations in the sample set and are removed, unless documented otherwise.

Identify both the lowest and highest values in the sample set. Use the following equations to determine the T values.

$$T = \frac{x_{max} - x_{mean}}{sd}$$
 (for the largest value)

Page 43 of 59 Quality Assurance Plan 9.9 Effective August 13<sup>th</sup>, 2014

$$T = \frac{x_{mean} - x_{min}}{sd}$$
 (for the smallest value)

Compare the T values to the Grubbs' critical value table. If either value of T is greater than the critical value (assuming a 5% risk) for the sample size, the point(s) must be dropped then the calculation repeated for both the lowest and highest value using the new mean and standard deviation.

The Grubbs test is repeated until there are no longer any outliers detected. Keep in mind you must have at least 20 data points available to generate your limits.

# **RPD (Relative Percent Difference)**

Analytical precision is expressed as a percentage of the difference between the results of duplicate samples for a given analyst. Relative percent difference (RPD) is calculated as follows:

RPD = 2 x (Sample Result – Duplicate Result) X 100 (Sample Result + Duplicate Result)

# **Uncertainty Measurements**

Uncertainty, as defined by ISO, is the parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurement. Ultimately, uncertainty measurements are used to state how good a test result is and to allow the end user of the data to properly interpret their reported data. All procedures allow for some uncertainty. For most analyses, the components and estimates of uncertainty are reduced by following well-established test methods. To further reduce uncertainty, results generally are not reported below the lowest calibration point (PQL) or above the highest calibration point (UQL). Understanding that there are many influential quantities affecting a measurement result, so many in fact that it is impossible to identify all of them, HEAL calculates measurement uncertainty at least annually using LCSs. These estimations of measurement uncertainty are kept on file in the method folders in the QA/QC office.

Measurement Uncertainty contributors are those that may be determined statistically. These shall be generated by estimating the overall uncertainty in the entire analytical process by measuring the dispersion of values obtained from laboratory control samples over time. At least 20 of the most recent LCS data points are gathered. The standard deviation(s) is calculated using these LCS data points. Since it can be

assumed that the possible estimated values of the spikes are approximately normally distributed with approximate standard deviation(s), the unknown value of the spike is believed to lie in 95% confidence interval, corresponding to an uncertainty range of +/- 2(s).

Calculate standard deviation (s) and 95% confidence interval according to the following formulae:

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{(n-1)}}$$

Where: s = standard deviation

x = number in series

 $\bar{x}$  = calculated mean of series

n = number of samples taken

95% confidence =  $2 \times s$ 

Example: Assuming that after gathering 20 of the most recent LCS results for Bromide, we have calculated the standard deviations of the values and achieved a result of 0.0326, our measurement of uncertainty for Bromide (at 95% confidence =  $2 \times s$ ) is 0.0652.

# Total Nitrogen

Total nitrogen is calculated as follows:

Total Nitrogen = TKN + NO<sub>2</sub> + NO<sub>3</sub>

# **Langelier Saturation Index**

The Langelier Saturation Index (LSI) is calculated as follows:

Solids Factor (SF) =(Log10[TDS] - 1) / 10 Ca Hardness Factor (HF) = Log10([Ca] x 2.497) - 0.4 Alkalinity Factor (AF) = Log10[Alkalinity] Temp. Factor (TF) = -13.12 x Log10( $^{\circ}$ C + 273) + 34.55 pHs (pH @ saturation) =(9.3 + SF + TF) - (HF + AF) LSI = pH - pH<sub>s</sub>

#### **Calibration Calculations**

1. Response Factor or Calibration Factor:

$$RF = ((A_x)(C_{is}))/((A_{is})(C_x))$$

$$CF=(A_x)/(C_x)$$

a. Average RF or CF

$$RF_{AVE} = \Sigma RF_i / n$$

b. Standard Deviation

s = SQRT { [ 
$$\Sigma$$
 (RF<sub>i</sub> - RF<sub>AVE</sub> )<sup>2</sup> ] / (n-1) }

c. Relative Standard Deviation

Where:

A<sub>x</sub> = Area of the compound

 $C_x$  = Concentration of the compound

Ais = Area of the internal standard

Cis = Concentration of the internal standard

n = number of pairs of data

RF<sub>i</sub> = Response Factor (or other determined value)

RF<sub>AVE</sub> = Average of all the response factors

 $\Sigma$  = the sum of all the individual values

# 2. Linear Regression



$$m = (n\Sigma x_i y_i - (n\Sigma x_i)^*(n\Sigma y_i)) / (n\Sigma x_i^2 - (\Sigma x_i)^2)$$

b. Intercept (b)

$$b = y_{AVE} - m^*(x_{AVE})$$

c. Correlation Coefficient (cc)

$$\begin{array}{l} \text{CC (r) = } \{ \ \Sigma((x_i \!\!-\! x_{ave})^*(y_i \!\!-\! y_{ave})) \ \} \ / \ \{ \ \text{SQRT}((\Sigma(x_i \!\!-\! x_{ave})^2)^*(\Sigma(y_i \!\!-\! y_{ave})^2))) \ \} \\ \text{Or} \\ \text{CC (r) = } [(\Sigma w \ ^* \Sigma wxy) - (\Sigma wx \ ^* \Sigma wy)] \ / \ (\text{sqrt}(\ (\ [(\Sigma w \ ^* \Sigma wx^2) - (\Sigma wx \ ^* \Sigma wx)] \ ^* \ [(\Sigma w \ ^* \Sigma wy^2) - (\Sigma wy \ ^* \Sigma wy)])))] \\ \end{array}$$

d. Coefficient of Determination

$$COD(r^2) = CC*CC$$

#### Where:

y = Response (Area) Ratio A<sub>x</sub>/A<sub>is</sub>

x = Concentration Ratio C<sub>x</sub>/C<sub>is</sub>

m = slope

b = intercept

n = number of replicate x,y pairs

 $x_i$  = individual values for independent variable

y<sub>i</sub> = individual values for dependent variable

 $\Sigma$  = the sum of all the individual values

xave = average of the x values

yave = average of the y values

w = weighting factor, for equal weighting w=1

3. Quadratic Regression

$$y = ax^2 + bx + c$$

a. Coefficient of Determination

COD (r<sup>2</sup>) =( 
$$\Sigma(y_i - y_{ave})^2 - \{[(n-1)/(n-p)] * [\Sigma(y_i - Y_i)^2]\} ) / \Sigma(y_i - y_{ave})^2$$

#### Where:

y = Response (Area) Ratio A<sub>x</sub>/A<sub>is</sub>

x = Concentration Ratio C<sub>x</sub>/C<sub>is</sub>

 $a = x^2$  coefficient

b = x coefficient

c = intercept

y<sub>i</sub> = individual values for each dependent variable

 $x_i$  = individual values for each independent variable

y<sub>ave</sub> = average of the y values

n = number of pairs of data

p = number of parameters in the polynomial equation (I.e., 3 for third order, 2 for second order)

Page 47 of 59 Quality Assurance Plan 9.9 Effective August 13<sup>th</sup>, 2014

# $Yi = ((2*a*(C_x/C_{is})^2)-b^2+b+(4*a*c))/(4a)$

b. Coefficients (a,b,c) of a Quadratic Regression

$$a = S_{(x2y)}S_{(xx)} - S_{(xy)}S_{(xx2)} / S_{(xx)}S_{(x2x2)} - [S_{(xx2)}]^2$$

$$b = S_{(xy)}S_{(x2x2)} - S_{(x2y)}S_{(xx2)} / S_{(xx)}S_{(x2x2)} - [S_{(xx2)}]^2$$

$$c = [(\Sigma yw)/n] - b^*[(\Sigma xw)/n] - a^*[\Sigma (x^2w)/n]$$

## Where:

n = number of replicate x,y pairs

x = x values

y = y values

 $w = S^{-2} / (\Sigma S^{-2}/n)$ 

 $S_{(xx)} = (\Sigma x^2 w) - [(\Sigma x w)^2 / n]$ 

 $S_{(xy)} = (\Sigma xyw) - [(\Sigma xw)^*(\Sigma yw) / n]$ 

 $S_{(xx2)} = (\Sigma x^{3}w) - [(\Sigma xw)^{*}(\Sigma x^{2}w) / n]$ 

 $S_{(x2y)} = (\Sigma x^2 yw) - [(\Sigma x^2 w)^* (\Sigma yw) / n]$ 

 $S_{(x2x2)} = (\Sigma x^4 w) - [(\Sigma x^2 w)^2 / n]$ 

Or If unweighted calibration, w=1

 $S(xx) = (Sx^2) - [(Sx)^2 / n]$ 

S(xy) = (Sxy) - [(Sx)\*(Sy) / n]

S(xx2) = (Sx3) - [(Sx)\*(Sx2) / n]

S(x2y) = (Sx2y) - [(Sx2)\*(Sy) / n]

S(x2x2) = (Sx4) - [(Sx2)2 / n]

# Weighting

Weighting of 1/x or  $1/x^2$  is permissible for linear calibrations. Weighting shall not be employed for quadratic calibrations. When weighting, use the above equations by substituting x for 1/x or  $1/x^2$ .

#### **Concentration Calculations**

On-Column Concentration for Average RRF Calibration using Internal Standard

On-Column Concentration  $C_x = ((A_x)(C_{is}))/((A_{is})(RF_{AVE}))$ 

On-Column Concentration for Average CF Calibration using External Standard

On-Column Concentration  $C_x = (A_x)/(CF_{AVE})$ 

On-Column Concentration for Linear Calibration

Page 48 of 59 Quality Assurance Plan 9.9 Effective August 13<sup>th</sup>, 2014 If determining an external standard, then exclude the Ais and Cis for internal standards On-Column Concentration  $C_x = ((Absolute\{[(A_x)/(A_{is})] - b\})/m) * C_{is}$ 

Where: m = slope

b = intercept

 $A_x$  = Area of the Sample

Cis = Concentration of the Internal Standard

Ais = Area of the Internal Standard

#### **On-Column Concentration for Quadratic Calibration**

If determining an external standard, then exclude the Ais and Cis for internal standards On-Column Concentration =[(+SQRT( $b^2$ -(4\*a\*(c-y)))-b)/(2\*a)] \* C<sub>is</sub> Where:  $a = x^2$  coefficient

b = x coefficient

c = intercept

y = Area Ratio = A<sub>x</sub>/A<sub>is</sub>

Cis = Concentration of the Internal Standard

#### **Final Concentration (Wet Weight)**

Concentration for Extracted Samples = (On-Column Conc)(Difution)(Final Volume) (Initial Amount)(Injection Volume)

Concentration for Purged Samples = (On-Column Conc)(Purged Amount)(Dilution) (Purged Amount)

#### **Dry Weight Concentration**

Dry Weight Concentration =Final Concentration Wet Weight \*100 % Solids

#### **Percent Difference**

% Difference= Absolute(Continuing Calibration RRF - Average RRF) Average RRF

#### **Percent Drift**

% Drift= Absolute(Calculated Concentration - Theoretical Concentration) Theoretical Concentration

#### **Dilution Factor**

Dilution Factor = (Volume of Solvent + Solute) / Volume of Solute

#### **Relative Retention Time**

RRT =RT of Compound / RT of ISTD

#### **Breakdown Percent**

Breakdown = <u>Area of DDD + Area of DDE</u> Average (DDT, DDE and DDD)

-or-

<u>Area of Endrin Ketone + Area of Endrin Aldehyde</u> Average (Endrin, Endrin Ketone, Endrin Aldehyde)

#### 11.0 Data Reduction, Validation, Reporting, and Record Keeping

All data reported must be of the highest possible accuracy and quality. During the processes of data reduction, validation, and report generation, all work is thoroughly checked to insure that error is minimized.

#### **Data Reduction**

The analyst who generated the data usually performs the data reduction. The calculations include evaluation of surrogate recoveries (where applicable), and other miscellaneous calculations related to the sample quantitation.

If the results are computer generated, then the formulas must be confirmed by hand calculations, at minimum, one per batch.

See the current Data Validation SOP for details regarding data reduction.

#### Validation

A senior analyst, most often the section supervisor, validates the data. All data undergoes peer review. If an error is detected, it is brought to the analyst's attention so that he or she can rectify the error, and perform further checks to ensure that all data for that batch is sound. Previous and/or common mistakes are stringently monitored throughout the validation process. Data is reported using appropriate significant figure criteria. In most cases, two significant digits are utilized, but three significant digits can be used in QC calculations. Significant digits are not rounded until after the last step of a sample calculation. All final reports undergo a review by the laboratory manager, the project manager, or their designee, to provide a logical review of all results before they are released to the client.

If data is to be manually transferred between media, the transcribed data is checked by a peer. This includes data typing, computer data entry, chromatographic data transfer, data table inclusion to a cover letter, or when data results are combined with other data fields.

All hand-written data from run logs, analytical standard logbooks, hand-entered data logbooks, or on instrument-generated chromatograms, are systematically archived should the need for future retrieval arise.

See the current Data Validation SOP for details regarding data validation.

#### Reports and Records

All records at HEAL are retained and maintained through the procedures outlined in the most recent version of the Records Control SOP.

Sample reports are compiled by the Laboratory Information Management System (LIMS). Most data is transferred directly from the instruments to the LIMS. After being processed by the analyst and reviewed by a data reviewer, final reports are approved and signed by the senior laboratory management. A comparative analysis of the data is performed at this point. For example, if TKN and NH3 are analyzed on the same sample, the NH3 result should never be greater than the TKN result. Lab results and reports are released only to appropriately designated individuals. Release of the data can be by fax, email, electronic deliverables, or mailed hard copy.

When a project is completed, the final report, chain of custody, any relevant supporting data, and the quality assurance/control worksheets are scanned as a pdf file onto the main server. Original client folders are kept on file and are arranged by project number. Additionally, all electronic data is backed up routinely on the HEAL main server. The backup includes raw data, chromatograms, and report documents. Hard copies of chromatograms are stored separately according to the instrument and the analysis date. All records and analytical data reports are retained in a secure location as permanent records for a minimum period of five years (unless specified otherwise in a client contract). Access to archived information shall be documented with an access log. Access to archived electronic reports and data will be password protected. In the event that HEAL transfers ownership or terminates business practices, complete records will be maintained or transferred according to the client's instructions.

After issuance, the original report shall remain unchanged. If a correction to the report is necessary, then an additional document shall be issued. This document shall have a title of "Addendum to Test Report or Correction to Original Report", or equivalent. Demonstration of original report integrity comes in two forms. First, the report date is included on each page of the final report. Second, each page is numbered in sequential order, making the addition or omission of any data page(s) readily detectable.

#### 12.0 Corrective Action

Refer to the most recent version of the Data Validation SOP for the procedure utilized in filling out a Corrective Action Report. A blank copy of the corrective action report is available in the current Document Control Logbook.

The limits that have been defined for data acceptability also form the basis for corrective action initiation. Initiation of corrective action occurs when the data generated from continuing calibration standard, sample surrogate recovery, laboratory control spike, matrix spike, or sample duplicates exceed acceptance criteria. If corrective action is necessary, the analyst or the section supervisor will coordinate to take the following guidelines into consideration in order to determine and correct the measurement system deficiency:

Check all calculations and data measurements systems (Calibrations, reagents, instrument performance checks, etc.).

Assure that proper procedures were followed.

Unforeseen problems that arise during sample preparation and/or sample analysis that lead to treating a sample differently from documented procedures shall be documented with a corrective action report. The section supervisor and laboratory manager shall be made aware of the problem at the time of the occurrence. See the appropriate SOP regarding departures from documented procedures.

Continuing calibration standards below acceptance criteria cannot be used for reporting analytical data unless method specific criteria states otherwise.

Continuing calibration standards above acceptance criteria can be used to report data as long as the failure is isolated to a single standard and the corresponding samples are non-detect for the failing analyte.

Samples with non-compliant surrogate recoveries should be reanalyzed, unless deemed unnecessary by the supervisor for matrix, historical data, or other analysis-related anomalies.

Laboratory and Matrix Spike acceptance criteria vary significantly depending on method and matrix. Analysts and supervisors meet and discuss appropriate corrective action measures as spike failures occur.

In the event that results must be reported with associated QC failures, the data must be qualified appropriately to notify the end user of the QC failure.

Sample duplicates with RPD values outside control limits require supervisor evaluation and possible reanalysis.

A second mechanism for initiation of corrective action is that resulting from Quality Assurance performance audits, system audits, inter- and intra-laboratory comparison studies. Corrective Actions initiated through this mechanism will be monitored and coordinated by the laboratory QA/QCO.

All corrective action forms are entered in the LIMS and included with the raw data for peer review, signed by the technical director of the section and included in the case narrative to the client whose samples were affected. All Corrective action forms in the LIMS are reviewed by the QA/QCO.

#### 13.0 Quality Assurance Audits, Reports and Complaints

#### Internal/External Systems' Audits, Performance Evaluations, and Complaints

Several procedures are used to assess the effectiveness of the quality control system. One of these methods includes internal performance evaluations, which are conducted by the use of control samples, replicate measurements, and control charts. External performance audits, which are conducted by the use of inter-laboratory checks, such as participation in laboratory evaluation programs and performance evaluation samples available from a NELAC-accredited Proficiency Standard Vendor, are another method.

Proficiency samples will be obtained twice per year from an appropriate vendor for all tests and matrices for which we are accredited and for which PTs are available. HEAL participates in soil, waste water, drinking water, and underground storage tank PT studies. Copies of results are available upon request. HEAL's management and all analysts shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities, and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance criteria, sequence of analytical steps, number of replicates, and other procedures as used when analyzing routine samples.

With regards to analyzing PT Samples, HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seek accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall not attempt to obtain the assigned value of any PT sample from the PT Provider.

Internal Audits are performed annually by the QA/QCO in accordance with the current Internal Audit SOP. The system audit consists of a qualitative inspection of the QA system in the laboratory and an assessment of the adequacy of the physical facilities for sampling, calibration, and measurement. This audit includes a careful evaluation and review of laboratory quality control procedures. Internal audits are performed using the guidelines outlined below, which include, but are not limited to:

- 1. Review of staff qualifications, demonstration of capability, and personnel training programs
- 2. Storage and handling of reagents, standards, and samples
- 3. Standard preparation logbook and LIMS procedures
- 4. Extraction logbooks
- 5. Raw data logbooks
- 6. Analytical logbooks or batch printouts and instrument maintenance logbooks

- 7. Data review procedures
- 8. Corrective action procedures
- Review of data packages, which is performed regularly by the lab manager/QA Officer.

The QA/QCO will conduct these audits on an annual basis.

#### **Management Reviews**

HEAL management shall periodically, and at least annually, conduct a review of the laboratory's quality system and environmental testing activities to ensure their continuing suitability and effectiveness, and to introduce necessary changes or improvements. The review shall take account of:

- 1. the suitability and implementation of policies and procedures
- 2. reports from managerial and supervisory personnel
- 3. the outcome of recent internal audits
- 4. corrective and preventive actions
- 5. assessments by external bodies
- 6. the results of inter-laboratory comparisons or proficiency tests
- 7. changes in volume and type of work
- 8. client feed back
- 9. complaints
- 10. other relevant factors, such as laboratory health and safety, QC activities, resources, and staff training.

Findings from management reviews and the actions that arise from them shall be recorded and any corrective actions that arise shall be completed in an appropriate and agreed upon timescale.

#### Complaints

Complaints from clients are documented and given to the laboratory manager. The lab manager shall review the information and contact the client. If doubt is raised concerning the laboratory's policies or procedures, then an audit of the section or sections may be performed. All records of complaints and subsequent actions shall be maintained in the client compliant logbook for five years unless otherwise stated.

#### Internal and External Reports

The QA/QCO is responsible for preparation and submission of quality assurance reports to the appropriate management personnel as problems and issues arise. These reports include the assessment of measurement systems, data precision and accuracy, and the results of performance and system audits. Additionally, they include significant QA problems, corrective actions, and recommended resolution measures. Reports of these Quality Assurance Audits describe the particular activities audited, procedures utilized in the examination and evaluation of laboratory records, and data validation procedures. Finally, there are procedures for evaluating the performance of Quality Control and Quality Assurance activities, and laboratory deficiencies and the implementation of corrective actions with the review requirements.

#### 14.0 References (Analytical Protocols Utilized at HEAL)

- 1. <u>Analytical Chemistry of PCB's</u>. Erickson, Mitchell D., CRC Press, Inc. 1992.
- 2. <u>Diagnosis & Improvement of Saline & Alkali Soils</u>, Agriculture Handbook No. 60, USDA, 1954
- 3. <u>Environmental Perspective on the Emerging Oil Shale Industry</u>, EPA Oil & Shale Research Group.
- 4. <u>Field and Laboratory Methods Applicable to Overburdens and Mine Soils, USEPA, EPA-600/2-78-054. March 1978</u>
- 5. <u>Handbook of Chemistry and Physics, 62nd Edition</u>, CRC Press, Inc. 1981-1982.
- 6. <u>Handbook on Reference Methods for Soil Testing.</u> The Council on Soil Testing & Plant Analysis, 1980 and 1992
- 7. <u>Laboratory Procedures for Analyses of Oilfield Waste.</u> Department of Natural Resources, Office of Conservation, Injection and Mining Division, Louisiana, August 1988
- 8. Langelier index calculation. http://www.corrosion-doctors.org/NaturalWaters/Langelier.htm.
- 9. <u>Manual for the Certification of Laboratories Analyzing Drinking Water, Criteria and procedures Quality Assurance Fifth Edition, U.S. Environmental Protection Agency, January 2005.</u>
- 10. Manual of Operating Procedures for the Analysis of Selected Soil, Water, Plant Tissue and Wastes Chemical and physical Parameter. Soil, Water, and Plant Analysis Laboratory, Dept. of Soil and Water Science, The University of Arizona, August 1989
- 11. The Merck Index, Eleventh Edition, Merck & Co., Inc. 1989.
- 12. <u>Methods for Chemical Analysis of Water and Wastes</u>, USEPA, EPA-600/4-79-020, March 1979 and as amended December, 1982 (EPA-600/4-82-055)
- 13. <u>Methods for the Determination of Metals in Environmental Samples</u>, USEPA, EPA-600/4-91-010, June 1991
- 14. <u>Methods of Soil Analysis</u>: Parts 1 & 2, 2nd Edition, Agronomy Society of America, Monograph 9
- 15. Polycyclic Aromatic Hydrocarbons in Water Systems, CRC Press, Inc.

- 16. Procedures for Collecting Soil Samples and Methods of Analysis for Soil Survey. USDA Soil Conservation Service, SSIR No. 1
- 17. Quality Systems for Analytical Services, Revision 2.2, U.S. Department of Energy, October 2006.
- 18. <u>Sampling Procedures and Chemical Methods in Use at the U.S. Salinity Laboratory for Characterizing Salt-Affected Soils and Water.</u> USDA Salinity Laboratory.
- 19. <u>Soil Survey Laboratory Methods Manual.</u> Soil Survey Laboratory Staff. Soil Survey Investigations Report No. 42, version 2.0, August 1992.
- 20. Soil Testing Methods Used at Colorado State University for the Evaluation of Fertility, Salinity and Trace Element Toxicity, Technical Bulletin LT B88-2 January, 1988
- 21. <u>Standard Methods for the Examination of Water and Wastewater:</u> AOHA, AWWA, and WPCG; 20th Edition, 1999.
- 22. <u>Technical Notes on Drinking Water Methods</u>, U.S. Environmental Protection Agency, October 1994.
- 23. <u>Test Methods for Evaluating Solid Waste: Physical/Chemical Methods</u>, USEPA SW-846, 3rd Edition, Updates I, II, IIA, IIB, III, December, 1996.



**Proof of Delivery** 

Close Window

Dear Customer,

This notice serves as proof of delivery for the shipment listed below.

Tracking Number: 1Z8818390155273271

Service: UPS NEXT DAY AIR

Delivered On: 01/31/2013 9:37 A.M.

Delivered To: SANTA FE, NM, US

Signed By: MILLER

Left At: Front Desk

Thank you for giving us this opportunity to serve you.

Sincerely, UPS

Tracking results provided by UPS: 02/05/2014 9:33 A.M. ET

Print This Page Close Window

**2 LBS** FROM: KELLY ROBINSON (505) 947-9463 WESTERN REFINING SOUTHWEST INC

**PAK 1 OF 1** 

#50 CR 4990 **BLOOMFIELD NM 87413** 

#### SHIP TO:

1220 SOUTH ST. FRANCIS DRIVE (505) 476-3490 NMED - OIL CONSERVATION DIVISION CARL CHAVEZ SANTA FE NM 87505



NM 875 0-03

# **UPS NEXT DAY AIR**

TRACKING #: 1Z 881 839 01 5527 3271



BILLING: P/P

WS 15.0.16 HP LaserJet 4 36.0A 01/2013

# SENDER: COMPLETE THIS SECTION

- Complete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired.
- Print your name and address on the reverse so that we can return the card to you.
- Attach this card to the back of the maliplece, or on the front if space permits. 1 Adiala Addissaged to

MR. BRANDON POWELL OIL CONSERVATION DIVISION ENERGY, MINERALS & NATURAL RESOUCES DEPARTMENT 1000 RIO BRAZOS ROAD **AZTEC, NM 87410** 

| COMPLETE THIS SECTION ON D                                                                                                 | Finany                                  |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| B. Received by (Printed Name)  Sandon food  D. is delivery address different from it  If YES, enter delivery address below | ☐ Agent ☐ Addressee C. Date of Delivery |

|  | Туре |
|--|------|
|  |      |
|  |      |

- Certified Mail
  Registered
  - ☐ Express Mail
- ☐ Insured Mail
- Return Receipt for Merchandise C.O.D.
- 4. Restricted Delivery? (Extra Fee)
- ☐ Yes

2. Article Number (Transfer from service label)

7010 3090 0001 3450 2982

PS Form 3811, February 2004

Domestic Return Receipt

102595-02-M-1540

Return Receipt Fee (Endorsement Required)

Restricted Delivery Fee (Endorsement Required)

Total Postage & Fees

AIL RECEIPT

o Insurance Coverage Provided)

3040 7010

0001

# ANNUAL CLASS I WELL REPORT

Waste Disposal Well #1 January – December 2012



Western Refining Southwest, Inc.
Bloomfield Refinery
Bloomfield, New Mexico
Permit # - UIC-CL1-009
API # - 30-45-29002

Submitted January 30, 2013

Prepared by:

Kelly Robinson

**Environmental Supervisor** 

# Certification

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

Ron Weaver

Regional Terminals Manager

# TABLE OF CONTENTS

| <b>EXECU</b>      | TIVE SUMMARY                                                    | 1  |
|-------------------|-----------------------------------------------------------------|----|
| 1.0               | INTRODUCTION                                                    |    |
| 2.0               | SUMMARY OF ACTIVITIES                                           | 3  |
| 3.0<br>3.1<br>3.2 | INJECTION VOLUME Injection Volume Injection Well Down-Time      | 4  |
| 4.0               | SAMPLING AND CHEMICAL ANALYSIS                                  | 5  |
| 5.0<br>5.1        | TESTING AND MAINTENANCE ACTIVITIES Mechanical Integrity Testing |    |
| 6.0<br>6.1<br>6.2 | WELL EVALUATION Well Evaluation Area of Review (AOR)            | 7  |
| 7.0<br>7.1<br>7.2 | CONCLUSIONS AND RECOMMENDATIONS Conclusions                     | 8  |
| 8.0               | REFERENCES                                                      | 10 |

### LIST OF FIGURES

Figure 1 Site Location Map Figure 2 Well Schematic

Figure 3 Disposal Well and Area Wells

# LIST OF TABLES

Table 1 Monthly Injection Well Report

Table 2 Area of Review

Table 3 2012 Quarterly Analytical Summary

### LIST OF APPENDICES

Appendix A Form C-103 Notifications

Appendix B Laboratory Analytical Reports

Appendix C Laboratory Quality Assurance Plan

### **EXECUTIVE SUMMARY**

This report provides a summary of activities conducted in 2012 on Waste Disposal Well #1 (WDW-#1) at the Bloomfield Refinery. The following is a summary of well operations and well testing activities performed in 2012.

#### **Operational Summary**

Injection Volume - The volume injected into the disposal well during 2012 was 8,996,020 gallons. Western Refining suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation.

Sampling and Chemical Analyses - Injection fluids samples were collected on a quarterly basis for chemical analysis. Analytical results did not exhibit characteristics of hazardous waste.

**Maintenance Operations -** No down-hole maintenance activities were conducted in 2012.

Mechanical Integrity Tests - The 2012 well testing program witnessed by a representative of the New Mexico Oil Conservation Division (NMOCD) included a High-Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrity Test. Results of these tests prove that the operational integrity of the well is sound.

Area of Review (AOR) - No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of WDW #1.

#### Recommendations

Western will continue the routine monitoring, maintenance, and testing programs which include quarterly chemical analysis of injection fluids, mechanical integrity testing, and Bradenhead testing. Western will continue to utilize the maximum operating injection pressure at the wellhead as permitted by Discharge Permit GW-130.

#### 1.0 INTRODUCTION

This report provides a summary of activities conducted during 2012 on Waste Disposal Well #1 (WDW #1). The disposal well is part of the Bloomfield Refinery operations. The refinery is located immediately south of Bloomfield, New Mexico in San Juan County. The well location is depicted in Figure 1. The physical address of the facility is as follows:

#### **Bloomfield Refinery**

#50 County Road 4990 Bloomfield, NM 87413

The Bloomfield Refinery is located on approximately 263 acres. Bordering the facility is a combination of federal and private properties. Public property managed by the Bureau of Land Management lies to the south. The majority of undeveloped land in the vicinity of the facility is used extensively for oil and gas production and, in some instances, grazing. U.S. Highway 550 is located approximately one-half mile west of the facility. The topography of the main portion of the site is generally flat with steep bluffs to the north.

WDW #1 is owned by San Juan Refining Company, a New Mexico corporation. It is operated by Western Refining Southwest, Inc. formerly known as Giant Industries Arizona, Inc. an Arizona corporation.

#### 1.1 Well Information

Well Name & Number: Waste Disposal Well #1

OCD UIC: UIC-CL1-009

OCD Discharge Plan Permit Number: GW-130

Well Classification: Class I Non-hazardous

API Number: 30-045-29002

Legal Location: 1250 FEL, 2442FSL, I Sec 27 T29S R11E Physical Address: #50 Road 4990, Bloomfield, NM 87413

### 2.0 SUMMARY OF ACTIVITIES

The following list of activities was conducted in 2012 on WDW #1 located at the Bloomfield Refinery:

| • | 01/17/12 | 1st Quarter 2012 Sampling Event |
|---|----------|---------------------------------|
| • | 04/03/12 | 2nd Quarter 2012 Sampling Event |
| • | 07/31/12 | 3rd Quarter 2012 Sampling Event |
| • | 09/06/12 | Bradenhead Test                 |
| • | 09/06/12 | High-Pressure Shut-Down Test    |
| • | 09/06/12 | Mechanical Integrity Test       |
| • | 10/11/12 | 4th Quarter 2011 Sampling Event |

Quarterly samples collected for laboratory analysis were submitted to Hall Environmental Laboratories located in Albuquerque, New Mexico. Copies of the analytical reports are provided in Appendix B. A summary of the analytical results is provided in Table 3.

A representative of New Mexico Oil Conservation Division (NMOCD) was on-site to witness the Bradenhead Test, High-Pressure Shut-Down Test, and Mechanical Integrity Test on September 6, 2012. A copy of the test reports is provided in Appendix A.

The Annual Pressure Fall-Off Test was not conducted in 2012. In an e-mail to Western from NMOCD dated August 2, 2012, it states that Fall Off Test frequency requirements are believe evaluated by NMOCD and operators will be notified by NMOCD when a Fall Off Test is required. Western did not receive notification from NMOCD that a Fall-Off Test was required for 2012.

# 3.0 INJECTION VOLUME

The Monthly Injection Well Report summarizing injection volumes and well performance parameters is presented as Table 1.

### 3.1 Injection Volume

The volume injected into the disposal well during 2012 was 8,996,020 gallons. Throughout 2012 the Bloomfield Refinery injection well operated within the operational limits of less than 1,150 psi.

# 3.2 Injection Well Down-Time

The injection well was down approximately 4,019 hours in 2012. Decreased volume of plant produced water during 2012 resulted in extended periods in which the injection well was not operational. General maintenance activities on the injection well equipment upstream of the injection well also contributed to the injection well down-time during 2012.

### 4.0 SAMPLING AND CHEMICAL ANALYSIS

Samples were collected of the injection water on a quarterly basis and analyzed for the following per Item #9 of the Bloomfield Refinery Class I (Non-Hazardous) Disposal Well UIC-CL1-009 (GW-130) Discharge Permit Renewal dated March 23, 2004:

- Volatile Organic Compounds (VOCs);
- Semi-Volatile Organic Compounds (SVOCs);
- General Chemistry Parameters (included calcium, potassium, magnesium, sodium, bicarbonate, carbonate, chloride, sulfate, total dissolved solids, pH, and conductivity);
- RCRA 8 Metals; and
- RCRA Characteristics for Ignitability, Corrosivity, and Reactivity.

First quarter samples were collected on January 17, 2012. Second quarter samples were collected April 3, 2012. Third quarter samples were obtained July 31, 2012. Fourth quarter samples were taken October 11, 2012. A summary of the analytical results is provided in Table 3.

All quarterly samples collected for laboratory analysis were submitted to Hall Environmental Analysis Laboratory located in Albuquerque, NM. The analytical results conclude that the injected water did not exhibit characteristics of hazardous waste. The respective quarterly analytical reports and Laboratory Quality Assurance Plan are provided in Appendices B and C, respectively.

# 5.0 TESTING AND MAINTENANCE ACTIVITIES

In addition to the conducting general preventative maintenance activities on the injection well equipment, the following testing and well maintenance activities were conducted during 2012:

 Mechanical Integrity Testing (including high-pressure shutdown and Bradenhead Testing)

All activities were conducted following NMOCD approval, and such documentation is provided in Appendix A. The following is a brief summary of the testing and well maintenance activities conducted in 2012.

## 5.1 Mechanical Integrity Testing

A representative of New Mexico Oil Conservation Division (NMOCD) was on-site to witness a High Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrity Test (MIT) on September 6, 2012. All tests were witnessed by Monica Kuehling of NMOCD-Aztec. The MIT held at 495 psi for 30 minutes, therefore confirming the integrity of the well. A copy of the Test Reports is provided in Appendix A.

### 6.0 WELL EVALUATION

#### 6.1 Well Evaluation

In 2012, the injection well operated normally and within the operation limit of 1,150 psi. The increased down-time of well operations when compared to 2011 operational hours is mostly contributed to the decrease in produced water at the Bloomfield facility.

#### 6.2 Area of Review (AOR)

The Area of Review data was updated in the 2011 Annual Bottomhole Pressure Surveys and Pressure Fall-Off Tests for Waste Disposal Well #1Report (Cobb & Associates, 2011). No new wells were found in the one-mile radius.

Fifty-eight wells were found within a one-mile radius of WDW #1, which injects water into the Mesaverde formation. The wells and status are spotted on an area map, Figure 3, with a well number listed with the well data in Table 2. Of these wells, 15 have been plugged and abandoned. Four wells are classified as dry holes and are believed to be plugged and abandoned. Twenty-four wells produce petroleum from shallow zones. One well is an Entrada injection well. Fourteen wells produce petroleum from the Dakota and Gallup zones, which are deeper than the Mesaverde interval used for injection purposes. No wells are producing from the injection interval within a one-mile radius of WDW #1.

Twenty-four of the 59 wells have penetrated the injection zone. Of these, three have been plugged. Five wells are currently producing from shallow zones and 14 wells produce from deep zones. There are two injection wells including WDW #1 and Ashcroft SWD #1 well.

No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of WDW #1.

### 7.0 CONCLUSIONS AND RECOMMENDATIONS

The following is a summary of well operations and well testing activities performed in 2012.

#### 7.1 Conclusions

**Injection Volume -** The volume injected into the disposal well during 2012 was 8,996,020 gallons. Western Refining suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation.

Sampling and Chemical Analyses - Injection fluids samples were collected on a quarterly basis for chemical analysis. Analytical results did not exhibit characteristics of hazardous waste.

**Maintenance Operations -** No down-hole maintenance activities were conducted in 2012.

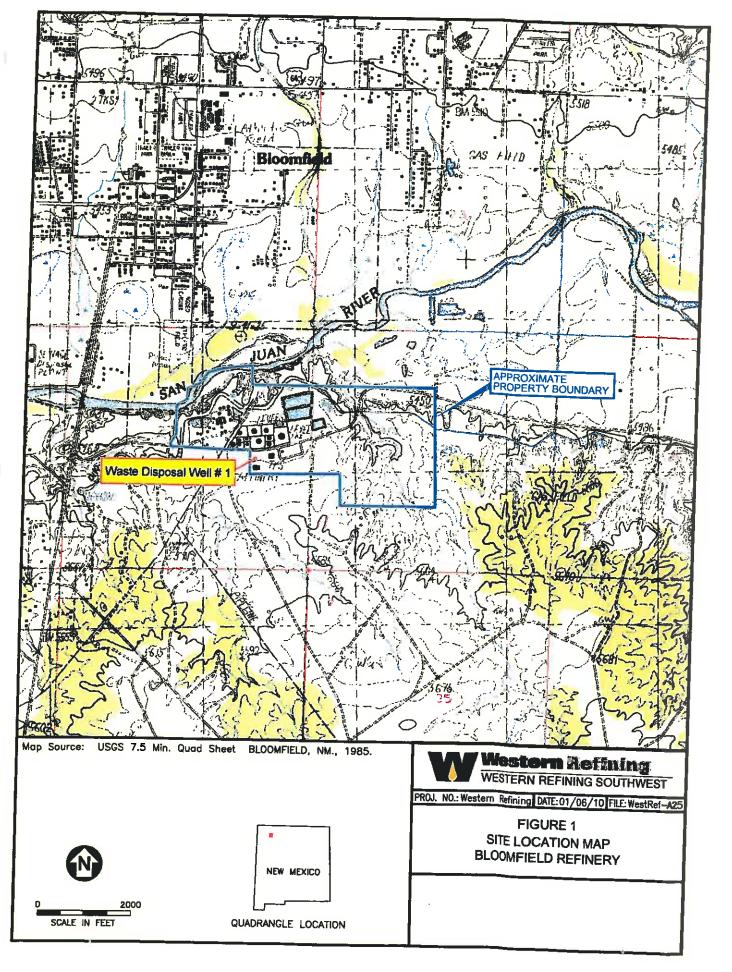
Mechanical Integrity Tests - The 2012 well testing program witnessed by a representative of OCD included a High-Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrity Test. Results of these tests prove that the operational integrity of the well is sound.

Well Evaluation – The injection well operated normally within the operational limit of 1,150 psi throughout 2012.

Area of Review (AOR) - No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of WDW #1.

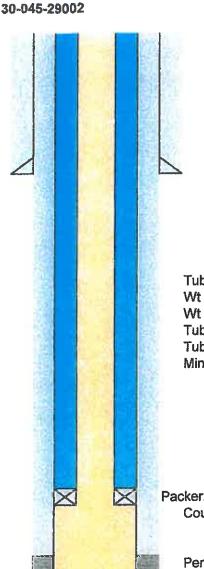
#### 7.2 Recommendations

Western will continue the routine monitoring, maintenance, and testing programs which include quarterly chemical analysis of injection fluids, high-pressure shut-down testing,


mechanical integrity testing, and Bradenhead testing in 2013. Western will continue to utilize the maximum operating injection pressure at the wellhead as permitted by Discharge Permit GW-130.

# 8.0 REFERENCES

Cobb & Associates, 2009a, Evaluation of Disposal Well #1 Bloomfield Refinery, August 26, 2009.


Cobb & Associates, 2011, 2011 Annual Bottomhole Pressure Surveys and Pressure Fall-Off Tests for Waste Disposal Well #1Report December 21, 2011.

Bloomfield Refinery Class I (Non-Hazardous) Disposal Well UIC-CL1-009 (GW-130) Discharge Permit Renewal dated March 23, 2004.



# **WESTERN REFINING DISPOSAL WELL #1** NW, SW SECTION 26, T29N, R11W

NO.: 30-045-29002





#### Figure 2

**DISPOSAL WELL #1 WELL SCHEMATIC** Western Refining inc. Bloomfield, NM

| Date:     | 4/26/2006 | Approved By: | rls | Job No.: | 70F5830 |
|-----------|-----------|--------------|-----|----------|---------|
| Drawn By: | rts       | Checked By:  |     | Scale:   | N/A     |

8-5/8", 48#/ft, Surface Casing @ 830'

TOC: Surface Hole Size: 11.0"

Tubing: 2-7/8", Acid Resistant Fluoroline Cement Lined

Wt of Tubing: 6.5 #/ft

Wt of Tubing Lined: 7.55 #/ft

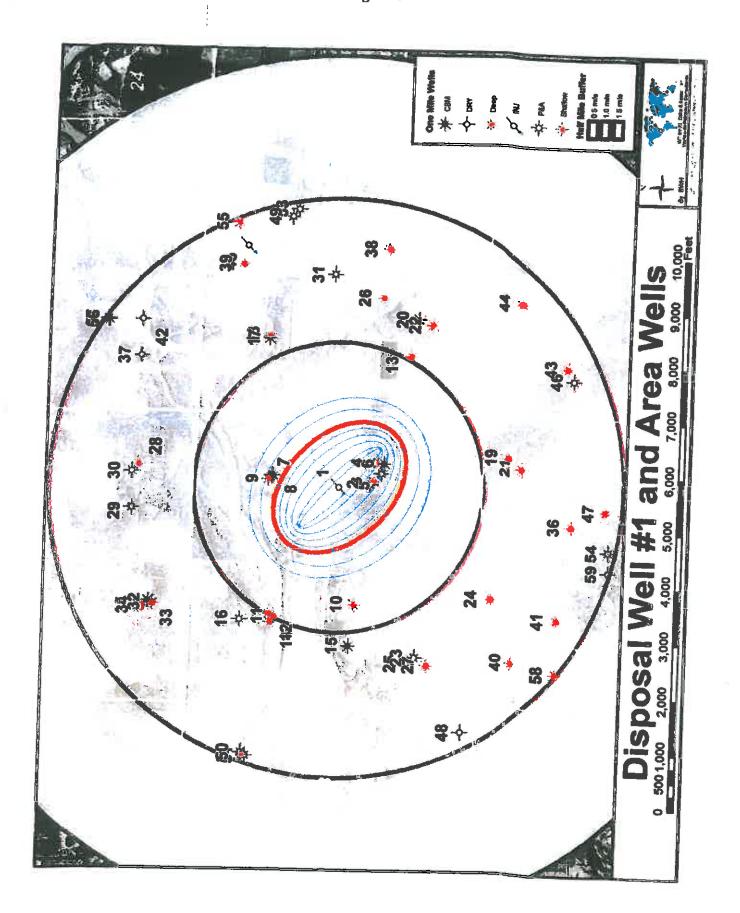
Tubing ID: 2.128" Tubing Drift ID: 2.000"

Minimum ID @ Packer: ~1.87" estimated

Packer: Unknown Packer Type @ 3221' Could be a Guiberson or similar model Uni-6

Perforations: 3276' - 3408' 4JSPF 0.5 EHD Top of the Cliff House Formation: 3276'

Fill was cleaned out of well on 4/20/06 Fill was orginally tagged at 3325'


Perforations: 3435' - 3460' 4JSPF 0.5 EHD Top of the Menefee Formation: 3400'

RBP: 3520'

5-1/2", 15.5#/ft, Production Casing @3600'

TOC: Surface Hole Size: 7-7/8"

Figure 3



# Table 1

# WESTERN REFINING SOUTHWEST, INC. - BLOOMFIELD REFINERY P.O. BOX 159

# **BLOOMFIELD, NEW MEXICO 87413**

# MONTHLY INJECTION WELL REPORT DISCHARGE PLAN GW-130 NE1/4 SE1/4 SECTION 27, T29N, R11W NMPM, SAN JUAN COUNTY, NEW MEXICO

|           |                    |            |           | ١. |           |         |         | 1 |         |           |           |           |           |         |           |           | _       | 1                                     |
|-----------|--------------------|------------|-----------|----|-----------|---------|---------|---|---------|-----------|-----------|-----------|-----------|---------|-----------|-----------|---------|---------------------------------------|
| <br>      | S                  | AVG        | (GPM)     | 1  | 42        | 23      | 19      |   | 18      | 4         | 23        | 4         | 29        | 23      | 23        | 1         | 6       |                                       |
| ON-LINE   | FLOW RATES         | NIM        | (GPM)     |    | 21        | 17      | 2       |   | 14      | 0         | 0         | 0         | 0         | 0       | 0         | 0         | 0       |                                       |
|           |                    | MAX        | (GPM)     |    | 98        | 30      | 25.0    |   | 27      | 28        | 64        | 62        | 65        | 62      | 58        | 21        | 47      |                                       |
|           | URE                | AVG        | (PSIA)    |    | 158       | 174     | 207     |   | 236     | 173       | 158       | 160       | 151       | 170     | 141       | 173       | 159     |                                       |
|           | ANNULAR PRESSURE   | NIM        | (PSIA)    |    | 131       | 158     | 179     |   | 196     | 107       | 107       | 132       | 120       | 111     | 106       | 125       | 115     |                                       |
|           | ANNI               | MAX        | (PSIA)    |    | 200       | 186     | 239     |   | 278     | 245       | 200       | 200       | 176       | 208     | 207       | 185       | 187     |                                       |
|           | URE                | AVG        | (PSIA)    |    | 926       | 906     | 888     |   | 895     | 862       | 893       | 849       | 913       | 899     | 889       | 827       | 817     |                                       |
|           | INJECTION PRESSURE | NIN        | (PSIA)    |    | 901       | 885     | 882     |   | 879     | 844       | 841       | 830       | 837       | 838     | 835       | 817       | 757     |                                       |
|           | INJEC              | MAX        | (PSIA)    |    | 1045      | 922     | 668     |   | 935     | 941       | 1016      | 989       | 1008      | 986     | 991       | 861       | 006     |                                       |
|           | -NAOG              | TIME       | (HRS)     |    | 194       | 0       | 0       |   | 0       | 637       | 246       | 711       | 360       | 439     | 321       | 673       | 438     | gallons                               |
| TOTALIZER | AMOUNT             | INJECTED   | (GALLONS) |    | 1,384,309 | 927,412 | 841,031 |   | 753,498 | 125,509   | 991,574   | 109,779   | 1,390,728 | 996,779 | 1,069,507 | 41,469    | 364,425 | 8,996,020                             |
| AMOUNT    | TO SOLAR           | EVAP PONDS | (GALLONS) |    | 408,692   | 596,588 | 875,969 |   | 937,502 | 1,751,491 | 1,336,426 | 2,448,221 | 21,272    | 516,221 | 466,493   | 1,050,531 | 938,575 | 012 is:                               |
| AMOUNT    | OF WATER           | FROM RIVER | (GALLONS) |    | 855       | 1,806   | 859     |   | 2,011   | 1,819     | 2,350     | ιn        | 2,630     | 2,496   | 609       | 2,291     | 2,199   | The total amount injected in 2012 is: |
|           |                    | PERIOD     | 2012      | :  | JAN       | FEB     | MAR     |   | APR     | MAY       | NOr       | JUL       | AUG       | SEP     | OCT       | NOV       | DEC     | The total amo                         |

Page 1

DATE

CERTIFICATION

| Pen.<br>Ini.   | Zone         | Yes                   | Yes             | Š               | Vac             | 3 :               | <b>2</b> ;        | 2 2                      |                      | 2                           | Yes               | Yes                      | ş                           | Yes                     | }                       | 8 4                         | € ;              | <b></b>                       | Š             | Yes                      | ļ                            | Yes           | Yes                    | Š                       | ٩                       | 9                    | Š             | £                                  | Yes                  |
|----------------|--------------|-----------------------|-----------------|-----------------|-----------------|-------------------|-------------------|--------------------------|----------------------|-----------------------------|-------------------|--------------------------|-----------------------------|-------------------------|-------------------------|-----------------------------|------------------|-------------------------------|---------------|--------------------------|------------------------------|---------------|------------------------|-------------------------|-------------------------|----------------------|---------------|------------------------------------|----------------------|
| Status         |              | 2                     | P&A             | Shallow         | Deen            |                   | <b>S</b> 3        |                          |                      | <b>§</b>                    | Shallow           | Shallow                  | Shallow                     | Deen                    |                         |                             |                  |                               | P&A           | CBM                      |                              | deen          | Deep                   | CBM                     |                         |                      | Shallow       | P&A N                              | Deep Y               |
|                |              |                       |                 | U)              |                 |                   |                   |                          |                      | Ì                           |                   |                          |                             | _                       |                         | , ţ                         | ō `              |                               |               | Ü                        | •                            | 2             | ۵                      | Ö                       | ď                       | õ                    | Š             | ā                                  | ۵                    |
| RESERVOIR      |              | MESAVERDE             | DAKOTA          | CHACRA          | GALLUP          | PICTIBED CLIEES   | FRI ITTI AND COAL | FRUITI AND COAL          |                      | *COALLO                     | A STANCES         | PICTURED CLIFFS          | FRUITLAND SAND              | DAKOTA                  | DAKOTA                  | CHACRA                      | CEVILLI AND COAL | אינים לאיניוניים              |               | FRUITLAND COAL           | DAKOTA                       |               | GALLUP                 | FRUITLAND COAL          | CHACRA                  |                      | CHACKA        | PICTURED CLIFFS                    | GALLUP               |
| OPERATOR       |              | DE ANTERIOR MESAVERDE | DT AMERICA      | XTO ENERGY, INC | XTO ENERGY, INC | Pre-Ongard        |                   | H-27-29N-11W HOLCOMB O&G | Pre-Ongard           | H-27-29N-11W XTO ENERGY INC | ONI (TOURNEY) INC | Burkington               | F-27-29N-11W MANANA GAS INC | Burlington              | Burlington              | F-27-29N-11W MANANA GAS INC | Burlington       |                               | DIBRID DE     | F-26-29N-11W HOLCOMB O&G | F-26-29N-11W XTO ENERGY, INC |               | Bunington              | Burlington              |                         |                      |               |                                    |                      |
| ULSTR          | I-27-29N-11W | -                     |                 | MLL-N67-17-1    | I-27-29N-11W    | 1-27-29N-11W      | I-27-29N-11W      | H-27-29N-11W             |                      | H-27-29N-11W                | V 27 20M 44MA     | N-27-28N-11VV Burkington | F-27-29N-11W                | F-27-29N-11W Burlington | M-26-29N-11W Burlington | F-27-29N-11W                | L-27-29N-11W     | 09-Now-78 C-27-29N-11W Branch |               | F-26-29N-11W             | F-26-29N-11W                 | A 34 20M 441M | Control IVV Bullington | N-26-29N-11W Burlington | A-34-29N-11W Burlington | N-26-29N-11W ENEDGEN |               | A. Juli-73 M-27-28N-11W Pre-Ongard | C-34-29N-11W ENERGEN |
| P&A Date       |              | 19-Jan-94             |                 |                 |                 | 18-Oct-82         |                   |                          | 18-Aug-55            |                             |                   |                          |                             |                         |                         |                             |                  | 09-Nov-78                     | •             |                          |                              |               | •                      | -                       |                         | ~                    | 97, him 75, 4 | n 6/-mm-/7                         | U                    |
| Total<br>Depth | 3514         | 6298                  | 2830            | 3               | 6177            | 1717              | 1714              | 1689                     | 1800                 | 6262                        | 5808              |                          | 1354                        | 6160                    | 6348                    | 2710                        | 6214             | 800                           | :             | 4030                     | 6242                         | 6148          | 1760                   | 8                       | 2857                    | 2869                 | 1747          |                                    | 2970                 |
| Perf<br>Bottom | 3514         | 6298                  | 2839            | }               | 5646            |                   | 1714              | 1689                     |                      | 2810                        | 1770              | 1264                     | #<br>0.00                   | 6160                    | 6348                    | 2710                        | 1861             |                               | !             | 1645                     | 6242                         | 6148          |                        |                         | 2857                    | 2869                 | 1747          |                                    | 5970                 |
| Pa de          | 3276         | 6157                  | 2827            |                 | 5314            |                   | 1543              | 1483                     |                      | 2701                        | 1680              | 1326                     | 950                         | 6024                    | 6176                    | 2578                        | 1388             |                               |               | 1462                     | 9809                         | 6086          |                        |                         | 2/4/                    | 2746                 | 1664          |                                    | 3326                 |
| APINO          | 30-045-29002 | 30-045-07825          | 30-045-23554    |                 | 30-049-30833    | 30-045-07812      | 30-045-34463      | 30-045-34409             | 30-045-07883         | 30-045-24084                | 30-045-25673      | 30-045-27384             |                             | 30-045-24673            | 30-045-12003            | 30-045-27365                | 30-045-07835     | 30-045-07896                  | 440           | 30-045-25329             | 30-045-24083                 | 30-045-25657  | 100 30-045-31118       |                         |                         | 30-045-24572         | 30-045-07903  |                                    |                      |
| 461            | -            | -                     | -               | Ę               | <u> </u>        | <b>-</b>          | -                 | 8                        | 7                    | ħ                           | 8                 | -                        | ٠                           | ħ                       | -                       | -                           | -                | _                             | •             |                          | ħ                            | 9             | 9                      | a                       | •                       | O)                   | -             | T.                                 |                      |
| 10. WELLNAME   | DISPOSAL     | DAVIS GAS COM F       | DAVIS GAS COM G | DAVIS GAS COME  |                 | Davis Pooled Unit | JACQUE            | JACQUE                   | Davis PU/FB Umbarger | DAVIS GAS COM F             | CONGRESS          | LAUREN KELLY             |                             |                         | CALVIN                  | MARIAN S                    | MANGUM           | Black Diamond                 | DAVIS GAS COM |                          |                              | CONGRESS      | CALVIN                 | SUMMIT                  |                         | CONGRESS             | Garland "B"   | SUMMIT                             |                      |
| Miles to       | 0.00         | 0.11                  | 0.12            | 0.15            |                 | 0.16              | 0.18              | 0.23                     | 0.23                 | 0.24                        | 0.41              | 0.49                     | 070                         |                         | 0.51                    | 0.52                        | 0.55             | 0.56                          | 0.57          |                          | 0.58                         | 0.60          | 0.64                   | 0.64                    |                         | 9.0                  | 0.64          | 0.65                               |                      |
| Map            | -            | 8                     | ო               | 4               | - 4             | LO.               | 9                 | 7                        | 40                   | თ                           | 10                | =                        | 5                           | <u>4</u>                | <u>6</u>                | <b>7</b>                    | 5                | 92                            | 17            | : ;                      | 20 .                         | <del>0</del>  | 20                     | 21                      | 5                       | 7                    | 23            | 75                                 |                      |

| Pen.                     | Zone                | ş               | Yes           | Š                       | 2                           | - 4                         | 2 ;                         | 7 05 S                  | ş                             | <b>2</b>                     | 8                           | Yes                          | ş               | 2                          | Ž                       | 2 5          | 90<br>90                    | Yes                 | ş                         | Yes                     | <u>.</u>                | ş                      | Yes          | Yes                     |                              | es<br>L                    | £               | Yes                     | ŝ                       |
|--------------------------|---------------------|-----------------|---------------|-------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------|-------------------------------|------------------------------|-----------------------------|------------------------------|-----------------|----------------------------|-------------------------|--------------|-----------------------------|---------------------|---------------------------|-------------------------|-------------------------|------------------------|--------------|-------------------------|------------------------------|----------------------------|-----------------|-------------------------|-------------------------|
| Status                   |                     | Shallow         | Deep          | Shallow                 | Shallow                     | DRA                         | 5 6                         | \$                      | P&A                           | Shallow                      | CBM                         | Deep                         | Shallow         | Shaffow                    | DRY                     |              |                             |                     |                           | Deep                    |                         |                        |              |                         |                              |                            |                 |                         |                         |
| Ø                        |                     | ळ               |               | 5                       | ş                           | 0                           |                             | L                       | ₽.                            | Ś                            | ប                           | ŏ                            | S               | SP                         | ā                       | 5            | 5 (                         | Š                   | H Sha                     | 2                       |                         | DR.                    | Shallow      | Deep                    |                              |                            | \$              | Deep                    | DRY                     |
| RESERVOIR                |                     | CHACRA          | GALLUP        | PICTURED CLIFFS         | CHACRA                      | FRUITLAND SAND              | DAKOTA                      | Old College             | (A/A)                         | CHACKA                       | FRUITLAND COAL              | DAKOTA                       | FRUITLAND SAND  | PICTURED CLIFFS            | FARMINGTON              | DAKOTA       | AHONAG                      | ANOIA               | FARMINGTON, NORTH Shallow | DAKOTA                  | CADIMICACO              | NO ISMINISTRA          | CHACKA       | GALLUP                  | MORRISON BY LIFE EN          |                            | PICTURED CLIFFS | <b>DAKOTA</b>           |                         |
| OPERATOR                 |                     | V ENERGEN       | Bunington     | / Burlington            | P-22-29N-11W MANANA GAS INC | O-22-29N-11W JOHN C PICKETT | P-22-29N-11W MANANA GAS INC | Pre-Ondard              | N-22-29N-113M MANIANA CAS INC | N-22-29N-14W MANIANA OCO INC | N-22-29N-11W MANANA GAS INC | N-22-29N 41W MANAGAR GAS INC | MANANA GAS INC  | G-34-29N-11W CHAPARRAL O&G | Pre-Ongard              | Burlington   | B-26-29N-11W XTO ENERGY INC | CALL FINENCE I, MAC | D-34-29N-11W MCELVAIN O&G | Burlington              | Pre-Ongard              | Rugination             |              | Burlington              | B-26-29N-11W XTO ENERGY, INC | E-35-29N-11W CHAPABBA! 0.0 |                 | Surlington              | ne-Ongard               |
| ULSTR                    | M-97-99N-44W ENERGE | WALL-MOT IT III | M I -NEZ-0Z-N | M-27-29N-11W Burlington | P-22-29N-11W                | 0-22-29N-11W                | P-22-29N-11W                | M-26-29N-11W Pre-Oncard | N-22_29N_11'W                 | N-22-20N 14'A                | N-22_29N_441M               | N-22-20N 4414                | AA I (-NG7-77-N | G-34-29N-11W               | M-23-29N-11W Pre-Ongard | J-26-29N-11W | B-26-29N-11W                |                     | D-34-29N-11W              | F-34-29N-11W Burlington | O-23-29N-11W Pre-Ondard | E-35-29N-11W Rudinaton |              | C-33-ZBN-11W Burlington | 3-26-29N-11W                 | -35-29N-11W                |                 | G-54-28N-11W Burlington | P-28-29N-11W Pre-Ongard |
| P&A Date                 |                     |                 |               |                         |                             | 02-Mar-00                   | 14~Jun-99                   | 11-Nov-58               |                               |                              |                             |                              |                 |                            |                         |              |                             |                     |                           |                         | Ŭ                       |                        | •            | ,                       | <b></b>                      | 18-Dec-99 E                |                 | •                       | ď.                      |
| Total<br>Depth           | 2790                | 5870            | 187B          |                         | 4C/2                        | 1466                        | 6274                        | 1917                    | 2732                          | 1608                         | 6226                        | 1410                         |                 | 1/36                       | 2335                    | 6430         | 6160                        | 1634                | 070                       | 6347                    | 2015                    | 6328                   | 5043         | 3                       | 7382                         | 1790 1                     | 6340            | !                       | 870                     |
| Perf<br>Bottom           | 2790                | 5870            | 1678          | 3364                    | t<br>N                      | 1466                        | 6274                        |                         | 2732                          | 1608                         | 6226                        |                              |                 | 98/1                       |                         | 6430         | 6160                        | 1064                |                           | 6347                    | .4                      | 2906 6                 | 5943 6       |                         | 7070                         | 1790 1                     | 6340 6          |                         | 60                      |
| Perf                     | 2668                | 5295            | 1648          | 2637                    | 707                         | 1380                        | 6072                        |                         | 2622                          | 1440                         | 6052                        | 1390                         | 1706            |                            |                         | 6172         | 6047                        | 1060                |                           | 6202                    |                         | 2784 2                 | 5369 5       |                         | 6952 7                       | 1776 1                     | 6171 6          |                         |                         |
| 의                        | 24573               | 25612           | 1732          | 6721                    | ,<br>,                      | 7959                        |                             | 9777                    |                               |                              |                             |                              |                 |                            | 2123                    |              |                             |                     |                           | _                       | 124                     |                        |              |                         |                              |                            |                 |                         |                         |
| APINO                    | 30-045-24573        | 30-045-25612    | 30-045-21732  | 30-045-26721            |                             | 30-045-07959                | 30-045-07961                | 30-045-07776            | 30-045-26731                  | 30-045-34312                 | 30-045-07940                | 30-045-13089                 | 30-045-20755    |                            | 30-545-02123            | 30-045-33093 | 30-045-07733                | 30-045-24834        |                           | 30-045-24835            | 30-545-02124            | 30-045-24837           | 30-045-25675 | 90 00                   | 88/05-540-05                 | 30-045-20752               | 30-045-07672    | 30-045-07751            |                         |
| 741                      | ന                   | ന               | ₹             | 7                       | ,                           | Ψ-                          | F                           | _                       | -                             | -                            | -                           | 8                            | 0               |                            | ო                       | #            | _                           | =                   |                           | ñ                       | 4                       | ₩                      | 15           | •                       | -                            | -                          | 10              | 9                       |                         |
| WELLNAME                 | GARLAND             | CALVIN          | GARLAND B     | NANCY HARTMAN           | TOUR DE LA COL              | GRACE PEARCE                | HARTMAN                     | Davis                   | MARY JANE                     | ROYAL FLUSH                  | СООК                        | COOK                         | SHELLY          | 000                        | יואואני                 | CALVIN       | SULLIVAN GAS COM D          | ELLEDGE FEDERAL 34  | CONCERR                   | CONSTESS                | HARE                    | CONGRESS               | CONGRESS     | ASHCROFT SWD            |                              | LEA ANN                    | CONGRESS        | Viles EE                |                         |
| Map Miles to<br>Seq. DW1 | 0.65                | 0.67            | 0.68          | 0.70                    | 2,7                         | 5                           | 0.72                        | 0.73                    | 0.75                          | 0.76                         | 0.79                        | 0.79                         | 0.82            | 28.0                       | 70.0                    | 28.          | 0.85                        | 0.85                | 080                       |                         |                         | 0.90                   | 06.0         | 0.90                    |                              |                            | 0.94            | 0.94                    |                         |
| Map<br>Seq.              | 25                  | 8               | 27            | 78                      | ģ                           |                             | ଛ                           | 34                      | 32                            | 33                           | \$                          | 88                           | 36              | 37                         | 5 ;                     | 38           | 33                          | 9                   | 7                         | : ;                     | <b>y</b> :              | <b>4</b><br>5          | 4            | 45                      | 46                           |                            | 47              | 84                      |                         |

| Pen.                       | Zone                              | 2                            | Š                                 | 2                 | Yes                          | Ž                                      |                                   | 2 :                          | <u>o</u> :               | S<br>Z                  | Yes          | 욷                          | ş              |
|----------------------------|-----------------------------------|------------------------------|-----------------------------------|-------------------|------------------------------|----------------------------------------|-----------------------------------|------------------------------|--------------------------|-------------------------|--------------|----------------------------|----------------|
| Status                     |                                   | P&A                          | P&                                | P&A               | Deep                         | D&A                                    |                                   | 5 I                          | Molieuc                  | S S                     | P&A          | Shallow                    | DRY            |
| RESERVOIR                  |                                   | PICTURED CLIFFS              | PICTURED CLIFFS                   |                   | DAKOTA                       | PICTURED CLIFFS                        | PICTURED CLIEFS                   | CHACRA                       | EBLITTI AND COAL         |                         | PANCIA       | PICTURED CLIFFS            | FRUITLAND SAND |
| OPERATOR                   | Pre-Once                          |                              | rre-Ongard                        | rre-Ongard        | A-28-29N-11W XTO ENERGY, INC | Pre-Ongard                             | Pre-Ongard                        | B-26-29N-11W XTO ENERGY. INC | K-23-29N-11W HOLCOMB O&G | RP AMEDICA              |              | E-34-29N-11W CHAPARRAL O&G | Pre-Ongard     |
| ULSTR                      | 23-Jun-55 G-26-29N-11W Pre-Oncard | 05-May-78 A 28 20M 44M C. C. | 05-lin-78 A-28 20M 44W P-0-0ngard | AA     -NG %-07-U | A-28-29N-11W                 | 1420 31-Aug-53 G-26-29N-11W Pre-Ongard | 30-Oct-53 J-34-29N-11W Pre-Ongard | B-26-29N-11W                 | K-23-29N-11W             | K-23-29N-11W RP AMEDICA |              | E-34-29N-11W               | -34-29N-11W    |
| P&A Date                   | 23-Jun-55                         | 05-May-78                    | 05-lim-78                         |                   |                              | 31-Aug-53                              | 30-Oct-53                         |                              |                          | 10-Mar-97               | •            |                            |                |
| Total<br>Depth             | 006                               | 1600                         | 909                               | 10.00             | C710                         | 1420                                   | 5                                 | 2761                         | 2761                     | 6182                    | 1734         | 2                          | Frttnd         |
| Perf Total<br>Bottom Depth |                                   |                              |                                   | 30,10             | 6710                         |                                        |                                   | 2761                         | 1648                     | 6182                    | 1734         |                            | _              |
| Perf                       |                                   |                              |                                   | 6003              | 300                          |                                        |                                   | 2750                         | 1470                     | 6154                    | 4712         | <u>!</u><br>:              |                |
| APINO                      | 30-045-29107                      | 30-045-07895                 | 30-045-07762                      | 30-045-07894      |                              | 30-045-07870                           | 30-045-07674                      | 30-045-23163                 | 30-045-23550             | 30-045-07985            | 30-045-20609 |                            | 30-345-02151   |
| 46:1                       | ¥                                 | 8                            | m                                 | -                 | •                            | _                                      | -                                 | -                            | -                        | -                       | ₹-           | r                          | N              |
| WELLNAME                   | Sullivan                          | Madsen Selby Pooled Unit     | Masden-Selby                      | MASDEN GAS COM    | Cullivan                     | Compact                                | CONGRESS                          | EARL B SULLIVAN              | STATE GAS COM BS         | PEARCE GAS COM          | CHAPARRAL    | 0.99 CONGRESS              |                |
| Miles to<br>DW1            | 0.95                              | 26.0                         | 0.97                              | 0.97              | 0 07                         |                                        | 0.98                              | 98.0                         | 66.0                     | 0.99 F                  | 0.99         | 0.89                       |                |
|                            | 6                                 | 20                           | 21                                | 22                |                              | <b>?</b>                               | Z.                                | ıΩ                           | χQ                       | <u> </u>                |              | a)                         | •              |

| et v          |        |     |     |   |     |         |              |       |
|---------------|--------|-----|-----|---|-----|---------|--------------|-------|
| Pen Inj. Zone | 윋      | 12  | 4   | 0 | G   | #       | 0            | 35    |
|               | Yes    | ო   | 0   | 8 | N   | က       | 4            | 24    |
| Total         | Wells  | 15  | 4   | ~ | 7   | 11      | <del>4</del> | 69    |
|               | Status | P&A | Dry | Š | CBM | Shallow | Deep         | Total |

Injection Well
2012 Quarterly Analytical Summary

Table 3

|                                                    | Toxicity Characteristics | 1st Quarter | 2nd Quarter      | 3rd Quarter    | 4th Quar       |
|----------------------------------------------------|--------------------------|-------------|------------------|----------------|----------------|
| latile Organic Compounds (ug/L)                    |                          |             |                  |                |                |
| 1.1,1,2-Tetrachloroethane<br>1.1.1-Trichloroethane |                          | 1.0         | 1.0              | :1.0           | < 10           |
|                                                    |                          | < 1.0       | :1.0             | 1.0            | : 10           |
| 1,1,2-2-Tetrachloroethane<br>1,1,2-Trichloroethane |                          | 2.0         | 2.0              | 2.0            | : 20           |
| 1,1-Dichloroethane                                 |                          | :1.0        | < 1.0            | 1.0            | 10             |
| 1,1-Dichloroethene                                 |                          | 1.0         | 1.0              | 1.0            | 10             |
| 1.1-Dichloropropene                                | 1                        | 1.0         | 1.0              | 1.0            | 10             |
| 1.2.3-Trichlorobenzene                             |                          |             | 1.0<br>1.0       | 1.0            | :10            |
| 1.2,3-Trichloropropane                             |                          | 2.0         | 2.0              | 1.0            | :10            |
| 1.2.4-Trichlorobenzene                             |                          | 1.0         | :1.0             | :2.0           | :20            |
| 1.2,4-Trimethylbenzene                             |                          | ₹ 1.0       | -: 1.0<br>-: 1.0 | < 1.0<br>= 1.0 | = 10           |
| 1,2-Dibromo-3-chloropropane                        |                          | 2.0         | 2.0              | :2,0           | :10            |
| 1,2-Dibromoethane (EDB)                            |                          | :1.0        | 1.0              | 1.0            | :20            |
| 1,2-Dichlorobenzene                                |                          | < 1.0       | < 1.0            | :1.0           | :10            |
| 1,2-Dichloroethane (EDC)                           | 500                      | 1.0         | 1.0              | 1.0            | 10             |
| 1.2-Dichloropropane                                | 500                      | 1.0         | 1.0              | 1.0            | =: 10<br>=: 10 |
| 1,3,5-Trimethylbenzene                             |                          | 1.0         | :1.0             | 1.0            | :10            |
| 1-3-Dichlorobenzene                                |                          | 1.0         | 1.0              | :1.0           | :10            |
| 1,3-Dichloropropane                                |                          | 1.0         | :1.0             | 1.0            | : 10           |
| 1.4-Dichlorobenzene                                | 7500                     | 1.0         | :1.0             | :1.0           | : 10           |
| 1-Methylnaphthalene                                | 1300                     | 4.0         | :4.0             | 4.0            | =: 40          |
| 2.2-Dichloropropane                                |                          | 2.0         | < 2.0            | 2.0            | : 20           |
| 2-Butanone                                         |                          | 24          | :10              | 21             | 100            |
| 2-Chlorotoluene                                    |                          | 1.0         | 1.0              | :1.0           | < 10           |
| 2-Hexanone                                         |                          | < 10        | 10               | 10             | 100            |
| 2-Methylnaphthalene                                |                          | 4.0         | 4.0              | :4.0           | : 40           |
| 4-Chlorotoluene                                    |                          | :1.0        | 11.0             | ₹1,0           | -10            |
| 4-Isopropyltoluene                                 |                          | < 1.0       | < 1.0            | 1.0            | 10             |
| 4-Methyl-2-pentanone                               |                          | 10          | < 10             | :10            | 100            |
| Acetone                                            |                          | 520         | 78               | 590            | 130            |
| Benzene                                            | 500                      | 1.0         | < 1.0            | 1.0            | 1:10           |
| Bromobenzene                                       | 1                        | :1.0        | ≪1.0             | :1.0           | < 10           |
| Bromodichloromethane                               |                          | < 1.0       | : 1.0            | :1,0           | :10            |
| Bromoform                                          |                          | 1.0         | = 1.0            | :1.0           | :10            |
| Bromomethane                                       |                          | 3.0         | = 3.0            | 3,0            | < 30           |
| Carbon disulfide                                   |                          | 32          | =: 10            | =:10           | - 100          |
| Carbon Tetrachloride                               | 500                      | 1:1.0       | √: 1.0           | 1.0            | 10             |
| Chlorobenzene                                      | 100000                   | < 1.0       | : 1.0            | :1.0           | :10            |
| Chloroethane                                       |                          | -:2.0       | ≅ 2.0            | : 2.0          | : 20           |
| Chloroform                                         | 6000                     | 1.0         | 1.0              | ≤1.0           | : 10           |
| Chloromethane                                      |                          | 413.0       | 3.0              | =:3.0          | :: 30          |
| cis-1.2-DCE                                        |                          | :1.0        | : 1.0            | 1.0            | < 10           |
| cis-1.3-Dichloropropene                            |                          | ≤1.0        | ≪ 1.0            | 1.0            | :: 10          |
| Dibromochloromethane                               |                          | <: 1.0      | < 1.0            | ≪ 1.0          | :10            |
| Dibromomethane                                     |                          | : 1.0       | €1,0             | 1.0            | : 10           |
| Dichlorodifluoromethane                            |                          | : 1.0       | = 1.0            | : 1.0          | = 10           |
| Ethylbenzene                                       |                          | 1.0         | < 1.0            | 1.0            | =: 10          |
| Hexachlorobutadiene                                | 500                      | < 1.0       | -: 1.0           | -: 1.0         | ~: 10          |
| Isopropylbenzene                                   |                          | 1.0         | ≒ 1.0            | €1.0           | : 10           |
| Methyl tert-butyl ether (MTBE)                     |                          | = 1.0       | €1.0             | < 1.0          | - 10           |
| Methylene Chloride                                 |                          | ∹3.0        | 3.0              | :3.0           | ∷30            |
| Naphthalene                                        | 1                        | < 2.0       | 1: 2.0           | : 2.0          | < 20           |
| n-Butylbenzene                                     |                          | < 1.0       | 1.0              | <1.0           | < 30           |
| n-Propylbenzene                                    |                          | 1.0         | :1.0             | :1.0           | <b>10</b>      |
| sec-Butylbenzene                                   |                          | : 1.0       | :1.0             | : 1.0          | =: 10          |
| Styrene                                            |                          | : 1.0       | < 1.0            | : 1.0          | ≤ 10           |
| tert-Butylbenzene                                  |                          | 1.0         | ≤ 1.0            | 1.0            | < 10           |
| Tetrachloroethene (PCE)                            |                          | :1.0        | -: 1.0           | 1.0            | 1:10           |
| Toluene                                            |                          | 12          | < 1.0            | 2.6            | < 10           |
| trans-1,2-DCE                                      |                          | 1.0         | 1.0              | 4 1.0          | -: 10          |
| rans-1.3-Dichloropropene                           |                          | ≤ 1.0       | 1.0              | : 1.0          | 1 10           |
| Trichloroethene (TCE)                              |                          | 1.0         | 1.0              | 1.0            | 10             |
| Frichlorofluoromethane<br>Vinyl chloride           | 200                      | = 1.0       | 1.0              | 1.0            | : 10           |
|                                                    |                          | = 1.0       | : 1.0            | :1,0           | 10             |

# Injection Well 2012 Quarterly Analytical Summary

Table 3

| mi Voletile Oranda Communication                            | Toxicity<br>Characteristics | 1st Quarter | 2nd Quarter  | 3rd Quarter | 4th Qua |
|-------------------------------------------------------------|-----------------------------|-------------|--------------|-------------|---------|
| mi-Volatile Organic Compounds (ug/L) 1.2.4-Trichlorobenzene |                             | 1 (10       |              |             |         |
| 1,2-Dichlorobenzene                                         |                             | 10          | : 50<br>: 50 | - 50        | < 50    |
| 1.3-Dichlorobenzene                                         |                             |             |              | : 50        | : 50    |
| 1,4-Dichlorobenzene                                         | 7500                        | :10         | ≅ 50<br>- 50 | : 50        | - 50    |
| 1-Methylnaphthalene                                         | 7500                        | < 10        | : 50         | 150         | : 50    |
| 2,4.5-Trichlorophenol                                       |                             | < 10        | : 50         | :50         | : 50    |
| 2,4.6-Trichlorophenol                                       | 2000                        | - 10        | : 50         | 50          | =: 50   |
| 2.4-Dichlorophenol                                          | 2000                        | <10         | <:50         | :50         | < 50    |
|                                                             |                             | 20          | < 100        | = 100       | = 100   |
| 2.4-Dimethylphenol                                          |                             | = 10        | :50          | : 50        | < 50    |
| 2,4-Dinitrophenol                                           |                             | €20         | ≪ 100        | :100        | : 100   |
| 2.4-Dinitrotoluene                                          | 130                         | = 10        | < 50         | ≤ 50        | 1:50    |
| 2.6-Dinitrotoluene                                          |                             | :10         | < 50         | < 50        | : 50    |
| 2-Chloronaphthalene                                         |                             | :10         | < 50         | :50         | : 50    |
| 2-Chlorophenol                                              |                             | <10         | -: 50        | :50         | ∹ 50    |
| 2-Methylnaphthalene                                         |                             | 10          | ₹ 50         | 50          | . 50    |
| 2-Methylphenol                                              |                             | 26          | < 50         | :50         | <:50    |
| 2-Nitroaniline                                              |                             | 10          | ₹50          | :50         | 1:50    |
| 2-Nitrophenol                                               |                             | ₹10         | :: 50        | < 50        | ∹ 50    |
| 3,3'-Dichlorobenzidine                                      |                             | 10          | -: 50        | ≤ 50        | ≪:50    |
| 3+4-Methylphenol                                            |                             | 31          | 81           | 140         | € 50    |
| 3-Nitroaniline                                              |                             | =: 10       | -: 50        | :50         | -: 50   |
| 4.6-Dinitro-2-methylphenol                                  |                             | ⇒20         | < 100        | :100        | 1:100   |
| 4-Bromophenyl phenyl ether                                  |                             | ≐10         | ⊴: 50        | 50          | <: 50   |
| 4-Chloro-3-methylphenol                                     |                             | 10          | : 50         | : 50        | : 50    |
| 4-Chloroaniline                                             |                             | ∹10         | : 50         | ₹50         | : 50    |
| 4-Chlorophenyl phenyl ether                                 |                             | ≪10         | : 50         | ₹50         | : 50    |
| 4-Nitroaniline                                              |                             | < 20        | < 100        | 100         | :50     |
| 4-Nitrophenol                                               |                             | :10         | ₹50          | :50         | -: 50   |
| Acenaphthene                                                |                             | < 10        | : 50         | 150         | : 50    |
| Acenaphthylene                                              |                             | < 10        | : 50         | :50         | :50     |
| Aniline                                                     |                             | :10         | : 50         | :50         | - 50    |
| Anthracene                                                  |                             | :10         | <:50         | ₹ 50        | 30      |
| Azobenzene                                                  |                             | 10          | :50          | < 50        | : 50    |
| Benz(a)anthracene                                           |                             | 10          | - 50         | :50         | - 50    |
| Benzo(a)pyrene                                              |                             | <10         | :50          | < 50        |         |
| Benzo(b)fluoranthene                                        |                             | :10         | : 50         | :50         | -: 50   |
| Benzo(g.h,i)perylene                                        |                             | 10          | : 50         | ± 50        | 50      |
| Benzo(k)fluoranthene                                        |                             | 10          | :50          |             | : 50    |
| Benzoic acid                                                |                             | :20         | :100         | < 50        | - 50    |
| Benzyl alcohol                                              |                             | :10         | :50          | :100        | 100     |
| Bis(2-chloroethoxy)methane                                  |                             |             |              | :50         | : 50    |
|                                                             |                             | 10          | ~: 50        | : 50        | : 50    |
| Bis(2-chloroethyl)ether                                     |                             | < 10        | 50           | 50          | : 50    |
| Bis(2-chloroisopropyl)ether                                 |                             | :10         | : 50         | : 50        | 50      |
| Bis(2-ethylhexyl)phthalate                                  |                             | < 10        | < 50         | :50         | : 50    |
| Butyl benzyl phthalate                                      |                             | ≤ 10        | 50           | 1:50        | : 50    |
| Carbazole                                                   |                             | =:10        | ₹50          | ₹50         | : 50    |
| Chrysene                                                    |                             | 10          | - 50         | - 50        | 150     |
| Dibenz(a.h)anthracene                                       |                             | 10          | : 50         | -: 50       | : 50    |
| Dibenzofuran                                                |                             | :10         | : 50         | :50         | : 50    |
| Diethyl phthalate                                           |                             | 10          | : 50         | < 50        | : 50    |
| Dimethyl phthalate                                          |                             | :10         | : 50         | 50          | 50      |
| Di-n-butyl phthalate                                        |                             | =∶10        | <b>∗:</b> 50 | =: 50       | : 50    |
| Di-n-octyl phthalate                                        |                             | =10         | : 50         | : 50        | 100     |
| Fluoranthene                                                |                             | =: 10       | : 50         | ₹50         | < 50    |
| Fluorene                                                    |                             | = 10        | < 50         | - 50        | : 50    |
| Hexachlorobenzene                                           | 130                         | :10         | : 50         | < 50        | :50     |
| Hexachlorobutadiene                                         | 500                         | ≪ 10        | - 50         | - 50        | < 50    |
| Hexachlorocyclopentadiene                                   |                             | :10         | < 50         | : 50        | -: 50   |
| Hexachloroethane                                            | 3000                        | :10         | - 50         | :50         | : 50    |
| indeno(1,2.3-cd)pyrene                                      |                             | < 10        | <: 50        | - 50        | : 50    |
| sophorone                                                   |                             | < 10        | : 50         | :50         | :50     |
| Vaphthalene                                                 |                             | e: 10       | < 50         | : 50        | : 50    |
| Vitrobenzene                                                | 2000                        | :10         | < 50         | : 50        | .: 50   |
| N-Nitrosodimethylamine                                      | 2000                        | <10         | :50          | < 50        |         |
| N-Nitrosodi-n-propylamine                                   |                             | = 10        | :50          | :50         | 50      |
| N-Nitrosodi-n-propylannie<br>N-Nitrosodiphenylamine         |                             | 10          | 50           |             | : 50    |
| Pentachlorophenol                                           | 100000                      |             |              | ₹50<br>100  | 50      |
| Phenauthrene                                                | 100000                      | 120         | 100          | 100         | :100    |
| Phenol                                                      |                             | :10         | :50          | :50         | : 50    |
|                                                             |                             | I4          | : 50         | 50          | : 50    |
| Pyrene                                                      |                             | 10          | =: 50        | : 50        | : 50    |
| Pyridine                                                    | 5000                        | ∹10         | : 50         | : 50        | :50     |

Injection Well
2012 Quarterly Analytical Summary

Table 3

|                                         | Toxicity<br>Characteristics | 1st Quarter | 2nd Quarter | 3rd Quarter | 4th Quarte |
|-----------------------------------------|-----------------------------|-------------|-------------|-------------|------------|
| General Chemistry (mg/I unless otherwi  | se stated)                  |             |             |             |            |
| Specific Conductance (umhos/cm)         |                             | 2,700       | 2,900       | 4200        | 4600       |
| Chloride                                |                             | 710         | 850         | 1100        | 1200       |
| Sulfate                                 |                             | 68          | 77          | 15          | 37         |
| Total Dissolved Solids                  |                             | 1,770       | 2.120       | 2740        | 2910       |
| pH (pH Units)                           |                             | 7.32        | 6.91        | 7.95        | 7.35       |
| Bicarbonate (As CaCO3)                  |                             | 320         | 330         | 510         | 510        |
| Carbonate (As CaCO3)                    |                             | 2.0         | < 2.0       | :2.0        | < 2.0      |
| Calcium                                 |                             | 120         | 110         | 94          | 150        |
| Magnesium                               |                             | 26          | 35          | 44          | 44         |
| Potassium                               |                             | 10          | 15          | 17          | 14         |
| Sodium                                  |                             | 450         | 800         | 760         | 670        |
| Total Alkalinity (as CaCO3)             |                             | 320         | 330         | 510         | 510        |
| Total Metals (mg/L)                     |                             |             |             |             |            |
| Arsenic                                 | 5.0                         | 0.020       | - 0.020     | € 0.020     | -: 0.020   |
| Barium                                  | 0.001                       | 0.43        | 0.46        | 0.39        | 0.41       |
| Cadmium                                 | 1.0                         | <: 0.0020   | - 0.0020    | -: 0.0020   | < 0.0020   |
| Chromium                                | 5.0                         | < 0.0060    | :0.0060     | : 0.0060    | =: 0.0060  |
| Lead                                    | 5                           | : 0.0050    | < 0.0050    | : 0.0050    | < 0.0050   |
| Selenium                                | 1                           | : 0.050     | : 0.050     | ≤ 0.050     | 0.050      |
| Silver                                  | 5                           | 0.0050      | < 0.0050    | : 0.0050    | : 0.0050   |
| Mercury                                 | 0.2                         | < 0.00020   | 0.00038     | : 0.00020   | 0.00020    |
| ignitability Corrosivity and Reactivity |                             |             |             |             |            |
| Reactive Cyanide (mg. kg)               |                             | 1.0         | < 1.0       | 0.1         | 10.0       |
| Reactive Sulfide (mg/kg)                |                             | 4.8         | 4.07        | 10          | 6.43       |
| Ignitability (°F)                       | : 140° F                    | : 200       | : 200       | : 200       | 200        |
| Corrosivity (ph Units)                  | 2 or 12.5                   | 6.58        | 6.58        | 7.55        | 6,43       |

### Robinson, Kelly

From:

Chavez, Carl J, EMNRD [CarlJ.Chavez@state.nm.us]

Sent:

Thursday, August 30, 2012 11:06 AM

To:

Robinson, Kelly

Cc:

Sanchez, Daniel J., EMNRD; VonGonten, Glenn, EMNRD; Kuehling, Monica, EMNRD

Subject:

RE: UIC-CL-009 Annual Testing for 2012 - Request for Approval

Attachments:

MIT Approval 8-30-2012.pdf

### Kelly:

The New Mexico Oil Conservation Division (OCD) hereby approves the C-103 (See attachment) for specified well testing proposed by Western Refining Southwest, Inc. - Bloomfield Refinery (Western). Western must coordinate with Ms. Kuehling at the OCD Aztec DO to witness the testing.

Please contact me if you have questions. Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Drive, Santa Fe, New Mexico 87505

Office: (505) 476-3490

E-mail: CarlJ.Chavez@State.NM.US

Website: http://www.emnrd.state.nm.us/ocd/

"Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of the

Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at

http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental

From: Robinson, Kelly [mailto:Kelly.Robinson@wnr.com]

Sent: Thursday, August 30, 2012 10:41 AM

To: Chavez, Carl J, EMNRD

Subject: RE: UIC-CL-009 Annual Testing for 2012 - Request for Approval

### Carl,

I apologize. I was not aware that the FOT was currently being evaluated by OCD. I would like to withdraw my C-103 for the Annual Fall-Off Test at this time. Western would rather postpone the testing until such time that OCD had determined that a Fall-Off Test for the injection well at the Bloomfield Refinery is needed. I appreciate the courtesy reminder.

After receipt of your approval on the C-103 for the MIT, Bradenhead, and High-Pressure Fall-Off Test, we will make sure those tests are scheduled and completed prior to the September 30, 2012 deadline.

Thanks gain for the reminder.

Sincerely,

Kelly R. Robinson Environmental Supervisor

Western Refining Southwest, Inc.

111 County Road 4990 Bloomfield, NM87413

(o) 505-632-4166

(c) 505-801-5616

(f) 505-632-4024

(e) kelly.robinson@wnr.com

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]

Sent: Thursday, August 30, 2012 10:31 AM

To: Robinson, Kelly

Subject: RE: UIC-CL-009 Annual Testing for 2012 - Request for Approval

Kelly:

Based on the attached OCD E-mail dated August 2, 2012, I believe that Western may not have to conduct a Fall-Off Test this year. Please let me know if you wish to proceed with conducting a FOT and I will address the C-103 for it today.

Western does need to proceed to complete the annual Bradenhead and MIT by Midnight 9/30 under the OCD Discharge Permit and for OCD reporting to the EPA. I will respond to the C-103 today hopefully after you let me know if Western still wishes to proceed with the FOT this year.

Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Drive, Santa Fe, New Mexico 87505

Office: (505) 476-3490

E-mail: CarlJ.Chavez@State.NM.US

Website: http://www.emnrd.state.nm.us/ocd/

"Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of the

Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at

http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental

From: Robinson, Kelly [mailto:Kelly.Robinson@wnr.com]

Sent: Wednesday, August 29, 2012 1:30 PM

To: Chavez, Carl J, EMNRD

**Cc:** Powell, Brandon, EMNRD; Kuehling, Monica, EMNRD; Schmaltz, Randy **Subject:** UIC-CL-009 Annual Testing for 2012 - Request for Approval

Good Afternoon Sir,

On behalf of Western Refining Southwest, Inc. – Bloomfield Refinery (Western), I am requesting OCD's approval to conduct the following annual testing on the Bloomfield Refinery's injection well (UIC-CL-009):

- MIT, Bradenhead, and High-Pressure Shutdown Tests; and
- Annual Fall-Off Test.

Attached are the completed C-103 notifications for these events. The proposed testing protocol for the Annual Fall-Off Test mirrors the procedures followed in previous years. A more detailed summary of the proposed testing procedures for the Annual Fall-Off Test is included with the C-103 notification attached.

Pending OCD approval and availability to witness the testing, Western would like to conduct the MIT, Bradenhead, and High-Pressure Shutdown Tests on Thursday, September 6<sup>th</sup>. Western is currently in communication with OCD-Aztec to confirm a date for testing that would work with their availability. In addition pending OCD approval, Western would like to initiate the Annual Fall-Off Test starting Monday, September 10<sup>th</sup>, 2012.

If you have any questions or need any additional information, please do not hesitate to contact me at your convenience.

Thank you for your time!

Sincerely,

Kelly R. Robinson Environmental Supervisor

### Western Refining Southwest, Inc.

111 County Road 4990 Bloomfield, NM87413

- (o) 505-632-4166
- (c) 505-801-5616
- (f) 505-632-4024
- (e) kelly.robinson@wnr.com

| Office Submit a Copies to Appropriate District                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | State of New M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | exico                      | Form C-103                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------|
| District 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Energy, Minerals and Nat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ural Resources             | May 27, 2004                                                                                 |
| 1625 N. French Dr., Hobbs, NM 88240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                          | VELL API NO.                                                                                 |
| District il                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OIL CONSERVATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UDIVISION 3                | 0-045-29002-00                                                                               |
| 1301 W. Grand Ave., Artesia, NM 88210<br>District III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | . Indicate Type of Lease                                                                     |
| 1000 Rio Brazos Rd., Aztec, NM 87410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1220 South St. Fra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | uicis Di.                  | STATE FEE X                                                                                  |
| District IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Santa Fe, NM 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7505                       | State Oil & Gas Lease No.                                                                    |
| 1220 S. St. Francis Dr., Santa Fe, NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | /A                                                                                           |
| 87505 CHANDRA VO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The state of the s |                            |                                                                                              |
| AND NOT HELE THE EXPLICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TICES AND REPORTS ON WELLS<br>OSALS TO DRILL OR TO DEEPEN OR PL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Lease Name or Unit Agreement Name                                                            |
| DIFFERENT RESERVOIR TISE "APPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JEATION FOR PERMIT" (FORM C-101) F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THE MACK TELA 1 IS         | isposel                                                                                      |
| PROPOSALS.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COLOR CONTENDED TOWNS C. 1011 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                              |
| 1. Type of Well: Oil Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gas Well Other X (Disposal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                          | Well Number #001                                                                             |
| 2. Name of Operator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The second secon |                            | OGRID Number                                                                                 |
| Western Refining Southwest, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - Bloomfield Refinery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | 037218                                                                                       |
| 3. Address of Operator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                          | D. Pool name or Wildcat                                                                      |
| #50 Road 4990 Bloomfield, NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 87413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | lanco/Mesa Verde                                                                             |
| 4. Well Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B                          | anco Meza Acide                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                              |
| Unit Letter 1 : 2442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | feet from the South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | line and1250_feet fr       | om the East line                                                                             |
| Section 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Township 29 S Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11 E NMPM                  | County San Juan                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11. Elevation (Show whether DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RKB RT GR etc.)            | County Sail Juan                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , mile, mi, wit, big.,     |                                                                                              |
| Pit or Relow-grade Tonk Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | or Closure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vaterDistance from nearest fresh w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                                                              |
| Pit Liner Thickness: mil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Below-Grade Tank: Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hbls; Constr               | uction Material                                                                              |
| 12. Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Appropriate Box to Indicate N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ature of Notice De         | som an Other Date                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | appropriate Dox to tituleate iv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | atme to Nonce, Ke          | port of Other Data                                                                           |
| NOTICE OF IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TENTION TO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SURSE                      | QUENT REPORT OF:                                                                             |
| PERFORM REMEDIAL WORK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REMEDIAL WORK              |                                                                                              |
| TEMPORARILY ABANDON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHANGE PLANS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COMMENCE DRILLIN           | ALTERING CASING                                                                              |
| PULL OR ALTER CASING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CASING/CEMENT JO           |                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOLTHIEL COMPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CASING/CEMENT JO           | р П                                                                                          |
| OTHER: MIT Bradenheed and I-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ligh Pressure Shut-Down Tests 🗵                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OTHER:                     |                                                                                              |
| OTTLER. 1817, DISCOLLIGED, SHUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Man Lieszmie Sunt-Down Tests Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OTHER:                     |                                                                                              |
| 13 Describe proposed or com-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lated engentians (Classic etc., all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | 75.5                                                                                         |
| of station and managed or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | retes operations. (Clearly state 31) p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sertiment details, and giv | e pertinent dates, including estimated date                                                  |
| or recompletion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ark). See RULE 1103. For Multipl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e Completions: Attach      | wellbore diagram of proposed completion                                                      |
| or recompletion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                              |
| Bloomfield Refinery requests permi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ssion to perform the annual High Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | essure Shutdown Test, I    | Bradenhead Test, and Mechanical Integrity                                                    |
| lest on the Class I injection well ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | erenced above on September 6th, 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 112, pending final sched   | tiling with OCD Agree commentations                                                          |
| schedule. Western will contact the (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DCD Aztec office to ensure testing is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s performed at a time th   | at a representative from their office is able                                                |
| to be on-site to witness the testing as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tivities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | \$                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                              |
| I harshy austify that the information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | abassa is torse and associate to the fire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                                                                                              |
| arede took has beenfull be controlled or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | above is true and complete to the be-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | st of my knowledge and     | belief. I further certify that any pit or below-<br>(attached) alternative OCD-upproved plan |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                              |
| SIGNATURE POLITICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UN TITLE E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nationmental Comments      | PATTI AMARA                                                                                  |
| Sidning Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MAATTE E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nvaconmentar Superviso     | B DATE 8/29/2012                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                              |
| Type or print name Kelly Robinson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Complete address of the control of t | himan - Grand              | 28 · 6 · 5 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6                                                   |
| For State Use Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F-mail address: Kelly Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | binson@wnr.com             | Telephone No. (505) 632-4166                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F-mail address: Kelly Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | binson@wnr.com             | Telephone No. (505) 632-4166                                                                 |
| A STATE OF THE STA | . Табо. В. н. и уффиционую пристем                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                                                              |
| APPROVED BY: Last 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . Табо. В. н. и уффиционую пристем                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | Telephone No. (505) 632-4166  LEngines DATE 3/30/2012                                        |

### Chavez, Carl J, EMNRD

From:

Chavez, Carl J, EMNRD

Sent:

Thursday, August 02, 2012 8:06 AM

To:

pthompson@merrion.bz; Holder, Mike (Mike.Holder@hollyfrontier.com); Combs, Robert

(Robert.Combs@hollyfrontier.com); Schmaltz, Randy (Randy.Schmaltz@wnr.com);

Chervl.Johnson@wnr.com

Cc:

Sanchez, Daniel J., EMNRD; VonGonten, Glenn, EMNRD

Subject:

UIC Class I (NH) Injection Well Operators (Annual MIT Reminder) Due on/or before

September 30, 2012

### Dear Sir or Madam:

It is that time of year again to remind operators that their annual MIT for this season must be completed by 9/30/2012. The list of operator names with associated UIC Class I (non-hazardous) Injection Wells are provided above.

Operators are aware of the MIT (30 min @ 300 psig or more MIT with Bradenhead) requirement(s) that are typically run with the Fall-Off Test (FOT). The OCD is currently evaluating the FOT frequency requirement at OCD UIC Class I Facilities in New Mexico and until further notice either specified in a discharge permit renewal and/or via communication, you will know when a FOT is required for your well soon.

Please contact me at (505) 476-3490 on or before June 30, 2012 to schedule your MIT date and time. I will coordinate with the District Staff to finalize the MIT date and time so that an OCD District Office inspector may be present to witness the MIT. Thank you for your cooperation in this matter.

File: UICI-5, 8, 8-0, 8-1 & 9

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Drive, Santa Fe, New Mexico 87505

Office: (505) 476-3490

E-mail: CarlJ.Chavez@State.NM.US

Website: http://www.emnrd.state.nm.us/ocd/

"Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations, & Move Forward With the Rest of the

Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at

http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental

### Robinson, Kelly

From:

Kuehling, Monica, EMNRD [monica.kuehling@state.nm.us]

Sent:

Friday, August 31, 2012 7:05 AM

To:

Robinson, Kelly

**Subject:** 

RE: Bradenhead and MIT Testing Schedule - Bloomfield Refinery

Good morning Kelly,

Yes it will.

See you on Thursday at 9 a.m.

### Monica Kuehling

Advanced Compliance Officer New Mexico Oil Conservation Division Aztec New Mexico monica.kuehling@state.nm.us

From: Robinson, Kelly [mailto:Kelly.Robinson@wnr.com]

Sent: Thursday, August 30, 2012 4:24 PM

To: Kuehling, Monica, EMNRD

Subject: Re: Bradenhead and MIT Testing Schedule - Bloomfield Refinery

Good Afternoon Monica,

I just talked with the contractor. I have them scheduled to arrive on-site at 9am on Thursday, September 6th. Will that work for you?

-Kelly

From: Kuehling, Monica, EMNRD [mailto:monica.kuehling@state.nm.us]

Sent: Thursday, August 30, 2012 02:54 PM

To: Robinson, Kelly

Subject: RE: Bradenhead and MIT Testing Schedule - Bloomfield Refinery

Hello Kelly,

Right now I am clear on the 6<sup>th</sup> of September, which is next Thursday. What time would you like to schedule it.

Thank you

### Monica Kuehling

Advanced Compliance Officer New Mexico Oil Conservation Division Aztec New Mexico monica.kuehling@state.nm.us

From: Robinson, Kelly [mailto:Kelly.Robinson@wnr.com]

Sent: Wednesday, August 29, 2012 1:03 PM

**To:** Kuehling, Monica, EMNRD **Cc:** Powell, Brandon, EMNRD

Subject: Bradenhead and MIT Testing Schedule - Bloomfield Refinery

### Good Morning Monica,

As you may know, the contractor (Woods Group Pressure Control) with whom I have contracted with in past years to conduct the MIT test on our well at the Bloomfield Refinery has just recently gone out of business. Just recently I have been able to contract with WSI Enterprise, and they informed me that they would be available as early as next week to help conduct the MIT testing at our facility. I wanted to check with you to see if you had availability to next week to witness the MIT, Bradenhead, and High-Pressure Shut-Down test. Depending on your availability, my initial hopes was to schedule this testing to be done Thursday, September 6<sup>th</sup>, 2012. If this day does not work with your schedule, please let me know of some alternative times that would best work for you.

Also, pending approval from Mr. Chavez (OCD – Santa Fe), I have scheduled Tefteller to be on-site on Monday, September 10<sup>th</sup> to install the memory gauges in the injection well in order to conduct the Annual Fall-Off Test. At this time, the tentative schedule is to install the gauges Monday morning (9/10/2012). Assuming the gauges are installed without a problem and the well operates steadily, we would plan on shutting-in the well Wednesday afternoon (9/12/2012). We will likely keep the well shut-in for at least 10 days.

I will confirm the schedule for the MIT testing with the contractor after I confirm with you your availability. As always, I appreciate your time. If there are any questions, please do not hesitate to contact me at your convenience.

Sincerely,

Kelly R. Robinson Environmental Supervisor

### Western Refining Southwest, Inc.

111 County Road 4990 Bloomfield, NM87413

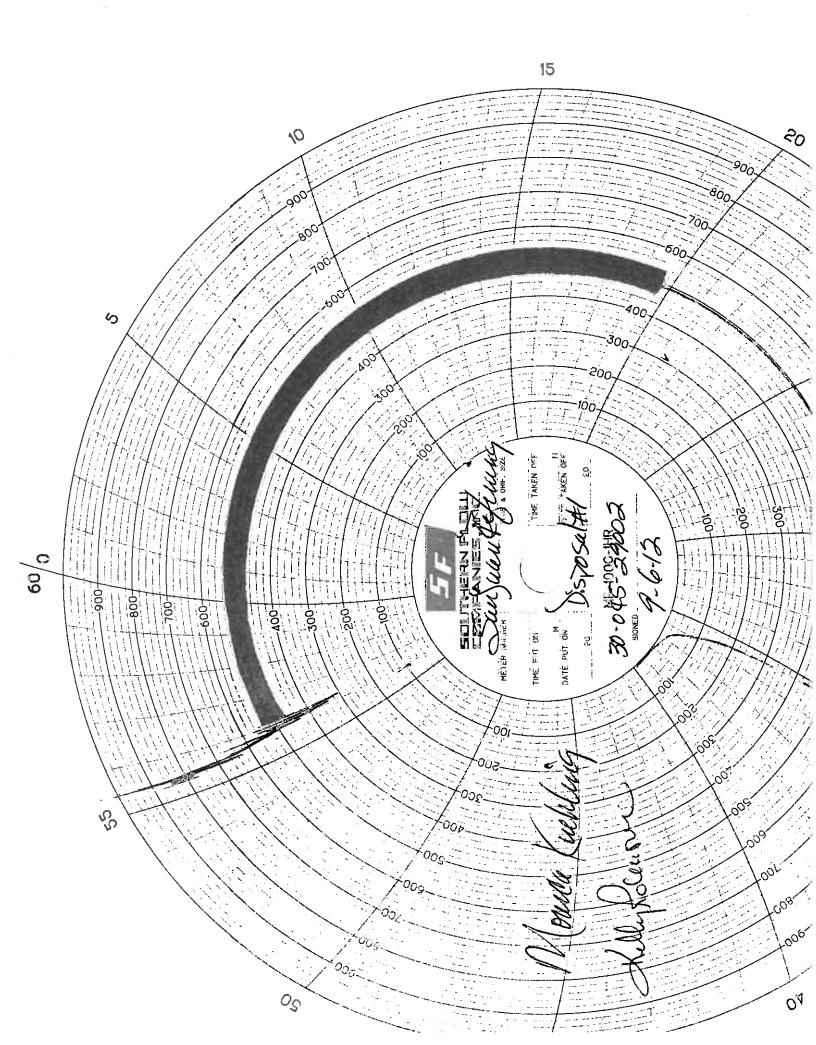
- (o) 505-632-4166
- (c) 505-801-5616
- (f) 505-632-4024
- (e) kelly.robinson@wnr.com



## NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

### MECHANICAL INTEGRITY TEST REPORT

|                                                              | (TA QR UIC)~                          |                                              |
|--------------------------------------------------------------|---------------------------------------|----------------------------------------------|
| Date of Test 9-6-12 Op                                       | perator <u>SanJuan</u> ?              | Location: Unit I See Twn 19Rge (1            |
| Property Name Disposal                                       | Well #/                               | Location: Unit SeeTwn                        |
| Land Type:  State Federal Private Indian                     | Well T                                |                                              |
| Temporarily Abandoned Well (Y/N):                            | TA Exp                                | pires:                                       |
| Casing Pres. Bradenhead Pres. Tubing Pres. Int. Casing Pres. | Tbg. SI Pres                          |                                              |
| Pressured annulus up to 495                                  | _psi. for                             | mins. Test passed failed                     |
| Puckersut 3221                                               | · · · · · · · · · · · · · · · · · · · |                                              |
| for 32.76                                                    | -32.08                                |                                              |
|                                                              | witness / My                          | Lucid Object clown at<br>auchield at 500 lbs |
| (Operator Representative)  (Position)                        |                                       | (NMOCD)  Revised 02-11-02                    |
|                                                              |                                       | •                                            |




### NEW MEXICO ENERGY, MINERALS & NATURAL RESOURCES DEPARTMENT

Oil CONSERVATION DIVISION
AZTEC DISTRICT OFFICE
1000 RIO BRAZOS ROAD
AZTEC NM 87410
(505) 334-6178 FAX: (505) 334-6170
http://emnrd.state.nm.us/ocd/District.lt/3distric.htm

### **BRADENHEAD TEST REPORT**

|                                                                 | 1 copy to above address)                         |
|-----------------------------------------------------------------|--------------------------------------------------|
| Date of Test 9-6-12 Operator                                    | Den wan John 45 29002                            |
| Property Name Well No                                           | Location: Unit L Section 27 Township 29 Range // |
| Well Status(Shut-In or Producing) Initial PSI: Tu               | ubing MoIntermediate //A Casing /20Bradenhead    |
| OPEN BRADENHEAD AND INTERMEDIATE                                | TO ATMOSPHERE INDIVIDUALLY FOR 15 MINUTES EACH   |
| PRESSURE Testing Bradenhead INTERM BH Int Csg Int Csg           | FLOW CHARACTERISTICS BRADENHEAD INTERMEDIATE     |
| TIME 5 min 2 120                                                | Steady Flow                                      |
| 10 min 0 /20                                                    | Surges_                                          |
| 15 min 0 /20                                                    | Down to Nothing                                  |
| 20 min                                                          | Nothing                                          |
| 25 min                                                          | Gas                                              |
| 30 min                                                          | Gas & Water                                      |
| •                                                               | Water                                            |
| If bradenhead flowed water, check all of the descriptions       | s that apply below:                              |
| CLEAR FRESH SALTY                                               | SULFURBLACK                                      |
| 5 MINUTE SHUT-IN PRESSURE BRADENHEAR REMARKS: Duff When & place |                                                  |
|                                                                 |                                                  |
|                                                                 | A VI                                             |
| By Adylder W                                                    | itness / Ouca Juck ling                          |
| (Position)                                                      | •                                                |
| E-mail address                                                  |                                                  |



### APPENDIX B



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 1201473

February 10, 2012

Kelly Robinson

Western Refining Southwest, Inc.

#50 CR 4990

Bloomfield, NM 87413

TEL: (505) 632-4166

FAX (505) 632-3911

RE: Injection Well 1st Qtr 1-17-12

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 1/18/2012 for the analyses presented in the following report.

There were no problems with the analytical events associated with this report unless noted in the Case Narrative. Analytical results designated with a "J" qualifier are estimated and represent a detection above the Method Detection Limit (MDL) and less than the Reporting Limit (PQL). These analytes are not reviewed nor narrated as to whether they are laboratory artifacts.

Quality control data is within laboratory defined or method specified acceptance limits except if noted.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

L: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

### Workorder Sample Summary

WO#: **1201473** 

10-Feb-12

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 1st Qtr 1-17-12

|              |                  |        |                      |                      | _       |
|--------------|------------------|--------|----------------------|----------------------|---------|
| Lab SampleID | Client Sample ID | Tag No | Date Collected       | Date Received        | Matrix  |
| 1201473-001  | Injection Well   |        | 1/17/2012 8:30:00 AM | 1/18/2012 9:40:00 AM | Aqueous |
| 1201473-001  | Injection Well   |        | 1/17/2012 8:30:00 AM | 1/18/2012 9:40:00 AM | Aqueous |
| 1201473-001  | Injection Well   |        | 1/17/2012 8:30:00 AM | 1/18/2012 9:40:00 AM | Aqueous |
| 1201473-001  | Injection Well   |        | 1/17/2012 8:30:00 AM | 1/18/2012 9:40:00 AM | Aqueous |
| 1201473-001  | Injection Well   |        | 1/17/2012 8:30:00 AM | 1/18/2012 9:40:00 AM | Aqueous |

### Lab Order 1201473

Date Reported: 2/10/2012

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 1st Qtr 1-17-12

**Lab ID:** 1201473-001

Client Sample ID: Injection Well

Collection Date: 1/17/2012 8:30:00 AM Received Date: 1/18/2012 9:40:00 AM

| 2011/3 001                          |        | AQUEOUS | Receiveu i      | Received Date: 1/16/2012 9:40:00 AIM |                      |  |  |
|-------------------------------------|--------|---------|-----------------|--------------------------------------|----------------------|--|--|
| Analyses                            | Result | RL Qu   | al Units        | DF                                   | Date Analyzed        |  |  |
| EPA METHOD 300.0: ANIONS            |        | ,       | <del>-</del> :: |                                      | Analyst: BRM         |  |  |
| Chloride                            | 710    | 50      | mg/L            | 100                                  | 1/19/2012 5:44:36 AM |  |  |
| Sulfate                             | 68     | 5.0     | mg/L            | 10                                   | 1/19/2012 5:27:11 AM |  |  |
| EPA METHOD 7470: MERCURY            |        |         |                 |                                      | Analyst: JLF         |  |  |
| Mercury                             | ND     | 0.00020 | mg/L            | 1                                    | 1/19/2012 2:53:50 PM |  |  |
| <b>EPA 6010B: TOTAL RECOVERABLE</b> | METALS |         |                 |                                      | Analyst: ELS         |  |  |
| Arsenic                             | ND     | 0.020   | mg/L            | 1                                    | 1/24/2012 7:59:27 AM |  |  |
| Barium                              | 0.43   | 0.020   | mg/L            | 1                                    | 1/24/2012 7:59:27 AM |  |  |
| Cadmium                             | ND     | 0.0020  | mg/L            | 1                                    | 1/24/2012 7:59:27 AM |  |  |
| Calcium                             | 120    | 5.0     | mg/L            | 5                                    | 1/24/2012 8:01:20 AM |  |  |
| Chromium                            | ND     | 0.0060  | mg/L            | 1                                    | 1/24/2012 7:59:27 AM |  |  |
| Lead                                | ND     | 0.0050  | mg/L            | 1                                    | 1/24/2012 7:59:27 AM |  |  |
| Magnesium                           | 26     | 1.0     | mg/L            | 3                                    | 1/24/2012 7:59:27 AM |  |  |
| Potassium                           | 10     | 1.0     | mg/L            | 1                                    | 1/24/2012 7:59:27 AM |  |  |
| Selenium                            | ND     | 0.050   | mg/L            | 1                                    | 1/24/2012 7:59:27 AM |  |  |
| Silver                              | ND     | 0.0050  | mg/L            | 1                                    | 1/24/2012 7:59:27 AM |  |  |
| Sodium                              | 450    | 5.0     | mg/L            | 5                                    | 1/24/2012 8:01:20 AM |  |  |
| EPA METHOD 8270C: SEMIVOLATIL       | ES     |         | -               |                                      | Analyst: JDC         |  |  |
| Acenaphthene                        | ND     | 10      | μg/L            | 1                                    | 1/23/2012 7:42:25 PM |  |  |
| Acenaphthylene                      | ND     | 10      | μg/L            | 1                                    | 1/23/2012 7:42:25 PM |  |  |
| Aniline                             | ND     | 10      | μg/L            | 1                                    | 1/23/2012 7:42:25 PM |  |  |
| Anthracene                          | ND     | 10      | μg/L            | 1                                    | 1/23/2012 7:42:25 PM |  |  |
| Azobenzene                          | ND     | 10      | μg/L            | 1                                    | 1/23/2012 7:42:25 PM |  |  |
| Benz(a)anthracene                   | ND     | 10      | μg/L            | 1                                    | 1/23/2012 7:42:25 PM |  |  |
| Benzo(a)pyrene                      | ND     | 10      | μg/L            | 12                                   | 1/23/2012 7:42:25 PM |  |  |
| Benzo(b)fluoranthene                | ND     | 10      | μg/L            | 10                                   | 1/23/2012 7:42:25 PM |  |  |
| Benzo(g,h,i)perylene                | ND     | 10      | μg/L            | 1                                    | 1/23/2012 7:42:25 PM |  |  |
| Benzo(k)fluoranthene                | ND     | 10      | μg/L            | 1                                    | 1/23/2012 7:42:25 PM |  |  |
| Benzoic acid                        | ND     | 20      | μg/L            | 1                                    | 1/23/2012 7:42:25 PM |  |  |
| Benzyl alcohol                      | ND     | 10      | μg/L            | 1                                    | 1/23/2012 7:42:25 PM |  |  |
| Bis(2-chloroethoxy)methane          | ND     | 10      | μg/L            | 1                                    | 1/23/2012 7:42:25 PM |  |  |
| Bis(2-chloroethyl)ether             | ND     | 10      | μg/L            | 1                                    | 1/23/2012 7:42:25 PM |  |  |
| Bis(2-chloroisopropyl)ether         | ND     | 10      | µg/L            | 1                                    | 1/23/2012 7:42:25 PM |  |  |
| Bis(2-ethylhexyl)phthalate          | ND     | 10      | μg/L            | 1                                    | 1/23/2012 7:42:25 PM |  |  |
| 4-Bromophenyl phenyl ether          | ND     | 10      | μg/L            | 1                                    | 1/23/2012 7:42:25 PM |  |  |
| Butyl benzyl phthalate              | ND     | 10      | μg/L            | 1                                    | 1/23/2012 7:42:25 PM |  |  |
| Carbazole                           | ND     | 10      | μg/L            | 1                                    | 1/23/2012 7:42:25 PM |  |  |
| 4-Chloro-3-methylphenol             | ND     | 10      | μg/L            | 1                                    | 1/23/2012 7:42:25 PM |  |  |
| 4-Chloroaniline                     | ND     | 10      | μg/L            | 1                                    | 1/23/2012 7:42:25 PM |  |  |
| 2-Chloronaphthalene                 | ND     | 10      | μg/L            | 1                                    | 1/23/2012 7:42:25 PM |  |  |
| 2-Chlorophenol                      | ND     | 10      | μg/L            | 1                                    | 1/23/2012 7:42:25 PM |  |  |
|                                     |        |         | , ,             | -                                    |                      |  |  |

Matrix: AQUEOUS

### Qualifiers:

- \*/X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 2 of 21

### Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/10/2012

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 1st Qtr 1-17-12

**Lab ID:** 1201473-001

Client Sample ID: Injection Well

Collection Date: 1/17/2012 8:30:00 AM Received Date: 1/18/2012 9:40:00 AM

| Dab 1D: 1201475-001         | IVIALITA: F | AQUEOUS | Received Date: 1/18/2012 9:40:00 AM |     |                      |  |
|-----------------------------|-------------|---------|-------------------------------------|-----|----------------------|--|
| Analyses                    | Result      | RL Qu   | al Units                            | DF  | Date Analyzed        |  |
| EPA METHOD 8270C: SEMIVOLAT | ILES        |         |                                     |     | Analyst: JD          |  |
| 4-Chlorophenyl phenyl ether | ND          | 10      | μg/L                                | 91  | 1/23/2012 7:42:25 PM |  |
| Chrysene                    | ND          | 10      | μg/L                                | :1  | 1/23/2012 7:42:25 PN |  |
| Di-n-butyl phthalate        | ND          | 10      | μg/L                                | 1   | 1/23/2012 7:42:25 PM |  |
| Di-n-octyl phthalate        | ND          | 10      | μg/L                                | 3   | 1/23/2012 7:42:25 PM |  |
| Dibenz(a,h)anthracene       | ND          | 10      | μg/L                                | 1   | 1/23/2012 7:42:25 PM |  |
| Dibenzofuran                | ND          | 10      | μg/L                                | 1   | 1/23/2012 7;42:25 PN |  |
| 1,2-Dichlorobenzene         | ND          | 10      | μg/L                                | 1   | 1/23/2012 7:42:25 PM |  |
| 1,3-Dichlorobenzene         | ND          | 10      | μg/L                                | 4   | 1/23/2012 7:42:25 PM |  |
| 1,4-Dichlorobenzene         | ND          | 10      | μg/L                                | 1   | 1/23/2012 7:42:25 PN |  |
| 3,3'-Dichlorobenzidine      | ND          | 10      | μg/L                                | 1   | 1/23/2012 7:42:25 PM |  |
| Diethyl phthalate           | ND          | 10      | μg/L                                | 1   | 1/23/2012 7:42:25 PM |  |
| Dimethyl phthalate          | ND          | 10      | μg/L                                | 1   | 1/23/2012 7:42:25 PM |  |
| 2,4-Dichlorophenol          | ND          | 20      | µg/L                                | 1   | 1/23/2012 7:42:25 PM |  |
| 2,4-Dimethylphenol          | ND          | 10      | μg/L.                               | 1   | 1/23/2012 7:42:25 PM |  |
| 4,6-Dinitro-2-methylphenol  | ND          | 20      | μg/L                                | 1   | 1/23/2012 7:42:25 PM |  |
| 2,4-Dinitrophenol           | ND          | 20      | μg/L                                | 3   | 1/23/2012 7:42:25 PM |  |
| 2,4-Dinitrotoluene          | ND          | 10      | μg/L                                | 1   | 1/23/2012 7:42:25 PM |  |
| 2,6-Dinitrotoluene          | ND          | 10      | μg/L                                | 4   | 1/23/2012 7:42:25 PN |  |
| Fluoranthene                | ND          | 10      | μg/L                                | 4   | 1/23/2012 7:42:25 PN |  |
| Fluorene                    | ND          | 10      | μg/L                                | 4   |                      |  |
| Hexachiorobenzene           | ND          | 10      | μg/L                                |     | 1/23/2012 7:42:25 PN |  |
| Hexachlorobutadiene         | ND          | 10      |                                     | 4   | 1/23/2012 7:42:25 PN |  |
| Hexachlorocyclopentadiene   | ND          | 10      | μg/L                                | 1   | 1/23/2012 7:42:25 PN |  |
| Hexachloroethane            | ND          | 10      | μg/L                                |     | 1/23/2012 7:42:25 PN |  |
| Indeno(1,2,3-cd)pyrene      | ND          | 10      | µg/L                                | 3.  | 1/23/2012 7:42:25 PN |  |
| Isophorone                  | ND          | 10      | μg/L                                | 3   | 1/23/2012 7:42:25 PM |  |
| 1-Methylnaphthalene         | ND          |         | µg/L                                | 1   | 1/23/2012 7:42:25 PM |  |
| •                           |             | 10      | μg/L<br>                            | 1   | 1/23/2012 7:42:25 PM |  |
| 2-Methylapanel              | ND          | 10      | µg/L                                | 1   | 1/23/2012 7:42:25 PM |  |
| 2-Methylphenol              | 26          | 10      | μg/L                                | 1   | 1/23/2012 7:42:25 PM |  |
| 3+4-Methylphenol            | 31          | 10      | μg/L                                | 1   | 1/23/2012 7:42:25 PN |  |
| N-Nitrosodi-n-propylamine   | ND          | 10      | μg/L<br>                            | 1   | 1/23/2012 7:42:25 PM |  |
| N-Nitrosodimethylamine      | ND          | 10      | µg/L                                | 1   | 1/23/2012 7:42:25 PM |  |
| N-Nitrosodiphenylamine      | ND          | 10      | μg/L                                | 1   | 1/23/2012 7:42:25 PM |  |
| Naphthalene                 | ND          | 10      | μg/L                                | 10  | 1/23/2012 7:42:25 PM |  |
| 2-Nitroaniline              | ND          | 10      | µg/L                                | 1   | 1/23/2012 7:42:25 PM |  |
| 3-Nitroaniline              | ND          | 10      | μg/L                                | 15  | 1/23/2012 7:42:25 PM |  |
| 4-Nitroaniline              | ND          | 20      | μg/L                                | *   | 1/23/2012 7:42:25 PM |  |
| Nitrobenzene                | ND          | 10      | µg/∟                                | (8) | 1/23/2012 7:42:25 PM |  |
| 2-Nitrophenol               | ND          | 10      | μg/L                                | 1   | 1/23/2012 7:42:25 PM |  |
| 4-Nitrophenol               | ND          | 10      | μg/L                                | 1   | 1/23/2012 7:42:25 PM |  |
| Pentachlorophenol           | ND          | 20      | μg/L                                | 1   | 1/23/2012 7:42:25 PM |  |
| Phenanthrene                | ND          | 10      | μg/L                                | 1   | 1/23/2012 7:42:25 PM |  |

Matrix: AQUEOUS

- \*X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

### Lab Order 1201473

Date Reported: 2/10/2012

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 1st Qtr 1-17-12

Lab ID: 1201473-001

Client Sample ID: Injection Well

Collection Date: 1/17/2012 8:30:00 AM Received Date: 1/18/2012 9:40:00 AM

| Lab 19. 1201475-001                   | manıx. | AQUEOUS          | Received Date: 1/18/2012 9:40:00 AM |      |                      |  |
|---------------------------------------|--------|------------------|-------------------------------------|------|----------------------|--|
| Analyses                              | Result | Result RL Qual U |                                     | DF   | Date Analyzed        |  |
| <b>EPA METHOD 8270C: SEMIVOLATILE</b> | S      |                  |                                     |      | Analyst: JDC         |  |
| Phenol                                | 14     | 10               | μg/L                                | 1    | 1/23/2012 7:42:25 PM |  |
| Pyrene                                | ND     | 10               | μg/L                                | 1    | 1/23/2012 7:42:25 PM |  |
| Pyridine                              | ND     | 10               | μg/L                                | 1    | 1/23/2012 7:42:25 PM |  |
| 1,2,4-Trichlorobenzene                | ND     | 10               | μg/L                                | 1    | 1/23/2012 7:42:25 PM |  |
| 2,4,5-Trichlorophenol                 | ND     | 10               | μg/L                                | 1    | 1/23/2012 7:42:25 PM |  |
| 2,4,6-Trichlorophenol                 | ND     | 10               | μg/L                                | 1    | 1/23/2012 7:42:25 PM |  |
| Surr: 2,4,6-Tribromophenol            | 30.1   | 18.1-138         | %REC                                | 1    | 1/23/2012 7:42:25 PM |  |
| Surr: 2-Fluorobiphenyl                | 66.1   | 25.9-101         | %REC                                | 1    | 1/23/2012 7:42:25 PM |  |
| Surr: 2-Fluorophenol                  | 25.0   | 12.5-93.2        | %REC                                | 1    | 1/23/2012 7:42:25 PM |  |
| Surr: 4-Terphenyl-d14                 | 41.3   | 29.5-112         | %REC                                | 1    | 1/23/2012 7:42:25 PM |  |
| Surr: Nitrobenzene-d5                 | 69.9   | 20.5-120         | %REC                                | 1    | 1/23/2012 7:42:25 PM |  |
| Surr: Phenol-d5                       | 31.4   | 11.5-73.2        | %REC                                | 3    | 1/23/2012 7:42:25 PM |  |
| EPA METHOD 8260B: VOLATILES           |        |                  |                                     |      | Analyst: JDJ         |  |
| Benzene                               | ND     | 1.0              | μg/L                                | 1    | 1/20/2012 6:00:49 PM |  |
| Toluene                               | 12     | 1.0              | μg/L                                | 1    | 1/20/2012 6:00:49 PM |  |
| Ethylbenzene                          | ND     | 1.0              | μg/L                                | 1    | 1/20/2012 6:00:49 PM |  |
| Methyl tert-butyl ether (MTBE)        | ND     | 1.0              | μg/L                                | 1    | 1/20/2012 6:00:49 PM |  |
| 1,2,4-Trimethylbenzene                | ND     | 1.0              | µg/L                                | 1    | 1/20/2012 6:00:49 PM |  |
| 1,3,5-Trimethylbenzene                | ND     | 1.0              | μg/L                                | 1    | 1/20/2012 6:00:49 PM |  |
| 1,2-Dichloroethane (EDC)              | ND     | 1.0              | μg/L                                | 1    | 1/20/2012 6:00:49 PM |  |
| 1,2-Dibromoethane (EDB)               | ND     | 1.0              | μg/L                                | 1    | 1/20/2012 6:00:49 PM |  |
| Naphthalene                           | ND     | 2.0              | µg/L                                | î    | 1/20/2012 6:00:49 PM |  |
| 1-Methylnaphthalene                   | ND     | 4.0              | μg/L                                | 1:   | 1/20/2012 6:00:49 PM |  |
| 2-Methylnaphthalene                   | ND     | 4.0              | μg/L                                | 10   | 1/20/2012 6:00:49 PM |  |
| Acetone                               | 520    | 100              | μg/L                                | 10   | 1/20/2012 5:32:49 PM |  |
| Bromobenzene                          | ND     | 1.0              | μg/L                                | 1    | 1/20/2012 6:00:49 PM |  |
| Bromodichloromethane                  | ND     | 1.0              | μg/L                                | 1    | 1/20/2012 6:00:49 PM |  |
| Bromoform                             | ND     | 1.0              | μg/L                                | 1    | 1/20/2012 6:00:49 PM |  |
| Bromomethane                          | ND     | 3.0              | μg/L                                | ÷    | 1/20/2012 6:00:49 PM |  |
| 2-Butanone                            | 24     | 10               | μg/L                                | 1    | 1/20/2012 6:00:49 PM |  |
| Carbon disulfide                      | 32     | 10               | μg/L                                | 1    | 1/20/2012 6:00:49 PM |  |
| Carbon Tetrachloride                  | ND     | 1.0              | μg/L                                | 1    | 1/20/2012 6:00:49 PM |  |
| Chlorobenzene                         | ND     | 1.0              | μg/L                                | 1    | 1/20/2012 6:00:49 PM |  |
| Chloroethane                          | ND     | 2.0              | μg/L                                | 1    | 1/20/2012 6:00:49 PM |  |
| Chloroform                            | ND     | 1.0              | μg/L                                | 1    | 1/20/2012 6:00:49 PM |  |
| Chloromethane                         | ND     | 3.0              | μg/L                                | 1    | 1/20/2012 6:00:49 PM |  |
| 2-Chlorotoluene                       | ND     | 1.0              | μg/L                                | 1967 | 1/20/2012 6:00:49 PM |  |
| 4-Chlorotoluene                       | ND     | 1.0              | μg/L                                | 2.40 | 1/20/2012 6:00:49 PM |  |
| cis-1,2-DCE                           | ND     | 1.0              | μg/L                                |      | 1/20/2012 6:00:49 PM |  |
| cis-1,3-Dichloropropene               | ND     | 1.0              | μg/L                                | 82   | 1/20/2012 6:00:49 PM |  |
| 1,2-Dibrorno-3-chloropropane          | ND     | 2.0              | μg/L                                | 048  | 1/20/2012 6:00:49 PM |  |

Matrix: AQUEOUS

- \*/X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

### Lab Order 1201473

Date Reported: 2/10/2012

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

**Project:** Injection Well 1st Qtr 1-17-12

**Lab ID:** 1201473-001

Client Sample ID: Injection Well

Collection Date: 1/17/2012 8:30:00 AM Received Date: 1/18/2012 9:40:00 AM

| Analyses                    | Result | RL Qu    | al Units | DF  | Date Analyzed        |
|-----------------------------|--------|----------|----------|-----|----------------------|
| EPA METHOD 8260B: VOLATILES |        |          |          |     | Analyst: JD          |
| Dibromochloromethane        | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PN |
| Dibromomethane              | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PM |
| 1,2-Dichlorobenzene         | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PN |
| 1,3-Dichlorobenzene         | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PN |
| 1,4-Dichlorobenzene         | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PN |
| Dichlorodifluoromethane     | ND     | 1.0      | µg/L     | 1   | 1/20/2012 6:00:49 PM |
| 1,1-Dichloroethane          | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PM |
| 1,1-Dichloroethene          | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PM |
| 1,2-Dichloropropane         | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PM |
| 1,3-Dichloropropane         | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PM |
| 2,2-Dichloropropane         | ND     | 2.0      | μg/L     | 1   | 1/20/2012 6:00:49 PM |
| 1,1-Dichloropropene         | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PM |
| Hexachlorobutadiene         | ND     | 1.0      | μg/L     | - 1 | 1/20/2012 6:00:49 PM |
| 2-Hexanone                  | ND     | 10       | μg/L     | 81  | 1/20/2012 6:00:49 PM |
| Isopropylbenzene            | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PI |
| 4-Isopropyitoluene          | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PM |
| 4-Methyl-2-pentanone        | ND     | 10       | μg/L     | 4   | 1/20/2012 6:00:49 PI |
| Methylene Chloride          | ND     | 3.0      | μg/L     | 1   | 1/20/2012 6:00:49 Pf |
| п-Butylbenzene              | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 Pt |
| n-Propylbenzene             | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 Pt |
| sec-Butylbenzene            | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PM |
| Styrene                     | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PM |
| tert-Butylbenzene           | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PM |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PM |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0      | μg/L     | 1   | 1/20/2012 6:00:49 PM |
| Tetrachloroethene (PCE)     | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PM |
| trans-1,2-DCE               | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PM |
| trans-1,3-Dichloropropene   | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PM |
| 1,2,3-Trichlorobenzene      | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PM |
| 1,2,4-Trichlorobenzene      | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PM |
| 1,1,1-Trichloroethane       | ND     | 1.0      | μg/L     | 7   | 1/20/2012 6:00:49 PM |
| 1,1,2-Trichloroethane       | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PM |
| Trichloroethene (TCE)       | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PN |
| Trichlorofluoromethane      | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PM |
| 1,2,3-Trichloropropane      | ND     | 2.0      | µg/L     | 1   | 1/20/2012 6:00;49 PN |
| Vinyl chloride              | ND     | 1.0      | μg/L     | 1   | 1/20/2012 6:00:49 PN |
| Xylenes, Total              | ND     | 1.5      | μg/L     | 1   | 1/20/2012 6:00:49 PN |
| Surr: 1,2-Dichloroethane-d4 | 75.8   | 70-130   | %REC     | 1   | 1/20/2012 6:00:49 PN |
| Surr: 4-Bromofluorobenzene  | 91.3   | 70-130   | %REC     | 1   | 1/20/2012 6:00:49 PM |
| Surr: Dibromofluoromethane  | 85.0   | 69.8-130 | %REC     | 1   | 1/20/2012 6:00:49 PM |
| Surr: Toluene-d8            | 84.1   | 70-130   | %REC     | 1   | 1/20/2012 6:00:49 PM |

Matrix: AQUEOUS

- \*/X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Lab Order 1201473

Date Reported: 2/10/2012

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

**Project:** Injection Well 1st Qtr 1-17-12

Lab ID: 1201473-001

Client Sample ID: Injection Well

Collection Date: 1/17/2012 8:30:00 AM Received Date: 1/18/2012 9:40:00 AM

| Analyses                               | Result | RL Qua | Units      | DF | Date Analyzed        |
|----------------------------------------|--------|--------|------------|----|----------------------|
| <b>EPA 120.1: SPECIFIC CONDUCTANCE</b> |        |        |            |    | Analyst: JLF         |
| Conductivity                           | 2,700  | 0.010  | µmhos/cm   | 1  | 1/18/2012 9:27:42 PM |
| SM4500-H+B: PH                         |        |        |            |    | Analyst: JLF         |
| рH                                     | 7.32   | 1.68 H | pH units   | 1  | 1/18/2012 9:27:42 PM |
| SM2320B: ALKALINITY                    |        |        |            |    | Analyst: JLF         |
| Bicarbonate (As CaCO3)                 | 320    | 20     | mg/L CaCO3 | 1  | 1/18/2012 9:27:42 PM |
| Carbonate (As CaCO3)                   | ND     | 2.0    | mg/L CaCO3 | 1  | 1/18/2012 9:27:42 PM |
| Total Alkalinity (as CaCO3)            | 320    | 20     | mg/L CaCO3 | 1  | 1/18/2012 9:27:42 PM |
| SM2540C MOD: TOTAL DISSOLVED SO        | OLIDS  |        |            |    | Analyst: KS          |
| Total Dissolved Solids                 | 1,770  | 200    | mg/L       | 1  | 1/20/2012 2:59:00 PM |

Matrix: AQUEOUS

Qualifiers:

- \*/X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 6 of 21

### Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Address:

4901 HAWKINS NE SUITE D

**ALBUQUERQUE. NM 87109** 

Attn:

**ANDY FREEMAN** 

Batch #:

120119019

Project Name:

1201473

### **Analytical Results Report**

Sample Number Client Sample ID 120119019-001

1201473-001D / INJECTION WELL

Sampling Date

1/17/2012 8:30 AM

1/19/2012 Date/Time Received

Matrix

Water

**Sampling Time** Sample Location

Comments

| Parameter          | Result | Units    | PQL | Analysis Date | Analyst | Method    | Qualifier |
|--------------------|--------|----------|-----|---------------|---------|-----------|-----------|
| Cyanide (reactive) | ND     | mg/L     | 1   | 1/31/2012     | CRW     | SW846 CH7 |           |
| Flashpoint         | >200   | °F       |     | 2/2/2012      | MAH     | EPA 1010  |           |
| pН                 | 6.58   | ph Units |     | 1/25/2012     | KFG     | EPA 150,1 |           |
| Reactive sulfide   | 4.80   | mg/L     | 1   | 1/25/2012     | JIT     | SW846 CH7 |           |

Authorized Signature

John Coddington, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND

Not Detected

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soll/solid results are reported on a dry-weight basis unless otherwise noted.

### Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anatekiabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

120119019

Address:

4901 HAWKINS NE SUITE D **ALBUQUERQUE, NM 87109** 

**Project Name:** 

1201473

Attn:

**ANDY FREEMAN** 

**Analytical Results Report Quality Control Data** 

| Lab Control Sa  Parameter Cyanide (reactive) Reactive sulfide |                    | LCS Result<br>0.550 | Units<br>mg/L   | LCS Spik     | 11    | <b>₹ec</b><br>0.0 | AR %Rec<br>80-120 | 1/3        | ep Date<br>31/2012 | Analysis Date<br>1/31/2012                   |
|---------------------------------------------------------------|--------------------|---------------------|-----------------|--------------|-------|-------------------|-------------------|------------|--------------------|----------------------------------------------|
| Legiciae adilida                                              |                    | 0.200               | mg/L            | 0.2          | 10    | 0.0               | 70-130            |            | 25/2012            | 1/25/2012                                    |
| Matrix Spike                                                  |                    |                     |                 |              | -     |                   |                   |            |                    | <u>.                                    </u> |
| Sample Number                                                 | Parameter          |                     | ample<br>Result | MS<br>Result | Units | MS<br>Spike       | %Rec              | AR<br>%Rec | Prep Date          | Archele Date                                 |
| 120119019-001                                                 | Reactive sulfide   | -                   | 4.80            |              | mg/L  | 4                 | 70.0              | 70-130     | 1/25/2012          | Analysis Data<br>1/25/2012                   |
| 120119019-001                                                 | Cyanide (reactive) |                     | ND              |              | mg/L  | 0.5               | 90.2              | 80-120     | 1/31/2012          | 1/31/2012                                    |
| 31                                                            |                    |                     |                 |              |       |                   | _                 |            |                    |                                              |
| Method Blank                                                  |                    |                     |                 |              |       |                   |                   |            |                    |                                              |
| Parameter                                                     |                    |                     | Resu            | it           | Un    | its               | PQL               |            | Prep Date          | Artalysis Date                               |
| Cyanide (reactive)                                            |                    |                     | ND              |              | mg/   | L                 | 0.1               |            | 1/31/2012          | 1/31/2012                                    |
| Reactive suifide                                              |                    |                     | ND              |              | mg/i  |                   | 1                 |            | 1/25/2012          | 1/25/2012                                    |

AR

Acceptable Range

ND

Not Detected

PQL **Practical Quantitation Limit** 

Relative Percentage Difference

Comments:

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CC:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00015; OR:ID200001-002; WA:C595 Cartifications held by Anatek Labs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C585; MT:Cert0085

| Page | # |
|------|---|
|------|---|

### Flashpoint Analysis

Sample Matrix - Soil (1), Sludge (2), Oil (3), Water (4), Other (5)

| Complex TD    | 4:               |                                       |                     |           |           |
|---------------|------------------|---------------------------------------|---------------------|-----------|-----------|
| Sample ID     | Analyses<br>Date | Sample<br>Matrix                      | Analyst<br>Initials | Temp - °C | Temp - °F |
| 111227018-01  | [2/30/1          | SOIL                                  | 97                  |           | BIOF      |
| 11/222023-001 | 12.30-11         | aL                                    | 21                  | <u> </u>  | NO        |
| 111228030.001 | ( L 30-41        | 4                                     | 1/19                |           | ND        |
| 120105039.00  | 1/9/12           | 415                                   | 155-                |           | >200      |
| / -002        |                  | 5                                     |                     |           | Rosmitemp |
| NA -012       |                  | _5                                    | J                   |           | >という      |
| 12017909-61   | 2-2-242          | 4                                     | m/4                 |           | 7 3.40    |
| <u> </u>      |                  |                                       |                     |           |           |
| -             |                  |                                       | -                   |           |           |
| <del></del>   |                  | · · · · · · · · · · · · · · · · · · · |                     |           |           |
| <del> </del>  |                  |                                       |                     |           | . "       |
|               |                  |                                       |                     |           |           |
|               | <del></del>      |                                       |                     |           |           |
|               |                  |                                       |                     |           | <u> </u>  |
|               |                  |                                       |                     |           |           |
|               |                  |                                       |                     |           |           |
|               |                  |                                       |                     | ·         |           |
|               |                  | <del></del>                           |                     |           |           |
|               |                  |                                       |                     |           |           |
|               |                  |                                       |                     |           |           |
| · · · ·       |                  |                                       |                     |           |           |
| <del></del>   |                  |                                       | <u> </u>            |           |           |
| <del></del>   |                  |                                       |                     |           |           |
|               | <del></del>      |                                       |                     |           |           |
|               |                  | <del>-</del>                          |                     |           |           |
|               |                  |                                       |                     |           |           |
|               |                  |                                       |                     |           |           |
|               |                  |                                       |                     |           |           |
|               |                  |                                       |                     |           |           |

<sup>\*</sup> SAFETY GLASSES REQUIRED.

# PH/Alkalinity SM4500H<sup>+</sup>B / SM2320B Carbonate & Bicarbonate

| Quality Control Information     | Equivalent    | Equivalent EPA Methods | 150.1 & 310.1        |
|---------------------------------|---------------|------------------------|----------------------|
| Standards                       | Concentration | Expires                | Amount Spiked (mg/L) |
| Matrix Spike Solution # M637-04 | IN            | 11/18/2012             | 100                  |
|                                 |               |                        |                      |

Method QC Requirements: LFB/Blank Every 10 samples MS/MSD Every 20 samples % Recovery AR 90-110%

pH 7 within 0.1 pH units Slope 95-102%

|   | Reagents Solution #                          |                      | Expires           |
|---|----------------------------------------------|----------------------|-------------------|
| • | 0.02N H <sub>2</sub> SO <sub>4</sub> Titrant |                      | 04440             |
|   | H <sub>2</sub> SO <sub>4</sub>               | Fisher, Lot # 000781 | 211116            |
|   | pH Buffer 4 (Red) M797-03                    | BDH,BDH5018-500      | JAN 2013          |
|   | pH Buffer 7 (Yellow) M797-04                 | BDH,BDH5046-500      | JAN 2013          |
|   | pH Buffer 10 (Blue) M797-05                  | BDH,BDH5072-500      | AUG 2012          |
|   | E                                            | COORES 17 O-3        | - 1-1 /AVY UV20ED |

Equipment: Contributenc: CAI 10th 600000; pH meter: Orion model 620A 007858

| 122               | 271                |      | 127          |           | 120                |           | 120           |          | 120               |                   | 120                | LFB      | 718       |                      |
|-------------------|--------------------|------|--------------|-----------|--------------------|-----------|---------------|----------|-------------------|-------------------|--------------------|----------|-----------|----------------------|
| 12012204-001 16.8 | 120119019-001 19,0 |      | 20120005-001 |           | 120126018-001 15,4 |           | 120120017-001 |          | 121 100-110521021 |                   | 5.2 1000-11.001/02 | 9        | 下         | Sample               |
| 20-49             | 19-00              | -002 | 30-6         | 100       | 8-00               | -002      | 7-00          | 20-      | 14-0              | -0024             | 7-00               |          |           | iple                 |
| 10                |                    | 2 16 | 27 72        | 7.34 200- | 31-                | 2/        |               | -002 169 | 0/ /              | 1 09              | 3                  | <i>u</i> | 2         |                      |
| 8/8               | 0                  |      |              |           |                    | ar        | 15.6          |          |                   | 8                 |                    | 27/20    | 22,7      | Temp<br>(°C)         |
| 6,03              | 658                | 5,95 | 57.81        | 86-9      | 6,02               | 16.6 5.87 | 6.68          | 5,79     | X5.68             | -002100 18'8 6'33 | 9,34               | 154.9    | 3,43      | 뫄                    |
| 1                 |                    |      |              |           |                    |           |               | _        |                   |                   |                    |          | 4,01      | 요물                   |
| 4                 |                    |      | !            |           |                    |           |               |          |                   |                   | _                  |          | 10,00     | pH 10<br>Cal         |
| 4                 |                    |      |              |           |                    |           |               |          |                   |                   |                    |          | 101,3     | Slope                |
| 1                 |                    |      |              |           |                    |           |               |          |                   |                   |                    |          | 7,08      | pH 7<br>Buffer       |
| +                 |                    |      |              |           | 25                 | 100       | 25            | t        |                   |                   |                    |          | 001       | Sample (mL)          |
| )                 |                    | 1    |              |           | )                  |           |               |          | 1                 | 3,97              | 3,90               | 2011     |           | Titrate to 8:3 (mL)  |
| )                 | 1                  | )    |              |           | 1                  | 0.88      | )             | 01/10    | 1,21              | 10.85             | 10,58              | 787      |           | Titrate to 4.5 (mL)  |
| 1                 | 1                  | J    | )            |           | }                  | 1,06      | 1             | 25.1     | 1.39              | 1                 | j                  | ,        | Managara. | Titrate to 4.2 (mL)  |
|                   | J                  | )    | J            | )         | 1                  | 7,0       | ]             | 12,4     | 10,3              | 125,5             | 8,501              | 2.66     | 0         | Alkalinity<br>(mg/L) |
|                   |                    |      |              |           |                    |           |               |          |                   | 98,5              | 98,8               | 93,2     |           | %                    |
|                   |                    |      |              |           |                    |           |               |          |                   |                   |                    |          | 1/23      | Date                 |
|                   |                    |      |              |           |                    |           |               |          |                   |                   |                    |          | 125/12    | <b>#</b>             |
|                   |                    |      |              |           |                    |           |               |          |                   | Pa                | re f               | of       | Sept of   | init.                |

Comments: Alkalinity = mL of titrant x 10 if 100 mL sample was used.

N:\Bench Sheets\pH.doc

## Sulfide by SM 4500-S' F

|              | Concentration | Date Made/Expires |
|--------------|---------------|-------------------|
| Iodine       | 0.025 N       |                   |
| HCI          | 6 N           |                   |
| Starch       | 1% by weight  | 12/31/2009        |
| Zinc Acetate | 99.9%         |                   |

# Quality Control Information

- 1. 1 blank per batch, must be < 20 ug/L.
- 2. 1 LFB per batch must be +/- 30%.
- 3. 1ml iodine reacts with 0.4 mg Sulfide

| Sample        | Sample<br>Volume | lodine amount<br>(50 uL<br>increments) | Concentration (ug/sample) | Concentration (mg/L) | Date       | Initials |
|---------------|------------------|----------------------------------------|---------------------------|----------------------|------------|----------|
| 30124022-1 ME | M: 24.7 50 mL    | as                                     | 28 us = 0.02 mg           | 0.4×28.7= 11.5       | 1-25-12    | 3        |
| - MS          |                  |                                        | 0310                      | 3-6 ×26.7= 103,3     | -          |          |
| -145          | 1000 m2          | 800                                    | - 6:700                   | 0.200                |            |          |
| -1650         |                  | 450                                    |                           | 081.0                | <b>X</b> . |          |
| .87           | f                | 25                                     |                           | 0.020                |            |          |
| 20119019-1    | 20.2             | 600                                    | 240 0,240                 | 4.80                 |            |          |
| -   WS        |                  | 950                                    | 380 0,380                 | 7.60                 | +          | +        |
|               |                  |                                        |                           |                      |            |          |
|               |                  |                                        |                           |                      |            |          |
|               |                  |                                        |                           |                      |            |          |
|               |                  |                                        |                           |                      |            |          |
|               |                  |                                        |                           |                      |            |          |
|               |                  |                                        |                           |                      |            |          |

Comments\_

## Total Cyanide by Semi-Automated Colorimetry Method: EPA 335.4\SM-4500-CN-E Distillation Bench Sheet

Weak Acid Dissociable Cyanide by SM 4500-CN-I (check WAD column)

Total Cyanide MS/MSD/LCS Soln: Free Cyanide MS/MSD/LCS Soln:

M825-01 Exp: 1/4/2013

M824-05

Method requirements: All QC +/- 10%

Exp: 12/28/2012 Equipment: Midi-vap

instrument: ALPCHEM FIA 3000

Absorbance: 570nm

|    | Sample ID    | Matrix     | Preserved | Sample<br>Amount (mL)** | Initial<br>Multiplier* | Final<br>Multiplier | Spike Amount<br>(mL) | WAD?<br>(check if<br>yes)             |
|----|--------------|------------|-----------|-------------------------|------------------------|---------------------|----------------------|---------------------------------------|
| 1  | 120124029-1  | Wwepn      | Nall      | Soul                    | ×                      | ===                 |                      | , , , ,                               |
| 2  | 30-1         |            |           |                         |                        |                     |                      |                                       |
| 3  | -3           | -          |           |                         |                        |                     |                      |                                       |
| 4  | 15           |            |           |                         |                        | <u>.</u>            |                      |                                       |
| 5  | -7           |            |           |                         |                        |                     |                      |                                       |
| 6  | -9           |            |           |                         |                        | <del></del>         |                      |                                       |
| 7  | -(1          |            |           |                         |                        |                     |                      |                                       |
| 8  | 120120025-13 |            |           |                         |                        |                     |                      |                                       |
| 9  | -14          |            |           |                         |                        |                     |                      |                                       |
| 10 | 120120021-1  |            | 1         | 4                       | 4                      |                     |                      |                                       |
| 11 |              | reactiveum | Natt      | Game                    | [K                     |                     |                      | · · · · · · · · · · · · · · · · · · · |
| 12 | -Ims         |            |           | (                       | 1                      |                     | lient                |                                       |
| 13 | -linso       |            |           |                         |                        |                     | 1                    |                                       |
| 14 | -1.05        |            |           |                         |                        |                     | 1                    |                                       |
| 15 |              | +          |           |                         |                        |                     |                      |                                       |
| 16 | 120124035-3  | WW PAR     |           |                         |                        |                     |                      |                                       |
| 17 | -4           |            |           | 4                       |                        |                     |                      | · ·                                   |
| 18 | 120124029-3  |            |           | 25ml                    | ZX                     |                     |                      |                                       |
| 19 | 120126018-1  |            |           | 50ml                    | (20                    | -,                  |                      |                                       |
| 20 | 19-1         | 4          | 4         |                         | +                      |                     |                      |                                       |

<sup>\*</sup> If soils this calculation is taken from cyanide extraction bench sheet.

<sup>\*\*</sup> If soils, mLs of extract used for distillation.

| Extraction Reagents:<br>methyl red indicator |         |
|----------------------------------------------|---------|
| 18 N H <sub>2</sub> SO <sub>4</sub>          | A043-08 |
| sulfamic acid                                | R009-12 |
| 0.025N NaOH                                  | R014-16 |
| 51% MgCl <sub>2</sub>                        | A043-06 |

| Analytical Reagerits: | Reagent # |
|-----------------------|-----------|
| Barbituric Acid       | R038-13   |
| Sodium Phosphate      | R026-23   |
| Chloramine-t          | R048-09   |
| Pyridine              | R043-03   |

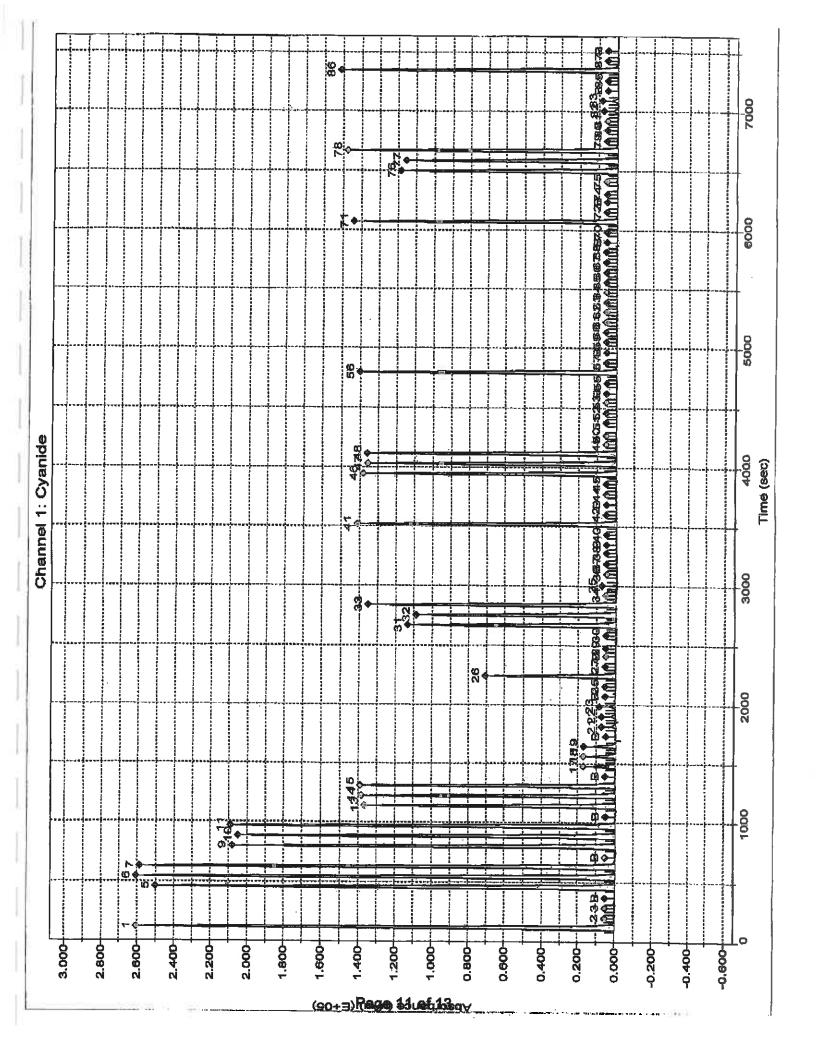
Distillation Initials/Date Distilled: 1/2/12

Analyst Initials/Date Analyzed: 0w 1/31/17

File name: T:\DATA1\FLOW4\2012\EPA335.4\013112CN.RST Date: January 31, 2012

Operator: CRW

120131 FIACHEW


Cpw 1/31/12

|     | _              |          |                                   |           | (20121174)   |        |                  |                      |
|-----|----------------|----------|-----------------------------------|-----------|--------------|--------|------------------|----------------------|
|     | Peak           | Cup      | Name                              | Type      | Dil Wt       |        | Area             | Calc. (ppm)          |
|     | 1              | 2        | Sync                              | SYNC      | 1            | 1      | 5011022          | 0 026264             |
| 11  | 2              | 0        | Carryover                         | CO        | i            | ī      | 8239             | 0.976764             |
|     | 3              | 0        | Carryover                         | CO        | 1            | ī      | 3828             | 0.003383<br>0.002512 |
|     | B              | 0        | Baseline                          | RB        | ī            | ī      | 1088             | 0.002312             |
|     | 5              | 2        | Cal 1.00 ppm                      | C         | ī            | ī      | 5134414          | 1.000421             |
|     | 6              | 2        | Cal 1.00 ppm                      | C         | 1            | 1      | 5113915          | 0.996492             |
|     | 7              | 2        | Cal 1.00 ppm                      | C         | 1            | 1      | 5127215          | 0.999041             |
|     | B              | 0        | Baseline                          | RB        | 1            | 1      | -833             | 0.001593             |
|     | 9              | 3        | Cal 0.80 ppm                      | ¢         | 1            | 1      | 4098498          | 0.801292             |
|     | 10             | 3        | Cal 0.80 ppm                      | C         | 1            | 3      | 4107172          | 0.802965             |
| - 1 | 11             | 3        | Cal 0.80 ppm                      | C         | 1            | 1      | 4110518          | 0.803610             |
|     | B<br>13        | 0<br>4   | Baseline                          | RB        | 1            | 1      | -209             | 0.001716             |
| 4   | 1.4            | 4        | Cal 0.50 ppm                      | C         | 1            | 1      | 2527944          | 0.497117             |
|     | 15             | 4        | Cal 0.50 ppm<br>Cal 0.50 ppm      | C         | 1            | 1      | 2539596          | 0.499384             |
| 1   | В              | ٥        | Cal 0.50 ppm<br>Baseline          | C<br>RB   | 1            | 1      | 2539803          | 0.499424             |
|     | 17             | 5        | Cal 0.05 ppm                      | C A       | 1<br>1       | 1      | -1513            | 0.001458             |
| 9   | 18             | 5        | Cal 0.05 ppm                      | č         | i            | 1<br>1 | 229062<br>235544 | 0.046935             |
|     | 19             | 5        | Cal 0.05 ppm                      | č         | î            | 1      | 237027           | 0.048213             |
| H   | В              | Ö        | Baseline                          | RB        | ī            | i      | .9671            | 0.048505             |
|     | 21             | 6        | Cal 0.01 ppm                      | C         | i            | 1      | 44975            | 0.003666<br>0.010632 |
| 1   | 22             | 6        | Cal 0.01 ppm                      | C         | 1            | ī      | 45786            | 0.010032             |
| -)  | 23             | 6        | Cal 0.01 ppm                      | Ç         | ī            | ĩ      | 59215            | 0.013442             |
|     | В              | O        | Baseline                          | RB        | 1            | 1      | -1438            | 0.001473             |
|     | 25             | l        | Blank                             | BLNK      | 1            | 1      | -4958            | 0.000778             |
| ٦   | 26             | 7        | ICV 0.25 ppm                      | CCV       | 1            | 1      | 1275398          | 0.252564             |
| -1  | 27             | 1        | Blank                             | BLNK      | 1            | ı      | 5769             | 0.002895             |
| -6  | В              | 0        | Baseline                          | RB        | 1            | 1      | 3279             | 0.002404             |
|     | 29             |          | 120119013-BL WW                   | U         | 3.           | 1      | 1888             | 0.002129             |
| 1   | 30             | 9        | 120119013-006                     | Ŭ         | 1            | 1      | <b>∽628</b> 9    | 0.000516             |
| 1   | 31<br>32       | 10<br>11 | 120119013-006MS                   | ָ <u></u> | 1            | 1_     | 2174078          | 0.428203             |
| - 1 | 33             |          | 120119013-006MSI<br>120119013-LCS |           | .1           | _1     | 2134286          |                      |
| ŧ.  | 34             |          | 120120025-003                     | ט<br>ט    | 1            | 1      | 2576018          | 0.506468             |
| 1   | 35             |          | 120120025-005                     | ט         | 1<br>1       | 1      | -4267            | 0.000915             |
|     | 36             |          | 120120025-007                     | Ü         | 1            | 1<br>1 | -9250<br>-13044  | -0.000069            |
|     | 37             |          | 120120025-009                     | บ         | 1            | 1      | -4512            | -0.000818            |
| Ų   | 38             | 17       | RINSE                             | Ü         | ī            | 1      | -1957            | 0.000866<br>0.001371 |
| -   | В              | O        | Baseline                          | RB        | ī            | ī      | 1425             | 0.001371             |
| J   | 40             | 1        | Blank                             | BLNK      | 1            | ī      | 2624             | 0.002036             |
|     | 41             | 4        | CCV 0.5 ppm                       | CCV       | 1            | 1      | 2612191          | 0.513503             |
|     | 42             | 1        | Blank                             | BLNK      | 1            | 1      | 75.85            | 0.003254             |
|     | В              | 0        |                                   | RB        | 1            | 1      | -1396            | 0.001481             |
|     | 44             |          | 120124030-BL WAD                  |           | 1            | 1      | 1219             |                      |
|     | 45             |          | 120124030-010                     | Ū         | 1            | 1      | 421              | 0.001840             |
|     | 46<br>47       | 20       | 120124030-010MS                   |           | 1_           | 1      | 2670406          | 0.524821             |
|     | 4 /<br>4 8     | 21<br>22 | 120124030-010MSD<br>120124030-LCS |           | 1            | _ 1    | 2711906          |                      |
|     | 49             |          |                                   | ប         | 1            | 1      | 2725860          | 0.535599             |
|     | 50             |          |                                   | U<br>Ų    | 1            | 1      | 11499            | 0.004026             |
|     | 51             |          | -                                 | Ŭ         | 1<br>1       | 1      | 12810            | 0.004285             |
|     | 52             |          |                                   | U U       | 1            | 1      | 6810             | 0.003101             |
|     | 53             |          |                                   | ט         | i            | i      | 6000<br>3675     | 0.002941             |
|     | B              | 0        | •                                 | RB        | i            | î      | -591             | 0.002482<br>0.001640 |
| П   | 55             | 1        |                                   | BLNK      | ī            | î      | -8955            | -0.000011            |
|     | 56             | 4        |                                   | CCV       | ī            | ī      | 2577006          | 0.506660             |
|     | 57             | 1        |                                   | BLNK      | ī            | 1      | -1352            | 0.001490             |
|     | B <sup>.</sup> | 0        |                                   | RB        | 1            | 1      | 134              | 0.001783             |
|     | 59             |          |                                   | ט         | 1            | 1      | 3191             | 0.002387             |
|     | 60<br>63       |          |                                   | U         | ) <u>1</u>   | 1      | 9504             | 0.003633             |
|     | 61<br>62       | _        |                                   | ט         | 1            | 1      | 8969             | 0.003527             |
|     | 62<br>63       |          |                                   | ס         | 1            | 1      | 2566             | 0.002263             |
|     | 64             |          |                                   | U         | 1            | 1      | 3330             | 0.002414             |
|     | 65             |          |                                   | บ<br>บ    | 1            | 1      | 1495             | 0.002052             |
|     | 56             |          |                                   | Ü         | 1            | 1<br>1 | 1423             | 0.002038             |
| Ĺ   | - <del>-</del> |          |                                   | -         | Page 0 of 13 | Т      | 5643             | 0.002871             |
|     |                |          |                                   |           |              |        |                  |                      |

Page 9 of 13

| Ì | Peak | Cup | Name                  | Туре | Dil    | Wt | Area      | Calc. | (ppm)    |
|---|------|-----|-----------------------|------|--------|----|-----------|-------|----------|
|   | 67   | 36  | *120120025-014        | U    | 1      | 1  | 6558      |       | 0.003051 |
|   | 68   | 37  | +120120021-001        | Ü    | 1      | ī  | 8193      |       | 0.003031 |
| 1 | В    | 0   | Baseline              | RB   | 1      | า  | 359       |       | 0.001828 |
| l | 70   | 1   | Blank                 | BLNK | 1      | ī  | -712      |       | 0.001616 |
|   | 71   | 4   | CCV 0.5 ppm           | CCV  | ĩ      | 1  | 2596031   |       | 0.510360 |
|   | 72   | 1   | Blank                 | BLNK | ์<br>า | ว  | -1250     |       | 0.001510 |
| l | В    | 0   | Read Baseline         | RB   | ī      | 1  | ~1961     |       | 0.001310 |
| l | 74   | 38  | 120119019-BL          | U    | 1      | ī  | -2242     |       | 0.001314 |
| 1 | 75   | 3.9 | 120119019-001         | U    | ī      |    | 2777      |       | 0.002305 |
|   | 76   | 40  | 120119019-001MS       | Ü    | 1      | ī  | 2291410   |       | 0.451068 |
| ١ | 77   | 41  | 120119019-001MSE      | ס ס  |        |    | 1 2303223 | ž.    | 0.453370 |
| l | 78   | 42  | 120119019-LCS         | ับ   | 7      | T  | 2799762   | •     | 0.549957 |
| , | 79   | 43  | ·120124035-003        | Ü    | 1      | ī  | 872       |       | 0.001929 |
|   | 80   | 44  | * 120124035-004       | Ū '  | ī      | 1  | -1532     |       | 0.001929 |
| ľ | 81   | 45  | · 120124029-003       | Ū    | 2      | 7  | -2218     |       | 0.001455 |
| l | 82   | 46  | <b>4120126018-001</b> | Ū    | 7      | î  | 40713     |       | 0.002038 |
| 1 | 83   | 47  | ° 120126019-001       | Ū    | 1      | 1  | 57976     |       | 0.013197 |
|   | В    | 0   | Baseline              | RB   |        | 1  | -4629     |       | 0.000843 |
|   | 85   | 1   | Blank                 | BLNK | 1      | า  | -5813     |       | 0.000610 |
|   | 86   | 4   | CCV 0.5 ppm           | CCV  | ี้ ๆ   | Ť  | 2720732   |       | 0.534602 |
|   | 87   | 1   | Blank                 | BLNK | ī      | i  | -4225     |       | 0.000923 |
|   | В    | 0   | Read Baseline         | RB   | ī      | 1  | 226       |       | 0.000323 |

| Peak                      | 2                     | Flags    |
|---------------------------|-----------------------|----------|
| 2<br>3<br>5<br>6          | 0<br>0<br>2<br>2      | BL       |
| 7<br>B<br>9               | 2<br>0<br>3<br>3      | BL       |
| 11<br>B<br>13<br>14       | 0<br>4<br>4           | BL       |
| 15<br>B<br>17<br>18       | 4<br>0<br>5<br>5      | BL<br>OL |
| 19<br>B<br>21             | 5<br>0<br>6           | BL       |
| 22<br>23<br>B<br>25       | 6<br>6<br>0<br>1<br>7 | OL<br>BL |
| 26<br>27<br>B<br>29<br>30 | 1089                  | BL       |
| 31<br>32<br>33<br>34      | 10<br>11<br>12<br>13  |          |
| 35<br>36<br>37            | 14<br>15<br>16        | TO<br>TO |
| 38<br>B<br>40<br>41       | 17<br>0<br>1<br>4     | BL       |
| 42<br>B<br>44             | 1<br>0<br>18          | BL       |

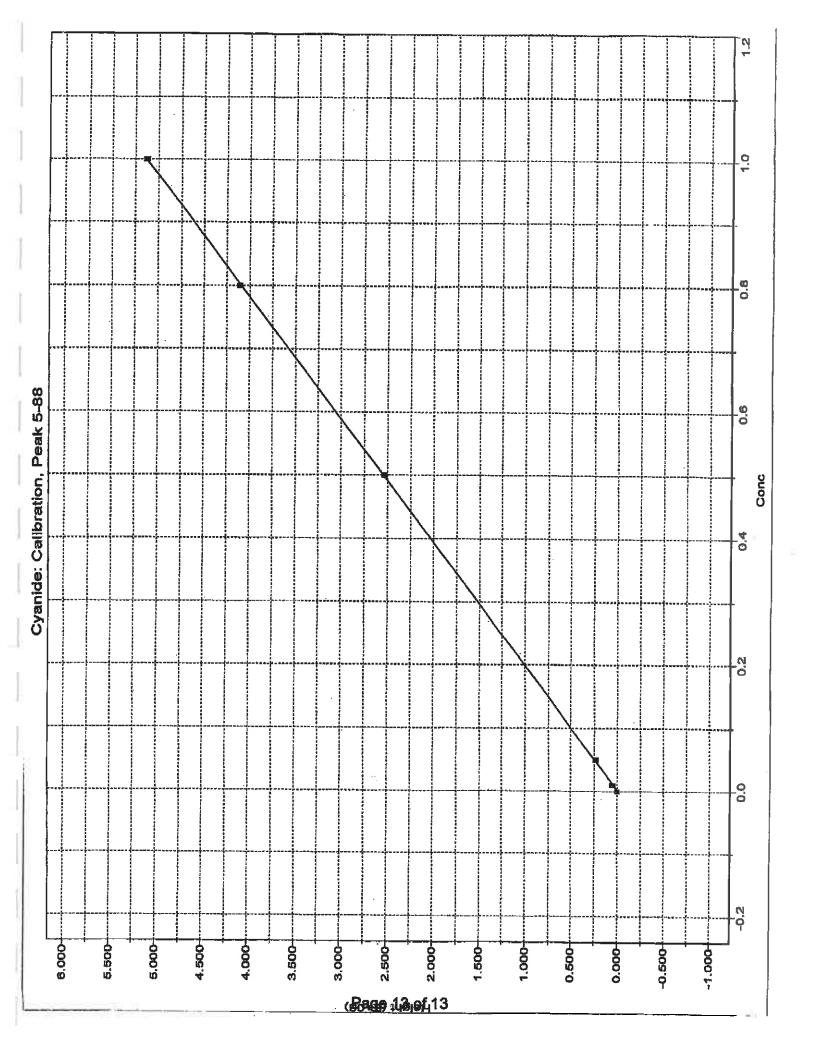


File name: T:\DATA1\FLOW4\2012\EPA335.4\013112CN.RST

Date: January 31, 2012

Operator: CRW

| * | Name   |               | Conc     | Area           |
|---|--------|---------------|----------|----------------|
| _ |        |               |          |                |
| * | Cal 1. | 00 ppm        | 1.000000 | 5134414.000000 |
| * | Cal 1. | 00 ppm        | 1.000000 | 5113915.000000 |
| * | Çal 1. | 00 ppm        | 1.000000 | 5127215.000000 |
| * | Cal O. |               | 0.800000 | 4098498.500000 |
| * | Cal 0. |               | 0.800000 | 4107171.750000 |
| * | Cal 0. | 80 ppm        | 0.800000 | 4110518.500000 |
| * | Cal O. | 50 ppm        | 0.500000 | 2527943.750000 |
| * | Cal O. | 50 ppm        | 0.500000 | 2539596.250000 |
| * | Cal O. | 50 ppm        | 0.500000 | 2539803.000000 |
| * | Cal 0. | 05 ppm        | 0.050000 | 229061.640625  |
| * | Cal 0. | <b>05</b> ppm | 0.050000 | 235543.875000  |
| * | Cal 0. | 05 ppm        | 0.050000 | 237027.312500  |
| * | Cal 0. | 01 ppm        | 0.010000 | 44975.179688   |
| * | Cal 0. | 01 ppm        | 0.010000 | 45786.214844   |
| * | Cal 0. | 01 ppm        | 0.010000 | 59215.167969   |


Calib Coef: x=cyy+by+a

a: (intercept) 1.7569e-03 b: 1.9736e-07 c: -5.5618e-16

Corr Coef: 0,999985

Carryover: 0.164%

No Drift Peaks



### Hall Environmental Analysis Laboratory, Inc.

WO#:

1201473

10-Feb-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1st Qtr 1-17-12

Result

Sample ID MB

SampType: MBLK

TestCode: EPA Method 300.0: Anions

Client ID: PBW

Batch ID: R458

RunNo: 458

Prep Date:

Analysis Date: 1/18/2012

SeqNo: 13150

Units: mg/L HighLimit

Analyte Chloride

**PQL** ND 0.50 %REC LowLimit

Qual

Sulfate

ND 0.50

SPK value SPK Ref Val

TestCode: EPA Method 300.0: Anions

LowLimit

Sample ID LCS Client ID: LCSW SampType: LCS Batch ID: R458

RunNo: 458

Prep Date:

HighLimit

Analyte

Analysis Date: 1/18/2012

SeqNo: 13151

Units: mg/L

| ř. | Chloride |
|----|----------|
|    | Sulfate  |

Result **PQL** SPK value SPK Ref Val %REC 4.7 0.50 5.000 0 94.6 9.7 0.50 10.00 0 96.9

90 90 110 110

%RPD

%RPD

**RPDLimit** 

**RPDLimit** Qual

Qualifiers:

R

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

Analyte detected below quantitation limits J RPD outside accepted recovery limits

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RLReporting Detection Limit Page 7 of 21

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1201473

10-Feb-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1st Qtr 1-17-12

| Client ID: PBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample ID 5ml rb        | Samp1      | ype: MI         | BLK       | Tes         | tCode: E | PA Method | 8260B: VOL  | ATILES |          |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|-----------------|-----------|-------------|----------|-----------|-------------|--------|----------|------|
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client ID: PBW          | Batcl      | h ID: <b>R4</b> | 86        | F           | RunNo: 4 | 86        |             |        |          |      |
| Banzane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prep Date:              | Analysis D | )ate: 1/        | 20/2012   | 9           | SeqNo: 1 | 3958      | Units: µg/L |        |          |      |
| Toluene         ND         1.0           Ethylberzene         ND         1.0           Methyl terk-tudyl eider (MTBE)         ND         1.0           1.2.4-Trimethylbenzene         ND         1.0           1.3.5-Trimethylbenzene         ND         1.0           1.2-Dichloroefhane (EDD)         ND         1.0           N.D. 1.0         ND         2.0           1-Methylaphthalene         ND         4.0           2-Methylaphthalene         ND         1.0           Bromodorbane         ND         1.0           Bromodorbane         ND         1.0           Bromoderane         ND         1.0           Bromoderane         ND         1.0           Bromoderane         ND         1.0           Bromoderane         ND         1.0           Carbon disulfide         ND         1.0           Carbon disulfide         ND         1.0           Carbon disulfide         ND         1.0           Chloroefhane         ND         1.0           Chloroefhane         ND         1.0           Chloroefhane         ND         1.0           Chloroefhane         ND         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analyte                 | Result     | PQL             | SPK value | SPK Ref Val | %REC     | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |
| Ethylbazzene         ND         1.0           Mathyl Nerbuyl ether (MTBE)         ND         1.0           1.24-Frimethybenzene         ND         1.0           1.35-Frimethybenzene         ND         1.0           1.2-Dichhoredhane (EDC)         ND         1.0           1.2-Dichhoredhane (EDB)         ND         1.0           Naphthalene         ND         4.0           4-Methylnaphthalene         ND         4.0           Acetone         ND         1.0           Bromodichorenethane         ND         1.0           Carbon feurachloride         ND         1.0           Carbon feurachloride         ND         1.0           Carbon feurachloride         ND         1.0           Chlorodicure         ND         1.0           Chlorodicure         ND         1.0           Chlorodicure         ND         1.0           cis-1.3-Dichloropropene         ND         1.0           Dibromoch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |            |                 |           |             |          |           |             |        |          |      |
| Methyl terb utyle ther (MTBE)         ND         1.0           1.24-Trimethylberuzene         ND         1.0           1.35-Trimethylberuzene         ND         1.0           1.2-Dibromoethane (EDB)         ND         1.0           Nphithalene         ND         2.0           1-Medhylnaphthalene         ND         4.0           2-Methylnaphthalene         ND         1.0           Rorondorm         ND         1.0           Bromoderane         ND         1.0           Bromodifhormethane         ND         1.0           Bromodermene         ND         1.0           Carbon disulfide         ND         1.0           Carbon disulfide         ND         1.0           Chlorodermene         ND         1.0           Chlorodermene         ND         3.0           2-Chlorodubuse         ND         1.0           4-Chlorodubuse         ND         1.0           4-L-Dichloropropane         ND <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |            |                 |           |             |          |           |             |        |          |      |
| 1,2,4-Trimethylbenzene         ND         1,0           1,3,5-Trimethylbenzene         ND         1,0           1,2-Delchorechene (ECD)         ND         1,0           1,2-Dibromoeshane (EDB)         ND         1,0           Naphthalene         ND         2,0           1-Meditylinaphthalene         ND         4,0           2-Methylnaphthalene         ND         1,0           Romodelkhormethane         ND         1,0           Bromoform         ND         1,0           Bromoform         ND         1,0           Bromoform         ND         1,0           Carbon festabloride         ND         1,0           Carbon festabloride         ND         1,0           Chlorobenzene         ND         1,0           Chlorobloropene         ND         1,0           Chlorobloropene         ND         1,0           Est-1,3-Dichloropene         ND         1,0           Elybromoesthane         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 .                     |            |                 |           |             |          |           |             |        |          |      |
| 1.3.5-Trinedryblenzene         ND         1.0           1.2-Dichronoethane (EDC)         ND         1.0           1.2-Dichronoethane (EDC)         ND         1.0           Naphthalene         ND         2.0           1-Methylnaphthalene         ND         4.0           2-Methylnaphthalene         ND         1.0           Bromoberne         ND         1.0           Bromodichloromethane         ND         1.0           Bromomethane         ND         1.0           Bromomethane         ND         1.0           Carbon alsulfide         ND         1.0           Carbon siguifide         ND         1.0           Chlorodenzene         ND         1.0           Chlorodoluene         ND         1.0           Chlorodoluene         ND         1.0           Chlorodoluene         ND         1.0           Chlorodoloromethane         ND         1.0 <td></td> <td></td> <td>1.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |            | 1.0             |           |             |          |           |             |        |          |      |
| 1.2-Dichioroethane (EDC) ND 1.0 1.2-Dibromoethane (EDB) ND 1.0 ND 2.0 1-Methylinaphthalene ND 2.0 1-Methylinaphthalene ND 4.0 2-Methylinaphthalene ND 1.0 Bromobenzene ND 10 Bromobenzene ND 1.0 Bromodelhormethane ND 1.0 Bromodelhormethane ND 1.0 Bromodelhormethane ND 1.0 Bromomethane ND 1.0 Bromodelhormethane ND 1.0 Carbon disulfiel ND 10 Carbon disulfiel ND 1.0 Chlorobenzene ND 1.0 Ch |                         |            |                 |           |             |          |           |             |        |          |      |
| 1,2-Dibromethane (EDB)         ND         1,0           Naphthalene         ND         4,0           2-Methylnaphthalene         ND         4,0           2-Methylnaphthalene         ND         1,0           Bromobezne         ND         1,0           Bromodichloromethane         ND         1,0           Bromoform         ND         1,0           Bromoform         ND         1,0           Bromoform         ND         1,0           Bromoform         ND         1,0           Carbon disulfide         ND         1,0           Carbon Tetrachloride         ND         1,0           Chloroform         ND         1,0           Chloroform         ND         1,0           Chloroform         ND         1,0           4-Chlorofoluene         ND         1,0           4-Chlorofoluene         ND         1,0           64-1,3-Dichloropropene         ND         1,0           1bbromocal-taloropropene         ND         1,0           1bbromocal-taloropropene         ND         1,0           1bbromocal-taloropropene         ND         1,0           1bbromocal-taloropropene         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | ND         |                 |           |             |          |           |             |        |          |      |
| Naphthalene         ND         2.0           1-Methylnaphthalene         ND         4.0           2-Methylnaphthalene         ND         4.0           Acetone         ND         1.0           Bromobenzene         ND         1.0           Bromoform         ND         1.0           Bromonethane         ND         3.0           2-Butanone         ND         1.0           Carbon disulfide         ND         1.0           Chlorobenzene         ND         1.0           Chlorotoluene         ND         1.0           chlorotoluene         ND         1.0           ch-1,2-DCE         ND         1.0           dis-1,3-Dictiloropropane         ND         1.0           Dibromomethiane         ND         1.0           1,2-Dibrimosezane         ND         1.0           1,4-Dichl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |            |                 |           |             |          |           |             |        |          |      |
| 1-Methyinaphthalene         ND         4,0           2-Methyinaphthalene         ND         4,0           Acetane         ND         10           Bromobenzene         ND         1,0           Bromodelhlomethane         ND         1,0           Bromofem         ND         3,0           2-Butanone         ND         10           Carbon disulfide         ND         10           Carbon disulfide         ND         1,0           Chlorobenzene         ND         1,0           Chlorobenzene         ND         1,0           Chlorotethane         ND         3,0           Chlorotomethane         ND         1,0           Chlorotomethane         ND         1,0           Chlorotomethane         ND         1,0           Chlorotomethane         ND         1,0           cis-1,2-DCE         ND         1,0           cis-1,2-DCE         ND         1,0           Dibromo-A-chloropropane         ND         1,0           Dibromo-Schoropropane         ND         1,0           1,2-Dichlorobenzene         ND         1,0           1,4-Dichlorobenzene         ND         1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2-Dibromoethane (EDB) | ND         | 1.0             |           |             |          |           |             |        |          |      |
| 2-Methylnaphthalene         ND         4.0           Acetone         ND         1.0           Bromodichloromethane         ND         1.0           Bromodichloromethane         ND         1.0           Bromodichloromethane         ND         1.0           Bromomethane         ND         1.0           2-Butanone         ND         1.0           Carbon disulfide         ND         1.0           Carbon Tetrachloride         ND         1.0           Chlorobenzene         ND         1.0           Chloroform         ND         1.0           Chloroform         ND         3.0           2-Chlorofoluene         ND         1.0           4-Chlorotoluene         ND         1.0           4-Chlorotoluene         ND         1.0           6s-1,3-Dichloropropene         ND         1.0           cis-1,3-Dichloropropene         ND         1.0           Dibromochloromethane         ND         1.0           1,2-Dichlorobenzene         ND         1.0           1,1-Dichlorobenzene         ND         1.0           1,1-Dichlorobenzene         ND         1.0           1,1-Dichloroethane         ND <td>Naphthalene</td> <td>ND</td> <td>2.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Naphthalene             | ND         | 2.0             |           |             |          |           |             |        |          |      |
| Acetone         ND         10           Bromoberzene         ND         1.0           Bromodichloromethane         ND         1.0           Bromonethane         ND         1.0           Bromonethane         ND         3.0           2-Butanone         ND         10           Carbon disulide         ND         10           Carbon Tetrachloride         ND         1.0           Chlorobenzene         ND         1.0           Chloroethane         ND         1.0           Chloroethane         ND         1.0           Chlorotoluene         ND         1.0           Chlorotoluene         ND         1.0           cis-1,2-DCE         ND         1.0           cis-1,2-DCE         ND         1.0           ch-1,2-Dichloropropene         ND         2.0           Dibromochioromethane         ND         1.0           1,2-Dichlorobenzene         ND         1.0           1,4-Dichlorobenzene         ND         1.0           1,4-Dichloroethane         ND         1.0           1,1-Dichloroethane         ND         1.0           1,2-Dichloropethane         ND         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-Methylnaphthalene     | ND         | 4.0             |           |             |          |           |             |        |          |      |
| Bromobenzene         ND         1.0           Bromofolinkoromethane         ND         1.0           Bromoform         ND         3.0           2-Butanone         ND         10           Carbon Tetrachloride         ND         10           Carbon Tetrachloride         ND         1.0           Chlorotebrane         ND         1.0           Chlorotem         ND         1.0           Chlorotem         ND         1.0           Chlorotem         ND         1.0           Chlorotemethane         ND         1.0           4-Chlorotoluene         ND         1.0           4-Chlorotoluene         ND         1.0           4-Chlorotoluene         ND         1.0           6:s-1,2-DCE         ND         1.0           6:s-1,2-Dichloropropene         ND         1.0           1,2-Dichlorobenzane         ND         1.0           1,2-Dichlorobenzane         ND         1.0           1,4-Dichlorobenzane         ND         1.0           1,1-Dichloropriane         ND         1.0           1,1-Dichloropriane         ND         1.0           1,1-Dichloropriopane         ND         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-Methylnaphthalene     | ND         | 4.0             |           |             |          |           |             |        |          |      |
| Bromodichloromethane         ND         1.0           Bromoform         ND         1.0           Bromomethane         ND         3.0           2-Butanone         ND         10           Carbon disulfide         ND         10           Carbon Tetrachloride         ND         1.0           Chlorobenzene         ND         1.0           Chlorodethane         ND         1.0           Chloromethane         ND         3.0           2-Chlorobluene         ND         1.0           4-Chlorotoluene         ND         1.0           4-Chlorotoluene         ND         1.0           45-1,3-Dichloropropene         ND         1.0           1,2-Dichromo-3-chloropropane         ND         1.0           1,2-Dichlorobenzene         ND         1.0           1,2-Dichlorobenzene         ND         1.0           1,4-Dichlorobenzene         ND         1.0           1,4-Dichlorobenzene         ND         1.0           1,1-Dichloroethane         ND         1.0           1,1-Dichloroethane         ND         1.0           1,1-Dichloroethane         ND         1.0           1,1-Dichloroethane         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Acetone                 | ND         | 10              |           |             |          |           |             |        |          |      |
| Bromoform         ND         1.0           Bromomethane         ND         3.0           2-Butanone         ND         10           Carbon disulfide         ND         10           Carbon Tetrachloride         ND         1.0           Chlorobenzane         ND         1.0           Chlorodhane         ND         3.0           Chloromethane         ND         3.0           2-Chlorotoluene         ND         1.0           4-Chlorotoluene         ND         1.0           4-Chlorotoluene         ND         1.0           45-Llorotoluene         ND         1.0           15-Dibloromoethane         ND         1.0           15-Diblorotoluene         ND         1.0           1,4-Dichlorothane         ND         1.0           1,4-Dichlorothane         ND         1.0           1,4-Dichlorothane         ND         1.0      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bromobenzene            | ND         | 1.0             |           |             |          |           |             |        |          |      |
| Bromomethane         ND         3.0           2-Butanone         ND         10           Carbon disulfide         ND         10           Carbon Tetrachloride         ND         1.0           Chlorobernzene         ND         1.0           Chloroethane         ND         1.0           Chloroethane         ND         3.0           Chloroethane         ND         1.0           Chlorotoluene         ND         1.0           4-Chlorotoluene         ND         1.0           4-Chlorotoluene         ND         1.0           4-Chlorotoluene         ND         1.0           6s-1,2-DCE         ND         1.0           6s-1,2-DCE         ND         1.0           Dibromo-3-chloropropene         ND         1.0           Dibromoethane         ND         1.0           1,2-Dichlorobenzene         ND         1.0           1,3-Dichlorobenzene         ND         1.0           Nb-lorobenzene         ND         1.0           Nb-lorobenzene         ND         1.0           Nb-lorobenzene         ND         1.0           Nb-lorobenzene         ND         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bromodichloromethane    | ND         | 1.0             |           |             |          |           |             |        |          |      |
| 2-Butanone         ND         10           Carbon Tetrachloride         ND         10           Chlorobenzene         ND         1.0           Chloroefitane         ND         2.0           Chloroform         ND         1.0           Chloroefitane         ND         3.0           2-Chlorotoluene         ND         1.0           4-Chlorotoluene         ND         1.0           6is-1,3-Dichloropropene         ND         1.0           6is-1,3-Dichloropropane         ND         1.0           1/2-Dirbomo-3-chloropropane         ND         1.0           Dibromomblane         ND         1.0           1,2-Dichlorobenzene         ND         1.0           1,3-Dichlorobenzene         ND         1.0           1,4-Dichlorobenzene         ND         1.0           Dichlorodifluoromethane         ND         1.0           1,1-Dichlorobenzene         ND         1.0           1,1-Dichlorobenzene         ND         1.0           1,1-Dichlorobenzene         ND         1.0           1,1-Dichlorobenzene         ND         1.0           1,2-Dichloropropane         ND         1.0           1,2-Dichloropropa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bromoform               | ND         | 1.0             |           |             |          |           |             |        |          |      |
| Carbon disulfide         ND         10           Carbon Tetrachloride         ND         1.0           Chlorobenzene         ND         1.0           Chloroethane         ND         2.0           Chloromethane         ND         3.0           2-Chlorotoluene         ND         1.0           4-Chlorotoluene         ND         1.0           6is-1,2-DCE         ND         1.0           6is-1,3-Dichloropropene         ND         1.0           1,2-Dibromo-3-chloropropane         ND         1.0           1,2-Dichlorobenzene         ND         1.0           1,2-Dichlorobenzene         ND         1.0           1,4-Dichlorobenzene         ND         1.0           1,4-Dichlorobenzene         ND         1.0           1,1-Dichloroethane         ND         1.0           1,1-Dichloroethane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           1,3-Dichloropr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bromomethane            | ND         | 3.0             |           |             |          |           |             |        |          |      |
| Carbon Tetrachloride         ND         1.0           Chlorobenzene         ND         1.0           Chloroethane         ND         2.0           Chloroform         ND         1.0           Chloromethane         ND         3.0           2-Chlorotoluene         ND         1.0           4-Chlorotoluene         ND         1.0           6is-1,2-DCE         ND         1.0           cis-1,3-Dichloropropene         ND         1.0           1,2-Dichorom-3-chloropropane         ND         1.0           Dibromochloromethane         ND         1.0           1,2-Dichlorobenzene         ND         1.0           1,3-Dichlorobenzene         ND         1.0           1,4-Dichlorobenzene         ND         1.0           1,4-Dichlorobenzene         ND         1.0           1,1-Dichloroethane         ND         1.0           1,1-Dichloroethane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           1,3-Dichloropropa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-Butanone              | ND         | 10              |           |             |          |           |             |        |          |      |
| Carbon Tetrachloride         ND         1.0           Chlorobenzene         ND         1.0           Chloroethane         ND         2.0           Chlororoffm         ND         1.0           Chloromethane         ND         3.0           2-Chlorotoluene         ND         1.0           4-Chlorotoluene         ND         1.0           cis-1,2-DCE         ND         1.0           cis-1,3-Dichloropropane         ND         1.0           1,2-Dichnoro-3-chloropropane         ND         1.0           Dibromochloromethane         ND         1.0           1,2-Dichlorobenzene         ND         1.0           1,3-Dichlorobenzene         ND         1.0           1,4-Dichlorobenzene         ND         1.0           1,1-Dichloroethane         ND         1.0           1,1-Dichloroethane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           1,2-Dichloroprop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Carbon disulfide        | ND         | 10              |           |             |          |           |             |        |          |      |
| Chlorobenzene         ND         1.0           Chloroethane         ND         2.0           Chloroform         ND         1.0           Chloromethane         ND         3.0           2-Chlorotoluene         ND         1.0           4-Chlorotoluene         ND         1.0           cis-1,2-DCE         ND         1.0           cis-1,3-Dichloropropene         ND         1.0           1,2-Dibromo-3-chloropropane         ND         1.0           Dibromomethane         ND         1.0           1,2-Dichlorobenzene         ND         1.0           1,3-Dichlorobenzene         ND         1.0           1,4-Dichlorobenzene         ND         1.0           1,1-Dichloroethane         ND         1.0           1,1-Dichloroethane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Carbon Tetrachloride    | ND         |                 |           |             |          |           |             |        |          |      |
| Chloroform         ND         2.0           Chloroform         ND         1.0           Chloromethane         ND         3.0           2-Chlorotoluene         ND         1.0           4-Chlorotoluene         ND         1.0           dis-1,2-DCE         ND         1.0           dis-1,3-Dichloropropene         ND         1.0           1,2-Dibromo-3-chloropropane         ND         1.0           Dibromoethane         ND         1.0           1,2-Dichlorobenzene         ND         1.0           1,3-Dichlorobenzene         ND         1.0           1,4-Dichlorobenzene         ND         1.0           1,1-Dichloroethane         ND         1.0           1,1-Dichloroethane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           1,1-Dichloropropane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,2-Dichloropropane <td>Chlorobenzene</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chlorobenzene           |            |                 |           |             |          |           |             |        |          |      |
| Chloroform         ND         1.0           Chloromethane         ND         3.0           2-Chlorotoluene         ND         1.0           4-Chlorotoluene         ND         1.0           cis-1,2-DCE         ND         1.0           cis-1,3-Dichloropropene         ND         1.0           1,2-Dichloropropane         ND         1.0           Dibromo-3-chloropropane         ND         1.0           Dibromodelhane         ND         1.0           1,2-Dichlorobenzene         ND         1.0           1,3-Dichlorobenzene         ND         1.0           1,4-Dichlorobenzene         ND         1.0           1,1-Dichlorodelhane         ND         1.0           1,1-Dichlorobenzene         ND         1.0           1,2-Dichloropropane         ND         1.0           1,1-Dichloropropane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,2-Dichloropr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chloroethane            |            |                 |           |             |          |           |             |        |          |      |
| Chloromethane         ND         3.0           2-Chlorotoluene         ND         1.0           4-Chlorotoluene         ND         1.0           cis-1,2-DCE         ND         1.0           cis-1,3-Dichloropropene         ND         1.0           1,2-Dibromo-3-chloropropane         ND         1.0           Dibromochloromethane         ND         1.0           1,2-Dichlorobenzene         ND         1.0           1,3-Dichlorobenzene         ND         1.0           1,4-Dichlorobenzene         ND         1.0           1,4-Dichlorobenzene         ND         1.0           1,1-Dichloroethane         ND         1.0           1,1-Dichloroethane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,2-Dichloropropane         ND         1.0           2,2-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           1,1-Dichloropropane         ND         1.0           1,1-Dichloropropane         ND         1.0           1,2-Dichloropropane         ND         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |            |                 |           |             |          |           |             |        |          |      |
| 2-Chlorotoluene         ND         1.0           4-Chlorotoluene         ND         1.0           cis-1,2-DCE         ND         1.0           cis-1,3-Dichloropropene         ND         1.0           1,2-Dibromo-3-chloropropane         ND         2.0           Dibromochloromethane         ND         1.0           Dibromomethane         ND         1.0           1,2-Dichlorobenzene         ND         1.0           1,3-Dichlorobenzene         ND         1.0           1,4-Dichlorobenzene         ND         1.0           1,1-Dichloroethane         ND         1.0           1,1-Dichloroethane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         2.0           1,1-Dichloropropane         ND         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |            |                 |           |             |          |           |             |        |          |      |
| 4-Chlorotoluene         ND         1.0           cis-1,2-DCE         ND         1.0           cis-1,3-Dichloropropene         ND         1.0           1,2-Dibromo-3-chloropropane         ND         2.0           Dibromochloromethane         ND         1.0           1,2-Dichlorobenzene         ND         1.0           1,3-Dichlorobenzene         ND         1.0           1,4-Dichlorobenzene         ND         1.0           1,1-Dichloroethane         ND         1.0           1,1-Dichloroethane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           1,1-Dichloropropane         ND         1.0           1,1-Dichloropropane         ND         1.0           1,1-Dichloropropane         ND         2.0           1,1-Dichloropropane         ND         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-Chlorotoluene         |            |                 |           |             |          |           |             |        |          |      |
| cis-1,2-DCE         ND         1.0           cis-1,3-Dichloropropene         ND         1.0           1,2-Dibromo-3-chloropropane         ND         2.0           Dibromochloromethane         ND         1.0           Dibromomethane         ND         1.0           1,2-Dichlorobenzene         ND         1.0           1,3-Dichlorobenzene         ND         1.0           1,4-Dichlorobenzene         ND         1.0           1,1-Dichloroethane         ND         1.0           1,1-Dichloroethane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           1,1-Dichloropropane         ND         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-Chlorotoluene         |            |                 |           |             |          |           |             |        |          |      |
| cis-1,3-Dichloropropene         ND         1.0           1,2-Dibromo-3-chloropropane         ND         2.0           Dibromochloromethane         ND         1.0           Dibromomethane         ND         1.0           1,2-Dichlorobenzene         ND         1.0           1,3-Dichlorobenzene         ND         1.0           1,4-Dichlorobenzene         ND         1.0           Dichlorodifluoromethane         ND         1.0           1,1-Dichloroethane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           2,2-Dichloropropane         ND         1.0           1,1-Dichloropropane         ND         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                       |            |                 |           |             |          |           |             |        |          |      |
| 1,2-Dibromo-3-chloropropane       ND       2.0         Dibromochloromethane       ND       1.0         1,2-Dichlorobenzene       ND       1.0         1,3-Dichlorobenzene       ND       1.0         1,4-Dichlorobenzene       ND       1.0         Dichlorodifluoromethane       ND       1.0         1,1-Dichloroethane       ND       1.0         1,2-Dichloropropane       ND       1.0         1,3-Dichloropropane       ND       1.0         2,2-Dichloropropane       ND       2.0         1,1-Dichloropropane       ND       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |            |                 |           |             |          |           |             |        |          |      |
| Dibromochloromethane         ND         1.0           Dibromomethane         ND         1.0           1,2-Dichlorobenzene         ND         1.0           1,3-Dichlorobenzene         ND         1.0           1,4-Dichlorobenzene         ND         1.0           Dichlorodifluoromethane         ND         1.0           1,1-Dichloroethane         ND         1.0           1,2-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           2,2-Dichloropropane         ND         2.0           1,1-Dichloropropene         ND         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |            |                 |           |             |          |           |             |        |          |      |
| Dibromomethane         ND         1.0           1,2-Dichlorobenzene         ND         1.0           1,3-Dichlorobenzene         ND         1.0           1,4-Dichlorobenzene         ND         1.0           Dichlorodifluoromethane         ND         1.0           1,1-Dichloroethane         ND         1.0           1,1-Dichloropropane         ND         1.0           1,2-Dichloropropane         ND         1.0           2,2-Dichloropropane         ND         1.0           2,2-Dichloropropane         ND         2.0           1,1-Dichloropropene         ND         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |            |                 |           |             |          |           |             |        |          |      |
| 1,2-Dichlorobenzene       ND       1.0         1,3-Dichlorobenzene       ND       1.0         1,4-Dichlorobenzene       ND       1.0         Dichlorodifluoromethane       ND       1.0         1,1-Dichloroethane       ND       1.0         1,1-Dichloroethene       ND       1.0         1,2-Dichloropropane       ND       1.0         1,3-Dichloropropane       ND       2.0         1,1-Dichloropropene       ND       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |            |                 |           |             |          |           |             |        |          |      |
| 1,3-Dichlorobenzene       ND       1.0         1,4-Dichlorobenzene       ND       1.0         Dichlorodifluoromethane       ND       1.0         1,1-Dichloroethane       ND       1.0         1,1-Dichloroethene       ND       1.0         1,2-Dichloropropane       ND       1.0         1,3-Dichloropropane       ND       1.0         2,2-Dichloropropane       ND       2.0         1,1-Dichloropropene       ND       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |            |                 |           |             |          |           |             |        |          |      |
| 1,4-Dichlorobenzene       ND       1.0         Dichlorodifluoromethane       ND       1.0         1,1-Dichloroethane       ND       1.0         1,2-Dichloroptopane       ND       1.0         1,2-Dichloropropane       ND       1.0         1,3-Dichloropropane       ND       1.0         2,2-Dichloropropane       ND       2.0         1,1-Dichloropropene       ND       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |            |                 |           |             |          |           |             |        |          |      |
| Dichlorodifluoromethane         ND         1.0           1,1-Dichloroethane         ND         1.0           1,1-Dichloroethene         ND         1.0           1,2-Dichloropropane         ND         1.0           1,3-Dichloropropane         ND         1.0           2,2-Dichloropropane         ND         2.0           1,1-Dichloropropene         ND         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |            |                 |           |             |          |           |             |        |          |      |
| 1,1-Dichloroethane       ND       1.0         1,1-Dichloroethene       ND       1.0         1,2-Dichloropropane       ND       1.0         1,3-Dichloropropane       ND       1.0         2,2-Dichloropropane       ND       2.0         1,1-Dichloropropene       ND       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |            |                 |           |             |          |           |             |        |          |      |
| 1,1-Dichloroethene       ND       1.0         1,2-Dichloropropane       ND       1.0         1,3-Dichloropropane       ND       1.0         2,2-Dichloropropane       ND       2.0         1,1-Dichloropropene       ND       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |            |                 |           |             |          |           |             |        |          |      |
| 1,2-Dichloropropane       ND       1.0         1,3-Dichloropropane       ND       1.0         2,2-Dichloropropane       ND       2.0         1,1-Dichloropropene       ND       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |            |                 |           |             |          |           |             |        |          |      |
| 1,3-Dichloropropane       ND       1.0         2,2-Dichloropropane       ND       2.0         1,1-Dichloropropene       ND       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |            |                 |           |             |          |           |             |        |          |      |
| 2,2-DichloropropaneND2.01,1-DichloropropeneND1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |            |                 |           |             |          |           |             |        |          |      |
| 1,1-Dichloropropene ND 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |            |                 |           |             |          |           |             |        |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |            |                 |           |             |          |           |             |        |          |      |
| TIGAQUIIOTOVULQUIGITO IND 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |            |                 |           |             |          |           |             |        |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I IONACTIOI ODULAUIETTE | ND         | 1.0             |           |             |          |           |             |        |          |      |

- \*/X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1201473

10-Feb-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1st Qtr 1-17-12

| Sample ID 5ml rb            | SampT       | ype: Mi          | BLK              | TestCode: EPA Method 8260B: VOLATILES |            |             |             |        |          |      |  |
|-----------------------------|-------------|------------------|------------------|---------------------------------------|------------|-------------|-------------|--------|----------|------|--|
| Client ID: PBW              | Batch       | 1 ID: <b>R</b> 4 | 186              | F                                     | RunNo: 486 |             |             |        |          |      |  |
| Prep Date:                  | Analysis D  | ate: 1           | /20/2012         | 8                                     | eqNo: 1    | 3958        | Units: µg/L |        |          |      |  |
| Analyte                     | Result      | PQL              | SPK value        | SPK Ref Val                           | %REC       | LowLimit    | HighLimit   | %RPD   | RPDLimit | Quai |  |
| 2-Hexanone                  | ND          | 10               |                  |                                       |            |             |             |        |          |      |  |
| Isopropylbenzene            | ND          | 1.0              |                  |                                       |            |             |             |        |          |      |  |
| 4-Isopropyltoluene          | ND          | 1.0              |                  |                                       |            |             |             |        |          |      |  |
| 4-Methyl-2-pentanone        | ND          | 10               |                  |                                       |            |             |             |        |          |      |  |
| Methylene Chloride          | ND          | 3.0              |                  |                                       |            |             |             |        |          |      |  |
| n-Butylbenzene              | ND          | 1.0              |                  |                                       |            |             |             |        |          |      |  |
| n-Propylbenzene             | ND          | 1.0              |                  |                                       |            |             |             |        |          |      |  |
| sec-Butylbenzene            | ND          | 1.0              |                  |                                       |            |             |             |        |          |      |  |
| Styrene                     | ND          | 1.0              |                  |                                       |            |             |             |        |          |      |  |
| ert-Butylbenzene            | ND          | 1.0              |                  |                                       |            |             |             |        |          |      |  |
| 1,1,1,2-Tetrachloroethane   | ND          | 1.0              |                  |                                       |            |             |             |        |          |      |  |
| 1,1,2,2-Tetrachloroethane   | ND          | 2.0              |                  |                                       |            |             |             |        |          |      |  |
| Tetrachloroethene (PCE)     | ND          | 1.0              |                  |                                       |            |             |             |        |          |      |  |
| rans-1,2-DCE                | ND          | 1.0              |                  |                                       |            |             |             |        |          |      |  |
| rans-1,3-Dichloropropene    | ND          | 1.0              |                  |                                       |            |             |             |        |          |      |  |
| 1,2,3-Trichlorobenzene      | ND          | 1.0              |                  |                                       |            |             |             |        |          |      |  |
| 1,2,4-Trichlorobenzene      | ND          | 1.0              |                  |                                       |            |             |             |        |          |      |  |
| 1,1,1-Trichloroethane       | ND          | 1.0              |                  |                                       |            |             |             |        |          |      |  |
| 1,1,2-Trichloroethane       | ND          | 1.0              |                  |                                       |            |             |             |        |          |      |  |
| Frichloroethene (TCE)       | ND          | 1.0              |                  |                                       |            |             |             |        |          |      |  |
| richlorofluoromethane       | ND          | 1.0              |                  |                                       |            |             |             |        |          |      |  |
| ,2,3-Trichloropropane       | ND          | 2.0              |                  |                                       |            |             |             |        |          |      |  |
| /inyl chloride              | ND          | 1.0              |                  |                                       |            |             |             |        |          |      |  |
| (ylenes, Total              | ND          | 1.5              |                  |                                       |            |             |             |        |          |      |  |
| Surr: 1,2-Dichloroethane-d4 | 7.3         |                  | 10.00            |                                       | 72.8       | 70          | 130         |        |          |      |  |
| Surr: 4-Bromofluorobenzene  | 8.3         |                  | 10.00            |                                       | 82.8       | 70          | 130         |        |          |      |  |
| Surr: Dibromofluoromethane  | 8.0         |                  | 10.00            |                                       | 80.3       | 69.8        | 130         |        |          |      |  |
| Surr: Toluene-d8            | 8.3         |                  | 10.00            |                                       | 83.4       | 70          | 130         |        |          |      |  |
| Sample ID 100ng Ics         | SampTy      | /pe: LC          | <del></del><br>S | Test                                  | Code: EF   | A Method    | 8260B: VOL  | ATILES |          |      |  |
| Client ID: LCSW             | Batch       | ID: <b>R</b> 4   | 86               | R                                     | unNo: 48   | 36          |             |        |          |      |  |
| Prep Date:                  | Analysis Da | ate: 1/2         | 20/2012          | s                                     | eqNo: 13   | <b>3959</b> | Units: µg/L |        |          |      |  |
| Analyte                     | Result      | PQL              | CDKk.            | SPK Ref Val                           |            | LowLimit    | HighLimit   | %RPD   | RPDLimit | Qual |  |

| Ou | alifie | rs: |
|----|--------|-----|

Benzene

Toluene

Chlorobenzene

1,1-Dichloroethene

Trichloroethene (TCE)

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Value exceeds Maximum Contaminant Level.

21

21

21

23

20

7.3

9.3

1.0

1.0

1.0

1.0

1.0

20.00

20.00

20.00

20.00

20.00

10.00

10.00

Е Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

81.1

82.3

83.1

67.4

70

70

70

130

122

130

126

137

130

130

Not Detected at the Reporting Limit

106

105

105

113

99.1

73.3

93.1

0

0

0

0

Reporting Detection Limit

Page 9 of 21

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1201473

10-Feb-12

Client:

Western Refining Southwest, Inc.

SampType: MBLK

Project:

Sample ID b9

Injection Well 1st Qtr 1-17-12

|   | Sample ID 100ng ics        | SampType:             | LCS         | Tes         | tCode: El | PA Method         | 8260B: VOL  | ATILES |          |      |  |
|---|----------------------------|-----------------------|-------------|-------------|-----------|-------------------|-------------|--------|----------|------|--|
| J | Client ID: LCSW            | : LCSW Batch ID: R486 |             |             |           | RunNo: <b>486</b> |             |        |          |      |  |
| ŀ | Prep Date:                 | Analysis Date:        | 1/20/2012   | S           | SeqNo: 1  | 3959              | Units: µg/L |        |          |      |  |
| ì | Analyte                    | Result PQ             | L SPK value | SPK Ref Val | %REC      | LowLimit          | HighLimit   | %RPD   | RPDLimit | Qual |  |
| 1 | Surr: Dibromofluoromethane | 8.0                   | 10.00       |             | 80.4      | 69.8              | 130         |        |          |      |  |
| 1 | Surr: Toluene-d8           | 9.2                   | 10.00       |             | 91.8      | 70                | 130         |        |          |      |  |

| I | Sample ID 100ng ics         | SampT      | ype: LC       | s         | Tes          | tCode: El | PA Method | 8260B: VOL  | ATILES |          |      |  |
|---|-----------------------------|------------|---------------|-----------|--------------|-----------|-----------|-------------|--------|----------|------|--|
| ļ | Client ID: LCSW             | Batch      | 1D: <b>R4</b> | 86        | F            | RunNo: 4  | 86        |             |        |          |      |  |
| 1 | Prep Date:                  | Analysis D | ate: 1/       | 20/2012   | SeqNo: 14361 |           |           | Units: µg/L |        |          |      |  |
| l | Analyte                     | Result     | PQL           | SPK value | SPK Ref Val  | %REC      | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |  |
|   | Benzene                     | 22         | 1.0           | 20.00     | 0            | 109       | 81.1      | 130         |        |          |      |  |
| ï | Toluene                     | 22         | 1.0           | 20.00     | 0            | 110       | 82.3      | 122         |        |          |      |  |
| ı | Chlorobenzene               | 21         | 1.0           | 20.00     | 0            | 107       | 70        | 130         |        |          |      |  |
| ŀ | 1,1-Dichloroethene          | 23         | 1.0           | 20.00     | 0            | 116       | 83.1      | 126         |        |          |      |  |
|   | Trichloroethene (TCE)       | 21         | 1.0           | 20.00     | 0            | 106       | 67.4      | 137         |        |          |      |  |
| 1 | Surr: 1,2-Dichloroethane-d4 | 8.1        |               | 10.00     |              | 81.1      | 70        | 130         |        |          |      |  |
| L | Surr: 4-Bromofluorobenzene  | 9.5        |               | 10.00     |              | 95.2      | 70        | 130         |        |          |      |  |
|   | Surr: Dibromofluoromethane  | 8.3        |               | 10.00     |              | 82.8      | 69.8      | 130         |        |          |      |  |
| ĺ | Surr: Toluene-d8            | 9.1        |               | 10.00     |              | 91.1      | 70        | 130         |        |          |      |  |

|    | Client ID: PBW                 | Batch      | ID: <b>R4</b> | 86        | F           | RunNo: 4 | B6       |             |      |          |      |
|----|--------------------------------|------------|---------------|-----------|-------------|----------|----------|-------------|------|----------|------|
| l  | Prep Date:                     | Analysis D | ate: 1/       | 20/2012   | S           | SeqNo: 1 | 5528     | Units: µg/L |      |          |      |
| p  | Analyte                        | Result     | PQL           | SPK value | SPK Ref Val | %REC     | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| ï  | Benzene                        | ND         | 1.0           |           |             | _        |          |             |      |          |      |
| l  | Toluene                        | ND         | 1.0           |           |             |          |          |             |      |          |      |
| P. | Ethylbenzene                   | ND         | 1.0           |           |             |          |          |             |      |          |      |
| v  | Methyl tert-butyl ether (MTBE) | ND         | 1.0           |           |             |          |          |             |      |          |      |
| l  | 1,2,4-Trimethylbenzene         | ND         | 1.0           |           |             |          |          |             |      |          |      |
| ł  | 1,3,5-Trimethylbenzene         | ND         | 1.0           |           |             |          |          |             |      |          |      |
|    | 1,2-Dichloroethane (EDC)       | ND         | 1.0           |           |             |          |          |             |      |          |      |
| T  | 1,2-Dibromoethane (EDB)        | ND         | 1.0           |           |             |          |          |             |      |          |      |
| ľ  | Naphthalene                    | ND         | 2.0           |           |             |          |          |             |      |          |      |
|    | 1-Methylnaphthalene            | ND         | 4.0           |           |             |          |          |             |      |          |      |
| i  | 2-Methylnaphthalene            | ND         | 4.0           |           |             |          |          |             |      |          |      |
| ľ  | Acetone                        | ND         | 10            |           |             |          |          |             |      |          |      |
| ŀ  | Bromobenzene                   | ND         | 1.0           |           |             |          |          |             |      |          |      |
|    | Bromodichloromethane           | ND         | 1.0           |           |             |          |          |             |      |          |      |
| ı  | Bromoform                      | ND         | 1.0           |           |             |          |          |             |      |          |      |
| l  | Bromomethane                   | ND         | 3.0           |           |             |          |          |             |      |          |      |
|    | 2-Butanone                     | ND         | 10            |           |             |          |          |             |      |          |      |
| i  | Carbon disulfide               | ND         | 10            |           |             |          |          |             |      |          |      |
| L  | Carbon Tetrachloride           | ND         | 1.0           |           |             |          |          |             |      |          |      |

### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded

TestCode: EPA Method 8260B: VOLATILES

- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 10 of 21

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1201473

10-Feb-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1st Qtr 1-17-12

| Analysis D<br>Result<br>ND<br>ND | ID: R4<br>ate: 1/<br>PQL<br>1.0          | 20/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RunNo: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|----------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Result<br>ND<br>ND               | PQL                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Souther 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND<br>ND                         |                                          | SPK value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bedino. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Units: µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 1.0                                      | 01 11 10100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SPK Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LowLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HighLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RPDLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| NID                              | 2.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 1.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 3.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 1.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 1.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 2.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 1.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 1.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 1.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 1.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 1.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 1.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 1.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 1.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 1.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 1.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 2.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 1.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 1.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 10                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 1.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 1.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               | 10                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ND                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                  | ND N | ND 1.0 ND | ND 1.0 | ND 1.0 | ND 1.0 | ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 2.0 ND 1.0 | ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 2.0 ND 1.0 | ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 2.0 ND 1.0 | ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 2.0 ND 1.0 |  |

### Qualifiers:

- \*/X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 11 of 21

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1201473

10-Feb-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1st Qtr 1-17-12

| Sample ID b9                | SampT      | ype: ME                  | BLK       | Tes         | TestCode: EPA Method 8260B: VOLATILES |            |             |      |          |      |  |
|-----------------------------|------------|--------------------------|-----------|-------------|---------------------------------------|------------|-------------|------|----------|------|--|
| Client ID: PBW              | Batch      | ID: <b>R4</b>            | 86        | F           | RunNo: 4                              | 86         |             |      |          |      |  |
| Prep Date:                  | Analysis D | Analysis Date: 1/20/2012 |           |             | SeqNo: 1                              | 5528       | Units: µg/L |      |          |      |  |
| Analyte                     | Result     | PQL                      | SPK value | SPK Ref Val | %REC                                  | LowLimit   | HighLimit   | %RPD | RPDLimit | Qual |  |
| Trichloroethene (TCE)       | ND         | 1.0                      |           |             |                                       |            |             |      |          |      |  |
| Trichlorofluoromethane      | ND         | 1.0                      |           |             |                                       |            |             |      |          |      |  |
| 1,2,3-Trichloropropane      | ND         | 2.0                      |           |             |                                       |            |             |      |          |      |  |
| Vinyl chloride              | ND         | 1.0                      |           |             |                                       |            |             |      |          |      |  |
| Xylenes, Total              | ND         | 1.5                      |           |             |                                       |            |             |      |          |      |  |
| Surr: 1,2-Dichloroethane-d4 | 7.8        |                          | 10.00     |             | 77.8                                  | 70         | 130         |      |          |      |  |
| Surr: 4-Bromofluorobenzene  | 9.3        |                          | 10.00     |             | 92.9                                  | <b>7</b> 0 | 130         |      |          |      |  |
| Surr: Dibromofluoromethane  | 8.3        |                          | 10.00     |             | 83.4                                  | 69.8       | 130         |      |          |      |  |
| Surr: Toluene-d8            | 8.1        |                          | 10.00     |             | 81.4                                  | 70         | 130         |      |          |      |  |

### Qualifiers:

- \*X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 12 of 21

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1201473

10-Feb-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1st Qtr 1-17-12

| Sample ID mb-389                                     | SampT      | ype: MBLK      | Tes              | stCode: El | PA Method | 8270C: Semi | volatiles |          |      |
|------------------------------------------------------|------------|----------------|------------------|------------|-----------|-------------|-----------|----------|------|
| Client ID: PBW                                       | Batch      | n ID: 389      |                  | RunNo: 5   | 38        |             |           |          |      |
| Prep Date: 1/23/2012                                 | Analysis D | ate: 1/23/2012 |                  | SeqNo: 1   | 5303      | Units: µg/L |           |          |      |
| Analyte                                              | Result     | PQL SPK v      | alue SPK Ref Val | %REC       | LowLimit  | HighLimit   | %RPD      | RPDLimit | Qual |
| Acenaphthene                                         | ND         | 10             |                  |            |           |             |           |          |      |
| Acenaphthylene                                       | ND         | 10             |                  |            |           |             |           |          |      |
| Aniline                                              | ND         | 10             |                  |            |           |             |           |          |      |
| Anthracene                                           | ND         | 10             |                  |            |           |             |           |          |      |
| Azobenzene                                           | ND         | 10             |                  |            |           |             |           |          |      |
| Benz(a)anthracene                                    | ND         | 10             |                  |            |           |             |           |          |      |
| Benzo(a)pyrene                                       | ND         | 10             |                  |            |           |             |           |          |      |
| Benzo(b)fluoranthene                                 | ND         | 10             |                  |            |           |             |           |          |      |
| Benzo(g,h,i)perylene                                 | ND         | 10             |                  |            |           |             |           |          |      |
| Benzo(k)fluoranthene                                 | ND         | 10             |                  |            |           |             |           |          |      |
| Benzoic acid                                         | ND         | 20             |                  |            |           |             |           |          |      |
| Benzyl alcohol                                       | ND         | 10             |                  |            |           |             |           |          |      |
| Bis(2-chloroethoxy)methane                           | ND         | 10             |                  |            |           |             |           |          |      |
| Bis(2-chloroethyl)ether                              | ND         | 10             |                  |            |           |             |           |          |      |
| Bis(2-chloroisopropyl)ether                          | ND         | 10             |                  |            |           |             |           |          |      |
| Bis(2-ethylhexyl)phthalate                           | ND         | 10             |                  |            |           |             |           |          |      |
| 4-Bromophenyl phenyl ether<br>Butyl benzyl phthalate | ND         | 10             |                  |            |           |             |           |          |      |
| Carbazole                                            | ND<br>ND   | 10<br>10       |                  |            |           |             |           |          |      |
| 4-Chloro-3-methylphenol                              | ND         | 10             |                  |            |           |             |           |          |      |
| 4-Chloroaniline                                      | ND         | 10             |                  |            |           |             |           |          |      |
| 2-Chloronaphthalene                                  | ND         | 10             |                  |            |           |             |           |          |      |
| 2-Chlorophenol                                       | ND         | 10             |                  |            |           |             |           |          |      |
| 4-Chlorophenyl phenyl ether                          | ND         | 10             |                  |            |           |             |           |          |      |
| Chrysene                                             | ND         | 10             |                  |            |           |             |           |          |      |
| Di-n-butyl phthalate                                 | ND         | 10             |                  |            |           |             |           |          |      |
| Di-n-octyl phthalate                                 | ND         | 10             |                  |            |           |             |           |          |      |
| Dibenz(a,h)anthracene                                | ND         | 10             |                  |            |           |             |           |          |      |
| Dibenzofuran                                         | ND         | 10             |                  |            |           |             |           |          |      |
| 1,2-Dichlorobenzene                                  | ND         | 10             |                  |            |           |             |           |          |      |
| 1,3-Dichlorobenzene                                  | ND         | 10             |                  |            |           |             |           |          |      |
| 1,4-Dichlorobenzene                                  | ND         | 10             |                  |            |           |             |           |          |      |
| 3,3'-Dichlorobenzidine                               | ND         | 10             |                  |            |           |             |           |          |      |
| Diethyl phthalate                                    | ND         | 10             |                  |            |           |             |           |          |      |
| Dimethyl phthalate                                   | ND         | 10             |                  |            |           |             |           |          |      |
| 2,4-Dichlorophenol                                   | ND         | 20             |                  |            |           |             |           |          |      |
| 2,4-Dimethylphenol                                   | ND         | 10             |                  |            |           |             |           |          |      |
| 1,6-Dinitro-2-methylphenol                           | ND         | 20             |                  |            |           |             |           |          |      |
| 2,4-Dinitrophenol                                    | ND         | 20             |                  |            |           |             |           |          |      |
| 2,4-Dinitrotoluene                                   | ND         | 10             |                  |            |           |             |           |          |      |
| 2,6-Dinitrotoluene                                   | ND         | 10             |                  |            |           |             |           |          |      |

#### Qualifiers:

- \*X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 13 of 21

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1201473

10-Feb-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1st Qtr 1-17-12

| Sample ID mb-389           | SampT      | ype: MI | BLK       | Tes         | tCode: El       | PA Method | 8270C: Sem  | ivolatiles |          |      |
|----------------------------|------------|---------|-----------|-------------|-----------------|-----------|-------------|------------|----------|------|
| Client ID: PBW             | Batch      | ID: 38  | 9         | F           | RunNo: <b>5</b> | 38        |             |            |          |      |
| Prep Date: 1/23/2012       | Analysis D | ate: 1/ | /23/2012  | 5           | SeqNo: 1        | 5303      | Units: µg/L |            |          |      |
| Analyte                    | Result     | PQL     | SPK value | SPK Ref Val | %REC            | LowLimit  | HighLimit   | %RPD       | RPDLimit | Qual |
| Fluoranthene               | ND         | 10      |           |             |                 |           |             |            |          |      |
| Fluorene                   | ND         | 10      |           |             |                 |           |             |            |          |      |
| Hexachlorobenzene          | ND         | 10      |           |             |                 |           |             |            |          |      |
| Hexachlorobutadiene        | ND         | 10      |           |             |                 |           |             |            |          |      |
| Hexachlorocyclopentadiene  | ND         | 10      |           |             |                 |           |             |            |          |      |
| Hexachloroethane           | ND         | 10      |           |             |                 |           |             |            |          |      |
| Indeno(1,2,3-cd)pyrene     | ND         | 10      |           |             |                 |           |             |            |          |      |
| Isophorone                 | ND         | 10      |           |             |                 |           |             |            |          |      |
| 1-Methylnaphthalene        | ND         | 10      |           |             |                 |           |             |            |          |      |
| 2-Methylnaphthalene        | ND         | 10      |           |             |                 |           |             |            |          |      |
| 2-Methylphenol             | ND         | 10      |           |             |                 |           |             |            |          |      |
| 3+4-Methylphenol           | ND         | 10      |           |             |                 |           |             |            |          |      |
| N-Nitrosodi-n-propylamine  | ND         | 10      |           |             |                 |           |             |            |          |      |
| N-Nitrosodimethylamine     | ND         | 10      |           |             |                 |           |             |            |          |      |
| N-Nitrosodiphenylamine     | ND         | 10      |           |             |                 |           |             |            |          |      |
| Naphthalene                | ND         | 10      |           |             |                 |           |             |            |          |      |
| 2-Nitroaniline             | ND         | 10      |           |             |                 |           |             |            |          |      |
| 3-Nitroaniline             | ND         | 10      |           |             |                 |           |             |            |          |      |
| 4-Nitroaniline             | ND         | 20      |           |             |                 |           |             |            |          |      |
| Nitrobenzene               | ND         | 10      |           |             |                 |           |             |            |          |      |
| 2-Nitrophenol              | ND         | 10      |           |             |                 |           |             |            |          |      |
| 4-Nitrophenol              | ND         | 10      |           |             |                 |           |             |            |          |      |
| Pentachlorophenol          | ND         | 20      |           |             |                 |           |             |            |          |      |
| Phenanthrene               | ND         | 10      |           |             |                 |           |             |            |          |      |
| Phenol                     | ND         | 10      |           |             |                 |           |             |            |          |      |
| Pyrene                     | ND         | 10      |           |             |                 |           |             |            |          |      |
| Pyridine                   | ND         | 10      |           |             |                 |           |             |            |          |      |
| 1,2,4-Trichlorobenzene     | ND         | 10      |           |             |                 |           |             |            |          |      |
| 2,4,5-Trichlorophenol      | ND         | 10      |           |             |                 |           |             |            |          |      |
| 2,4,6-Trichlorophenol      | ND         | 10      |           |             |                 |           |             |            |          |      |
| Surr: 2,4,6-Tribromophenol | 140        |         | 200.0     |             | 69.4            | 18.1      | 138         |            |          |      |
| Surr: 2-Fluorobiphenyl     | 75         |         | 100.0     |             | 74.8            | 25.9      | 101         |            |          |      |
| Surr: 2-Fluorophenol       | 92         |         | 200.0     |             | 46.0            | 12.5      | 93.2        |            |          |      |
| Surr: 4-Terphenyl-d14      | 73         |         | 100.0     |             | 73.2            | 29.5      | 112         |            |          |      |
| Surr: Nitrobenzene-d5      | 77         |         | 100.0     |             | 76.6            | 20.5      | 120         |            |          |      |
| Sum: Phenol-d5             | 80         |         | 200.0     |             | 39.9            | 11.5      | 73.2        |            |          |      |
|                            |            |         | _00.0     |             | 55.5            | 11.5      | 10,2        |            |          |      |

#### Qualifiers:

- \*/X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 14 of 21

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1201473

10-Feb-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1st Qtr 1-17-12

|    | Sample ID Ics-389          | SampT      | ype: <b>LC</b> | s         | Tes         | Code: EF          | A Method | 8270C: Semi | volatiles |          |      |
|----|----------------------------|------------|----------------|-----------|-------------|-------------------|----------|-------------|-----------|----------|------|
| ]  | Client ID: LCSW            | Batch      | ID: 38         | 9         | R           | lunNo: <b>5</b> 3 | 38       |             |           |          |      |
|    | Prep Date: 1/23/2012       | Analysis D | ate: 1/        | 23/2012   | S           | eqNo: 1           | 5304     | Units: µg/L |           |          |      |
| ï  | Analyte                    | Result     | PQL            | SPK value | SPK Ref Val | %REC              | LowLimit | HighLimit   | %RPD      | RPDLimit | Qual |
| 1  | Acenaphthene               | 59         | 10             | 100.0     | 0           | 58.6              | 37.7     | 119         |           |          |      |
| ì  | 4-Chioro-3-methylphenol    | 110        | 10             | 200.0     | 0           | 55.3              | 48.8     | 104         |           |          |      |
|    | 2-Chlorophenol             | 98         | 10             | 200.0     | 0           | 48.8              | 38.2     | 109         |           |          |      |
| ı  | 1,4-Dichlorobenzene        | 50         | 10             | 100.0     | 0           | 50.3              | 33.7     | 99.1        |           |          |      |
| ŀ  | 2,4-Dinitrotoluene         | 68         | 10             | 100.0     | 0           | 67.9              | 39.9     | 125         |           |          |      |
|    | N-Nitrosodi-n-propylamine  | 65         | 10             | 100.0     | 0           | 65.0              | 43.8     | 95.1        |           |          |      |
| ī  | 4-Nitrophenol              | 61         | 10             | 200.0     | 0           | 30.3              | 21.7     | 68.6        |           |          |      |
| l  | Pentachlorophenol          | 96         | 20             | 200.0     | 0           | 48.2              | 26.7     | 107         |           |          |      |
| 1  | Phenol                     | 66         | 10             | 200.0     | 0           | 33.2              | 23.9     | 65.8        |           |          |      |
| ı  | Pyrene                     | 61         | 10             | 100.0     | 0           | 61.0              | 45.7     | 107         |           |          |      |
| l  | 1,2,4-Trichlorobenzene     | 57         | 10             | 100.0     | 0           | 57.2              | 30.8     | 104         |           |          |      |
| ľ  | Surr: 2,4,6-Tribromophenol | 130        |                | 200.0     |             | 66.0              | 18.1     | 138         |           |          |      |
|    | Surr: 2-Fluorobiphenyl     | 72         |                | 100.0     |             | 72.1              | 25.9     | 101         |           |          |      |
| ŧ  | Surr: 2-Fluorophenol       | 70         |                | 200.0     |             | 35.0              | 12.5     | 93.2        |           |          |      |
| l  | Surr: 4-Terphenyl-d14      | 67         |                | 100.0     |             | 67.3              | 29.5     | 112         |           |          |      |
|    | Surr: Nitrobenzene-d5      | 72         |                | 100.0     |             | 71.8              | 20.5     | 120         |           |          |      |
| Y. | Surr: Phenol-d5            | 70         |                | 200.0     |             | 34.9              | 11.5     | 73.2        |           |          |      |

| Sample ID Icsd-389         | SampT      | ype: LC | SD        | Tes         | tCode: El | PA Method | 8270C: Semi | volatiles | <u> </u> |      |
|----------------------------|------------|---------|-----------|-------------|-----------|-----------|-------------|-----------|----------|------|
| Client ID: LCSS02          | Batch      | ID: 38  | 9         | F           | RunNo: 5  | 38        |             |           |          |      |
| Prep Date: 1/23/2012       | Analysis D | ate: 1/ | 23/2012   | S           | SeqNo: 1  | 5305      | Units: µg/L |           |          |      |
| Analyte                    | Result     | PQL     | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD      | RPDLimit | Qual |
| Acenaphthene               | 63         | 10      | 100.0     | 0           | 62.6      | 37.7      | 119         | 6.54      | 20       |      |
| 4-Chloro-3-methylphenol    | 130        | 10      | 200.0     | 0           | 62.7      | 48.8      | 104         | 12.6      | 20       |      |
| 2-Chlorophenol             | 90         | 10      | 200.0     | 0           | 44.8      | 38.2      | 109         | 8.56      | 20       |      |
| 1,4-Dichlorobenzene        | 56         | 10      | 100.0     | 0           | 55.8      | 33.7      | 99.1        | 10.4      | 20       |      |
| 2,4-Dinitrotoluene         | 75         | 10      | 100.0     | 0           | 75.0      | 39.9      | 125         | 10.0      | 20       |      |
| N-Nitrosodi-n-propylamine  | 70         | 10      | 100.0     | 0           | 69.7      | 43.8      | 95.1        | 6.98      | 20       |      |
| 4-Nitrophenol              | 46         | 10      | 200.0     | 0           | 23.2      | 21.7      | 68.6        | 26.8      | 20       | R    |
| Pentachlorophenol          | 64         | 20      | 200.0     | 0           | 32.2      | 26.7      | 107         | 39.7      | 20       | R    |
| Phenol                     | 66         | 10      | 200.0     | 0           | 33.2      | 23.9      | 65.8        | 0.120     | 20       |      |
| Pyrene                     | 65         | 10      | 100.0     | 0           | 65.0      | 45.7      | 107         | 6.41      | 20       |      |
| 1,2,4-Trichlorobenzene     | 59         | 10      | 100.0     | 0           | 58.6      | 30.8      | 104         | 2.28      | 20       |      |
| Surr: 2,4,6-Tribromophenol | 97         |         | 200.0     |             | 48.5      | 18.1      | 138         | 0         | 0        |      |
| Surr: 2-Fluorobiphenyl     | 75         |         | 100.0     |             | 75.2      | 25.9      | 101         | 0         | 0        |      |
| Surr: 2-Fluorophenol       | 59         |         | 200.0     |             | 29.6      | 12.5      | 93.2        | 0         | 0        |      |
| Surr: 4-Terphenyl-d14      | 70         |         | 100.0     |             | 70.0      | 29.5      | 112         | 0         | 0        |      |
| Surr: Nitrobenzene-d5      | 74         |         | 100.0     |             | 74.4      | 20.5      | 120         | 0         | 0        |      |
| Surr: Phenol-d5            | 68         |         | 200.0     |             | 34.1      | 11.5      | 73.2        | 0         | 0        |      |
|                            |            |         |           |             |           |           |             |           |          |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range
- Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 15 of 21

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1201473

10-Feb-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1st Qtr 1-17-12

Sample ID 1201473-001B DUP

SampType: DUP

TestCode: EPA 120.1: Specific Conductance

Client ID: Injection Well

Batch ID: R459

RunNo: 459

Prep Date:

Analysis Date: 1/18/2012

**PQL** 

SeqNo: 13287

Units: µmhos/cm

Analyte

Result

SPK value SPK Ref Val

%REC LowLimit

**RPDLimit** 

Qual

20

Conductivity

HighLimit

%RPD

2,700 0.010 0.404

Qualifiers:

 $^{\circ\prime}\mathbf{X}$ Value exceeds Maximum Contaminant Level.

Value above quantitation range E

Analyte detected below quantitation limits

R RPD outside accepted recovery limits Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reporting Detection Limit

Page 16 of 21

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1201473

10-Feb-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1st Qtr 1-17-12

Sample ID MB-352

SampType: MBLK

TestCode: EPA Method 7470: Mercury

Client ID: PBW

Batch ID: 352

RunNo: 468

Prep Date: 1/19/2012

Analysis Date: 1/19/2012

SeqNo: 13837

Units: mg/L

Analyte

Result **PQL** SPK value SPK Ref Val ND 0.00020

%REC LowLimit

HighLimit

Qual

Mercury

Sample ID LCS-352

SampType: LCS

TestCode: EPA Method 7470: Mercury

Client ID: LCSW Prep Date: 1/19/2012

Batch ID: 352

RunNo: 468

Analysis Date: 1/19/2012

SeqNo: 13838

Units: mg/L

**RPDLimit** 

Analyte

Result

Result

SPK value SPK Ref Val

%REC LowLimit

HighLimit

%RPD

%RPD

Mercury

0.005000

**RPDLimit** 

Qual

**PQL** 0.0053 0.00020

107

120

Sample ID 1201473-001CMS

Client ID: Injection Well

Client ID: Injection Well

SampType: MS Batch ID: 352

TestCode: EPA Method 7470: Mercury

RunNo: 468

Units: mg/L

%RPD

Analyte Mercury

1/19/2012

Analysis Date: 1/19/2012 PQL

SeqNo: 13842

SPK value SPK Ref Val %REC LowLimit

HighLimit 125

**RPDLimit** 

Qual

Prep Date:

Prep Date:

Sample ID 1201473-001CMSD

SampType: MSD

0.0045 0.00020

TestCode: EPA Method 7470: Mercury

0.005000 0.0001518

RunNo: 468

86.4

Analyte Mercury

1/19/2012

Batch ID: 352 Analysis Date: 1/19/2012

SeqNo: 13843

Units: mg/L

POL SPK value SPK Ref Val 0.0045 0.00020 0.005000 0.0001518

%REC 86.3

LowLimit 75 HighLimit 125 %RPD **RPDLimit** 0.104

Qual 20

Qualifiers:

E

\* X Value exceeds Maximum Contaminant Level.

Value above quantitation range R RPD outside accepted recovery limits В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit ND

Page 17 of 21

J Analyte detected below quantitation limits

Reporting Detection Limit

# Hall Environmental Analysis Laboratory, Inc.

WO#:

**RPDLimit** 

1201473

10-Feb-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1st Qtr 1-17-12

Sample ID MB-371

SampType: MBLK

TestCode: EPA 6010B: Total Recoverable Metals

Client ID: **PBW**  Batch ID: 371

RunNo: 534

Prep Date: 1/20/2012

Analysis Date: 1/24/2012

SeqNo: 15206

Units: mg/L

%RPD

HighLimit

Qual

| Analyte   | Result | PQL    | SPK value | SPK Ref Val | %REC | LowLimit |
|-----------|--------|--------|-----------|-------------|------|----------|
| Arsenic   | ND     | 0.020  |           |             |      |          |
| Barium    | ND     | 0.020  |           |             |      |          |
| Cadmium   | ND     | 0.0020 |           |             |      |          |
| Calcium   | ND     | 1.0    |           |             |      |          |
| Chromium  | ND     | 0.0060 |           |             |      |          |
| Lead      | ND     | 0.0050 |           |             |      |          |
| Magnesium | ND     | 1.0    |           |             |      |          |
| Potassium | ND     | 1.0    |           |             |      |          |
| Selenium  | ND     | 0.050  |           |             |      |          |
| Silver    | ND     | 0.0050 |           |             |      |          |
| Sodium    | ND     | 1.0    |           |             |      |          |

|     | Sample ID LCS-371    | Samp     | Type: LC  | S         | Tes         | tCode: El       | PA 6010B: 1 | Total Recover | able Meta | als      |      |
|-----|----------------------|----------|-----------|-----------|-------------|-----------------|-------------|---------------|-----------|----------|------|
| I   | Client ID: LCSW      | Bate     | ch ID: 37 | 1         | F           | tunNo: <b>5</b> | 34          |               |           |          |      |
| ł   | Prep Date: 1/20/2012 | Analysis | Date: 1/  | 24/2012   | S           | eqNo: 1         | 5207        | Units: mg/L   |           |          |      |
| ì   | Analyte              | Result   | PQL       | SPK value | SPK Ref Val | %REC            | LowLimit    | HighLimit     | %RPD      | RPDLimit | Qual |
| ı   | Arsenic              | 0.48     | 0.020     | 0.5000    | 0           | 96.7            | 80          | 120           |           |          |      |
| , 9 | Barium               | 0.46     | 0.020     | 0.5000    | 0           | 92.2            | 80          | 120           |           |          |      |
| í   | Cadmium              | 0.46     | 0.0020    | 0.5000    | 0           | 91.6            | 80          | 120           |           |          |      |
| l   | Calcium              | 50       | 1.0       | 50.00     | 0           | 100             | 80          | 120           |           |          |      |
| ŀ   | Chromium             | 0.46     | 0.0060    | 0.5000    | 0           | 92.7            | 80          | 120           |           |          |      |
|     | Lead                 | 0.45     | 0.0050    | 0.5000    | 0           | 90.4            | 80          | 120           |           |          |      |
| Ī   | Magnesium            | 51       | 1.0       | 50.00     | 0           | 102             | 80          | 120           |           |          |      |
| l   | Potassium            | 48       | 1.0       | 50.00     | 0           | 96.9            | 80          | 120           |           |          |      |
| •   | Selenium             | 0.46     | 0.050     | 0.5000    | 0           | 91.8            | 80          | 120           |           |          |      |
| ï   | Silver               | 0.094    | 0.0050    | 0.1000    | 0           | 94.5            | 80          | 120           |           |          |      |
| l   | Sodium               | 50       | 1.0       | 50.00     | 0           | 99.4            | 80          | 120           |           |          |      |

#### Qualifiers:

Reporting Detection Limit

Page 18 of 21

Value exceeds Maximum Contaminant Level,

Value above quantitation range

Analyte detected below quantitation limits

R RPD outside accepted recovery limits

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1201473

10-Feb-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1st Qtr 1-17-12

Sample ID 1201473-001b dup

SampType: DUP

TestCode: SM4500-H+B: pH

Client ID: Injection Well

Batch ID: R459

RunNo: 459

Prep Date:

Analysis Date: 1/18/2012

**PQL** 

Kullino: 439

SeqNo: 13243

Units: pH units

Analyte

Result

SPK value SPK Ref Val

%REC LowLimit

PIT EINE

HighLimit

RPDLimit

Qual

pН

7.31 1.68

%RPD 0.137

\_\_\_\_

Qualifiers:

\* X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 19 of 21

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1201473

10-Feb-12

Client: Project:

Prep Date:

Western Refining Southwest, Inc.

Injection Well 1st Qtr 1-17-12

Sample ID mb-1

SampType: MBLK

Batch ID: R459

TestCode: SM2320B: Alkalinity

Client ID: **PBW** 

RunNo: 459

Analysis Date: 1/18/2012

SeqNo: 13288

Units: mg/L CaCO3

Analyte

Result POL SPK value SPK Ref Val %REC LowLimit ND 20

**RPDLimit** 

Qual

Total Alkalinity (as CaCO3)

Sample ID Ics-1

Client ID: LCSW

SampType: LCS

Batch ID: R459

TestCode: SM2320B: Alkalinity

Analysis Date: 1/18/2012

20

RunNo: 459 SeqNo: 13289

Units: mg/L CaCO3

HighLimit

**RPDLimit** 

Analyte

Prep Date:

PQL

SPK value SPK Ref Val

%REC LowLimit

HighLimit

Total Alkalinity (as CaCO3)

Result 81

80.00 5.680

94.0

88.1 104 %RPD

%RPD

Qual

Sample ID mb-2

PBW

SampType: MBLK Batch ID: R459

TestCode: SM2320B: Alkalinity RunNo: 459

Units: mg/L CaCO3

**RPDLimit** 

Prep Date: Analyte

Sample ID Ics-2

Client ID: LCSW

Client ID:

Analysis Date: 1/18/2012 Result **PQL** 

SPK value SPK Ref Val %REC LowLimit

SeqNo: 13312

HighLimit

%RPD **RPDLimit** 

Qual

Total Alkalinity (as CaCO3)

ND

TestCode: SM2320B: Alkalinity

RunNo: 459

%REC

101

%RPD

%RPD

Prep Date:

Batch ID: R459 Analysis Date: 1/18/2012

SampType: LCS

SPK value SPK Ref Val

80.00

SeqNo: 13313

Units: mg/L CaCO3

104

Qual

Analyte Total Alkalinity (as CaCO3)

POL

TestCode: SM2320B: Alkalinity

**HighLimit** 

Sample ID 1201473-001b ms

Client iD: Injection Well

SampType: MS

RunNo: 459

Batch ID: R459

37.1

LowLimit

88.1

Prep Date:

Analysis Date: 1/18/2012

390

Result

81

80.00

SeqNo: 13315

Units: mg/L CaCO3

121

Analyte

PQL Result

SPK value SPK Ref Val

316.2

%REC LowLimit 88.1

HighLimit

**RPDLimit** Qual

Total Alkalinity (as CaCO3) Sample ID 1201473-001b msd

SampType: MSD

TestCode: SM2320B: Alkalinity RunNo: 459

Client ID: Injection Well Prep Date:

Batch ID: R459

380

20

SeqNo: 13316

Units: mg/L CaCO3

Qual

Total Alkalinity (as CaCO3)

Analysis Date: 1/18/2012 Result PQL

80.00

SPK value SPK Ref Val

316.2

%REC

81.9

LowLimit 37.1

HighLimit 121

%RPD

1.30

**RPDLimit** 7.21

#### Qualifiers:

R

- Value exceeds Maximum Contaminant Level.
  - Value above quantitation range
- Analyte detected below quantitation limits RPD outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit ND
- Reporting Detection Limit

Page 20 of 21

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1201473

10-Feb-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1st Qtr 1-17-12

Sample ID MB-349

SampType: MBLK

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW

Batch ID: 349

RunNo: 491

Prep Date: 1/19/2012

Analysis Date: 1/20/2012

SeqNo: 14052

Units: mg/L

Analyte

Result **PQL** SPK value SPK Ref Val

%REC LowLimit HighLimit

Qual

**Total Dissolved Solids** 

ND 20.0

SampType: LCS

TestCode: SM2540C MOD: Total Dissolved Solids

Sample ID LCS-349 Client ID: LCSW

1/19/2012

Batch ID: 349

RunNo: 491

Units: mg/L

**RPDLimit** 

Analyte

Prep Date:

Analysis Date: 1/20/2012

PQL

SPK value SPK Ref Val 0

%REC LowLimit 100

SeqNo: 14053

HighLimit

%RPD

%RPD

Result

120

**Total Dissolved Solids** 

20.0

**RPDLimit** 

1,000

1,000

Qual

Qualifiers:

\*,'X Value exceeds Maximum Contaminant Level.

Value above quantitation range

Analyte detected below quantitation limits J

Analyte detected in the associated Method Blank Η Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

RLReporting Detection Limit Page 21 of 21

R RPD outside accepted recovery limits



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

# Sample Log-In Check List

| Client Name:                     | Western Refining Southwe                                         | st Inc Bloomfield    | Work Order | Number 12 | 201473         | *************************************** |
|----------------------------------|------------------------------------------------------------------|----------------------|------------|-----------|----------------|-----------------------------------------|
| Logged by:                       | Anne Thorne                                                      | 1/18/2012 9:40:00 Al |            |           |                |                                         |
| Loggod by,                       | Allie Holle                                                      | 1710/2012 9.40.00 A  | 41         | Um        | u Sham         |                                         |
| Completed By:                    | Anne Thorne                                                      | 1/18/2012            |            | Om        | u              |                                         |
| Reviewed By:                     | KIMIZ                                                            | 8                    |            | 2,47      |                |                                         |
| Chain of Cust                    | tody                                                             |                      | 70         |           |                |                                         |
| 1. Were seals                    | Intact?                                                          |                      | Yes 🗌      | No 🗆      | Not Present 🗹  |                                         |
| 2. Is Chain of (                 | Custody complete?                                                |                      | Yes 🗹      | No 🗆      | Not Present    |                                         |
| 3. How was the                   | sample delivered?                                                |                      | <u>UPS</u> |           |                |                                         |
| Log In                           |                                                                  |                      |            |           |                |                                         |
| 4. Coolers are                   | present? (see 19. for cooler s                                   | pecific Information) | Yes 🗹      | No 🗆      | NA 🗌           |                                         |
| 5. Was an atte                   | mpt made to cool the samples                                     | 97                   | Yes 🗹      | No 🗆      | NA 🗆           |                                         |
| 6. Were all san                  | nples received at a temperatu                                    | re of >0° C to 6.0°C | Yes 🔽      | No 🗆      | NA 🗌           |                                         |
| 7. Sample(s) in                  | proper container(s)?                                             |                      | Yes 🗹      | No 🗆      |                |                                         |
| 8. Sufficient sa                 | mple volume for indicated test                                   | (s)?                 | Yes 🗹      | No 🗌      |                |                                         |
| 9. Are samples                   | (except VOA and ONG) prop                                        | erly preserved?      | Yes 🗹      | No 🗆      |                |                                         |
| 10, Was preserv                  | rative added to bottlea?                                         |                      | Yes 🗌      | No 🗹      | NA 🗆           |                                         |
| 4.4 (o the hander                | naan in the MOA winin loop the                                   | n 4/4 leab as 6 as 0 | ٠ المُ     | No 🗆 N    | 10.340A.34I-I- |                                         |
|                                  | pace in the VOA vials less tha<br>imple containers received brol |                      |            | No ☑ N    | o VOA Viais    |                                         |
|                                  | vork match bottle labels?                                        | (A1) (               | =          | No 🗆      | # of preserved |                                         |
|                                  | pancies on chain of custody)                                     |                      |            |           | for pH:        | 2                                       |
| 14. Are matrices                 | correctly identified on Chain of                                 | of Custody?          | Yes 🔽      | No 🗔      | (420           | (12 unless noted)                       |
| 15. Is it clear who              | at analyses were requested?                                      |                      | Yes 🗹      | No 🗆      | Adjusted?      |                                         |
|                                  | ling times able to be met?<br>customer for authorization.)       |                      | Yes 🗹      | No 🗆      | Checked by:    |                                         |
| Special Handle                   | ing (if applicable)                                              |                      |            |           |                |                                         |
| 17, Was client no                | otified of all discrepancies with                                | this order?          | Yes 🗌      | No 🗆      | NA 🗹           |                                         |
| Person                           | Notified:                                                        | Date                 |            |           |                |                                         |
| By Who                           | ım:                                                              | Via:                 | □ eMail □  | Phone     | Fax In Person  |                                         |
| Regardi                          | ing:                                                             |                      |            |           |                | •                                       |
| Client In                        | netructions:                                                     |                      |            |           | _• н           | '                                       |
| 18. Additional ren               | marks:                                                           | ····                 |            |           |                |                                         |
|                                  |                                                                  |                      |            |           |                |                                         |
| 19. Cooler Information Cooler No | 1 .                                                              |                      | Seal Date  | Signed i  | Бу             |                                         |

|                         | HALL ENVIRONMENTAL      | S | 4901 Hawkins NE - Albuqueroue, NM 87109 |           | Analysis              | ()()<br>()()()()()()()()()()()()()()()()() | S on | (Ga                                    | 15H (C) | 40/<br>40/<br>40/<br>40/<br>40/<br>40/<br>40/<br>40/ | TEX + MTE  TH Method  TH (Method  TH (Meth | 8 × 8 × 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ×             | ×       | ×        | ×,            | メ・           | ×           | X                 |  |   | Imegy & Bomarks:    |                              | ner accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report. |
|-------------------------|-------------------------|---|-----------------------------------------|-----------|-----------------------|--------------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|---------|----------|---------------|--------------|-------------|-------------------|--|---|---------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Turn-Around Time:       | X Standard □ Rush       |   | ction well                              | Project#: | 2                     | Project Manager;                           |                                         |                                        | Sample: Est + Terry                         | Samue as persuate                                    | Container Preservative Type and # Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3-10A HCI                               | 1-Liter Amber | 1-500m1 | 1-540.ml | 1-350ml H250y | 1-seemy HNO3 | 1-Sam Wholf | 1-Septed Zu Actor |  |   | I Now NOTIFELL      | Received by: Date Time       | ntracted to other accredited laboratories. This serves as notice                                                                                  |
| Chain-of-Custody Record | Client Western Refining |   | Mailing Address: #50 CR 4990            | 413       | Phone #: 505-632-#135 | email or Fax#:                             | QA/QC Package:                          | ☐ Standard X Level 4 (Full Validation) | Accreditation                               | □ EDD (Type)                                         | Date Time Matrix Sample Request ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1-17-12 8:30 1/20 Injection Well        |               |         |          |               |              |             |                   |  | - | 25:00 Robot Krallon | Date: Time: Relinquished by: | If necessary, samples submitted to Hall Environmental may be subconfracted to other                                                               |



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 1204158

April 26, 2012

Kelly Robinson

Western Refining Southwest, Inc.

#50 CR 4990

Bloomfield, NM 87413

TEL: (505) 632-4135

FAX (505) 632-3911

RE: Injection Well 2nd Qtr 4-3-12

#### Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 2 sample(s) on 4/4/2012 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <a href="www.hallenvironmental.com">www.hallenvironmental.com</a> or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com Workorder Sample Summary

WO#:

1204158

26-Apr-12

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 2nd Qtr 4-3-12

|              |                  |        |                     |                      | _       |
|--------------|------------------|--------|---------------------|----------------------|---------|
| Lab SampleID | Client Sample ID | Tag No | Date Collected      | Date Received        | Matrix  |
| 1204158-001  | Injection Well   |        | 4/3/2012 1:20:00 PM | 4/4/2012 10:15:00 AM | Aqueous |
| 1204158-001  | Injection Well   |        | 4/3/2012 1:20:00 PM | 4/4/2012 10:15:00 AM | Aqueous |
| 1204158-001  | Injection Well   |        | 4/3/2012 1:20:00 PM | 4/4/2012 10:15:00 AM | Aqueous |
| 1204158-001  | Injection Well   |        | 4/3/2012 1:20:00 PM | 4/4/2012 10:15:00 AM | Aqueous |
| 1204158-001  | Injection Well   |        | 4/3/2012 1:20:00 PM | 4/4/2012 10:15:00 AM | Aqueous |
| 1204158-001  | Injection Well   |        | 4/3/2012 1:20:00 PM | 4/4/2012 10:15:00 AM | Aqueous |
| 1204158-002  | Trip Blank       |        |                     | 4/4/2012 10:15:00 AM | Aqueous |

# Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/26/2012

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 2nd Qtr 4-3-12

Lab ID: 1204158-001 Client Sample ID: Injection Well

Collection Date: 4/3/2012 1:20:00 PM

Received Date: 4/4/2012 10:15:00 AM

| Analyses                       | Result  | RL       | Qual Units   | DF     | Date Analyzed                              |
|--------------------------------|---------|----------|--------------|--------|--------------------------------------------|
| EPA METHOD 300.0: ANIONS       |         |          |              |        | Analyst: SRM                               |
| Chloride                       | 850     | 50       | mg/L         | 100    | 4/4/2012 4:00:45 PM                        |
| Sulfate                        | 77      | 5.0      | mg/L         | 10     | 4/4/2012 3:48:20 PM                        |
| EPA METHOD 7470: MERCURY       |         |          |              |        | Analyst: JLF                               |
| Mercury                        | 0.00038 | 0.00020  | mg/L         | 1      | 4/17/2012 10:00:05 AM                      |
| EPA 6010B: TOTAL RECOVERABLE   | METALS  |          |              |        | Analyst: RAG                               |
| Arsenic                        | ND      | 0.020    | mg/L         | 1      | 4/12/2012 4:24:27 PM                       |
| Barium                         | 0.46    | 0.020    | mg/L         | 1      | 4/12/2012 4:24:27 PM                       |
| Cadmium                        | ND      | 0.0020   | mg/L         | 1      | 4/12/2012 4:24:27 PM                       |
| Calcium                        | 110     | 5.0      | mg/L         | 5      | 4/12/2012 4:26:24 PM                       |
| Chromium                       | ND      | 0.0060   | mg/L         | 1      | 4/12/2012 4:24:27 PM                       |
| Lead                           | ND      | 0.0050   | mg/L         | 4      | 4/12/2012 4:24:27 PM                       |
| Magnesium                      | 35      | 1.0      | mg/L         | 4      | 4/12/2012 4:24:27 PM                       |
| Potassium                      | 15      | 1.0      | mg/L         | 4      | 4/12/2012 4:24:27 PM                       |
| Selenium                       | ND      | 0.050    | mg/L         | 1      | 4/12/2012 4:24:27 PM                       |
| Silver                         | ND      | 0.0050   | mg/L         | ,      | 4/12/2012 4:24:27 PM                       |
| Sodium                         | 800     | 10       | mg/L         | 10     | 4/23/2012 2:38:11 PM                       |
| EPA METHOD 8270C: SEMIVOLATILE |         |          | ···•         | 10     | Analyst: JDC                               |
| Acenaphthene                   | ND      | 50       | μg/L         | 1      | 4/9/2012 8:10:20 PM                        |
| Acenaphthylene                 | ND      | 50       | μg/L         | 1      | 4/9/2012 8:10:20 PM                        |
| Aniline                        | ND      | 50       | μg/L         | 1      | 4/9/2012 8:10:20 PM                        |
| Anthracene                     | ND      | 50       | µg/L         | 1      | 4/9/2012 8:10:20 PM                        |
| Azobenzene                     | ND      | 50       | μg/L         | 1      | 4/9/2012 8:10:20 PM                        |
| Benz(a)anthracene              | ND      | 50       | μg/L         | 1      | 4/9/2012 8:10:20 PM                        |
| Benzo(a)pyrene                 | ND      | 50       | μg/L         | 1      | 4/9/2012 8:10:20 PM                        |
| Benzo(b)fluoranthene           | ND      | 50       | μg/L         | *      | 4/9/2012 8:10:20 PM                        |
| Benzo(g,h,i)perylene           | ND      | 50       | μg/L         | 3      |                                            |
| Benzo(k)fluoranthene           | ND      | 50       | μg/L         | A)     | 4/9/2012 8:10:20 PM                        |
| Benzoic acid                   | ND      | 100      | μg/L         | 4      | 4/9/2012 8:10:20 PM                        |
| Benzyl alcohol                 | ND      | 50       | μg/L         |        | 4/9/2012 8:10:20 PM<br>4/9/2012 8:10:20 PM |
| Bis(2-chloroethoxy)methane     | ND      | 50       |              | 1      |                                            |
| Bis(2-chloroethyl)ether        | ND      | 50       | μg/L         | * *    | 4/9/2012 8:10:20 PM                        |
| Bis(2-chloroisopropyl)ether    | ND      | 50       | μg/L         | 1      | 4/9/2012 8:10:20 PM                        |
| Bis(2-ethylhexyl)phthalate     | ND      | 50       | μg/L<br>μg/L |        | 4/9/2012 8:10:20 PM                        |
| 4-Bromophenyl phenyl ether     | ND      | 50       |              | 1      | 4/9/2012 8:10:20 PM                        |
| Butyl benzyl phthalate         | ND      | 50       | μg/L<br>μg/L | 10     | 4/9/2012 8:10:20 PM                        |
| Carbazole                      | ND      | 50       | μg/L         | 1      | 4/9/2012 8:10:20 PM                        |
| 4-Chloro-3-methylphenol        | ND      | 50       |              | 1      | 4/9/2012 8:10:20 PM                        |
| 4-Chloroaniline                | ND      | 50<br>50 | μg/L         | 1      | 4/9/2012 8:10:20 PM                        |
| 2-Chloronaphthalene            | ND      | 50<br>50 | μg/L         | 1      | 4/9/2012 8:10:20 PM                        |
| 2-Chlorophenol                 | ND      | 50<br>50 | μg/L<br>μg/L | 1<br>1 | 4/9/2012 8:10:20 PM                        |

Matrix: AQUEOUS

#### Qualifiers:

- \*X Value exceeds Maximum Contaminant Level.
- Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- Reporting Detection Limit

#### **Analytical Report**

#### Lab Order 1204158

Date Reported: 4/26/2012

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 2nd Qtr 4-3-12

**Lab ID:** 1204158-001

Client Sample ID: Injection Well

**Collection Date:** 4/3/2012 1:20:00 PM

Received Date: 4/4/2012 10:15:00 AM

| Analyses                    | Result | RL Qu | al Units | DF      | Date Analyzed       |
|-----------------------------|--------|-------|----------|---------|---------------------|
| EPA METHOD 8270C: SEMIVOLA  | TILES  |       |          |         | Analyst: JD0        |
| 4-Chlorophenyl phenyl ether | ND     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| Chrysene                    | ND     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| Di-n-butyl phthalate        | ND     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| Di-n-octyl phthalate        | ND     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| Dibenz(a,h)anthracene       | ND     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| Dibenzofuran                | ND     | 50    | μg/L     | Ť       | 4/9/2012 8:10:20 PM |
| 1,2-Dichlorobenzene         | ND     | 50    | μg/L     | Ť       | 4/9/2012 8:10:20 PM |
| 1,3-Dichlorobenzene         | ND     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| 1,4-Dichlorobenzene         | ND     | 50    | µg/L     | 1       | 4/9/2012 8:10:20 PM |
| 3,3'-Dichlorobenzidine      | ND     | 50    | µg/L     | 1       | 4/9/2012 8:10:20 PM |
| Diethyl phthalate           | ND     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| Dimethyl phthalate          | ND     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| 2,4-Dichlorophenol          | ND     | 100   | µg/L     | 1       | 4/9/2012 8:10:20 PM |
| 2,4-Dimethylphenol          | ND     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| 4,6-Dinitro-2-methylphenol  | ND     | 100   | µg/∟     | 1       | 4/9/2012 8:10:20 PM |
| 2,4-Dinitrophenol           | ND     | 100   | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| 2,4-Dinitrotoluene          | ND     | 50    | µg/L     | 1       | 4/9/2012 8:10:20 PM |
| 2,6-Dinitrotoluene          | ND     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| Fluoranthene                | ND     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| Fluorene                    | ND     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| Hexachlorobenzene           | ND     | 50    | μg/L     | a a     | 4/9/2012 8:10:20 PM |
| Hexachlorobutadiene         | ND     | 50    | μg/L     | 1:      | 4/9/2012 8:10:20 PM |
| Hexachlorocyclopentadiene   | ND     | 50    | μg/L     | 10      | 4/9/2012 8:10:20 PM |
| Hexachloroethane            | ND     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| Indeno(1,2,3-cd)pyrene      | ND     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| Isophorone                  | ND     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| 1-Methylnaphthalene         | ND     | 50    | μg/L     | 40      | 4/9/2012 8:10:20 PM |
| 2-Methylnaphthalene         | ND     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| 2-Methylphenol              | ND     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| 3+4-Methylpheпol            | 81     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| N-Nitrosodi-n-propylamine   | ND     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| N-Nitrosodimethylamine      | ND     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| N-Nitrosodiphenylamine      | ND     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| Naphthalene                 | ND     | 50    | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| 2-Nitroaniline              | ND     | 50    | µg/L     | :010    | 4/9/2012 8:10:20 PM |
| 3-Nitroaniline              | ND     | 50    | μg/L     | 50<br>1 | 4/9/2012 8:10:20 PM |
| 4-Nitroaniline              | ND     | 100   | μg/L     | 243     | 4/9/2012 8:10:20 PM |
| Nitrobenzene                | ND     | 50    | μg/L     | 24      | 4/9/2012 8:10:20 PM |
| 2-Nitrophenol               | ND     | 50    | μg/L     | =4      | 4/9/2012 8:10:20 PM |
| 4-Nitrophenol               | ND     | 50    | μg/L     | 9       | 4/9/2012 8:10:20 PM |
| Pentachlorophenol           | ND     | 100   | μg/L     | 1       | 4/9/2012 8:10:20 PM |
| Phenanthrene                | ND     | 50    | μg/L     | 4       | 4/9/2012 8:10:20 PM |

Matrix: AQUEOUS

#### Qualifiers:

- \*/X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

#### Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/26/2012

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 2nd Qtr 4-3-12

Lab ID: 1204158-001 Client Sample ID: Injection Well

Collection Date: 4/3/2012 1:20:00 PM

Received Date: 4/4/2012 10:15:00 AM Analyses Result **RL Qual Units** DF Date Analyzed **EPA METHOD 8270C: SEMIVOLATILES** Analyst: JDC ND 50 µg/L 1 4/9/2012 8:10:20 PM Pyrene ND 50 μg/L 1 4/9/2012 8:10:20 PM Pyridine ND 50 μg/L 4 4/9/2012 8:10:20 PM 1,2,4-Trichlorobenzene ND 50 µg/L 1 4/9/2012 8:10:20 PM 2,4,5-Trichlorophenol ND 50 1 μg/L 4/9/2012 8:10:20 PM 2,4,6-Trichlorophenol ND 50 μg/L 1 4/9/2012 8:10:20 PM Surr: 2,4,6-Tribromophenol 86.3 18.1-138 %REC 1 4/9/2012 8:10:20 PM Surr: 2-Fluorobiphenvi 68.2 25.9-101 %REC 1 4/9/2012 8:10:20 PM Surr: 2-Fluorophenol 56.9 12.5-93.2 %REC 1 4/9/2012 8:10:20 PM Surr: 4-Terphenyl-d14 74.6 29.5-112 %REC 1 4/9/2012 8:10:20 PM Surr: Nitrobenzene-d5 73.9 20.5-120 %REC 1 4/9/2012 8:10:20 PM Surr: Phenol-d5 50.1 11.5-73.2 %REC 1 4/9/2012 8:10:20 PM **EPA METHOD 8260B: VOLATILES** Analyst: JDJ Benzene ND 1.0 μg/L 1 4/6/2012 4:13:22 PM Toluene ND 1.0 μg/L 1 4/6/2012 4:13:22 PM Ethylbenzene ND 1.0 μg/L 1 4/6/2012 4:13:22 PM Methyl tert-butyl ether (MTBE) ND 1.0 μg/L 4/6/2012 4:13:22 PM 1 1,2,4-Trimethylbenzene ND 1.0 µg/L 4/6/2012 4:13:22 PM 1,3,5-Trimethylbenzene ND 1.0 μg/L 4/6/2012 4:13:22 PM 1,2-Dichloroethane (EDC) ND 1.0 μg/L 4/6/2012 4:13:22 PM 1,2-Dibromoethane (EDB) ND 1.0 μg/L 1 4/6/2012 4:13:22 PM Naphthalene ND 2.0 µg/L 1 4/6/2012 4:13:22 PM 1-Methylnaphthalene ND 4.0 µg/L 1 4/6/2012 4:13:22 PM 2-Methylnaphthalene ND 4.0 μg/L 1 4/6/2012 4:13:22 PM Acetone 78 10 μg/L 1 4/6/2012 4:13:22 PM Bromobenzene ND 1.0 μg/L 1 4/6/2012 4:13:22 PM Bromodichloromethane ND 1.0 µg/L 1 4/6/2012 4:13:22 PM Bromoform ND 1.0 μg/L 1 4/6/2012 4:13:22 PM Bromomethane ND 3.0 µg/L 1 4/6/2012 4:13:22 PM 2-Butanone ND 10 μg/L 1 4/6/2012 4:13:22 PM Carbon disulfide ND 10 μg/L 4/6/2012 4:13:22 PM Carbon Tetrachloride ND 1.0 μg/L 4/6/2012 4:13;22 PM Chlorobenzene ND 1.0 μg/L 4/6/2012 4:13:22 PM Chloroethane ND 2.0 μg/L 1 4/6/2012 4:13:22 PM Chloroform ND 1.0 μg/L 1 4/6/2012 4:13:22 PM Chloromethane ND 3.0 μg/L 4/6/2012 4:13:22 PM 2-Chlorotoluene ND 1.0 μg/L 4/6/2012 4:13:22 PM 4-Chlorotoluene ND 1.0 μg/L 4/6/2012 4:13:22 PM cis-1,2-DCE ND 1.0 μg/L 4/6/2012 4:13:22 PM cis-1,3-Dichloropropene ND 1.0 μg/L 4/6/2012 4:13:22 PM 1,2-Dibromo-3-chloropropane ND 2.0 μg/L 4/6/2012 4:13:22 PM

Matrix: AQUEOUS

**Qualifiers:** 

- \* X Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- T Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

# **Analytical Report**

#### Lab Order 1204158

# Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/26/2012

CLIENT: Western Refining Southwest, Inc.

Injection Well 2nd Qtr 4-3-12 Project:

Lab ID: 1204158-001 Client Sample ID: Injection Well

Collection Date: 4/3/2012 1:20:00 PM Received Date: 4/4/2012 10:15:00 AM

Analyses Result **RL Qual Units** DF Date Analyzed **EPA METHOD 8260B: VOLATILES** Analyst: JDJ Dibromochloromethane ND 1.0 μg/L 1 4/6/2012 4:13:22 PM Dibromomethane ND 1.0 μg/L 1 4/6/2012 4:13:22 PM 1,2-Dichlorobenzene ND 1.0 μg/L 1 4/6/2012 4:13:22 PM 1,3-Dichlorobenzene ND 1.0 µg/L 1 4/6/2012 4:13:22 PM 1,4-Dichlorobenzene ND 1.0 µg/L 1 4/6/2012 4:13:22 PM Dichlorodifluoromethane ND 1.0 μg/L 1 4/6/2012 4:13:22 PM 1,1-Dichloroethane ND 1.0 μg/L 1 4/6/2012 4:13:22 PM 1.1-Dichloroethene ND 1.0 μg/L 1 4/6/2012 4:13:22 PM 1,2-Dichloropropane ND 1.0 μg/L 1 4/6/2012 4:13:22 PM 1,3-Dichloropropane ND 1.0 μg/L 1 4/6/2012 4:13:22 PM 2,2-Dichloropropane ND 2.0 μg/L 1 4/6/2012 4:13:22 PM 1,1-Dichloropropene ND 1.0 4/6/2012 4:13:22 PM μg/L 1 Hexachlorobutadiene ND 1.0 μg/L 1 4/6/2012 4:13:22 PM 2-Hexanone ND 10 µg/L 1 4/6/2012 4:13:22 PM Isopropylbenzene ND 1.0 μg/L 1 4/6/2012 4:13:22 PM 4-isopropyltoluene ND 1.0 μg/L 4/6/2012 4:13:22 PM 4-Methyl-2-pentanone ND 10 μg/L 4/6/2012 4:13:22 PM Methylene Chloride ND 3.0 μg/L 1 4/6/2012 4:13:22 PM n-Butylbenzene ND 1.0 μg/L 1 4/6/2012 4:13:22 PM n-Propylbenzene ND 1.0 μg/L 1 4/6/2012 4:13:22 PM sec-Butylbenzene ND 1.0 μg/L 1 4/6/2012 4:13:22 PM Styrene ND 1.0 μg/L 1 4/6/2012 4:13:22 PM tert-Butylbenzene ND 1.0 µg/L 1 4/6/2012 4:13:22 PM 1.1.1.2-Tetrachloroethane ND 1.0 μg/L 1 4/6/2012 4:13:22 PM 1,1,2,2-Tetrachloroethane ND 2.0 µg/L 1 4/6/2012 4:13:22 PM Tetrachloroethene (PCE) ND 1.0 μg/L 1 4/6/2012 4:13:22 PM trans-1,2-DCE ND 1.0 μg/L 1 4/6/2012 4:13:22 PM trans-1,3-Dichloropropene ND 1.0 μg/L 1 4/6/2012 4:13:22 PM 1,2,3-Trichlorobenzene ND 1.0 μg/L 4/6/2012 4:13:22 PM 1,2,4-Trichlorobenzene ND 1.0 μg/L 4/6/2012 4:13:22 PM 1,1,1-Trichloroethane ND 1.0 μg/L 4/6/2012 4:13:22 PM 1,1,2-Trichloroethane ND 1.0 μg/L 4/6/2012 4:13:22 PM Trichloroethene (TCE) ND 1.0 μg/L 1 4/6/2012 4:13:22 PM Trichlorofluoromethane ND 1.0 μg/L 1 4/6/2012 4:13:22 PM 1,2,3-Trichloropropane ND 2.0 µg/L 4/6/2012 4:13:22 PM Vinyl chloride ND 1.0 µg/L 4/6/2012 4:13:22 PM Xylenes, Total ND 1.5 µg/L 4/6/2012 4:13:22 PM Surr: 1,2-Dichloroethane-d4 104 70-130 %REC 4/6/2012 4:13:22 PM Surr: 4-Bromofluorobenzene 118 70-130 %REC 4/6/2012 4:13:22 PM Surr: Dibromofluoromethane 114 69.8-130 %REC 4/6/2012 4:13:22 PM Surr: Toluene-d8 96.3 70-130 %REC 4/6/2012 4:13:22 PM

Matrix: AQUEOUS

**Oualifiers:** 

- \*/X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

- R RPD outside accepted recovery limits
- S

- Analyte detected in the associated Method Blank В
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

#### Analytical Report Lab Order 1204158

Date Reported: 4/26/2012

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 2nd Qtr 4-3-12

Lab ID: 1204158-001

Client Sample ID: Injection Well

**Collection Date:** 4/3/2012 1:20:00 PM

Received Date: 4/4/2012 10:15:00 AM

| Result | RL Qua                         | al Units                                              | DF                                                                                                  | Date Analyzed                                                                                                                                         |
|--------|--------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| E      |                                |                                                       |                                                                                                     | Analyst: JLF                                                                                                                                          |
| 2,900  | 0.010                          | µmhos/cm                                              | 1                                                                                                   | 4/6/2012 1:58:29 PM                                                                                                                                   |
|        |                                |                                                       |                                                                                                     | Analyst: JLF                                                                                                                                          |
| 6.91   | 1.68 H                         | pH units                                              | 1                                                                                                   | 4/6/2012 1:58:29 PM                                                                                                                                   |
|        |                                |                                                       |                                                                                                     | Analyst: JLF                                                                                                                                          |
| 330    | 20                             | mg/L CaCO3                                            | 1                                                                                                   | 4/6/2012 1:58:29 PM                                                                                                                                   |
| ND     | 2.0                            | mg/L CaCO3                                            | 1                                                                                                   | 4/6/2012 1:58:29 PM                                                                                                                                   |
| 330    | 20                             | mg/L CaCO3                                            | 1                                                                                                   | 4/6/2012 1:58:29 PM                                                                                                                                   |
| SOLIDS |                                |                                                       |                                                                                                     | Analyst: KS                                                                                                                                           |
| 2,120  | 200                            | mg/L                                                  | 1                                                                                                   | 4/5/2012 5:03:00 PM                                                                                                                                   |
|        | E 2,900 6.91 330 ND 330 SOLIDS | E 2,900 0.010 6.91 1.68 H 330 20 ND 2.0 330 20 SOLIDS | E 2,900 0.010 µmhos/cm  6.91 1.68 H pH units  330 20 mg/L CaCO3 ND 2.0 mg/L CaCO3 330 20 mg/L CaCO3 | E 2,900 0.010 µmhos/cm 1 6.91 1.68 H pH units 1 330 20 mg/L CaCO3 1 ND 2.0 mg/L CaCO3 1 330 20 mg/L CaCO3 1 OND 2.0 mg/L CaCO3 1 OND 2.0 mg/L CaCO3 1 |

Matrix: AQUEOUS

Qualifiers:

- \*/X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 6 of 20

#### **Analytical Report** Lab Order 1204158

# Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/26/2012

CLIENT: Western Refining Southwest, Inc.

Injection Well 2nd Qtr 4-3-12

Lab ID: 1204158-002

Project:

Client Sample ID: Trip Blank

**Collection Date:** 

Matrix: AQUEOUS Received Date: 4/4/2012 10:15:00 AM

| Analyses                       | Result | RL Qu | al Units | DF | Date Analyzed       |
|--------------------------------|--------|-------|----------|----|---------------------|
| EPA METHOD 8260B: VOLATILES    |        |       |          |    | Analyst: JD.        |
| Benzene                        | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| Toluene                        | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| Ethylbenzene                   | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| 1,2,4-Trimethylbenzene         | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| 1,3,5-Trimethylbenzene         | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| Naphthalene                    | ND     | 2.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| 1-Methylnaphthalene            | ND     | 4.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| 2-Methylnaphthalene            | ND     | 4.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| Acetone                        | ND     | 10    | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| Bromobenzene                   | ND     | 1.0   | µg/L     | 1  | 4/6/2012 4:41:46 PM |
| Bromodichloromethane           | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| Bromoform                      | ND     | 1.0   | μg/L     | 11 | 4/6/2012 4:41:46 PM |
| Bromomethane                   | ND     | 3.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| 2-Butanone                     | ND     | 10    | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| Carbon disulfide               | ND     | 10    | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| Carbon Tetrachloride           | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| Chlorobenzene                  | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| Chloroethane                   | ND     | 2.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| Chloroform                     | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| Chloromethane                  | ND     | 3.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| 2-Chlorotoluene                | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| 4-Chlorotoluene                | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| cis-1,2-DCE                    | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| cis-1,3-Dichloropropene        | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| 1,2-Dibromo-3-chloropropane    | ND     | 2.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| Dibromochloromethane           | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| Dibromomethane                 | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| 1,2-Dichlorobenzene            | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| 1,3-Dichlorobenzene            | ND     | 1.0   | μg/L     | Ť  | 4/6/2012 4:41:46 PM |
| 1,4-Dichlorobenzene            | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| Dichlorodifluoromethane        | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| 1,1-Dichloroethane             | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| 1,1-Dichloroethene             | ND     | 1.0   | μg/L     | 11 | 4/6/2012 4:41:46 PM |
| 1,2-Dichloropropane            | ND     | 1.0   | μg/L     | 10 | 4/6/2012 4:41:46 PM |
| 1,3-Dichloropropane            | ND     | 1.0   | μg/L     | 16 | 4/6/2012 4:41:46 PM |
| 2,2-Dichloropropane            | ND     | 2.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| 1,1-Dichloropropene            | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| Hexachlorobutadiene            | ND     | 1.0   | μg/L     | 1  | 4/6/2012 4:41:46 PM |
| 2-Hexanone                     | ND     | 10    | μg/L     | 1  | 4/6/2012 4:41:46 PM |

Qualifiers:

- <sup>®</sup>/X Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Reporting Detection Limit

#### **Analytical Report**

#### Lab Order 1204158

Date Reported: 4/26/2012

#### Hall Environmental Analysis Laboratory, Inc.

**CLIENT:** Western Refining Southwest, Inc.

Client Sample ID: Trip Blank **Collection Date:** 

Project: Injection Well 2nd Qtr 4-3-12

Lab ID: 1204158-002 Matrix: AQUEOUS Received Date: 4/4/2012 10:15:00 AM

| Analyses                    | Result        | RL Qu    | al Units | DF   | Date Analyzed       |
|-----------------------------|---------------|----------|----------|------|---------------------|
| EPA METHOD 8260B: VOLATILES | <del></del> } |          |          |      | Analyst: JD         |
| Isopropylbenzene            | ND            | 1.0      | μg/L     | - 11 | 4/6/2012 4:41:46 PM |
| 4-Isopropyltoluene          | ND            | 1.0      | µg/L     | 3    | 4/6/2012 4:41:46 PM |
| 4-Methyl-2-pentanone        | ND            | 10       | μg/L     | 1    | 4/6/2012 4:41:46 PM |
| Methylene Chloride          | ND            | 3.0      | μg/L     | 4    | 4/6/2012 4:41:46 PM |
| n-Butylbenzene              | ND            | 1.0      | μg/L     | 1    | 4/6/2012 4:41:46 PM |
| n-Propylbenzene             | ND            | 1.0      | μg/L     | 1    | 4/6/2012 4:41:46 PM |
| sec-Butylbenzene            | ND            | 1.0      | μg/L     | 1    | 4/6/2012 4:41:46 PM |
| Styrene                     | ND            | 1.0      | µg/L     | 1    | 4/6/2012 4:41:46 PM |
| tert-Butylbenzene           | ND            | 1.0      | μg/L     | 1    | 4/6/2012 4:41:46 PM |
| 1,1,1,2-Tetrachloroethane   | ND            | 1.0      | µg/L     | 1    | 4/6/2012 4:41:46 PM |
| 1,1,2,2-Tetrachloroethane   | ND            | 2.0      | μg/L     | 1    | 4/6/2012 4:41:46 PM |
| Tetrachloroethene (PCE)     | ND            | 1.0      | μg/L     | 1    | 4/6/2012 4:41:46 PM |
| trans-1,2-DCE               | ND            | 1.0      | μg/L     | 1    | 4/6/2012 4:41:46 PM |
| trans-1,3-Dichloropropene   | ND            | 1.0      | μg/L     | 1    | 4/6/2012 4:41:46 PM |
| 1,2,3-Trichlorobenzene      | ND            | 1.0      | μg/L     | 1    | 4/6/2012 4:41:46 PM |
| 1,2,4-Trichlorobenzene      | ND            | 1.0      | μg/L     | 1    | 4/6/2012 4:41:46 PM |
| 1,1,1-Trichloroethane       | ND            | 1.0      | μg/L     | 1    | 4/6/2012 4:41:46 PM |
| 1,1,2-Trichloroethane       | ND            | 1.0      | μg/L     | 1    | 4/6/2012 4:41:46 PM |
| Trichloroethene (TCE)       | ND            | 1.0      | μg/L     | 1    | 4/6/2012 4:41:46 PM |
| Trichlorofluoromethane      | ND            | 1.0      | μg/L     | 1    | 4/6/2012 4:41:46 PM |
| 1,2,3-Trichloropropane      | ND            | 2.0      | μg/L     | 1    | 4/6/2012 4:41:46 PM |
| Vinyl chloride              | ND            | 1.0      | µg/L     | 1    | 4/6/2012 4:41:46 PM |
| Xylenes, Total              | ND            | 1.5      | μg/L     | .1   | 4/6/2012 4:41:46 PM |
| Surr: 1,2-Dichloroethane-d4 | 103           | 70-130   | %REC     | 1    | 4/6/2012 4:41:46 PM |
| Surr: 4-Bromofluorobenzene  | 105           | 70-130   | %REC     | 1    | 4/6/2012 4:41:46 PM |
| Surr: Dibromofluoromethane  | 117           | 69.8-130 | %REC     | 1    | 4/6/2012 4:41:46 PM |
| Surr: Toluene-d8            | 103           | 70-130   | %REC     | 1    | 4/6/2012 4:41:46 PM |

#### Qualifiers:

- \*/X Value exceeds Maximum Contaminant Level.
- Value above quantitation range
- J Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

- R RPD outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- Reporting Detection Limit

#### CASE NARRATIVE

April 23, 2012

Lab Name: Anatek Labs, Inc. 1282 Alturas Drive, Moscow, ID 83843 www.anateklabs.com FL NELAP

E87893, NV ID13-2004-31, WA DOE C126, OR ELAP ID200001, MT 0028, ID, CO, NM

Project Tracking No.: 120406030

Anatek Batch: 1204158

Project Summary: One (1) water sample was received on 4/6/2012 for metals (EPA 6020A) analysis. The sample was received in good condition and with the appropriate chain of custody The sample was received at 1.5C.

Client Sample ID

Anatek Sample ID Method/Prep Method SW846 Ch7/EPA 1010/EPA 150.1

1204158-001E / Injection Well 120406030-001

#### **QA/QC Checks**

| Parameters                          | Yes / No | Exceptions / Deviations |
|-------------------------------------|----------|-------------------------|
| Sample Holding Time Valid?          | Y        | NA                      |
| Surrogate Recoveries Valid?         | NA       | NA                      |
| QC Sample(s) Recoveries Valid?      | Y        | NA                      |
| Method Blank(s) Valid?              | Υ        | NA                      |
| Tune(s) Valid?                      | NA       | NA                      |
| Internal Standard Responses Valid?  | NA       | NA                      |
| Initial Calibration Curve(s) Valid? | Y        | NA                      |
| Continuing Calibration(s) Valid?    | Υ        | NA                      |
| Comments:                           | Υ        | NA                      |

#### 1. Holding Time Requirements

No problems encountered.

#### 2. GC/MS Tune Requirements

N/A.

#### 3. Calibration Requirements

No problems encountered.

#### 4. Surrogate Recovery Requirements

N/A

#### 5. QC Sample (LCS/MS/MSD) Recovery Requirements

No problems encountered.

#### 6. Method Blank Requirements

The method blanks were non-detect (<MDL) for all analytes. No problems encountered.

| 7. Int | lemai S | Standard | (8) | Respons | e Regui | rements |
|--------|---------|----------|-----|---------|---------|---------|
|--------|---------|----------|-----|---------|---------|---------|

N/A.

#### 8. Comments

No problems encountered.

I certify that this data package is in compliance with the terms and conditions of the contract. Release of the data contained in this data package has been authorized by the Laboratory Manager or his designee.

Approved by:

Page 2 of 14

Nolw. Cost

# Anatek Labs, Inc.

1282 Alturas Drive · Moscow, ID 83843 · (208) 883-2839 · Fax (208) 882-9246 · email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: HALL ENVIRONMENTAL ANALYSIS LAB

4901 HAWKINS NE SUITE D

**Project Name:** 

120406030

ALBUQUERQUE, NM 87109

Batch #:

1204158

Attn:

**ANDY FREEMAN** 

#### **Analytical Results Report**

Sample Number

120406030-001

Sampling Date Sampling Time 4/3/2012 1:20 PM Date/Time Received

4/6/2012

10:25 AM

Client Sample ID Matrix

1204158-001E / INJECTION WELL Water

Sample Location

Comments

| Parameter          | Result | Units    | PQL | Analysis Date | Analyst | Method    | Qualifier |
|--------------------|--------|----------|-----|---------------|---------|-----------|-----------|
| Cyanide (reactive) | ND     | mg/L     | 0.1 | 4/17/2012     | CRW     | SW846 CH7 |           |
| Flashpoint         | >200   | °F       |     | 4/9/2012      | KFG     | EPA 1010  |           |
| pH                 | 6.58   | ph Units |     | 4/11/2012     | KFG     | EPA 150.1 |           |
| Reactive sulfide   | 4.07   | mg/L     | 1   | 4/9/2012      | गा      | SW846 CH7 |           |

**Authorized Signature** 

John Coddington, Lab Manager

MCL

EPA's Maximum Contaminant Level Not Detected

ND

**Practical Quantitation Limit** 

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

# Anatek Labs, Inc.

1282 Aituras Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: HALL ENVIRONMENTAL ANALYSIS LAB

4901 HAWKINS NE SUITE D

**ALBUQUERQUE, NM 87109** 

Attn:

**ANDY FREEMAN** 

Batch #:

120406030

**Project Name:** 

1204158

**Analytical Results Report Quality Control Data** 

| Lab Control Sa     | mpie               |               |                  |               |       |       |                   |              | -                |                       |               |
|--------------------|--------------------|---------------|------------------|---------------|-------|-------|-------------------|--------------|------------------|-----------------------|---------------|
| <b>Parameter</b>   |                    | LCS Result    | Units            | LCS           | Spike | %Rec  | AR                | %Rec         | Prep             | Date                  | Analysis Date |
| Cyanide (reactive) |                    | 0.524         | mg/L             | . 0           | .5    | 104.8 | 80                | -120         | 4/17/            | 2012                  | 4/17/2012     |
| Reactive sulfide   |                    | 0.180         | mg/L             | . 0           | .2    | 90.0  | 70                | -130         | 4/9/2            | 2012                  | 4/9/2012      |
| Matrix Spike       |                    |               | _                | ·             |       |       |                   |              |                  |                       |               |
| Sample Number      | Parameter          |               | Sample<br>Result | MS<br>Result  | Unii  | _     | MS                | 4/ Dan       | AR               | Been Dete             |               |
| 120406030-001      | Reactive sulfide   |               | 4.07             | 7.33          |       | _     | <b>Spike</b> 4.07 | %Rec<br>80.1 | %Rec<br>70-130   | Prep Date<br>4/9/2012 |               |
| 120406030-001      | Cyanide (reactive) |               | ND               | 7.33<br>0.484 | mg/   |       | 4.07<br>0.5       | 96.8         | 70-130<br>80-120 | 4/9/2012<br>4/17/2012 | 4/9/2012      |
|                    |                    |               |                  | 0.707         | mg/   |       | 0.0               | 30.0         | 00-120           | 4/1//2012             | 4/17/2012     |
| Matrix Spike Du    | plicate            |               |                  |               |       |       |                   |              |                  |                       | M             |
| Parameter          |                    | MSD<br>Result | Units            | MSD<br>Spike  | %R    | ec.   | %RPD              | AR<br>%RPD   | ) Pre            | p Date                | Analysis Date |
| Cyanide (reactive) |                    | 0.487         | mg/L             | 0.5           | 97    | .4    | 0.6               | 0-25         |                  | 7/2012                | 4/17/2012     |
| Method Blank       |                    |               | <del></del> _    |               |       |       |                   |              |                  | <del>-</del>          | <del></del> . |
| Parameter          |                    |               | Res              | sult          | Ur    | nits  |                   | PQL          | Pr               | ep Date               | Analysis Date |
| Cyanide (reactive) |                    |               | N                | D             | m     | g/L   |                   | 0.1          |                  | 7/2012                | 4/17/2012     |
| Reactive sulfide   |                    |               | M                | D             |       | J/kg  |                   | 1            | AH               | 3/2012                | 4/9/2012      |

AR ND Acceptable Range

PQL

Not Detected **Practical Quantitation Limit** 

Relative Percentage Difference

Certifications held by Anatek Labs ID: EPA:/D00013; AZ:0701; CO:ID00013; FL(NELAP):E87693; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0026; NM: ID00013; OR:ID200001-002; WA:C995 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C995; MT:Cert0095

# Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D · Spokane WA 99202 · (509) 838-3999 · Fax (509) 838-4433 · email spokane@anateklabs.com

#### **Login Report**

Customer Name: HALL ENVIRONMENTAL ANALYSIS LAB

Order ID:

120406030

4901 HAWKINS NE SUITE D

Order Date:

4/6/2012

**ALBUQUERQUE** 

NM 87109

**Contact Name**; ANDY FREEMAN

Project Name: 1204158

Comment:

Sample #: 120406030-001 Customer Sample #:

1204158-001E / INJECTION WELL

Recv'd:

M

Collector:

Date Collected:

4/3/2012

Quantity:

3

Water Matrix:

Date Received:

4/6/2012 10:25:00 A

Comment

| Test             | Lab | Method    | Due Date  | Priority           |
|------------------|-----|-----------|-----------|--------------------|
| CYANIDE REACTIVE | М   | SW846 CH7 | 4/18/2012 | Normal (6-10 Days) |
| FLASHPOINT       | М   | EPA 1010  | 4/18/2012 | Normal (6-10 Days) |
| pH               | M   | EPA 150.1 | 4/18/2012 | Normal (6-10 Days) |
| SULFIDE REACTIVE | M   | SW846 CH7 | 4/18/2012 | Normal (6-10 Days) |

#### **SAMPLE CONDITION RECORD**

| Samples received in a cooler?                   | Yes |
|-------------------------------------------------|-----|
| Samples received intact?                        | Yes |
| What is the temperature inside the cooler?      | 1.5 |
| Samples received with a COC?                    | Yes |
| Samples received within holding time?           | Yes |
| Are all sample bottles properly preserved?      | Yes |
| Are VOC samples free of headspace?              | N/A |
| is there a trip blank to accompany VOC samples? | N/A |
| Labels and chain agree?                         | Yes |



# CHAIN OF CUSTODY RECORD PAGE:

120406 030 HALL List al december Tahandaru 4/18/2012

1204158 1st SAMP

4/3/2012 1st RCVD 4/6/2012

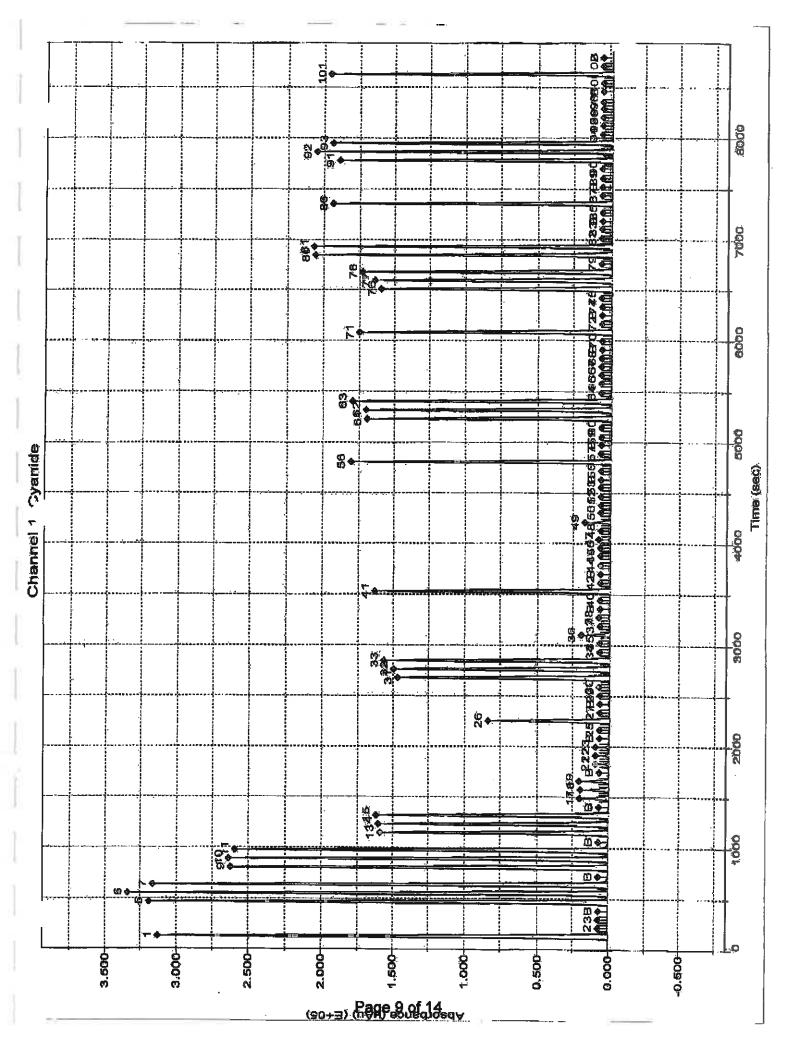
φ : œ <sup>[</sup> HEI 10 CITY, STATE, ZD: MOSCOW, ID 83843 sus commarce: Anatek Labs ø, 1204158-001E Injection Well SAMPLE 1282 Alturas Dr CLENT SAMPLE ID MUBS COMPANY: Anatek Labs, Inc. MICHIEN BOTTLE TYPE Aqueous: 4/3/2012 1:20:00 PM MATRIX COLLECTION DATE HOM ACCOUNT #: 13 RCI, PLEASE PROVIDE LEVEL 4 DATA PACKAGE Ö T CONTAINERS 0 0 0 0 0 (208) 883-2839 ANALYTICAL COMMENTS Y.X HAME: (208) 882-9246

| TAT                                                                           | Relinquisted By: | Refreguend By           | To the state of th | ioe. Thank you.                                                                                                                                                                                        |
|-------------------------------------------------------------------------------|------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| State of C                                                                    | Dutez            | Dute                    | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DATA PACKAGE                                                                                                                                                                                           |
| RUSH                                                                          | These:           |                         | 182 1821 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Please include t                                                                                                                                                                                       |
| Next HD 🗆                                                                     | Received By:     | Received By:            | Received By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | he LAB ID and the                                                                                                                                                                                      |
| NUMBER OF CONTAINERS: 2 SHIPPED VIA:  DATE & TIME: 4/6//2 /0/25 INSPECTED BY: | NO HEADSPACE     | RECEIVED INTACT TEMP: ( | ANATEK LABS RECEIVING LIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PLHANE PROVIDE QC DATA PACKAGE, Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please countly to inhallenvironmental.com. Please return all coolers and blue ice. Thank you. |
| NSPECTED BY: 37                                                               | y Seed w         | 15 °C                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lab@balleuviromnen                                                                                                                                                                                     |

THE ALLEGED TO SEE THE STREET OF THE SECONDARY OF THE SEC

Peak Table: Cyanide

File name: T:\DATA1\FLOW4\2012\EPA335.4\041712CN.RST \ \%


120417FIAGNR

Date: Unknown Operator: CRW

| 1   |                       |               |                                       |          |                    |               |                  |       |                      |
|-----|-----------------------|---------------|---------------------------------------|----------|--------------------|---------------|------------------|-------|----------------------|
| ď   | Pøsk<br>-             | Cup           | Name                                  | Type     | Dil Wt             |               | Area             | Calc. | (ppm)                |
| q   | 1                     | 2             | Sync                                  | SYNC     | 1                  | 1             | 7.340982         |       | 0.993448             |
| 1   | 2                     | Q.            | Carryover                             | CO       | 1                  | 1             | 20703            |       | 0.004003             |
| 2   | 3                     | 0             | Carryover                             | CO       | 1                  | 1             | 3005             |       | 0.001611             |
|     | B                     | Ö             | Baseline                              | RB       | 1                  | 1             | -85              |       | 0.001193             |
| ٦   | 5                     | 2:            | Cal 1.00 ppm                          | Œ        | 1                  | 1             | 7341324          |       | 0.993494             |
| Н   | 6                     | 2             | Cal 1.00 ppm                          | C        | 1                  | 1             | 7423772          |       | 1.004638             |
| ň   | 7                     | 2             | Cal 1,00 ppm                          | C        | 1                  | 1             | 7353090          |       | 0.995085             |
|     | В                     | Ö             | Baseline                              | RB.      | 1                  | 1             | 2192             |       | 0.001501             |
| 1   | 9                     | 3             | Cal 0.80 ppm                          | E        | 1                  | 1             | 5925124          |       | 0.802074             |
| Н   | 10                    | 3             | Cal 0.80 ppm                          | C        | 1                  | 1             | 5922326          |       | 0.801696             |
| 4.0 | 11                    | 3.            | Cal 0.80 ppm                          | C        | 1                  | 1             | 5958631          |       | 0.806603             |
|     | B                     | O.            | Baseline                              | RB       | 1                  | 1             | 2137             |       | 0.001494             |
| 7   | 13                    | 4             | Cal 0.50 ppm                          | Ċ.       | 1                  | 1             | 3660841          |       | 0.496022             |
| ı   | 14                    | 4             | Cal 0.50 ppm                          | e<br>e   | 1                  | 1             | 3657522          |       | 0.495574             |
|     | 15 <sup>-</sup><br>B  | <u>4</u><br>0 | Cal 0.50 ppm<br>Baseline              | C<br>RB  | 1                  | 1             | 3609600          |       | 0.489096             |
|     | 17                    | 5             | Cal 0.05 ppm                          | C.       | 1.                 | 1             | 748<br>328263    |       | 0.001306             |
| 1   | 18                    | 5<br>5        |                                       |          | 1<br>1             | 1             |                  |       | 0.045575             |
| ı   | 1.9                   | -7<br>-5      | Cal 0.05 ppm<br>Cal 0.05 ppm          | <u> </u> | i                  | 1             | 326642<br>308151 |       | 0.045355             |
| ė.  | 8                     | Ö             | Baseline                              | RB       | 1                  | 1             | -634             |       | 0.042856             |
|     | 21                    | 16            | Cal 0.01 ppm                          | C        | i                  | 1             | 64563            |       | 0.001119<br>0.009932 |
| ï   | 22                    | 6             | Cal 0.01 ppm                          | C        | i                  | 1             | 67778            |       | 0.009932             |
| 1   | 23                    | 6             | Cal 0.01 gpm                          | Ö        | i                  | i             | 65516            |       | 0.010060             |
|     | B                     | ã             | Baseline                              | RB       | i                  | i             | 1296             |       | 0.001380             |
|     | 25                    | 1             | Blank                                 | BLNK     | i                  | ī             | 807              |       | 0.001314             |
| 1   | 26                    | 7             | ICV 0.25 ppm                          | ÇCV      | ī                  | î             | 1845790          |       | 0.250691             |
| ı   | 27                    | 1             | Blank                                 | BLNK     | ī                  | î             | -1678            |       | 0.000978             |
|     | .— ·<br>186           | ā             | Baseline                              | RB       | ī                  | ī             | -77              |       | 0.001194             |
|     | 29                    | 8             | 120406012-BL WW                       | U        | ī                  | ī             | -3082            |       | 0.000788             |
| ſ   | .3t i                 |               | 120406012-001                         | Ū        | <u>-</u>           | ī             | 3990             |       | 0.001744             |
| l   | 31                    | 10            | 120406012-001MS                       | Ū        | <u>.</u>           | ī             | 3561078          |       | 0.482538             |
| 7   | 32                    | 11            | 120406012-001MSt                      |          | 1                  | <b>~</b> 1    | 3567900          |       | 0.483460             |
|     | 3.3                   | 12            | 120406012-LCS                         | U        | 1 ¯                | 1             | 3647397          |       | 0.494205             |
| Ī   | 34                    |               | 120406018-005                         | U        | 1                  | 1             | 3.683            |       | 0.001703             |
| ſ.  | 3:5                   |               | 120406019-001                         | U        | .i                 | i             | 4553             |       | 0.001820             |
| ٠.  | 36                    | 15            | 120410036-001                         | Ù        | 1                  | 1             | 299712           |       | 0.041716             |
| 5   | 37                    | 16            | 120410036-002                         | घ        | 1                  | 1             | 3173             |       | 0.001634             |
| II. | 3.8                   | 17            | r120410096-004                        | Ú        | 1                  | 1             | 24165            |       | 0.004471             |
| Ĺ   | B                     | Ø             | Baseline                              | RB       | i                  | 1             | -3.68            |       | 0.001155             |
|     | 4,0                   | 1             | Blank                                 | BLNK     | 1                  | 1             | 983              |       | 0.001338             |
|     | 41                    | 4             | CCV 0.5 ppm                           | CCV      | 1                  | 1             | 3714273          |       | 0.503244             |
|     | 42                    | 1             | Blank                                 | BLNK     | <u>1</u>           | 1             | 431              |       | 0.001263             |
|     | В                     | O             | Read Baseline                         | RB.      | <u>.</u><br>1<br>1 | 1             | 1.398            |       | 0.001394             |
|     | 44                    |               | 120410036-005                         | Ų        | 1                  | 1             | -1573            |       | 0.000992             |
|     | 45                    |               | 120410036-006                         | U        | 1                  | 1             | -1532            |       | 0.000998             |
|     | 4.6                   |               | 120410036-007                         | U        | 1<br>1             | 1             | 2194             |       | 0.001501             |
|     | 47                    |               | 120410036-008                         | ਧੁ       | 1                  | 111111111     | 28664            |       | 0.005079             |
|     | 48<br>49              |               | 120410026-001                         | Ŭ        | 1                  | 7             | 2741             |       | 0.001575             |
|     | 4. <del>9</del><br>50 |               | 120406005-002<br>120413009-001        | Ū        | <u>1</u><br>1      | .1            | 237933           |       | 0.033365             |
|     | 50<br>51              |               | 120413009-001                         | Ų<br>Ų   | 1.<br>-            | 1             | -226             |       | 0.001174             |
|     | 51<br>52              |               | 120413009-002                         | U        | 1                  | 1 1 1 1 1 1 1 | 385              |       | 0.001257             |
|     | 53.                   |               | 120413034-002                         | .D       | +                  | 7             | 140              |       | 0.001224             |
|     | B.                    | Ō,            | Baseline                              | RB       | 1<br>1<br>1        | +             | 1089             |       | 0.001352             |
| П   | <del>-</del><br>55    | ì             |                                       | BLNK     | า๋                 | 1             | 1830<br>1672     |       | 0.001452             |
| ŀ.  | 56                    | 4             |                                       | CCV      | · <del>-</del> i   | 4             | 3719207          |       | 0.001431             |
|     | 57                    | ī             |                                       | BLNK     | 1<br>1<br>1        | i             | 1762             |       | 0.503911             |
|     | Ē.                    | ō             |                                       | RB       | <b>†</b><br>1      | ī             | -73              |       | 0.001443             |
|     | 59                    | 28            | 120410034-BL s                        | บ        | 1                  | 1             | -/3<br>-/649     |       | 0.001193             |
|     | 60                    | 29            |                                       | ū        | ī                  | ī             | 1710             |       | 0.001117             |
|     | 61                    | 30            |                                       | Ū        | 1.                 | 1             | 3575736          |       | 0.484519             |
|     | 62                    | 31            | 120410034-001MSD                      |          | 1                  | ī             | 3623661          |       | 0.490997             |
|     | 63                    | 32            |                                       | p        | 1                  | 1             | 3705408          |       | 0.502046             |
|     | 64                    | 33            |                                       | ប៊       | ī                  | ī             | 9088             |       | 0.002433             |
|     | 65                    | 34            | · · · · · · · · · · · · · · · · · · · | ט        | ī                  | 1             | 9813             |       | 0.002531             |
|     | 66                    | 35            |                                       | U        | 1                  | ī             | 9256             |       | 0.002331             |
|     |                       | -             |                                       | •        | Page 7 of 14       | _             |                  |       |                      |
|     |                       |               |                                       |          | <b>U</b>           |               |                  |       |                      |

| ?eak       | Cup | Name              | Туре         | Dil | Wt     | A      | rea      | Calc. | (ppm)    |
|------------|-----|-------------------|--------------|-----|--------|--------|----------|-------|----------|
| 57         | 3,6 | 120410034-005     | U            |     | 1      | 1      | 9152     |       | 0.002442 |
| 58         | 37  | 120410034-006     | Ų            |     | i      | 1      | 4183     |       | 0.001770 |
| 3          | Ó   | Baseline          | RB           |     | 1      | 1      | -748     |       | 0.001104 |
| 10         | 1   | Blank             | BLNK         |     | 1      | 1      | -1817    |       | 0.000959 |
| 7:         | 4   | CCV 0.5 ppm       | CCV          |     | 1      | 1      | 3747205  |       | 0.507696 |
| 12         | 1.  | Blank             | BLNK         |     | 1      | 1      | -2994    |       | 0.000800 |
| 3          | Ø.  | Read Baseline     | RB           |     | 1.     | 1      | 1278     |       | 0.001378 |
| 74         | 3.8 | 120406030-BL R    | U.           |     | 1      | 1      | -3049    |       | 0.000793 |
| 75         | 39  | 120406030-001     | Ū            |     | 1      | 1      | 5701     |       | 0.001976 |
| 16         | 40  | 120406030-001MS   | U            |     | 1      | 1.     | 3575297  |       | 0.484460 |
| 17         | 41  | 120406030-001MSE  | U            |     | 1      | 1      | 3597145  |       | 0.487413 |
| 7.8        | 42  | 120406030-LCS     | Ų            |     | 1      | 1      | 3866508  |       | 0.523821 |
| 79.        | 43  | +120406011-001 SP | ŧ IJ         |     | 1      | 1,     | 5924     |       | 0.002006 |
| 3.0        | 44  |                   | U            |     | 1      | 1.     | 3678616  |       | 0.498425 |
| 11         | 45  | 4120406011-001MSE | Ŭ            |     | 1      | 1      | 3,678327 |       | 0.498386 |
| 3.2        | 4.6 | 1,20410034-007    | U            |     | ĭ      | 1      | 5933     |       | 0.002007 |
| 13:        | 47  | 120410034-008     | Ų.           |     | 1      | 1      | 4419     |       | 0.001802 |
| 3          | Ø.  | Baseline          | RB           |     | 1.     | 1.     | 215      |       | 0.001234 |
| 3,5        | 1   | Blank             | BLNK         |     | i.     | 1      | -427     |       | 0.001147 |
| 16         | 4   | GGV Ö.5 ppm       | CCV          |     | 1      | 1      | 3741463  |       | 0.506919 |
| 17         | 1   | Blank             | BLNK         |     | 1      | 1      | -1737    |       | 0.000970 |
| 3          | Q   | Read Baseline     | RB           |     | 1      | 1      | 1272     |       | 0.001377 |
| 39         | 48  | 120406004-BL F    | U.           |     | 1      | 1      | -2388    |       | 0.000882 |
| 10         | 49  | 120406004-001     | U            |     | 1      | 1      | -1760    |       | 0.000967 |
| 31         | 5.0 | 120406004-001MS   | U            |     | 1      | 1      | 3604604  |       | 0.488421 |
| 32         | 51  | 120406004-001MSD  | TJT          |     | 1      | . 1    | 3904438  |       | 0.528948 |
| 13         | 52  |                   | Ú            |     | 1      | 1<br>1 | 3686414  |       | 0.499479 |
| 34         | 53  |                   | U.           |     | 1      | ï      | -2654    |       | 0.000846 |
| <b>≱</b> 5 | 5.4 |                   | $\mathbf{v}$ |     | 1      | 1      | -2148    |       | 0.000915 |
| 36         | 55  | 120416014-001     | U            |     | 1      | 1      | -6720    |       | 0.000297 |
| 37/        | 56  |                   | ប            |     | 1      | 1      | -7727    |       | 0.000160 |
| 38         | 57  |                   | U.           |     | 1<br>1 | 1      | -3664    |       | 0.000710 |
| 3          | O.  |                   | RB           |     | 1      | 1      | 1221     |       | 0.001370 |
| ١c         | ì   |                   | BLNK         |     | 1      | 1      | 764      |       | 0.001308 |
| LC         | 4   |                   | CCV          |     | 1      | 1      | 3692458  |       | 0.500296 |
| L02        | 1   |                   | BĽNK         |     | 1      | Ĩ.     | -473     |       | 0.001141 |
| 3          | Ö   | Read Baseline     | RB           |     | .ı     | 1      | 1515     |       | 0.001410 |

|   | eak            | Cup              | Flags |
|---|----------------|------------------|-------|
|   | L              | 2                |       |
|   | <u>3</u> :     | 0.               |       |
|   | 3              | O                |       |
|   | š<br>5         | Ό                | BL    |
|   | 5              | 2                |       |
|   | 5              | 2                |       |
|   | 7              | 2                | £     |
|   | 3              | Ö.               | BL    |
|   | 3              | 3                |       |
|   | LO.            | .5<br>~          |       |
|   | <u>[1</u>      | 2 2 2 0 3 3 3 0  | BL    |
|   |                | 4                | DL    |
|   | L3:<br>L4      | 4                |       |
| J | 15             | 4                |       |
|   | 35.            |                  | BL    |
|   | Ĺ7             | 0<br>5<br>5<br>0 |       |
|   | L·B.           | .5               |       |
| j | L9             | 5                | OI,   |
|   | 3:             | ô                | BL    |
|   | 2.1            | -6               |       |
|   | 21<br>22<br>2; | 6<br>6           | OL    |
|   | 3.             | 6                |       |
|   | 3              | ,O               | BĻ    |
| i | 25             | 1                |       |
|   | 2:6            | 7<br>1<br>0      | 25    |
|   | 27             | 1                |       |
|   | 3              |                  | BL    |
| ļ | 29             | 8                |       |
|   |                |                  |       |



Cyanade: Caribration, reak b-105

File name: T:\DATA1\FLOW4\2012\EPA335.4\041712CN.RST

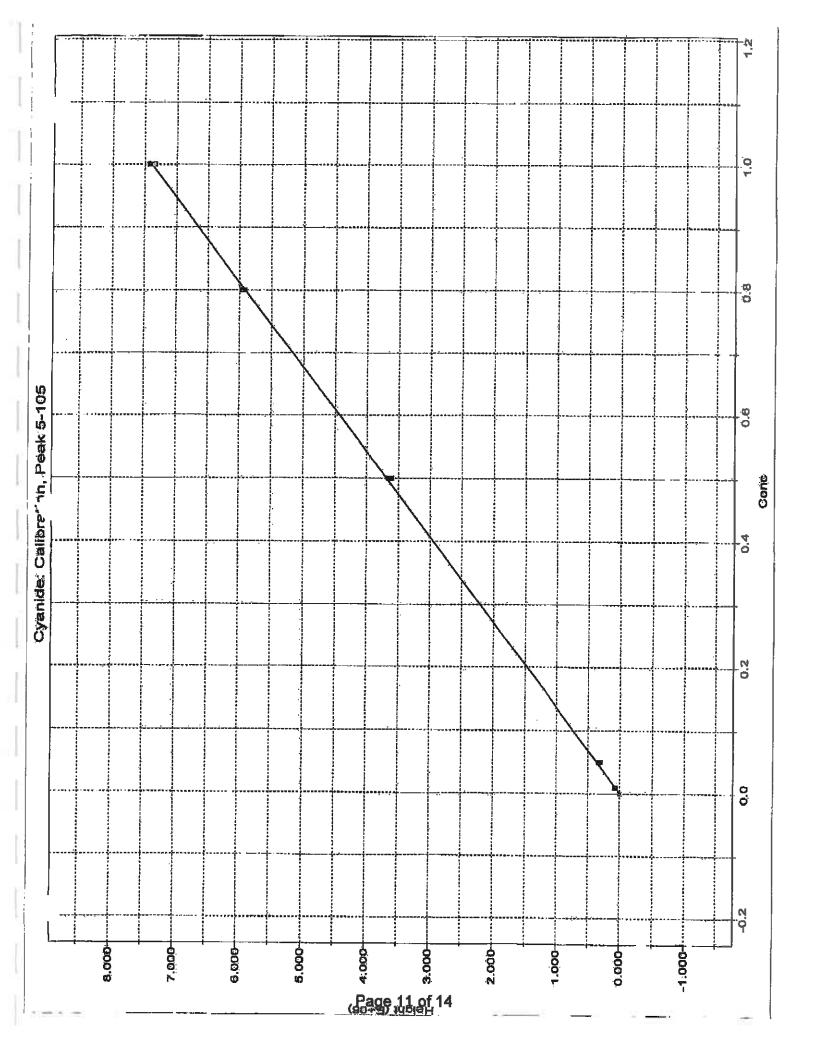
Date: Unknown Operator: CRW

| *    | mė        |                | Conc     | Area           |
|------|-----------|----------------|----------|----------------|
| _    |           |                |          |                |
| *    | Cal 1.00  | mag (          | 1.000000 | 7341324.500000 |
| *    | Cal 1.05  | ppm            | 1.000000 | 7423772.000000 |
| *    | Cal 1.00  | ppm            | 1.000000 | 7353090.000000 |
| ÷    | Cal .0.86 | ppm (          | 0.800000 | 5925124.500000 |
| *    | Cal 0.50  | mgg (          | 0.800000 | 5922325.500000 |
| *    | Cal 0.80  | mag            | 0.800000 | 5958631.000000 |
| dr   | Cal 0.50  | mqq            | 0.500000 | 3660840.750000 |
| *    | Cal 0.50  | ingga i        | 0.500000 | 3657522.500000 |
| .4   | Cal 0.50  | ppm            | 0.500000 | 3609599.750000 |
| Ŕ    | Cal 0.D5  | ppm            | 0.050000 | 328263.187500  |
| *    | Cal 0.05  | ppm            | 0.050000 | 326642.125000  |
| *    | Cal 0.05  | ppm            | 0.050000 | 308151.312500  |
| *    | Cal 0.01  | ppm            | 0.010000 | 64563.222656   |
| ric. | gal 0.01  | ppm            | 0.010000 | 67778.046875   |
| *    | Cal 0.01  |                | 0.010000 | 65516.265625   |
|      |           | <del>-</del> - |          | •              |

Calib Coef:

yabx+a

a: (intercept) -8.9144e+03 b: 7.3984e+06


Corr Coef:

0.999935

Carryover:

0.282%

No Drift Peaks



# Flashpoint Analysis

, ž ,

Sample Matrix - Soil (1), Sludge (2), Oil (3), Water (4), Other (5)

| Sample ID      | Analyses<br>Date                      | Sample<br>Matrix                                 | Analyst<br>Initials | Temp - °C | Temp - °F |
|----------------|---------------------------------------|--------------------------------------------------|---------------------|-----------|-----------|
| 11127915-01    | 1430/11                               | SOIL                                             | 70                  |           | BI°F      |
| /1/222023-04   | 12-38-11                              | Or L                                             | 21                  |           | NO        |
| (11221030.41   | 12-20-41                              | 4                                                | 149                 |           | NO        |
| 120105039-0-1  | 1/9/12                                | 415                                              | 15,-                |           | >200      |
| 1 -052         |                                       | 5                                                |                     |           | Resmitemp |
| -0:2           |                                       | 5                                                | 140                 |           | 7:20:     |
| 1201909-01     | 2-2-242                               | 4                                                | m/H                 |           | 7346      |
| 1301260110     | 1.7.12                                | · · ·                                            | 2                   |           | 775       |
| - / -          |                                       | y y                                              | 1                   |           | 1841      |
| (12 m) 20 c    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | liq.                                             | R,                  |           | 12.17     |
| 1202 0036-01   | 1 - 1 - 12                            | 5 buter                                          | Jan-                |           | 134°F     |
| 17.0773015-001 | 3/6/12                                | Waterly                                          | hh                  |           | >200°F    |
| -002           | 3 02 (1)                              | · · · · · · · · · · · · · · · · · · ·            | +                   |           | >200°F    |
| 12022 7016-001 | 3/7/12                                |                                                  | 12                  |           | 15°F      |
| 1202280%-001   | 2/1/12                                | Liquid/5                                         | Person              |           | 1515      |
|                | 3/1/12                                | Whta/4                                           |                     |           | 1447/2    |
| 120708037-00   | 3/14/12                               | - 14 M / 5                                       | non                 |           | > 10005   |
| 120378059001   |                                       | 1441/2                                           |                     |           | 7 00°F    |
| 1'03 3.024-0g  |                                       | Lagd/5                                           | 1-                  | · .       | 1375      |
| 23215059-201   | 3/27/12                               | Lipsed/49                                        |                     |           | 7200°F    |
| -002           | 21 2/162                              | 4/H20                                            | M                   |           | >300gf    |
| -003           |                                       | <del>                                     </del> |                     |           | 7106°F    |
| [20406030-00]  | 19/12                                 | E/120                                            | 1/2                 | •.        | 7200°F    |
| 20418734-00    |                                       |                                                  | M                   |           | 72000F    |
| 120413/36-002  |                                       |                                                  | <del></del>         |           |           |
| 113036 00.4    |                                       | 5/Liguid                                         |                     |           |           |
|                |                                       |                                                  |                     |           |           |
|                |                                       | <del></del>                                      |                     |           |           |
|                |                                       |                                                  |                     |           |           |

<sup>\*</sup> SAFETY GLASSES REQUIRED.

| Reagent              | Solution #           | Expires            | Method                                                                     | Method QC Requirements: |
|----------------------|----------------------|--------------------|----------------------------------------------------------------------------|-------------------------|
| pH Buffer 4 (Red)    | M826-05              | Jan 2013           | IpH 7 within 0.1 pH units                                                  | B LFB/Blank even 10     |
| pH Buffer 7 (Yellow) | M826-04              | Jan 2013           | Slope 95-102%                                                              |                         |
| pH Buffer 10 (Blue)  | M827-01              | Aug 2012           |                                                                            | % Recovery 85-115%      |
| 0.02N H2SO4 Titrant  | A040-03              | Oct-12             |                                                                            |                         |
|                      |                      |                    |                                                                            |                         |
| Standard             | Solution #           | Corre.             | Expires                                                                    | Amount Spiked (mg/L)    |
| atrix Spike Solution | M637-04              | N.                 | 11/18/2012                                                                 | 100                     |
| Contrib              | irette: CAT 10uL, si | n 600055 - pH Metr | Contriburette: CAT 10uL, sn 600055 - pH Meter: Orion Model 620A, sn 007858 | 007858                  |

|                        |                        |              |         | 1            |      |              | ·            |                 |            |               | (4/)          | <u>.</u>     |                |                    | <br> |  |
|------------------------|------------------------|--------------|---------|--------------|------|--------------|--------------|-----------------|------------|---------------|---------------|--------------|----------------|--------------------|------|--|
|                        | . %                    |              |         |              |      |              |              |                 |            |               |               |              |                |                    |      |  |
|                        | Hydroxide              |              |         |              |      |              |              | $\parallel$     |            |               |               |              |                |                    |      |  |
| y (mg/L)               | BI-<br>carbonate       |              |         |              |      |              | 1            |                 |            |               |               |              |                |                    |      |  |
| Alkalinity (mg/L)      | Carbonate              |              |         |              |      |              |              |                 |            |               |               |              |                | T                  |      |  |
|                        | Total                  |              |         |              |      |              |              |                 |            |               |               |              |                |                    |      |  |
| (mL)                   | 4.2                    |              |         |              |      |              |              |                 |            |               |               | /            |                | 1                  |      |  |
| Titrant vol to pH (mL) | 4.5                    |              |         |              |      |              |              |                 |            |               | X             |              |                |                    |      |  |
| Titran                 | 85<br>55               | _            |         |              |      |              | Ų            |                 |            | /             |               |              |                |                    |      |  |
|                        | Sample<br>Vol.<br>(mL) | がか           | 53.1.25 |              |      | 4            |              |                 |            | 25m2          |               |              | -              | Sa in Sal          |      |  |
|                        | pH 7<br>Buffer         | 80%          |         |              |      | 7            |              |                 |            | 7,04          |               |              |                | 1                  |      |  |
|                        | Slope                  | 9/10         |         |              |      | -1           |              |                 |            | ある            |               |              | 1              | },                 |      |  |
|                        | pH 10<br>Cal           | 00'01        |         |              |      | 1            |              |                 |            | 16,00         |               |              |                | 1                  |      |  |
|                        | pH 4<br>Cal            | 4,00         |         |              |      | 7            |              |                 |            | 907,          |               |              | -              | -1                 |      |  |
|                        |                        | 10,74        | 0,70    | 8,8          | 8,37 | 8,54         |              |                 |            | 213           | 853           | 7,49         |                | 6,66               |      |  |
|                        | Temp<br>(°C)           | 0,8)         | 9'2]    | (78          | 14,0 | (8,5         | T            |                 |            | 00/2          | 20,7          | 7002         |                |                    |      |  |
|                        | Sample                 | 120306027-00 | -002    | 700-07070802 | 720- | R0308040-00/ | DOUGHOSS-001 | 12041/1030-1201 | Calbon and | 100-860504071 | 120405030-001 | 120HODDH-ODI | 1204/10 Hg-001 | 120409015-06/ 20,8 |      |  |

Analysis Date: 3/|U//2| - U/|U/|2 C. Documents and SettingskrisgibeskloppH-AW Bench Sheet with Calcs-protection.xis

Analyst

# Sulfide by SM 4500-S' F

|                     | Concentration | Date Made/Expires |
|---------------------|---------------|-------------------|
| Iodine              | 0.025 N       |                   |
| HCI                 | 6 N           |                   |
| Starch<br>Indicator | 1% by weight  | 12/31/2009        |
| Zinc Acetate 99.9%  | 99.9%         |                   |

# Quality Control Information

- 1. 1 blank per batch, must be < 20 ug/L.
- 2. 1 LFB per batch must be +/- 30%.
- 3. Iml iodine reacts with 0.4 mg Sulfide

| Sample         | Sample<br>Volume | ledine amount<br>(50 uL<br>increments) | Concentration (ug/sample) | Concentration (mg/L) | Date   | Initials |
|----------------|------------------|----------------------------------------|---------------------------|----------------------|--------|----------|
| 1-1204-25021-1 | 579.1            | 2                                      | 700 - 0.02                | O. W. 309            | 4.4.13 |          |
| 186            | -                | 254                                    |                           | _                    | -      | V . V    |
| 577.           | 1000             | 05h                                    | (48) 6.180                | 0,190                |        |          |
| -6150          |                  | 450                                    | 180 0.130                 | 0.180                |        |          |
| -27            | P                | 50                                     | 20 8.02                   | 0.02                 |        |          |
| 1-12.000h      | 47.1             | 500                                    | 2000 0.200                | 4.07                 |        |          |
| -1/45          | 1                | 200                                    | 360 0.360                 | 7.33                 |        | +        |
|                |                  |                                        |                           |                      |        |          |
|                |                  |                                        |                           |                      |        |          |
|                |                  |                                        |                           |                      |        |          |
|                |                  |                                        |                           |                      |        |          |
|                |                  |                                        |                           |                      |        |          |
|                |                  |                                        |                           |                      |        |          |

Comments 120409 1125 R

Page 14 of 14

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1204158

26-Apr-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd Qtr 4-3-12

Result

Sample ID MB

SampType: MBLK

TestCode: EPA Method 300.0: Anions

LowLimit

Client ID: **PBW** 

Batch ID: R1922

RunNo: 1922

**PQL** 

Prep Date: Analyte

Analysis Date: 4/4/2012

SeqNo: 53441

Units: mg/L

Chloride

ND 0.50 %REC

LowLimit HighLimit %RPD

%RPD

**RPDLimit** 

Qual

Sulfate

ND 0.50

Sample ID LCS

SampType: LCS

TestCode: EPA Method 300.0: Anions

Client ID: LCSW

Batch ID: R1922

RunNo: 1922

Prep Date:

Analysis Date: 4/4/2012

9.8

SPK value SPK Ref Val

SeqNo: 53442

Units: mg/L

| L | Analyte  |
|---|----------|
|   | Chloride |

Result PQL SPK value SPK Ref Val 4.8

%REC 95.5

HighLimit 110 **RPDLimit** Qual

Sulfate

0.50 5.000 10.00 0.50

97.6

0

90 110

Qualifiers:

R

\*/X Value exceeds Maximum Contaminant Level.

Ε Value above quantitation range

J Analyte detected below quantitation limits RPD outside accepted recovery limits

RL

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Reporting Detection Limit

Page 9 of 20

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1204158

26-Apr-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd Qtr 4-3-12

| Ī    | Sample ID 5ml rb              | SampT      | уре: Мі | BLK       | Tes         | tCode: El | PA Method | 8260B: VOL  | ATILES |          |      |
|------|-------------------------------|------------|---------|-----------|-------------|-----------|-----------|-------------|--------|----------|------|
| H    | Client ID: PBW                | Batch      | ID: R1  | 980       | F           | RunNo: 1  | 980       |             |        |          |      |
| H    | Prep Date:                    | Analysis D | ate: 4/ | 6/2012    | \$          | SeqNo: 5  | 5138      | Units: µg/L |        |          |      |
| ıL   | Analyte                       | Result     | PQL     | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |
| В    | enzene                        | ND         | 1.0     |           |             |           |           |             |        |          |      |
| T    | oluene                        | ND         | 1.0     |           |             |           |           |             |        |          |      |
| E    | thylbenzene                   | ND         | 1.0     |           |             |           |           |             |        |          |      |
| M    | ethyl tert-butyl ether (MTBE) | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 1,   | 2,4-Trimethylbenzene          | ND         | 1.0     |           |             |           |           |             |        |          |      |
| _ 1, | 3,5-Trimethylbenzene          | ND         | 1.0     |           |             |           |           |             |        |          |      |
|      | 2-Dichloroethane (EDC)        | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 1,   | 2-Dibromoethane (EDB)         | ND         | 1.0     |           |             |           |           |             |        |          |      |
|      | aphthalene                    | ND         | 2.0     |           |             |           |           |             |        |          |      |
| 1-   | Methylnaphthalene             | ND         | 4.0     |           |             |           |           |             |        |          |      |
| 2-   | Methylnaphthaiene             | ND         | 4.0     |           |             |           |           |             |        |          |      |
| A    | cetone                        | ND         | 10      |           |             |           |           |             |        |          |      |
| В    | romobenzene                   | ND         | 1.0     |           |             |           |           |             |        |          |      |
| Bı   | romodichloromethane           | ND         | 1.0     |           |             |           |           |             |        |          |      |
| В    | omoform                       | ND         | 1.0     |           |             |           |           |             |        |          |      |
| Bi   | omomethane                    | ND         | 3.0     |           |             |           |           |             |        |          |      |
| 2-   | Butanone                      | ND         | 10      |           |             |           |           |             |        |          |      |
| Ca   | arbon disulfide               | ND         | 10      |           |             |           |           |             |        |          |      |
| C    | arbon Tetrachloride           | ND         | 1.0     |           |             |           |           |             |        |          |      |
| CI   | nlorobenzene                  | ND         | 1.0     |           |             |           |           |             |        |          |      |
| CI   | nloroethane                   | ND         | 2.0     |           |             |           |           |             |        |          |      |
| CI   | nloroform                     | ND         | 1.0     |           |             |           |           |             |        |          |      |
| Cl   | loromethane                   | ND         | 3.0     |           |             |           |           |             |        |          |      |
| 2-   | Chlorotoluene                 | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 4-   | Chlorotoluene                 | ND         | 1.0     |           |             |           |           |             |        |          |      |
| Cis  | -1,2-DCE                      | ND         | 1.0     |           |             |           |           |             |        |          |      |
| cis  | -1,3-Dichloropropene          | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 1,   | 2-Dibromo-3-chloropropane     | ND         | 2.0     |           |             |           |           |             |        |          |      |
| Di   | bromochloromethane            | ND         | 1.0     |           |             |           |           |             |        |          |      |
| Di   | bromomethane                  | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 1,2  | 2-Dichlorobenzene             | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 1,3  | 3-Dichlorobenzene             | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 1,4  | 1-Dichlorobenzene             | ND         | 1.0     |           |             |           |           |             |        |          |      |
| Di   | chlorodifluoromethane         | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 1,   | I-Dichloroethane              | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 1,   | l-Dichloroethene              | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 1,2  | 2-Dichloropropane             | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 1,3  | 3-Dichloropropane             | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 2,2  | ?-Dichloropropane             | ND         | 2.0     |           |             |           |           |             |        |          |      |
| 1,′  | -Dichloropropene              | ND         | 1.0     |           |             |           |           |             |        |          |      |
| He   | xachlorobutadiene             | ND         | 1.0     |           |             |           |           |             |        |          |      |
|      |                               |            |         |           |             |           |           |             |        |          |      |

#### Qualifiers:

- \*/X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 10 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1204158

26-Apr-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd Qtr 4-3-12

| Sample ID 5ml rb            | Samp1      | Type: ME        | BLK     | Tes         | tCode: El | PA Method | 8260B: VOL  | ATILES |          | <u> </u> |
|-----------------------------|------------|-----------------|---------|-------------|-----------|-----------|-------------|--------|----------|----------|
| Client ID: PBW              | Batcl      | h ID: <b>R1</b> | 1980    | F           | RunNo: 1  | 980       |             |        |          |          |
| Prep Date:                  | Analysis D | )ate: 4/        | /6/2012 | 8           | SeqNo: 5  | 5138      | Units: µg/L |        |          |          |
| Analyte                     | Result     | PQL             |         | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual     |
| 2-Hexanone                  | ND         | 10              |         |             |           |           |             |        |          | _        |
| Isopropylbenzene            | ND         | 1.0             |         |             |           |           |             |        |          |          |
| 4-Isopropyltoluene          | ND         | 1.0             |         |             |           |           |             |        |          |          |
| 4-Methyl-2-pentanone        | ND         | 10              |         |             |           |           |             |        |          |          |
| Methylene Chloride          | ND         | 3.0             |         |             |           |           |             |        |          |          |
| n-Buty/benzene              | ND         | 1.0             |         |             |           |           |             |        |          |          |
| n-Propylbenzene             | ND         | 1.0             |         |             |           |           |             |        |          |          |
| sec-Butylbenzene            | ND         | 1.0             |         |             |           |           |             |        |          |          |
| Styrene                     | ND         | 1.0             |         |             |           |           |             |        |          |          |
| tert-Butylbenzene           | ND         | 1.0             |         |             |           |           |             |        |          |          |
| 1,1,1,2-Tetrachloroethane   | ND         | 1.0             |         |             |           |           |             |        |          |          |
| 1,1,2,2-Tetrachloroethane   | ND         | 2.0             |         |             |           |           |             |        |          |          |
| Tetrachloroethene (PCE)     | ND         | 1.0             |         |             |           |           |             |        |          |          |
| trans-1,2-DCE               | ND         | 1.0             |         |             |           |           |             |        |          |          |
| trans-1,3-Dichloropropene   | ND         | 1.0             |         |             |           |           |             |        |          |          |
| 1,2,3-Trichlorobenzene      | ND         | 1.0             |         |             |           |           |             |        |          |          |
| 1,2,4-Trichlorobenzene      | ND         | 1.0             |         |             |           |           |             |        |          |          |
| 1,1,1-Trichloroethane       | ND         | 1.0             |         |             |           |           |             |        |          |          |
| 1,1,2-Trichloroethane       | ND         | 1.0             |         |             |           |           |             |        |          |          |
| Trichloroethene (TCE)       | ND         | 1.0             |         |             |           |           |             |        |          |          |
| Trichlorofluoromethane      | ND         | 1.0             |         |             |           |           |             |        |          |          |
| 1,2,3-Trichloropropane      | ND         | 2.0             |         |             |           |           |             |        |          |          |
| Vinyl chloride              | ND         | 1.0             |         |             |           |           |             |        |          |          |
| Xylenes, Total              | ND         | 1.5             |         |             |           |           |             |        |          |          |
| Surr: 1,2-Dichloroethane-d4 | 10         |                 | 10.00   |             | 104       | 70        | 130         |        |          |          |
| Surr: 4-Bromofluorobenzene  | 11         |                 | 10.00   |             | 115       | 70        | 130         |        |          |          |
| Surr: Dibromofluoromethane  | 11         |                 | 10.00   |             | 107       | 69.8      | 130         |        |          |          |
| Surr: Toluene-d8            | 8.7        |                 | 10.00   |             | 87.1      | 70        | 130         |        |          |          |
| Sample ID 100ng Ics         | Tame2      | ype: LC:        |         | Top!        | 2-4-: EE  |           |             |        |          |          |
| Sample in Toung ics         | Sampi      | ype. Lu.        | 5       | 1621        | Code: Er  | 'A Methou | 8260B: VOLA | ATILES |          |          |

| 1000                        |            | 3,50            |           | TOTOGO. E. A MIGHIOG DECED. FOLATIELD |          |          |             |      |          |      |
|-----------------------------|------------|-----------------|-----------|---------------------------------------|----------|----------|-------------|------|----------|------|
| Client ID: LCSW             | Batcl      | h ID: <b>R1</b> | 980       | F                                     | RunNo: 1 | 980      |             |      |          |      |
| Prep Date:                  | Analysis D | Date: 4/        | 6/2012    | 8                                     | SeqNo: 5 | 5139     | Units: µg/L |      |          |      |
| Analyte                     | Result     | PQL             | SPK value | SPK Ref Val                           | %REC     | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Benzene                     | 19         | 1.0             | 20.00     | 0                                     | 97.3     | 84.1     | 126         |      |          |      |
| Toluene                     | 19         | 1.0             | 20.00     | 0                                     | 97.2     | 80       | 120         |      |          |      |
| Chlorobenzene               | 21         | 1.0             | 20.00     | 0                                     | 104      | 70       | 130         |      |          |      |
| 1,1-Dichloroethene          | 20         | 1.0             | 20.00     | 0                                     | 97.9     | 83       | 130         |      |          |      |
| Trichloroethene (TCE)       | 18         | 1.0             | 20.00     | 0                                     | 90.2     | 76.2     | 119         |      |          |      |
| Surr: 1,2-Dichloroethane-d4 | 9.3        |                 | 10.00     |                                       | 92.6     | 70       | 130         |      |          |      |
| Surr: 4-Bromofluorobenzene  | 13         |                 | 10.00     |                                       | 127      | 70       | 130         |      |          |      |
|                             |            |                 |           |                                       |          |          |             |      |          |      |

### Qualifiers:

- \*/X Value exceeds Maximum Contaminant Level,
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 11 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

**RPDLimit** 

1204158

26-Apr-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd Qtr 4-3-12

Sample ID 100ng ics

SampType: LCS

TestCode: EPA Method 8260B: VOLATILES

LowLimit

70

Client ID:

Batch ID: R1980

LCSW

RunNo: 1980

%REC

Prep Date:

Analysis Date: 4/6/2012

SeqNo: 55139

Units: µg/L

Analyte Surr: Dibromofluoromethane Surr: Toluene-d8

Result SPK value SPK Ref Val 10 10.00 9.4 10.00

103 69.8 93.5

HighLimit 130 130 %RPD

Qual

Qualifiers:

°/X Value exceeds Maximum Contaminant Level.

Value above quantitation range Ε

Analyte detected below quantitation limits

R RPD outside accepted recovery limits В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reporting Detection Limit

Page 12 of 20

## Hall Environmental Analysis Laboratory, Inc.

WO#:

1204158

26-Apr-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd Qtr 4-3-12

| Sample ID mb-1425           | SampT      | ype: ME | 3LK       | TestCode: EPA Method 8270C: Semivolatiles |          |          |             |      |          |      |
|-----------------------------|------------|---------|-----------|-------------------------------------------|----------|----------|-------------|------|----------|------|
| Client ID: PBW              | Batch      | ID: 14  | 25        | RunNo: 1991                               |          |          |             |      |          |      |
| Prep Date: 4/9/2012         | Analysis D | ate: 4/ | 9/2012    | \$                                        | SeqNo: 5 | 5578     | Units: µg/L |      |          |      |
| Analyte                     | Result     | PQL     | SPK value | SPK Ref Val                               | %REC     | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Acenaphthene                | ND         | 10      | -         |                                           | _        |          |             |      |          |      |
| Acenaphthylene              | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Aniline                     | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Anthracene                  | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Azobenzene                  | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Benz(a)anthracene           | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Benzo(a)pyrene              | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Benzo(b)fluoranthene        | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Benzo(g,h,i)perylene        | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Benzo(k)fluoranthene        | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Benzoic acid                | ND         | 20      |           |                                           |          |          |             |      |          |      |
| Benzyl alcohol              | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Bis(2-chloroethoxy)methane  | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Bis(2-chloroethyl)ether     | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Bis(2-chloroisopropyl)ether | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Bis(2-ethylhexyl)phthalate  | ND         | 10      |           |                                           |          |          |             |      |          |      |
| 4-Bromophenyl phenyl ether  | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Butyl benzyl phthalate      | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Carbazole                   | ND         | 10      |           |                                           |          |          |             |      |          |      |
| 4-Chloro-3-methylphenol     | ND         | 10      |           |                                           |          |          |             |      |          |      |
| 4-Chloroaniline             | ND         | 10      |           |                                           |          |          |             |      |          |      |
| 2-Chloronaphthalene         | ND         | 10      |           |                                           |          |          |             |      |          |      |
| 2-Chlorophenol              | ND         | 10      |           |                                           |          |          |             |      |          |      |
| 4-Chlorophenyl phenyl ether | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Chrysene                    | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Di-n-butyl phthalate        | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Di-n-octyl phthalate        | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Dibenz(a,h)anthracene       | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Dibenzofuran                | ND         | 10      |           |                                           |          |          |             |      |          |      |
| 1,2-Dichlorobenzene         | ND         | 10      |           |                                           |          |          |             |      |          |      |
| 1,3-Dichlorobenzene         | ND         | 10      |           |                                           |          |          |             |      |          |      |
| 1,4-Dichlorobenzene         | ND         | 10      |           |                                           |          |          |             |      |          |      |
| 3,3'-Dichlorobenzidine      | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Diethyl phthalate           | ND         | 10      |           |                                           |          |          |             |      |          |      |
| Dimethyl phthalate          | ND         | 10      |           |                                           |          |          |             |      |          |      |
| 2,4-Dichlorophenol          | ND         | 20      |           |                                           |          |          |             |      |          |      |
| 2,4-Dimethylphenol          | ND         | 10      |           |                                           |          |          |             |      |          |      |
| 4,6-Dinitro-2-methylphenol  | ND         | 20      |           |                                           |          |          |             |      |          |      |
| 2,4-Dinitrophenol           | ND         | 20      |           |                                           |          |          |             |      |          |      |
| 2,4-Dinitrotoluene          | ND         | 10      |           |                                           |          |          |             |      |          |      |
| 2,6-Dinitrotoluene          | ND         | 10      |           |                                           |          |          |             |      |          |      |

### Qualifiers:

- \*X Value exceeds Maximum Contaminant Level.
  - E Value above quantitation range
  - J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 13 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1204158

26-Apr-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd Qtr 4-3-12

| Sample ID mb-1425          | SampTy      | pe: ME  | BLK       | Tes         | tCode: El | PA Method | 8270C: Semi | volatiles |          |      |
|----------------------------|-------------|---------|-----------|-------------|-----------|-----------|-------------|-----------|----------|------|
| Client ID: PBW             | Batch       | ID: 14  | 25        | F           | RunNo: 19 | 991       |             |           |          |      |
| Prep Date: 4/9/2012        | Analysis Da | ite: 4/ | 9/2012    | \$          | SeqNo: 5  | 5578      | Units: µg/L |           |          |      |
| Analyte                    | Result      | PQL     | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD      | RPDLimit | Qual |
| Fluoranthene               | ND          | 10      |           |             |           |           |             |           |          |      |
| Fluorene                   | ND          | 10      |           |             |           |           |             |           |          |      |
| Hexachlorobenzene          | ND          | 10      |           |             |           |           |             |           |          |      |
| Hexachlorobutadiene        | ND          | 10      |           |             |           |           |             |           |          |      |
| Hexachlorocyclopentadiene  | ND          | 10      |           |             |           |           |             |           |          |      |
| Hexachloroethane           | ND          | 10      |           |             |           |           |             |           |          |      |
| Indeno(1,2,3-cd)pyrene     | ND          | 10      |           |             |           |           |             |           |          |      |
| Isophorone                 | ND          | 10      |           |             |           |           |             |           |          |      |
| 1-Methylnaphthalene        | ND          | 10      |           |             |           |           |             |           |          |      |
| 2-Methylnaphthalene        | ND          | 10      |           |             |           |           |             |           |          |      |
| 2-Methylphenol             | ND          | 10      |           |             |           |           |             |           |          |      |
| 3+4-Methylphenol           | ND          | 10      |           |             |           |           |             |           |          |      |
| N-Nitrosodi-n-propylamine  | ND          | 10      |           |             |           |           |             |           |          |      |
| N-Nitrosodimethylamine     | ND          | 10      |           |             |           |           |             |           |          |      |
| N-Nitrosodiphenylamine     | ND          | 10      |           |             |           |           |             |           |          |      |
| Naphthalene                | ND          | 10      |           |             |           |           |             |           |          |      |
| 2-Nitroaniline             | ND          | 10      |           |             |           |           |             |           |          |      |
| 3-Nitroaniline             | ND          | 10      |           |             |           |           |             |           |          |      |
| 4-Nitroaniline             | ND          | 20      |           |             |           |           |             |           |          |      |
| Nitrobenzene               | ND          | 10      |           |             |           |           |             |           |          |      |
| 2-Nitrophenol              | ND          | 10      |           |             |           |           |             |           |          |      |
| 4-Nitrophenol              | ND          | 10      |           |             |           |           |             |           |          |      |
| Pentachlorophenol          | ND          | 20      |           |             |           |           |             |           |          |      |
| Phenanthrene               | ND          | 10      |           |             |           |           |             |           |          |      |
| Phenol                     | ND          | 10      |           |             |           |           |             |           |          |      |
| Pyrene                     | ND          | 10      |           |             |           |           |             |           |          |      |
| Pyridine                   | ND          | 10      |           |             |           |           |             |           |          |      |
| 1,2,4-Trichlorobenzene     | ND          | 10      |           |             |           |           |             |           |          |      |
| 2,4,5-Trichlorophenol      | ND          | 10      |           |             |           |           |             |           |          |      |
| 2,4,6-Trichlorophenol      | ND          | 10      |           |             |           |           |             |           |          |      |
| Surr: 2,4,6-Tribromophenol | 180         |         | 200.0     |             | 92.2      | 18.1      | 138         |           |          |      |
| Surr: 2-Fluorobiphenyl     | 92          |         | 100.0     |             | 91.7      | 25.9      | 101         |           |          |      |
| Surr: 2-Fluorophenol       | 140         |         | 200.0     |             | 69.0      | 12.5      | 93.2        |           |          |      |
| Surr: 4-Terphenyl-d14      | 89          |         | 100.0     |             | 88.8      | 29.5      | 112         |           |          |      |
| Surr: Nitrobenzene-d5      | 95          |         | 100.0     |             | 95.0      | 20.5      | 120         |           |          |      |
| Surr: Phenol-d5            | 110         |         | 200.0     |             | 55.1      | 11.5      | 73.2        |           |          |      |
|                            |             |         |           |             |           |           |             |           |          |      |

### Qualifiers:

- \*/X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 14 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1204158

26-Apr-12

Client:

Western Refining Southwest, Inc.

SampType: LCSD

Project:

Sample ID Icsd-1425

Injection Well 2nd Qtr 4-3-12

| Sample ID Ics-1425         | SampType: LCS TestCode: EPA Method 8270C: Semivolatiles |          |           |             |          |          |             |      |          |      |
|----------------------------|---------------------------------------------------------|----------|-----------|-------------|----------|----------|-------------|------|----------|------|
| Client ID: LCSW            | Batch                                                   | n ID: 14 | 25        | F           | RunNo: 1 | 991      |             |      |          |      |
| Prep Date: 4/9/2012        | Analysis D                                              | ate: 4/  | 9/2012    | S           | eqNo: 5  | 5579     | Units: µg/L |      |          |      |
| Analyte                    | Result                                                  | PQL      | SPK value | SPK Ref Val | %REC     | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Acenaphthene               | 79                                                      | 10       | 100.0     | 0           | 79.0     | 37.7     | 119         |      |          |      |
| 4-Chloro-3-methylphenol    | 170                                                     | 10       | 200.0     | 0           | 85.8     | 48.8     | 104         |      |          |      |
| 2-Chlorophenol             | 170                                                     | 10       | 200.0     | 0           | 86.6     | 38.2     | 109         |      |          |      |
| 1,4-Dichlorobenzene        | 71                                                      | 10       | 100.0     | 0           | 71.3     | 33.7     | 99.1        |      |          |      |
| 2,4-Dinitrotoluene         | 90                                                      | 10       | 100.0     | 0           | 90.2     | 39.9     | 125         |      |          |      |
| N-Nitrosodi-n-propylamine  | 83                                                      | 10       | 100.0     | 0           | 83.0     | 43.8     | 95.1        |      |          |      |
| 4-Nitrophenol              | 94                                                      | 10       | 200.0     | 0           | 47.0     | 21.7     | 68.6        |      |          |      |
| Pentachlorophenol          | 140                                                     | 20       | 200.0     | 0           | 72.0     | 26.7     | 107         |      |          |      |
| Phenol                     | 110                                                     | 10       | 200.0     | 0           | 54.6     | 23.9     | 65.8        |      |          |      |
| Pyrene                     | 82                                                      | 10       | 100.0     | 0           | 81.9     | 45.7     | 107         |      |          |      |
| 1,2,4-Trichlorobenzene     | 77                                                      | 10       | 100.0     | 0           | 77.3     | 30.8     | 104         |      |          |      |
| Surr: 2,4,6-Tribromophenol | 190                                                     |          | 200.0     |             | 95.9     | 18.1     | 138         |      |          |      |
| Surr: 2-Fluorobiphenyl     | 85                                                      |          | 100.0     |             | 85.3     | 25.9     | 101         |      |          |      |
| Surr: 2-Fluorophenol       | 140                                                     |          | 200.0     |             | 69.8     | 12.5     | 93.2        |      |          |      |
| Surr: 4-Terphenyl-d14      | 86                                                      |          | 100.0     |             | 85.7     | 29.5     | 112         |      |          |      |
| Surr: Nitrobenzene-d5      | 87                                                      |          | 100.0     |             | 86.9     | 20.5     | 120         |      |          |      |
| Surr: Phenol-d5            | 110                                                     |          | 200.0     |             | 55.9     | 11.5     | 73.2        |      |          |      |

| •                          | •          | ,        |           |             |          |          |             |        |          |      |
|----------------------------|------------|----------|-----------|-------------|----------|----------|-------------|--------|----------|------|
| Client ID: LCSS02          | Batcl      | h ID: 14 | 25        | F           | RunNo: 1 | 991      |             |        |          |      |
| Prep Date: 4/9/2012        | Analysis E | Date: 4/ | 9/2012    | 5           | SeqNo: 5 | 5580     | Units: µg/L |        |          |      |
| Analyte                    | Result     | PQL      | SPK value | SPK Ref Val | %REC     | LowLimit | HighLimit   | %RPD   | RPDLimit | Qual |
| Acenaphthene               | 75         | 10       | 100.0     | 0           | 75.3     | 37.7     | 119         | 4.77   | 20       |      |
| 4-Chloro-3-methylphenol    | 180        | 10       | 200.0     | 0           | 88.5     | 48.8     | 104         | 3.06   | 20       |      |
| 2-Chlorophenol             | 160        | 10       | 200.0     | 0           | 82.2     | 38.2     | 109         | 5.23   | 20       |      |
| 1,4-Dichlorobenzene        | 71         | 10       | 100.0     | 0           | 71.3     | 33.7     | 99.1        | 0.0561 | 20       |      |
| 2,4-Dinitrotoluene         | 91         | 10       | 100.0     | 0           | 91.0     | 39.9     | 125         | 0.795  | 20       |      |
| N-Nitrosodi-n-propylamine  | 82         | 10       | 100.0     | 0           | 82.3     | 43.8     | 95.1        | 0.871  | 20       |      |
| 4-Nitrophenol              | 85         | 10       | 200.0     | 0           | 42.4     | 21.7     | 68.6        | 10.1   | 20       |      |
| Pentachlorophenol          | 150        | 20       | 200.0     | 0           | 73.2     | 26.7     | 107         | 1.57   | 20       |      |
| Phenol                     | 110        | 10       | 200.0     | 0           | 52.5     | 23.9     | 65.8        | 3.96   | 20       |      |
| Pyrene                     | 82         | 10       | 100.0     | 0           | 82.1     | 45.7     | 107         | 0.317  | 20       |      |
| 1,2,4-Trichlorobenzene     | 81         | 10       | 100.0     | 0           | 80.9     | 30.8     | 104         | 4.57   | 20       |      |
| Surr: 2,4,6-Tribromophenol | 200        |          | 200.0     |             | 97.8     | 18.1     | 138         | 0      | 0        |      |
| Surr: 2-Fluorobiphenyl     | 80         |          | 100.0     |             | 80.2     | 25.9     | 101         | 0      | 0        |      |
| Surr: 2-Fluorophenol       | 130        |          | 200.0     |             | 66.1     | 12.5     | 93.2        | 0      | 0        |      |
| Surr: 4-Terphenyl-d14      | 84         |          | 100.0     |             | 84.2     | 29.5     | 112         | 0      | 0        |      |
| Surr: Nitrobenzene-d5      | 86         |          | 100.0     |             | 85.9     | 20.5     | 120         | 0      | 0        |      |
| Surr: Phenol-d5            | 110        |          | 200.0     |             | 52.6     | 11.5     | 73.2        | 0      | 0        |      |
|                            |            |          |           |             |          |          |             |        |          |      |

### Qualifiers:

- \*/X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

TestCode: EPA Method 8270C: Semivolatiles

- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 15 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1204158 26-Apr-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd Qtr 4-3-12

Result

Sample ID MB-1543

SampType: MBLK

TestCode: EPA Method 7470: Mercury

Client ID: **PBW**  Batch ID: 1543

RunNo: 2165

Prep Date: 4/16/2012

HighLimit

Analyte

Analysis Date: 4/17/2012 **PQL** 

SeqNo: 60357

%REC LowLimit

Units: mg/L

Qual

Mercury

ND 0.00020

Sample ID LCS-1543

SampType: LCS

TestCode: EPA Method 7470: Mercury

Client ID: LCSW Prep Date: 4/16/2012

Batch ID: 1543

RunNo: 2165 SeqNo: 60358

Units: mg/L

**RPDLimit** 

Analyte

Analysis Date: 4/17/2012

0.0053 0.00020

PQL

SPK value SPK Ref Val

SPK value SPK Ref Val

%REC LowLimit 105

HighLimit

%RPD **RPDLimit** 

%RPD

Qual

Mercury

Sample ID LCSD-1543

SampType: LCSD

TestCode: EPA Method 7470: Mercury RunNo: 2165

Prep Date: 4/16/2012

Client ID: LCSS02

Batch ID: 1543

Analysis Date: 4/17/2012

SeqNo: 60359

Units: mg/L

Analyte

SPK value SPK Ref Val

0.005000

0

%REC LowLimit

HighLimit %RPD 120

**RPDLimit** 

Qual

Mercury

0.0053 0.00020 0.005000

107

1.13

Qualifiers:

Value exceeds Maximum Contaminant Level.

Ε Value above quantitation range

Analyte detected below quantitation limits

RPD outside accepted recovery limits R

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reporting Detection Limit

Page 16 of 20

## Hall Environmental Analysis Laboratory, Inc.

WO#:

1204158

26-Apr-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd Qtr 4-3-12

|   | Sample ID MB-1477    | Samp     | Type: ME  | BLK       | Tes         | TestCode: EPA 6010B: Total Recoverable Me |             |               |           |          |      |
|---|----------------------|----------|-----------|-----------|-------------|-------------------------------------------|-------------|---------------|-----------|----------|------|
| J | Client ID: PBW       | Bato     | ch ID: 14 | 77        | F           | RunNo: 2                                  | 113         |               |           |          |      |
|   | Prep Date: 4/11/2012 | Analysis | Date: 4/  | 12/2012   | 8           | SeqNo: 5                                  | B542        | Units: mg/L   |           |          |      |
| ì | Analyte              | Result   | PQL       | SPK value | SPK Ref Val | %REC                                      | LowLimit    | HighLimit     | %RPD      | RPDLimit | Qual |
| l | Arsenic              | ND       | 0.020     |           | -           |                                           |             |               | _         |          |      |
| 1 | Barium               | ND       | 0.020     |           |             |                                           |             |               |           |          |      |
| į | Cadmium              | ND       | 0.0020    |           |             |                                           |             |               |           |          |      |
| 1 | Calcium              | ND       | 1.0       |           |             |                                           |             |               |           |          |      |
| ļ | Chromium             | ND       | 0.0060    |           |             |                                           |             |               |           |          |      |
|   | Lead                 | ND       | 0.0050    |           |             |                                           |             |               |           |          |      |
| İ | Magnesium            | ND       | 1.0       |           |             |                                           |             |               |           |          |      |
| l | Potassium            | ND       | 1.0       |           |             |                                           |             |               |           |          |      |
| ì | Selenium             | ND       | 0.050     |           |             |                                           |             |               |           |          |      |
| ĺ | Silver               | ND       | 0.0050    |           |             |                                           |             |               |           |          |      |
| l | Sample ID LCS-1477   | Samp     | Type: LC  | S         | Tes         | Code: EF                                  | PA 6010B: 1 | Total Recover | able Meta | ils      |      |
|   | Client ID: 1 CRM     | Data     |           | -         | _           |                                           |             |               |           |          |      |

| ì | Client ID: LCSW      | ch ID: 14 | 77       | F         | RunNo: 2    | 113      |          |             |      |          |      |   |
|---|----------------------|-----------|----------|-----------|-------------|----------|----------|-------------|------|----------|------|---|
| 1 | Prep Date: 4/11/2012 | Analysis  | Date: 4/ | 12/2012   | S           | SeqNo: 5 | B544     | Units: mg/L |      |          |      |   |
|   | Analyte              | Result    | PQL      | SPK value | SPK Ref Val | %REC     | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |   |
| ì | Arsenic              | 0.51      | 0.020    | 0.5000    | 0           | 101      | 80       | 120         |      |          |      | _ |
| 1 | Barium               | 0.49      | 0.020    | 0.5000    | 0           | 98.1     | 80       | 120         |      |          |      |   |
| 1 | Cadmium              | 0.50      | 0.0020   | 0.5000    | 0           | 100      | 80       | 120         |      |          |      |   |
| ŝ | Calcium              | 51        | 1.0      | 50.00     | 0           | 101      | 80       | 120         |      |          |      |   |
|   | Chromium             | 0.49      | 0.0060   | 0.5000    | 0.0008200   | 98.2     | 80       | 120         |      |          |      |   |
| J | Lead                 | 0.50      | 0.0050   | 0.5000    | 0           | 99.2     | 80       | 120         |      |          |      |   |
|   | Magnesium            | 52        | 1.0      | 50.00     | 0           | 103      | 80       | 120         |      |          |      |   |
| Ì | Potassium            | 50        | 1.0      | 50.00     | 0           | 100      | 80       | 120         |      |          |      |   |
| ı | Selenium             | 0.51      | 0.050    | 0.5000    | 0           | 103      | 80       | 120         |      |          |      |   |
|   | Silver               | 0.10      | 0.0050   | 0.1000    | 0           | 102      | 80       | 120         |      |          |      |   |

| Sample ID LCS-1477   | Tes      | tCode: El       | PA 6010B: ` | Total Recove | rable Meta | als      |             |         |          |      |
|----------------------|----------|-----------------|-------------|--------------|------------|----------|-------------|---------|----------|------|
| Client ID: LCSS02    | Bato     | ch ID: 14       | 77          | R            | RunNo: 2   | 113      |             |         |          |      |
| Prep Date: 4/11/2012 | Analysis | Date: <b>4/</b> | 12/2012     | S            | eqNo: 5    | 8546     | Units: mg/l | -       |          |      |
| Analyte              | Result   | PQL             | SPK value   | SPK Ref Val  | %REC       | LowLimit | HighLimit   | %RPD    | RPDLimit | Qual |
| Arsenic              | 0.51     | 0.020           | 0.5000      | 0            | 101        | 80       | 120         | 0.274   | 20       |      |
| Barium               | 0.49     | 0.020           | 0.5000      | 0            | 98.4       | 80       | 120         | 0.301   | 20       |      |
| Cadmium              | 0.50     | 0.0020          | 0.5000      | 0            | 99.7       | 80       | 120         | 0.395   | 20       |      |
| Calcium              | 52       | 1.0             | 50.00       | 0            | 103        | 80       | 120         | 1.73    | 20       |      |
| Chromium             | 0.49     | 0.0060          | 0.5000      | 0.0008200    | 98.2       | 80       | 120         | 0.00610 | 20       |      |
| Lead                 | 0.50     | 0.0050          | 0.5000      | 0            | 99.4       | 80       | 120         | 0.226   | 20       |      |
| Magnesium            | 52       | 1.0             | 50.00       | 0            | 104        | 80       | 120         | 0.931   | 20       |      |
| Potassium            | 50       | 1.0             | 50.00       | 0            | 101        | 80       | 120         | 0.683   | 20       |      |
| Selenium             | 0.53     | 0.050           | 0.5000      | 0            | 106        | 80       | 120         | 3.31    | 20       |      |
| Silver               | 0.10     | 0.0050          | 0.1000      | 0            | 102        | 80       | 120         | 0.343   | 20       |      |

### Qualifiers:

- \*/X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 17 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1204158

26-Apr-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd Qtr 4-3-12

Sample ID MB-1477

SampType: MBLK

TestCode: EPA 6010B: Total Recoverable Metals

Client ID: PBW

Batch ID: 1477

RunNo: 2176

Prep Date: 4/11/2012

Analysis Date: 4/17/2012

SeqNo: 60600

Units: mg/L

Analyte

Result **PQL**  SPK value SPK Ref Val %REC

LowLimit

HighLimit

**RPDLimit** 

Qual

Sodium

ND

Result

Result

51

1.0

TestCode: EPA 6010B: Total Recoverable Metals

Client ID: LCSW

Sample ID LCS-1477

Prep Date: 4/11/2012

Batch ID: 1477

SampType: LCS

RunNo: 2176

Units: mg/L

Analyte

Analysis Date: 4/17/2012

SPK value SPK Ref Val

SeqNo: 60601 %REC LowLimit

102

HighLimit

%RPD **RPDLimit** 

%RPD

Qual

Sample ID LCS-1477

SampType: LCSD

1.0

RunNo: 2176

TestCode: EPA 6010B: Total Recoverable Metals

120

Client ID: LCSS02

Batch ID: 1477

Units: mg/L

Prep Date: 4/11/2012

Analysis Date: 4/17/2012

SeqNo: 60602

**RPDLimit** 

Qual

SPK value SPK Ref Val

50.00

97.7

HighLimit 120

Analyte Sodium

Sodium

1.0 50.00

0

%REC LowLimit

80

%RPD

4.68

20

Qualifiers:

Value exceeds Maximum Contaminant Level. \* X

Value above quantitation range

J Analyte detected below quantitation limits

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Η ND Not Detected at the Reporting Limit

Reporting Detection Limit

Page 18 of 20

R

RPD outside accepted recovery limits

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1204158

26-Apr-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd Qtr 4-3-12

Sample ID mb-1

SampType: MBLK

TestCode: SM2320B: Alkalinity

Client ID: PBW

Batch ID: R1996

RunNo: 1996

Prep Date:

Analysis Date: 4/6/2012

SeqNo: 55665

Units: mg/L CaCO3

Analyte

**PQL** 

Result

SPK value SPK Ref Val %REC LowLimit

%RPD

Qual

Total Alkalinity (as CaCO3)

ND 20

SampType: LCS

TestCode: SM2320B: Alkalinity

Sample ID Ics-1 Client ID: LCSW

Batch ID: R1996

RunNo: 1996

Prep Date:

SeqNo: 55666

Units: mg/L CaCO3

**RPDLimit** 

Analysis Date: 4/6/2012

HighLimit

Analyte Total Alkalinity (as CaCO3) Result PQL 79

Result

Result

80

SPK value SPK Ref Val 80.00

%REC 98.6

LowLimit HighLimit 88.1 104 %RPD **RPDLimit**  Qual

Sample ID mb-1

Client ID:

SampType: MBLK Batch ID: R1996

Analysis Date: 4/10/2012

PQL

20

TestCode: SM2320B: Alkalinity RunNo: 1996

SeqNo: 56416

HighLimit

Units: mg/L CaCO3

**RPDLimit** 

Qual

Prep Date: Analyte

Total Alkalinity (as CaCO3) Sample ID Ics-1

Client ID: LCSW

ND SampType: LCS

TestCode: SM2320B: Alkalinity

Batch ID: R1996

RunNo: 1996

Prep Date:

Analysis Date: 4/10/2012

SeqNo: 56417

Units: mg/L CaCO3

Analyte

POL

SPK value SPK Ref Val

SPK value SPK Ref Val %REC LowLimit

%REC LowLimit HighLimit

**RPDLimit** 

Qual

Total Alkalinity (as CaCO3)

80.00

90.9

88.1

104

%RPD

20

6.880

%RPD

### Qualifiers:

R

- \* X Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- J Analyte detected below quantitation limits RPD outside accepted recovery limits
- В
- Analyte detected in the associated Method Blank
  - Η Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit ND
  - Reporting Detection Limit

Page 19 of 20

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1204158

26-Apr-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd Qtr 4-3-12

Sample ID MB-1382

SampType: MBLK

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW

Batch ID: 1382

RunNo: 1941

Prep Date: 4/4/2012

Analysis Date: 4/5/2012

SeqNo: 54076

Units: mg/L

Analyte

Result **PQL** SPK value SPK Ref Val

%REC LowLimit

HighLimit

Qual

**Total Dissolved Solids** 

Client ID: LCSW

ND 20.0

TestCode: SM2540C MOD: Total Dissolved Solids

Sample ID LCS-1382

Prep Date: 4/4/2012

SampType: LCS Batch ID: 1382

RunNo: 1941

Analyte

Analysis Date: 4/5/2012

SeqNo: 54077

Units: mg/L

Result PQL

SPK value SPK Ref Val %REC LowLimit

HighLimit 120 **RPDLimit** 

**RPDLimit** 

Qual

**Total Dissolved Solids** 

1,010

20.0

1,000

101

%RPD

%RPD

Qualifiers:

Value exceeds Maximum Contaminant Level.

Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RLReporting Detection Limit Page 20 of 20



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-410; Website: www.hallenvironmental.com

### Sample Log-In Check List

|                                                                                           | Work Order Number: 1204158            |
|-------------------------------------------------------------------------------------------|---------------------------------------|
| Received by/date: 04/04/12                                                                |                                       |
| Logged By: Ashley Gallegos 4/4/2012 10:15:00 AM                                           |                                       |
| Completed By: Ashley Gallegos 4/4/2012 11:45:12 AM                                        | <del>Ag</del>                         |
| Reviewed By: Mg Oulouliz                                                                  |                                       |
| Chain of Custody                                                                          |                                       |
| 1. Were seals intact?                                                                     | Yes 🗌 No 🗀 Not Present 🗹              |
| 2. Is Chain of Custody complete?                                                          | Yes 🗹 No 🗔 Not Present 🗔              |
| 3. How was the sample delivered?                                                          | <u>ups</u>                            |
| <u>Log in</u>                                                                             |                                       |
| 4. Coolers are present? (see 19. for cooler specific information)                         | Yes 🗹 No 🗀 NA 🗀                       |
| <b>-</b>                                                                                  | · · · · · · · · · · · · · · · · · · · |
| 5. Was an attempt made to cool the samples?                                               | Yes 🗹 No 🛄 NA 🗌                       |
| 6. Were all samples received at a temperature of >0° C to 8.0°C                           | Yes 🗹 No 🗌 NA 🗀                       |
| 7 Sample(s) in proper container(s)?                                                       | Yes ₩ No □                            |
| 8. Sufficient sample volume for indicated test(s)?                                        | Yes V No                              |
| Are samples (except VOA and ONG) properly preserved?                                      | Yes V Nc 🗆                            |
| 10. Was preservative added to bottles?                                                    | Yes No 🗹 NA 🗀                         |
|                                                                                           |                                       |
| 11. VOA vials have zero headspace?                                                        | Yes ☐ No ☐ No VOA Vīais ☑             |
| 12. Were any sample containers received broken?  13. Does paperwork match bottle labels?  | Yes ✓ No ✓ # of preserved             |
| (Note discrepancies on chain of custody)                                                  | bottles checked Z Z for pH:           |
| 14, Are matrices correctly Identified on Chain of Custody?                                | Yes ☑ No ☐ ②or ×12_unless noted)      |
| 15, is it clear what analyses were requested?                                             | Yes V No Adjusted?                    |
| 16. Were all holding times able to be met?<br>(If no, notify customer for authorization.) | Yes ☑ No ☐ Checked by:                |
| Special Handling (If applicable)                                                          |                                       |
| 17. Was client notified of all discrepancies with this order?                             | Yes □ No □ NA ☑ ✓                     |
| Person Notified: Date:                                                                    |                                       |
| By Whom: Via:                                                                             | eMail Phone Fax In Person             |
| Regarding:                                                                                |                                       |
| Client Instructions:                                                                      |                                       |
| 18. Additional remarks:                                                                   |                                       |
|                                                                                           |                                       |
| 19. Cooler information                                                                    |                                       |
| Cooler No Temp °C Condition Seal Intact Seal No S                                         | Seal Date Signed By                   |
| 13.3 Good Yes                                                                             |                                       |



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 1208093

August 30, 2012

Kelly Robinson

Western Refining Southwest, Inc.

#50 CR 4990

Bloomfield, NM 87413

TEL: (505) 632-4135

FAX (505) 632-3911

RE: Injection Well 3rd Qtr

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 8/1/2012 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <a href="www.hallenvironmental.com">www.hallenvironmental.com</a> or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 3rd Qtr Client Sample ID: Injection Well

**Collection Date:** 7/31/2012 1:30:00 PM Received Date: 8/1/2012 9:30:00 AM

|                                |           |          | Received Date: 8/1/2012 9:30:00 AM |      |                                              |  |  |
|--------------------------------|-----------|----------|------------------------------------|------|----------------------------------------------|--|--|
| analyses                       | Result    | RL Qu    | al Units                           | DF   | Date Analyzed                                |  |  |
| EPA METHOD 300.0: ANIONS       |           |          |                                    |      | Analyst: SRM                                 |  |  |
| Chloride                       | 1100      | 50       | mg/L                               | 100  | 8/2/2012 6:27:10 PM                          |  |  |
| Sulfate                        | 15        | 5.0      | mg/L                               | 10   | 8/2/2012 6:15:56 PM                          |  |  |
| EPA METHOD 7470: MERCURY       |           |          |                                    |      | Analyst: DBD                                 |  |  |
| Mercury                        | ND        | 0.00020  | mg/L                               | 1    | 8/3/2012 3:03:31 PM                          |  |  |
| EPA 6010B: TOTAL RECOVERABLE   | METALS    |          |                                    |      | Analyst: JLF                                 |  |  |
| Arsenic                        | ND        | 0.020    | mg/L                               | 1    | 8/14/2012 11:50:46 AM                        |  |  |
| Barium                         | 0.39      | 0.020    | mg/L                               | 1    | 8/14/2012 11:50:46 AM                        |  |  |
| Cadmium                        | ND        | 0.0020   | mg/L                               | 1    | 8/14/2012 11:50:46 AM                        |  |  |
| Calcium                        | 94        | 1.0      | mg/L                               | 1    | 8/14/2012 11:50:46 AM                        |  |  |
| Chromium                       | ND        | 0.0060   | mg/L                               | 1    | 8/14/2012 11:50:46 AM                        |  |  |
| Lead                           | ND        | 0.0050   | mg/L                               | 1    |                                              |  |  |
| Magnesium                      | 44        | 1.0      | mg/L                               | 1    | 8/14/2012 11:50:46 AM                        |  |  |
| Potassium                      | 17        | 1.0      | _                                  |      | 8/14/2012 9:53:17 AM                         |  |  |
| Selenium                       | ND        | 0.050    | mg/L                               | 1    | 8/14/2012 9:53:17 AM                         |  |  |
| Silver                         |           |          | mg/L                               | 1 21 | 8/14/2012 11:50:46 AM                        |  |  |
| Sodium                         | ND<br>760 | 0.0050   | mg/L                               | 1    | 8/14/2012 9:53:17 AM                         |  |  |
|                                |           | 10       | mg/L                               | 10   | 8/14/2012 11:53:30 AM                        |  |  |
| EPA METHOD 8270C: SEMIVOLATILI |           |          |                                    |      | Analyst: JDC                                 |  |  |
| Acenaphthene                   | ND        | 50       | μg/L                               | 1.   | 8/7/2012 12:00:44 PM                         |  |  |
| Acenaphthylene                 | ND        | 50       | μg/L                               | 1    | 8/7/2012 12:00:44 PM                         |  |  |
| Aniline                        | ND        | 50       | μg/L                               | 1    | 8/7/2012 12:00:44 PM                         |  |  |
| Anthracene                     | ND        | 50       | μg/L                               | 1    | 8/7/2012 12:00:44 PM                         |  |  |
| Azobenzene                     | ND        | 50       | μg/L                               | 1.   | 8/7/2012 12:00:44 PM                         |  |  |
| Benz(a)anthracene              | ND        | 50       | μg/L                               | 1    | 8/7/2012 12:00:44 PM                         |  |  |
| Benzo(a)pyrene                 | ND        | 50       | μg/L                               | 1    | 8/7/2012 12:00:44 PM                         |  |  |
| Benzo(b)fluoranthene           | ND        | 50       | μg/L                               | 1    | 8/7/2012 12:00:44 PM                         |  |  |
| Benzo(g,h,i)perylene           | ND        | 50       | μg/L                               | 1    | 8/7/2012 12:00:44 PM                         |  |  |
| Benzo(k)fluoranthene           | NĐ        | 50       | μg/L                               | 1    | 8/7/2012 12:00:44 PM                         |  |  |
| Benzoic acid                   | ND        | 100      | μg/L                               | 1    | 8/7/2012 12:00:44 PM                         |  |  |
| Benzyl alcohol                 | ND        | 50       | μg/L                               | 1    | 8/7/2012 12:00:44 PM                         |  |  |
| Bis(2-chloroethoxy)methane     | ND        | 50       | µg/L                               | 1    | 8/7/2012 12:00:44 PM                         |  |  |
| Bis(2-chloroethyl)ether        | ND        | 50       | μg/L                               | 1    | 8/7/2012 12:00:44 PM                         |  |  |
| Bis(2-chloroisopropyl)ether    | ND        | 50       | μg/L                               | 1    | 8/7/2012 12:00:44 PM                         |  |  |
| Bis(2-ethylhexyl)phthalate     | ND        | 50       | μg/L                               | 1    | 8/7/2012 12:00:44 PM                         |  |  |
| 4-Bromophenyl phenyl ether     | ND        | 50       | μg/L                               | 1    | 8/7/2012 12:00:44 PM                         |  |  |
| Butyl benzyl phthalate         | ND        | 50       | μg/L                               | 1    | 8/7/2012 12:00:44 PM                         |  |  |
| Carbazole                      | ND        | 50       | μg/L                               | 1    |                                              |  |  |
| 4-Chloro-3-methylphenol        | ND        | 50       |                                    | 947  | 8/7/2012 12:00:44 PM                         |  |  |
| 4-Chloroaniline                | ND        | 50<br>50 | μg/L                               |      | 8/7/2012 12:00:44 PM                         |  |  |
| 2-Chloronaphthalene            | ND        | 50<br>50 | μg/L                               |      | 8/7/2012 12:00:44 PM                         |  |  |
| 2-Chlorophenol                 | ND<br>ND  | 50<br>50 | μg/L<br>μg/L                       | -    | 8/7/2012 12:00:44 PM<br>8/7/2012 12:00:44 PM |  |  |

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
- Reporting Detection Limit
- Value exceeds Maximum Contaminant Level.
- Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits  $\begin{array}{c} \text{Page 1 of 18} \end{array}$

### Lab Order 1208093

Date Reported: 8/30/2012

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 3rd Qtr

Lab ID: 1208093-001 Client Sample ID: Injection Well

Collection Date: 7/31/2012 1:30:00 PM Received Date: 8/1/2012 9:30:00 AM

| Analyses                              | Result   | RL O     | al Units     | DF | Date Analyzed                                |  |  |
|---------------------------------------|----------|----------|--------------|----|----------------------------------------------|--|--|
| EPA METHOD 8270C: SEMIVOLA            |          |          | -            |    | Analyst: JDC                                 |  |  |
| 4-Chlorophenyl phenyl ether           | ND       | 50       | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| Chrysene                              | ND       | 50<br>50 | μg/L<br>μg/L | 31 | 8/7/2012 12:00:44 PM                         |  |  |
| Di-n-butyl phthalate                  | ND       | 50<br>50 | μg/L<br>μg/L | 31 | 8/7/2012 12:00:44 PM<br>8/7/2012 12:00:44 PM |  |  |
| Di-n-octyl phthalate                  | ND       | 50<br>50 | μg/L<br>μg/L | í  | 8/7/2012 12:00:44 PM                         |  |  |
| Dibenz(a,h)anthracene                 | ND       | 50       | μg/L         | 4  | 8/7/2012 12:00:44 PM                         |  |  |
| Dibenzofuran                          | ND       | 50<br>50 | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| 1.2-Dichlorobenzene                   | ND       | 50       | μg/L         | 4  | 8/7/2012 12:00:44 PM                         |  |  |
| 1,3-Dichlorobenzene                   | ND       | 50       | μg/L         | 4  | 8/7/2012 12:00:44 PM                         |  |  |
| 1,4-Dichlorobenzene                   | ND       | 50       | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| 3,3'-Dichlorobenzidine                | ND       | 50       | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| Diethyl phthalate                     | ND       | 50       | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| Dimethyl phthalate                    | ND       | 50<br>50 | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| 2,4-Dichlorophenol                    | ND       | 100      | μg/L         | 1  |                                              |  |  |
| 2,4-Dimethylphenol                    | ND       | 50       | μg/L<br>μg/L | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| 4,6-Dinitro-2-methylphenol            | ND       | 100      |              |    | 8/7/2012 12:00:44 PM                         |  |  |
| 2,4-Dinitrophenol                     | ND       |          | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| 2,4-Dinitrophenol                     | ND<br>ND | 100      | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| 2,4-Dinitrotoluene 2,6-Dinitrotoluene |          | 50       | µg/∟         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| · ·                                   | ND       | 50       | μg/L<br>     | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| Fluoranthene                          | ND       | 50       | μg/L<br>     | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| Fluorene                              | ND       | 50       | μg/L<br>     | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| Hexachlorobenzene                     | ND       | 50       | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| Hexachlorobutadiene                   | ND       | 50       | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| Hexachlorocyclopentadiene             | ND       | 50       | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| Hexachloroethane                      | ND       | 50       | μg/L         | 3  | 8/7/2012 12:00:44 PM                         |  |  |
| Indeno(1,2,3-cd)pyrene                | ND       | 50       | µg/L         | 3  | 8/7/2012 12:00:44 PM                         |  |  |
| Isophorone                            | ND       | 50       | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| 1-Methylnaphthalene                   | ND       | 50       | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| 2-Methylnaphthalene                   | ND       | 50       | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| 2-Methylphenol                        | ND       | 50       | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| 3+4-Methylphenol                      | 140      | 50       | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| N-Nitrosodi-n-propylamine             | ND       | 50       | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| N-Nitrosodimethylamine                | ND       | 50       | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| N-Nitrosodiphenylamine                | ND       | 50       | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| Naphthalene                           | ND       | 50       | μ <b>g/L</b> | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| 2-Nitroaniline                        | ND       | 50       | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| 3-Nitroaniline                        | ND       | 50       | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| 4-Nitroaniline                        | ND       | 100      | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| Nitrobenzene                          | ND       | 50       | µg/∟         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| 2-Nitrophenol                         | ND       | 50       | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| 4-Nitrophenol                         | ND       | 50       | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| Pentachlorophenol                     | ND       | 100      | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |
| Phenanthrene                          | ND       | 50       | μg/L         | 1  | 8/7/2012 12:00:44 PM                         |  |  |

Matrix: AQUEOUS

- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- Reporting Detection Limit
- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits  $Page \ 2 \ of \ 18$

### Hall Environmental Analysis Laboratory, Inc.

**CLIENT:** Western Refining Southwest, Inc.

Project: Injection Well 3rd Qtr

Lab ID: 1208093-001 Client Sample ID: Injection Well

Collection Date: 7/31/2012 1:30:00 PM Received Date: 8/1/2012 9:30:00 AM

|                                        | HULLIA       | AQUEOUS   | Received Date: 8/1/2012 9:50:00 Alvi |    |                      |  |  |  |
|----------------------------------------|--------------|-----------|--------------------------------------|----|----------------------|--|--|--|
| Analyses                               | Result RL Qu |           | Units                                | DF | Date Analyzed        |  |  |  |
| <b>EPA METHOD 8270C: SEMIVOLATILES</b> |              |           |                                      |    | Analyst: JD0         |  |  |  |
| Phenol                                 | ND           | 50        | μg/L                                 | 35 | 8/7/2012 12:00:44 PM |  |  |  |
| Pyrene                                 | ND           | 50        | μg/L                                 | 4  | 8/7/2012 12:00:44 PM |  |  |  |
| Pyridine                               | ND           | 50        | μg/L                                 | 1  | 8/7/2012 12:00:44 PM |  |  |  |
| 1,2,4-Trichlorobenzene                 | ND           | 50        | μg/L                                 | 1  | 8/7/2012 12:00:44 PM |  |  |  |
| 2,4,5-Trichlorophenol                  | ND           | 50        | μg/L                                 | 1  | 8/7/2012 12:00:44 PM |  |  |  |
| 2,4,6-Trichlorophenol                  | ND           | 50        | μg/L                                 | 1  | 8/7/2012 12:00:44 PM |  |  |  |
| Surr: 2,4,6-Tribromophenol             | 62.9         | 44.2-126  | %REC                                 | 1  | 8/7/2012 12:00:44 PM |  |  |  |
| Surr: 2-Fluorobiphenyl                 | 46.7         | 37-114    | %REC                                 | 1  | 8/7/2012 12:00:44 PM |  |  |  |
| Surr: 2-Fluorophenol                   | 34.6         | 23.4-98   | %REC                                 | 1  | 8/7/2012 12:00:44 PM |  |  |  |
| Surr: 4-Terphenyl-d14                  | 55.4         | 41.3-116  | %REC                                 | 1  | 8/7/2012 12:00:44 PM |  |  |  |
| Surr: Nitrobenzene-d5                  | 49.5         | 39.5-118  | %REC                                 | 1  | 8/7/2012 12:00:44 PM |  |  |  |
| Surr: Phenol-d5                        | 32.3         | 20.9-95.9 | %REC                                 | 1  | 8/7/2012 12:00:44 PM |  |  |  |
| EPA METHOD 8260B: VOLATILES            |              |           |                                      |    | Analyst: <b>JDJ</b>  |  |  |  |
| Benzene                                | ND           | 1.0       | μg/L                                 | 1  | 8/6/2012 11:46:06 AM |  |  |  |
| Toluene                                | 2.6          | 1.0       | μg/L                                 | 1  | 8/6/2012 11:46:06 AM |  |  |  |
| Ethylbenzene                           | ND           | 1.0       | μg/L                                 | 1  | 8/6/2012 11:46:06 AM |  |  |  |
| Methyl tert-butyl ether (MTBE)         | ND           | 1.0       | μg/L                                 | 1  | 8/6/2012 11:46:06 AM |  |  |  |
| 1,2,4-Trimethylbenzene                 | ND           | 1.0       | μg/L                                 | 4  | 8/6/2012 11:46:06 AM |  |  |  |
| 1,3,5-Trimethylbenzene                 | ND           | 1.0       | μg/L                                 | 1  | 8/6/2012 11:46:06 AM |  |  |  |
| 1,2-Dichloroethane (EDC)               | ND           | 1.0       | μg/L                                 | 4  | 8/6/2012 11:46:06 AM |  |  |  |
| 1,2-Dibromoethane (EDB)                | ND           | 1.0       | μg/L                                 | 1  | 8/6/2012 11:46:06 AM |  |  |  |
| Naphthalene                            | ND           | 2.0       | μg/L                                 | 1  | 8/6/2012 11:46:06 AM |  |  |  |
| 1-Methylnaphthalene                    | ND           | 4.0       | μg/L                                 | 1  | 8/6/2012 11:46:06 AM |  |  |  |
| 2-Methylnaphthalene                    | ND           | 4.0       | μg/L                                 | 1  | 8/6/2012 11:46:06 AM |  |  |  |
| Acetone                                | 590          | 100       | μg/L                                 | 10 | 8/8/2012 10:49:46 AM |  |  |  |
| Bromobenzene                           | ND           | 1.0       | μg/L                                 | 1  | 8/6/2012 11:46:06 AM |  |  |  |
| Bromodichloromethane                   | ND           | 1.0       | μg/L                                 | 1  | 8/6/2012 11:46:06 AM |  |  |  |
| Bromoform                              | ND           | 1.0       | µg/∟                                 | 1  | 8/6/2012 11:46:06 AM |  |  |  |
| Bromomethane                           | ND           | 3.0       | µg/L                                 | 1  | 8/6/2012 11:46:06 AM |  |  |  |
| 2-Butanone                             | 21           | 10        | μg/L                                 | 1  | 8/6/2012 11:46:06 AM |  |  |  |
| Carbon disulfide                       | ND           | 10        | μg/L                                 | 1  | 8/6/2012 11:46:06 AM |  |  |  |
| Carbon Tetrachloride                   | ND           | 1.0       | μg/L                                 | 1  | 8/6/2012 11:46:06 AM |  |  |  |
| Chlorobenzene                          | ND           | 1.0       | μg/L                                 | 1  | 8/6/2012 11:46:06 AM |  |  |  |
| Chloroethane                           | ND           | 2.0       | μg/L                                 | 1: | 8/6/2012 11:46:06 AM |  |  |  |
| Chloroform                             | ND           | 1.0       | μg/L                                 | 1  | 8/6/2012 11:46:06 AM |  |  |  |
| Chloromethane                          | ND           | 3.0       | μg/L                                 | ¥. | 8/6/2012 11:46:06 AM |  |  |  |
| 2-Chlorotoluene                        | ND           | 1.0       | μg/L<br>μg/L                         | 2  |                      |  |  |  |
| 4-Chlorotoluene                        | ND           | 1.0       |                                      | -  | 8/6/2012 11:46:06 AM |  |  |  |
| cis-1,2-DCE                            | ND           | 1.0       | μg/L                                 | \$ | 8/6/2012 11:46:06 AM |  |  |  |
| cis-1,3-Dichloropropene                | ND           | 1.0       | μg/L                                 |    | 8/6/2012 11:46:06 AM |  |  |  |
| 1,2-Dibromo-3-chloropropane            |              | 2.0       | μg/L                                 | į. | 8/6/2012 11:46:06 AM |  |  |  |
| 1,2 5,5 ono-o-onioropropane            | ND           | 2.0       | μg/L                                 | 1  | 8/6/2012 11:46:06 AM |  |  |  |

Matrix: AQUEOUS

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
- Reporting Detection Limit RL
- Х Value exceeds Maximum Contaminant Level.
- Value above quantitation range
- J Analyte detected below quantitation limits
- RPD outside accepted recovery limits R
  - Spike Recovery outside accepted recovery limits  $\begin{array}{c} \text{Page 3 of 18} \end{array}$

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 3rd Qtr

Lab ID: 1208093-001

Client Sample ID: Injection Well

**Collection Date:** 7/31/2012 1:30:00 PM **Received Date:** 8/1/2012 9:30:00 AM

| Analyses                    | Result | RL Qu  | al Units      | DF        | Date Analyzed        |  |  |
|-----------------------------|--------|--------|---------------|-----------|----------------------|--|--|
| EPA METHOD 8260B: VOLATILES | ·      |        |               |           | Analyst: JDJ         |  |  |
| Dibromochloromethane        | ND     | 1.0    | μg/L          | 31        | 8/6/2012 11:46:06 AM |  |  |
| Dibromomethane              | ND     | 1.0    | μg/L          | 4         | 8/6/2012 11:46:06 AM |  |  |
| 1,2-Dichlorobenzene         | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| 1,3-Dichlorobenzene         | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| 1,4-Dichlorobenzene         | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| Dichlorodifluoromethane     | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| 1,1-Dichloroethane          | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| 1,1-Dichloroethene          | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| 1,2-Dichloropropane         | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| 1,3-Dichloropropane         | ND     | 1.0    | μg/L          | <b>(4</b> | 8/6/2012 11:46:06 AM |  |  |
| 2,2-Dichloropropane         | ND     | 2.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| 1,1-Dichloropropene         | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| Hexachlorobutadiene         | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| 2-Hexanone                  | ND     | 10     | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| Isopropylbenzene            | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| 4-Isopropyltoluene          | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| 4-Methyl-2-pentanone        | ND     | 10     | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| Methylene Chloride          | ND     | 3.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| n-Butylbenzene              | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| n-Propylbenzene             | ND     | 1.0    | µg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| sec-Butylbenzene            | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| Styrene                     | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| tert-Butylbenzene           | ND     | 1.0    | μg/L          | 15        | 8/6/2012 11:46:06 AM |  |  |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| Tetrachloroethene (PCE)     | ND     | 1.0    | μ <b>g</b> /L | 1         | 8/6/2012 11:46:06 AM |  |  |
| trans-1,2-DCE               | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| trans-1,3-Dichloropropene   | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| 1,2,3-Trichlorobenzene      | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| 1,2,4-Trichlorobenzene      | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| 1,1,1-Trichloroethane       | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| 1,1,2-Trichloroethane       | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| Trichloroethene (TCE)       | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| Trichlorofluoromethane      | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| 1,2,3-Trichloropropane      | ND     | 2.0    | µg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| Vinyl chloride              | ND     | 1.0    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| Xylenes, Total              | ND     | 1.5    | μg/L          | 1         | 8/6/2012 11:46:06 AM |  |  |
| Surr: 1,2-Dichloroethane-d4 | 99.1   | 70-130 | %REC          | 1         | 8/6/2012 11:46:06 AM |  |  |
| Surr: 4-Bromofluorobenzene  | 99.1   | 70-130 | %REC          | 1         | 8/6/2012 11:46:06 AM |  |  |
| Surr: Dibromofluoromethane  | 105    | 70-130 | %REC          | 1         | 8/6/2012 11:46:06 AM |  |  |
| Surr: Toluene-d8            | 99.7   | 70-130 | %REC          | 1         | 8/6/2012 11:46:06 AM |  |  |

Matrix: AQUEOUS

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits Page 4 of 18

### **Analytical Report**

Lab Order 1208093

Date Reported: 8/30/2012

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 3rd Qtr

1208093-001 Lab ID:

Client Sample ID: Injection Well

Collection Date: 7/31/2012 1:30:00 PM

Received Date: 8/1/2012 9:30:00 AM

| Analyses                       | Result | RL Qua | l Units    | DF | Date Analyzed        |
|--------------------------------|--------|--------|------------|----|----------------------|
| EPA 120.1: SPECIFIC CONDUCTANO | CE     |        |            |    | Analyst: DBD         |
| Conductivity                   | 4200   | 0.010  | µmhos/cm   | 1  | 8/13/2012 1:40:32 PM |
| SM4500-H+B: PH                 |        |        |            |    | Analyst: DBD         |
| рН                             | 7.95   | 1.68 H | pH units   | 1  | 8/13/2012 1:40:32 PM |
| SM2320B: ALKALINITY            |        |        |            |    | Analyst: DBD         |
| Bicarbonate (As CaCO3)         | 510    | 20     | mg/L CaCO3 | 1  | 8/13/2012 1:40:32 PM |
| Carbonate (As CaCO3)           | ND     | 2.0    | mg/L CaCO3 | 1  | 8/13/2012 1:40:32 PM |
| Total Alkalinity (as CaCO3)    | 510    | 20     | mg/L CaCO3 | 1  | 8/13/2012 1:40:32 PM |
| SM2540C MOD: TOTAL DISSOLVED   | SOLIDS |        |            |    | Analyst: KS          |
| Total Dissolved Solids         | 2740   | 40.0   | mg/L       | 1  | 8/8/2012 8:46:00 AM  |

Matrix: AQUEOUS

Qualifiers:

В

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Reporting Detection Limit
- Value exceeds Maximum Contaminant Level,
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits  $$\operatorname{Page}\ 5$ of $18$$ S

### CASE NARRATIVE

August 22, 2012

Lab Name: Anatek Labs, Inc. 1282 Alturas Drive, Moscow, ID 83843 www.anateklabs.com FL NELAP E87893, NV ID13-2004-31, WA DOE C126, OR ELAP ID200001, MT 0028, ID, CO, NM

Project Tracking No.: 1208093 Anatek Batch: 120806003

**Project Summary:** One (1) water sample was received on 8/3/2012 for total reactive cyanide and sulfide, corrosivity, and flashpoint analysis. The sample was received with appropriate chain of custody at 3.0C.

Client Sample ID 1208093-001E Injection Well Anatek Sample ID 120806003-001

Method/Prep Method

Various

### **QA/QC Checks**

| Parameters                          | Yes / No | Exceptions / Deviations |
|-------------------------------------|----------|-------------------------|
| Sample Holding Time Valid?          | Υ        | NA                      |
| Surrogate Recoveries Valid?         | NA       | NA                      |
| QC Sample(s) Recoveries Valid?      | Y        | NA                      |
| Method Blank(s) Valid?              | Υ        | NA                      |
| Tune(s) Valid?                      | NA       | NA                      |
| Internal Standard Responses Valid?  | NA       | NA                      |
| Initial Calibration Curve(s) Valid? | Y        | NA                      |
| Continuing Calibration(s) Valid?    | Y        | NA                      |
| Comments:                           | Υ        | NA                      |

### 1. Holding Time Requirements

No problems encountered.

### 2. GC/MS Tune Requirements

N/A

### 3. Calibration Requirements

No problems encountered.

### 4. Surrogate Recovery Requirements

N/A.

### 5. QC Sample (LCS/MS/MSD) Recovery Requirements

No problems encountered.

### 6. Method Blank Requirements

No problems encountered.

| 7. Internal Standard(s) Response Require | ments |
|------------------------------------------|-------|
|------------------------------------------|-------|

N/A.

### 8. Comments

No problems encountered.

I certify that this data package is in compliance with the terms and conditions of the contract. Release of the data contained in this data package has been authorized by the Laboratory Manager or his designee.

Approved by:

Page 2 of 17

John. Cott

## Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anatekiabs.com 504 E Sprague Ste. D • Spokene WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

120806003

Address:

4901 HAWKINS NE SUITE D **ALBUQUERQUE, NM 87109** 

**Project Name:** 

1208093

Attn:

ANDY FREEMAN

### **Analytical Results Report**

Sample Number

120806003-001

Sampling Date

7/31/2012 Date/Time Received 8/3/2012

2:01 PM

Client Sample ID Matrix

1208093-001E / INJECTION WELL

Sampling Time

1:30 PM

**Sample Location** 

Comments

| Parameter          | Result | Result Units |     | Analysis Date | Analyst | Method    | Qualifier |
|--------------------|--------|--------------|-----|---------------|---------|-----------|-----------|
| Cyanide (reactive) | ND     | mg/L         | 0.1 | 8/10/2012     | CRW     | SW846 CH7 |           |
| Flashpoint         | >200   | °F           |     | 8/9/2012      | KFG     | EPA 1010  |           |
| pH                 | 7.55   | ph Units     |     | 8/10/2012     | ETL     | EPA 150.1 |           |
| Reactive sulfide   | 10.0   | mg/L         | 5   | 8/13/2012     | JTT     | SW846 CH7 |           |

Authorized Signature

John Coddington, Lab Manager

MCL.

**EPA's Maximum Contaminant Level** 

ND

Not Detected

PQL

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

## Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

120806003

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

**Project Name:** 

1208093

Attn:

**ANDY FREEMAN** 

Analytical Results Report

Quality Control Data

| Lab Control Sample               |               |        |              |       |       |           |            |                |              |               |  |
|----------------------------------|---------------|--------|--------------|-------|-------|-----------|------------|----------------|--------------|---------------|--|
| Parameter                        | LCS Result    | Unite  | LCS          | Spike | %Rec  | : AR      | %Rec       | Prep           | Date         | Analysis Date |  |
| Reactive sulfide                 | 0.180         | mg/L   | . (          | 0.2   |       | 70        | )-130      | 8/13/          | 2012         | 8/13/2012     |  |
| Cyanide (reactive)               | 0.504         | mg/L   | . (          | ).5   | 100.8 | 80        | 80-120     |                | 2012<br>———— | 8/10/2012     |  |
| Matrix Spike                     | <u> </u>      |        |              |       |       |           |            |                |              |               |  |
| Sample Number Parameter          |               | Sample | MS           |       |       | MS        |            | AR             |              |               |  |
| 120806003-001 Reactive sulfide   |               | Result | Result       | Unit  |       | Spike     | %Rec       | %Rec           | Prep Date    |               |  |
|                                  |               | 10.0   | 28.0         | mg/   |       | 20<br>0.5 | 90.0       | 70-130         | 8/13/2012    |               |  |
| 120806003-001 Cyanide (reactive) |               | ND     | 0.454        | mg/   | mg/L  |           | 90.8       | 80-120 8/10/20 |              | 8/10/2012     |  |
| Matrix Spike Duplicate           | <del> </del>  |        |              |       |       |           |            | •              |              |               |  |
| Parameter                        | MSD<br>Result | Units  | MSD<br>Spike | o∕.E  | lec   | %RPD      | AR<br>%RPD | O Prep Date    |              | Analysis Date |  |
| Cyanide (reactive)               |               |        | 0.5          |       |       | 0-25      |            | 0/2012         | 8/10/2012    |               |  |
| Method Blank                     |               |        |              |       |       |           |            |                |              |               |  |
| Parameter                        |               | Result |              | Ur    | nits  |           | PQL.       | Pn             | ep Date      | Analysis Date |  |
| Cyanide (reactive)               |               | N N    |              |       | g/L   | 0.1       |            | 8/10/2012      |              | 8/10/2012     |  |
| Reactive sulfide                 |               | N      | mg/kg        |       | 1     |           | 8/13/2012  |                | 8/13/2012    |               |  |

AR

Acceptable Range

ND

Not Detected

PQL RPD Practical Quantitation Limit Relative Percentage Difference

Comments:

Certifications held by Anatek Lebs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E97893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Lebs WA: EPA:WA00189; ID:WA00189; WA:C585; MT:Cert0095

## Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane VVA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

### **Login Report**

**Customer Name: HALL ENVIRONMENTAL ANALYSIS LAB** 

Order ID:

120806003

4901 HAWKINS NE SUITE D

Order Date:

8/6/2012

**ALBUQUERQUE** 

NM

Contact Name: ANDY FREEMAN

Project Name: 1208093

Comment:

Sample #:

120806003-001

Customer Sample #:

1208093-001E / INJECTION WELL

87109

Recv'd:

**V** 

Collector: Matrix:

Water

Date Collected:

7/31/2012

Date Received:

8/3/2012 2:01:00 PM

Quantity: Comment:

| Test                          | Lab | Method    | Due Date  | Priority           |
|-------------------------------|-----|-----------|-----------|--------------------|
| CYANIDE REACTIVE              | М   | SW846 CH7 | 8/15/2012 | Normal (6-10 Days) |
| FLASHPOINT                    | М   | EPA 1010  | 8/15/2012 | Normal (6-10 Days) |
| рН                            | М   | EPA 150.1 | 8/15/2012 | Normal (6-10 Days) |
| SULFIDE REACTIVE              | M   | SW846 CH7 | 8/15/2012 | Normal (6-10 Days) |
|                               | D   |           |           |                    |
| Samples received in a cooler? |     |           | Yes       |                    |

| Samples received in a cooler?                   | Yes |
|-------------------------------------------------|-----|
| Samples received intact?                        | Yes |
| What is the temperature inside the cooler?      | 3.0 |
| Samples received with a COC?                    | Yes |
| Samples received within holding time?           | Yes |
| Are all sample bottles properly preserved?      | Yes |
| Are VOC samples free of headspace?              | N/A |
| Is there a trip blank to accompany VOC samples? | N/A |
| Labels and chain agree?                         | Yes |



# CHAIN OF CUSTODY RECORD MAGE 1

| 1208093 | 1st SAMP           | 9080ZL1        |
|---------|--------------------|----------------|
| **      | 7/31/2012 1st RCVD | 003 SALLE Last |
|         | 8/3/2012           | 8/15/20        |

|                                    |              | TAT: Standard R1/SH Next  | -                        | Maquished By: Line R22012 Time. Received By:            |   | Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return | EXHALINSTERCTIONS / COMMENTS. |    |  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9 | <b>(2)</b> | 7 | 6 | <b>5</b> | 4       | <b>N</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1208093-001E Injection Well        | TEM SAMPLE CLIENT SAMPLE ID        | TIV, STATE, ZIP. MOSCOW, ID 83843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CORESS: 1282 Alturas Dr | SUB CONTRATOR: Anatek Labs COMPANY: Anatek |  |
|------------------------------------|--------------|---------------------------|--------------------------|---------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------|---|---|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------|--|
| DATE & TIME: 8/5/12 /4/21 INSPECTE |              | CUSTODY SEALS PRESENT:    | ICE / ICE-PACKS PRESENT: | LABELS & CHAINS AGREE                                   | 1 | orts. Please e-mail results to lab@hallenvironment                                                                                         |                               | 20 |  | The manual view of the state of |   |            |   |   |          |         | married and addressed a second | 500HDPE Aqueous 7/31/2012 1:30:00 PM | BOTTLE COLLECTION TYPE MATRIX DATE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ACCOUNT #:              | Anatek Labs, Inc. PHONE:                   |  |
| INSPECTED BY: BY                   | SHIPPED VIA: | Ma_off C Attempt to Coal? | OR LAB USE ONLY          | TEMP: 5-C •C I TRANSMITTAL DESIRED:  - FAX EMAIL ONLINE | 등 | tal.com. Please return all coolers and blue icc. Thank you.                                                                                |                               | 12 |  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |            |   |   |          | O HIVOZ | A 08/02/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 RCI LEVEL 1 OC                     | ANALYTICAL COMMENTS                | The state of the s | EMAIL                   | (208) 883-2839 FAX: (208) 882-9246         |  |

## Flashpoint Analysis

Sample Matrix - Soil (1), Sludge (2), Oil (3), Water (4), Other (5)

| Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analyses Date | Sample<br>Matrix  | Analyst<br>Initials | Temp - °C    | Temp - °F        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|---------------------|--------------|------------------|
| 20727018-01<br>120727029-001<br>-002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8/5/2012      | 4/ Hz8            | 12                  |              | 7205° E          |
| 120206003-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8/9/2012      | 4/ 120            |                     |              | 14506            |
| 120807043-00:<br>-002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 17 195            | 1000                |              | >2000F           |
| 208055-00:<br>20810057-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8/10/2012     | 5/Liquid<br>4/H30 | nu                  | -            | < 50°F<br>>200°F |
| 1 - 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 10 0 × 1 | 8/21/2012     | 4/ 440            | Twn                 |              | 1200 F           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                     |              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                     | <del>-</del> |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                     |              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                     |              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                     |              | ***              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                     |              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                     |              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   | -                   |              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <del></del> -     |                     |              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                     |              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                     |              |                  |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                   |                     |              |                  |

<sup>\*</sup> SAFETY GLASSES REQUIRED.

| N:\Bench Sheets\pH-Alk Bench Sheet with Calcs-protection | Analysis Date: 8/4/12 | 10000022001 | - 02 M | 100-54000 | 100000000000000000000000000000000000000 | 900   | Dos   | 2004 | 5,00       | 200    | 120809049001 | Local DOSCOLO | 123/07057-301 | (CO - £ 2080 8011 | 120802012-201 | 120302050-501 | Sample                 |                        |                                         |                       |               |         |                                         |                                           |                         |
|----------------------------------------------------------|-----------------------|-------------|--------|-----------|-----------------------------------------|-------|-------|------|------------|--------|--------------|---------------|---------------|-------------------|---------------|---------------|------------------------|------------------------|-----------------------------------------|-----------------------|---------------|---------|-----------------------------------------|-------------------------------------------|-------------------------|
| -Alk Bench S                                             | 1                     | 16-3        | 20.6   | 20.10     | 20.7                                    | 179   | 12.52 | t°t1 | 16.5       | 200,20 | 78,2         | 18,3          | 20.3          | 101-64            | - 50<br>- 50  | (7.6)         | Temp<br>(°C)           |                        |                                         |                       |               |         |                                         |                                           |                         |
| heet with Cak                                            | 8/13/12               | 6.516       | 82.4   | 2.46      | 7,55                                    | 6.8.2 | 6.06  | 6.60 | ₩.<br>60.¢ | 30.F   | 7.08         | 7.32          | 7.00          | 6.16              | 326           | 6.48          | 함                      |                        |                                         | Matri                 |               |         | 0.027                                   | PH PH                                     |                         |
| cs-protection                                            |                       |             |        |           |                                         |       |       |      |            |        | 400          |               |               |                   |               | 4.01          | pH 4<br>Cal            |                        |                                         | Matrix Spike Solution | Standard      |         | pH Buffer 10 (Blue) 0.02N H2SO4 Titrant | pH Buffer 7 (Yellow)                      | Reagent                 |
|                                                          |                       |             |        |           |                                         |       |       |      |            |        | ς;<br>δ.     |               |               |                   |               | 10.07         | рН 10<br>Са            |                        | Contrib                                 | dution                |               |         | Blue)<br>Titrant                        | ellow)                                    |                         |
|                                                          |                       |             |        |           |                                         |       |       |      |            |        | 129CI        |               |               |                   |               | 2.101         | Slope                  |                        | Contriburette: CAT 10uL,                | M637-04               | Solution #    | 110     | M854-03                                 | M854-01<br>M854-02                        | Solut                   |
|                                                          |                       |             |        |           |                                         |       |       |      |            |        | 7209         |               |               |                   |               | 7.10          | pH 7<br>Buffer         |                        |                                         | 7-04                  | ion#          |         | 7 4-03<br>7 03                          | 4-02                                      | Solution #              |
|                                                          | Analyst: ペンプ          |             |        |           |                                         |       |       |      |            |        |              |               |               |                   |               |               | Sample<br>Vol.<br>(mL) |                        | sn 600055 - pH Meter: Orion Model 620A, | ź                     | Conc.         | 2 100.0 | Sep-12<br>Apr 2013                      | Sep-13<br>Dec-{3                          | Expires                 |
|                                                          | ATT.                  |             |        |           |                                         |       |       |      |            |        |              |               |               |                   |               |               | <sup>8</sup> ≻         | Titrant                | pH Meter:                               |                       | ಣ             | 2       | 12                                      | 9                                         |                         |
|                                                          |                       |             |        |           |                                         |       |       |      |            |        |              |               |               |                   |               |               | 4.55 B                 | Titrant vol to pH (mL) | Orion Mo                                | 11/18/2012            | Expires       |         |                                         | pH 7 within 0.1 pH units<br>Slope 95-102% |                         |
|                                                          |                       |             |        |           |                                         |       |       |      |            |        |              |               |               |                   |               |               | C<br>4.2               | (mL)                   | del 620A,                               | 2012                  | res           |         |                                         | n 0.1 pH u<br>102%                        | Method                  |
|                                                          |                       | 0           | 0      | 0         | 0                                       | 0     | 0     | 0    | 0          | 0      | 0            | 0             | 0             | 0                 | 0             | 0             | Total                  | 3                      | sn 007858                               |                       | Am            |         |                                         | गंड                                       | QC Re                   |
|                                                          |                       | 0           | 0      | 0         | 0                                       | 0     | 0     | 0    | ٥          | 0      | 0            | 0             | 0             | 0                 | 0             | 0             | Carbonate              | Alkalini               | 58                                      | _                     | Amount Spiked |         | % Reco                                  | MS/MS                                     | Method QC Requirements: |
| Pri                                                      |                       | 0           | 0      | 0         | 0                                       | 0     | 0     | 0    | 0          | 0      | 0            | 0             | 0             | 0                 | 0             | 0             | 8i-<br>carbonate       | Alkalinity (mg/L       |                                         | 100                   | iked (mg/L    |         | % Recovery 85-115%                      | LFB/Blank every 10 MS/MSD Every 20        | ints:                   |
| Printed 8/9/2012                                         |                       | 0           | 0      | 0         | 0                                       | 0     | 0     | 0    | 0          | 0      | 0            | 0             | 0             | Ð                 | 0             | 0             | Hydraxide              |                        |                                         |                       | g/L)          |         | 115%                                    | 20 10                                     |                         |
| 12                                                       | (                     |             |        |           |                                         |       |       |      |            |        |              |               |               |                   |               |               | *                      |                        |                                         |                       |               |         |                                         |                                           |                         |
|                                                          |                       | 8           | 10-1   | I g       | 7                                       | _     |       |      |            |        |              | Pa            | ge 8          | of 17             | 7             |               |                        | •                      |                                         |                       |               |         |                                         |                                           |                         |

## Sulfide by SM 4500-S' F

|                     | Concentration | Date Made/Expires |
|---------------------|---------------|-------------------|
| Iodine              | 0.025 N       |                   |
| HCI                 | 6N            |                   |
| Starch<br>Indicator | 1% by weight  | 12/31/2009        |
| Zinc Acetate        | 99.9%         |                   |

## Quality Control Information

- 1. 1 blank per batch, must be < 20 ug/L.
- 2. 1 LFB per batch must be +/- 30%.
- 3. 1ml iodine reacts with 0.4 mg Sulfide

| Sample [20731034-1 w: 52.0 | Sample<br>Volume | mount<br>uL<br>ents) | nce<br>g/s; |         | Concentration (mg/L) | Date   |
|----------------------------|------------------|----------------------|-------------|---------|----------------------|--------|
| 20731034-1 m: 52.0         | 72 QS            | as                   | 20 mg = 0.  | 0.020mg | 5.4 X52.0: 70.8      | 8-13-1 |
| -2 W: 52.4                 |                  | 925                  |             | - 1     | 76 06 : h C3 X h V   |        |
| -3 m= 52.2                 |                  | 92                   |             |         | D. 4 FEZA : 1888     |        |
| -3M5 W-52.2                | +                | 2005                 | 200         | 0.200   | 4.0 X52.4-205.8      |        |
| 145                        | 020              | 450                  | 180         | 0.180   | 0.(80                |        |
| 1833-                      |                  | 025                  | an          | 0.200   | 0.200                |        |
| -80                        | +                | 50                   |             | 0.020   | 0.020                |        |
| 1.15=m 1-810608            | 1.0              | 300                  |             |         | 120 × 54.1 : 1492    |        |
| -2 M:52.7                  | 5.0              | 250                  | [ØD         | 0.100   | 20 X 52.7 1054       |        |
| 80 6003-1                  | 10.0             | 250                  | (00)        | _       | 0.0                  |        |
| 5W1-                       | +                | ast                  | 280         | 0.230   | 28.0                 |        |
| 1-5192                     | 10.0             | 250                  | 000         | 0,100   | <b>.</b> 0           |        |
| `2                         | 8,0              | 150                  | 60          | 0,060   | 6.00                 | +      |

Comments\_

120 813 H25R

## Total Cyanide by Semi-Automated Colorimetry Method: EPA 335.4\SM-4500-CN-E Distillation Bench Sheet

Weak Acid Dissociable Cyanide by SM 4500-CN-I (check WAD column)

Total Cyanide MS/MSD/LCS Soin:

M863-03

Exp:7/9/2013

Method requirements: All QC +/- 10%

Free Cyanide MS/MSD/LCS Soin:

M855-02 Exp:5/17/2013

Equipment: Mldi-vap

Instrument: ALPCHEM FIA 3000

Absorbance: 570nm

|          | Sample ID     | Matrix      | Preserved | Sample<br>Amount (mL)** | Initial<br>Multiplier* | Final<br>Multiplier | Spike Amount<br>(mL) | WAD?<br>(check if<br>yes) |
|----------|---------------|-------------|-----------|-------------------------|------------------------|---------------------|----------------------|---------------------------|
| 1        | 120806003-1   | reactiving  | NaBH      | 50ml                    | l'×                    |                     |                      |                           |
| 2        | -line         |             |           | ſ                       |                        |                     |                      |                           |
| 3        | - lush        |             |           | 4                       | 4                      |                     |                      |                           |
| 4        | 120807045-1   |             |           | 10mL                    | 5×                     |                     |                      |                           |
| 5        | -7            | 1           |           | 4                       | +                      |                     |                      |                           |
| 6        | 17.0809018 -1 | vendin scil |           | Cont                    | 54.1                   |                     |                      |                           |
| 7        | -2            | 1           |           | 1                       | 52.+                   |                     | 1                    |                           |
| 8        | 120809028-1   | ow for      |           |                         | lx                     |                     |                      |                           |
| 9        | -2            | 1           |           |                         |                        |                     |                      |                           |
| 9<br>10  | 17-1          | 1           | 4         | 4                       | 4                      |                     |                      |                           |
| 11       | 120803018-3   | wad         | MOH       | 50m                     | 1.                     |                     |                      |                           |
| 12       | ->ms          | 1           | 4         | 1                       |                        |                     |                      |                           |
| 13       | - Zurst       |             |           |                         |                        |                     |                      |                           |
|          | -W            |             |           |                         |                        |                     |                      |                           |
| 14<br>15 | BU            |             |           |                         |                        |                     |                      |                           |
| 16       | 120802038-1   | 4           |           |                         |                        |                     |                      |                           |
| 17       |               | dr          |           |                         |                        |                     |                      |                           |
| 18       | -huns         |             |           |                         |                        |                     |                      |                           |
| 19<br>20 | /pungs        | ,           |           |                         |                        |                     |                      |                           |
| 20       | 43-6          | 4           | 4         | 4                       | 1                      | _                   |                      |                           |

<sup>\*</sup> If soils this calculation is taken from cyanide extraction bench sheet.

<sup>\*\*</sup> If soils, mLs of extract used for distillation.

| Extraction Reagents: methyl red indicator |         |
|-------------------------------------------|---------|
| 18 N H <sub>2</sub> SO <sub>4</sub>       | A050-07 |
| sulfamic acid                             | R009-12 |
| 0.025N NaOH                               | R014-16 |
| 51% MgCl <sub>2</sub>                     | A050-08 |

Analytical Reagents: Reagent #:
Barbituric Acid R038-13
Sodium Phosphate R026-23
Chloramine-t R048-09
Pyridine R043-03

Distillation Initials/Date Distilled: 8/10/(2 //mw/

Analyst Initials/Date Analyzed: MW 8/10/12

### **Total Cyanide by Semi-Automated Colorimetry** Method: EPA 335.4\SM-4500-CN-E **Distillation Bench Sheet**

Weak Acid Dissociable Cyanide by SM 4500-CN-I (check WAD column)

Total Cyanide MS/MSD/LCS Soln: Free Cyanide MS/MSD/LCS Soln:

M863-03 Exp:7/9/2013 M855-02

Exp:5/17/2013

Method requirements: All QC +/- 10%

Equipment: Wildl-vap

**Instrument: ALPCHEM FIA 3000** 

Absorbance: 570nm

|    | Sample ID   | Matrix        | Preserved | Sample<br>Amount (mL)** | Initial<br>Multiplier* | Final<br>Multiplier                     | Spike Amount<br>(mL) | WAD?<br>(check if<br>yes) |
|----|-------------|---------------|-----------|-------------------------|------------------------|-----------------------------------------|----------------------|---------------------------|
| 1  | 120731034-1 | reactive soil | NaBis     | Soul                    | 52.0                   |                                         |                      |                           |
| 2  | lung        | 1             |           |                         |                        |                                         | Iml                  | _                         |
| 3  | /imso       |               |           |                         | +                      |                                         | 1                    |                           |
| 4  | -Us         |               |           |                         | 1>                     |                                         | -                    |                           |
| 5  | 180         |               |           |                         | ł                      |                                         | 1                    |                           |
| 6  | -2          |               |           |                         | 52.4                   |                                         |                      |                           |
| 7  | -3          | +             |           |                         | 52.2                   |                                         |                      |                           |
| 8  | 120801023-1 | ww lah        |           |                         | ×                      |                                         |                      |                           |
| 9  | 7042-1      |               |           |                         |                        | *************************************** |                      |                           |
| 10 | 6002-1      | 1             | 1         | _ {                     | 1                      |                                         |                      |                           |
| 11 | 170802042-2 | NW open       | Natle     | Some                    | 1×                     |                                         |                      |                           |
| 12 | - 5         |               |           |                         |                        |                                         |                      |                           |
| 13 | -3ms        |               |           |                         |                        |                                         | lut                  |                           |
| 14 | -3mcn       |               |           |                         |                        | _                                       |                      |                           |
| 15 | -WS         |               |           |                         |                        |                                         | 4                    | <u> </u>                  |
| 16 | -81         |               |           | ·                       |                        |                                         |                      |                           |
| 17 | ~4          |               |           |                         |                        |                                         |                      |                           |
| 18 |             |               |           |                         |                        |                                         |                      |                           |
| 19 | 120806001-2 |               |           |                         |                        |                                         |                      |                           |
| 20 | 120731042-  | 4             |           | 4                       | +                      |                                         |                      |                           |

<sup>\*</sup> If soils this calculation is taken from cyanide extraction bench sheet.

<sup>\*\*</sup> If soils, mLs of extract used for distillation.

| Extraction Reagents:<br>methyl red indicator<br>18 N H <sub>2</sub> SO <sub>4</sub> | A051-01<br>A050-07            | Analytical Reagents:<br>Barbituric Acid<br>Sodium Phosphate |
|-------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------|
| sulfamic acid<br>0.025N NaOH<br>51% MgCl₂                                           | R009-12<br>R014-16<br>A050-06 | Chloramine-t<br>Pyridine                                    |

Distillation Initials/Date Distilled: \( \frac{\mathcal{MW}}{8/9/12} \)

Analyst Initials/Date Analyzed MW 8/10/12

Reagent#:

R038-13

R026-23 R048-09 R043-03

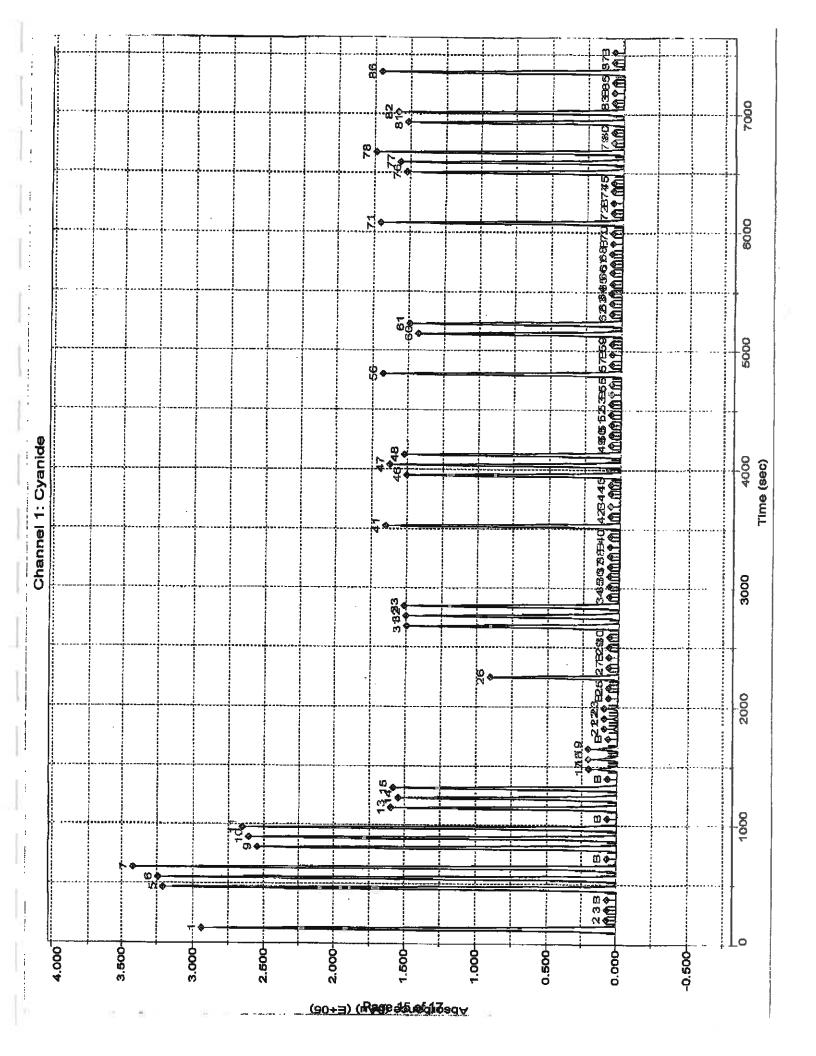
file name: T:\DATA1\FLOW4\2012\EPA335.4\081012CY.RST

Date: August 10, 2012

\*\*\*\*\*\*\*

Operator: CRW

### 120810 FTACNR


MW 8/13/12

|          |          |                                  | •              |                 |        |                  |                        |
|----------|----------|----------------------------------|----------------|-----------------|--------|------------------|------------------------|
| ?eak     | Cup      | Name                             | Type           | Dil Wt          | 7      | Area             | Calc. (ppm)            |
| ∷, l     | 2        | Sync                             | SYNC           | 1               | 1      | 6663245          | 0.992821               |
| 3        | O        | Carryover                        | CO             | 1               | 1      | 14306            | 0.001362               |
| 3        | ٥        | Carryover                        | CO             | 1               | 1      | 994              | -0.000623              |
| 3        | 0        | Baseline                         | RB             | 1               | 1      | 3117             | -0.000306              |
| - 5      | 2        | Cal 1.00 ppm                     | C              | 1               | 1      | 6700923          | 0.998440               |
| 3        | 2        | Cal 1.00 ppm                     | C              | 1               | 1      | 6651245          | 0.991032               |
| 7        | 2        | Cal 1.00 ppm                     | C              | 1               | 1      | 6511306          | 0.970165               |
| 3        | 0        | Baseline                         | RB             | 1               | ı      | -468             | -0.000841              |
|          | 3        | Cal 0.80 ppm                     | C              | 1               | 1      | 5479693          | 0.816335               |
| LO       | 3        | Cal 0.80 ppm                     | C              | 1               | 1      | 5470805          | 0.815010               |
| 11       | 3        | Cal 0.80 ppm                     | C              | 1               | 1      | 5483462          | 0.816898               |
| 3        | 0        | Baseline                         | RB             | 1               | 1      | 739              | -0.000661              |
| L3       | 4        | Cal 0.50 ppm                     | C              | 1               | 1      | 3390538          | 0.504810               |
| L4       | 4        | Cal 0.50 ppm                     | C              | 1               | 1.     | 3347330          | 0.498367               |
| 15       | 4        | Cal 0.50 ppm                     | C              | 1               | 1      | 3366900          | 0.501286               |
| 3        | 0        | Baseline                         | RB             | 1               | 1      | 1201             | -0.000592              |
| L7<br>LB | 5        | Cal 0.05 ppm                     | C              | 1               | Ţ      | 321394           | 0.047154               |
| LB<br>L9 | 5<br>5   | Cal 0.05 ppm                     | C              | 1               | 1      | 318560           | 0.046731               |
| 3        | 0        | Cal 0.05 ppm<br>Baseline         | C<br>RB        | 1               | 1      | 323271           | 0.047434               |
| 21       | 6        | Cal 0.01 ppm                     |                | 1               | 1      | 103              | -0.000756              |
| 122      | 6        | Cal 0.01 ppm                     | C              | <u>1</u><br>1   | 72 1   | 68145            | 0.009390               |
| 23       | 6        | Cal 0.01 ppm                     | C              | 1               | 1      | 63259            | 0.008662               |
| 3        | o        | Baseline                         | RB             | A. C. Committee | 1      | 65909            | 0.009057               |
| 25       | 1        | Blank                            |                | 1               | 1      | -548<br>2548     | -0.000853              |
| 126      | 7        | ICV 0.25 ppm                     | CCA            | 1               | 1      | -2549<br>1797901 | -0.001151              |
| 27       | í        | Blank                            | BLNK           | 1               | 1      | -1867            | 0.267324               |
| 3        | ō        | Baseline                         | RB             | 1               | î      | -4633            | -0.001049              |
| 29       | 8        | 120731034-BL R                   | Ü              | 1               | i      | -1626            | -0.001462              |
| 130      | 9        | +120731034-001                   | Ü              | 52              | 1      | -9380            | -0.001014<br>-0.112826 |
| 31       | 10       | 120731034-001MS                  |                | 52<br>52        | i      | 3179464          | 24.613474              |
| 32       | 11       | 120731034-001MS                  |                | 52              | ~î     | 3271425          |                        |
| 33       | 12       | 120731034-LCS                    | ָ <del>บ</del> | 1               | 1      | 3387101          | 0.504298               |
| 34       | 13       | ·120731034-002                   | Ū              | 52.4            | 1      | -3138            | -0.064918              |
| 35       | 14       | 120731034-003                    | Ü              | 52.2            | ī      | 1938             | -0.025165              |
| 36       | 15       | <b>120801023-001</b>             | υ              | 1               | ī      | 1508             | -0.000546              |
| 37       | 16       | 120802042-001                    | บ              | 1               | 1      | -4894            | -0.001501              |
| 3.8      | 17       | ¢120806002-001                   | U              | 1               | 1      | -3932            | -0.001357              |
| 3        | 0        | Baseline                         | RB             | 1               | 1      | -3990            | -0.001366              |
| 10       | 1        | Blank                            | BLNK           | 1               | 1      | -6028            | -0.001670              |
| 11       | 4        | CCV 0.5 ppm                      | CCV            | 1               | 1.     | 3355048          | 0.499518               |
| 12       | 1        | Blank                            | BLNK           | 1               | 1      | -5979            | -0.001663              |
| 3        | 0        | Read Baseline                    | RB             | 1               | 1      | -2215            | -0.001101              |
| 14       | 18       | 120802042-BL WW                  | Ü              | 1               | 1      | -4296            | -0.001412              |
| 15       |          | +120802042-003                   | Ŭ              | 1               | 1      | -3281            | -0.001260              |
| 16       | 20       | 120802042-003MS                  |                | 1               | 1      | 3155951          | 0.469830               |
| 17       | 21       | 120802042-003MSE                 |                | 1               | 1      | 3260448          |                        |
| 18       | 22       | 6 120802042-LCS                  | U              | 1               | 1      | 3149826          | 0.468917               |
| 19       | 23       | 120802042-002                    | U              | 1               | 1      | -2211            | -0.001101              |
| 50       | 24       | * 120802042-004                  | U              | 1               | 1      | -2988            | -0.001217              |
| 51       | 25       | -120803018 003WM                 |                | 1               | 1      | -6266            | -0.001705              |
| 52       | 26       | * 120806002-002                  | u<br>U         |                 | 1      | -4862            | -0.001496              |
| 53       | 27       | • 120731042-001                  | U              | 1               | 1      | -2299            | -0.001114              |
| 3<br>55  | 0        | Baseline                         | RB             | 1.              | 1      | 1128             | -0.000603              |
| 56       | 1.       | Blank                            | BLNK           | 1               | 1      | 2166             | -0.000448              |
| 57       | 4<br>1   | CCV 0.5 ppm<br>Blank             | CCV            | 1               | 1      | 3421294          | 0.509397               |
|          |          |                                  | BLNK           | 1               | 1      | 3812             | -0.000203              |
| 3        | 0        | Read Baseline                    | RB             | 1               | 1      | 2616             | -0.000381              |
| 59<br>50 | 28<br>29 | 120806003-001 R                  |                | 1               | 1      | 1468             | -0.000552              |
| 51       |          | 120806003-001MS                  |                | 1               | 1      | 3052389          | 0.454387               |
| 52       | 30<br>31 | 120807045-001MSE                 |                | į               | , 1    | 3199691          |                        |
| 53       | 32       | ~120807045-001<br>~120807045-002 | ט<br>ט         | 5<br>E          | 1      | 5103             | ~0.000051              |
| 54       | 33       | * 120809018-001 RS               |                | 5               | 1,     | 10059            | 0.003644               |
| 55       | 34       | * 120809018-002 KS               | ς u            | 54.1<br>52.7    | , 1    | 23636            |                        |
| 56       | 35       | a 120809028-001                  | Ü              | 52.7<br>1       | 1<br>1 | 11167            | 0.047124               |
|          | 55       | + T20003020-001                  | 5              | Page 12 of 17   | -      | 8244             | 0.000458               |
|          |          |                                  |                |                 |        |                  |                        |

| Pe   | ≥ ₹. jç | Cup | Name                   | Type | Dil | Wt     | Area      | Calc. (ppm) |
|------|---------|-----|------------------------|------|-----|--------|-----------|-------------|
| 67   | 7       | 36  | * 120809028-002        | U    | 3   | 1      | -2027     | -0.001073   |
| 68   | 3       | 37  | 120809017-001          | Ū    | ī   | ī      | 11843     | 0.001075    |
| В    |         | 0   | Baseline               | RB   | ĩ   | 1      | -3030     | -0.001223   |
| 70   | )       | 1   | Blank                  | BLNK | ī   | ī      | -5751     | -0.001223   |
| 71   | l.      | 4   | CCV 0.5 ppm            | CCV  | 1   | ï      | 3401767   | 0.506485    |
| 72   | 2       | 1   | Blank                  | BLNK | 1   | ī      | -7012     | -0.001817   |
| В    |         | 0   | Baseline               | RB   | î   | ī      | -2009     | -0.001071   |
| 74   | 1       | 38  | <b>4</b> -120803018-BL | ט    | ī   | 1.     | -3946     | -0.001359   |
| 75   | 5       | 39  | 120803018-003          | Ŭ    |     | 1      | -7131     | -0.001834   |
| 76   | 5       | 40  | 120803018-003MS        | ט    | - 1 | ī      | 3109609   | 0.462920    |
| 77   | 7       | 41  | 120803018-003MS        | ט כ  | 1   | . 1    | . 3128768 |             |
| 78   | 3       | 42  | 120803018-LCS          | U    | 1 ~ | 1      | 3439192   | 0.512065    |
| 79   | €       | 43  | <b>4120802038-001</b>  | U    | ī   | ī      | -5414     | -0.001578   |
| _ 80 | )       | 44  | T120807042-006 PM      | υ    | ī   | 1      | -3586     | -0.001378   |
| 81   |         | 45  | 120807042-006MS        | U    | 1   | ī      | 3198054   | 0.476108    |
| 32   | ?       | 46  | . 120807042-006MSI     | ט כ  | 1   | _1     | 3389696   |             |
| 33   | 3       | 47  | 120807043-006          | Ü    | 1   | 1      | ~5382     | -0.001574   |
| - 3  |         | 0   | Baseline               | RB   | 1   | ī      | -3961     | -0.001362   |
| 35   |         | 1   | Blank                  | BLNK | 1   | 1      | -7342     | -0.001866   |
| 3 6  |         | 4   | CCV 0.5 ppm            | CCV  | 1   | _<br>1 | 3511794   | 0.522892    |
| 37   | '       | 1   | Blank                  | BLNK | ī   | 1      | -7093     | -0.001829   |
| 3    |         | 0   | Read Baseline          | RB   | ī   | ī      | -1283     | -0.001829   |

| 1        |                  |            |
|----------|------------------|------------|
| Peak     | Cup              | Flags      |
| 1.       | 2                |            |
| 1 2      | ō                |            |
| 3        | õ                | LO         |
| 3        | 0                | BL         |
| 5        | 2                |            |
| 5        | 2                |            |
| 7        | -2               |            |
| 3        | 0                | BL         |
| 3        | 3                |            |
| 10<br>11 | 0<br>3<br>3<br>3 |            |
| 3        | Õ                | BL         |
| 13       | 4                | <b>D11</b> |
| 14       | 4                |            |
| 15       | 4                |            |
| 3        | 0                | BL         |
| 17       | 5                |            |
| 18       | 5                |            |
| 19       | 5                |            |
| 3<br>21  | О<br>б           | BL         |
| 22       | 6                | OL         |
| 23       | 6                | 01         |
| 3        | ŏ                | BL         |
| 25       | 1                | LO         |
| 26       | 7                |            |
| 27       | 1                | LO         |
| 3        | 0                | BL         |
| 29       | 8                | FO.        |
| 30<br>31 | 9<br>10          | LO         |
| 32       | 11               |            |
| 33       | 12               |            |
| 34       | 13               | LO         |
| 35       | 14               | LO         |
| 36       | 15               | LO         |
| 37       | 16               | LO         |
| 38       | 17               | FO         |
| 3        | 0                | BL         |
| 40<br>41 | 1                | ro         |
| 11<br>12 | 4<br>1           | 10         |
| 3        | Ō                | LO<br>BL   |
| 14       | 18               | FO         |
|          |                  |            |

| Pesk     | Cup      | Flags    |
|----------|----------|----------|
| 45       | 19       | LO       |
| 46       | 20       |          |
| 47       | 21       |          |
| 48       | 22       |          |
| 49<br>50 | 23<br>24 | TO<br>TO |
| 51       | 25       | LO       |
| 52       | 26       | LO 🌣     |
| 53       | 27       | LO       |
| B        | 0        | BL       |
| 55<br>56 | 1<br>4   | LO       |
| 57       | i        | LO       |
| В        | 0        | BL       |
| 59       | 28       | FO       |
| 60       | 29       |          |
| 61<br>62 | 30<br>31 | LO       |
| 63       | 32       | TO       |
| 64       | 33       |          |
| 65       | 34       |          |
| 66       | 35       |          |
| 67<br>68 | 36<br>37 | LO       |
| B        | 0        | ВL       |
| 70       | 1        | LO       |
| 71       | 4        |          |
| 72       | 1        | LO       |
| B        | 0        | BL       |
| 74<br>75 | 38<br>39 | LO<br>LO |
| 76       | 40       | 200      |
| 77       | 41       |          |
| 7B       | 42       |          |
| 79       | 43       | ro       |
| 80<br>81 | 44<br>45 | LO       |
| 82       | 46       |          |
| 83       | 47       | LO       |
| В        | 0        | BL       |
| 85       | 1        | LO       |
| 86<br>87 | 4<br>1   | T.O.     |
| B        | 0        | LO<br>BL |
|          | -        |          |



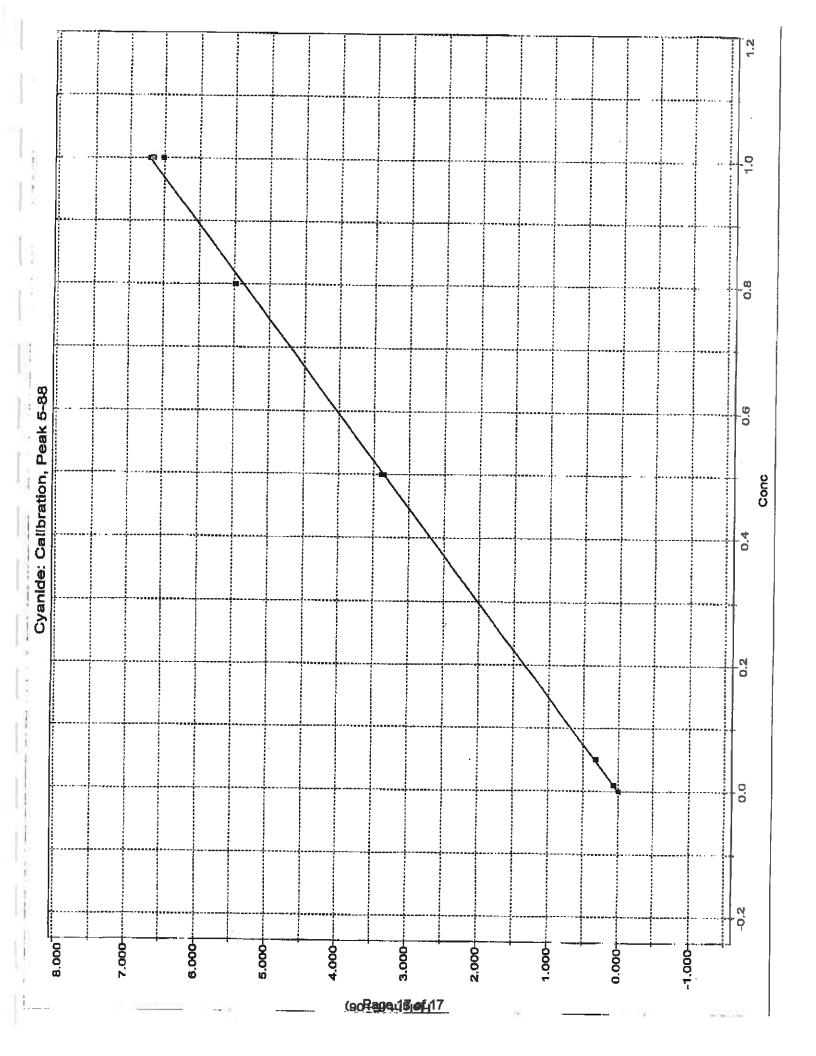
File name: T:\DATA1\FLOW4\2012\EPA335.4\081012CY.RST

Date: August 10, 2012

Operator: CRW

| 4    | Name  |      |      | Conc     | Area           |
|------|-------|------|------|----------|----------------|
| -    |       |      |      |          |                |
| *    | Çal   | 1.00 | ppm  | 1.000000 | 6700923.000000 |
| *    | Ca.1. | 1.00 | ppm  | 1.000000 | 6651245.000000 |
| +    | Cal   | 1.00 | ppm  | 1.000000 | 6511306.500000 |
| 4    | Cal   | 0.80 | mag  | 0.800000 | 5479693.000000 |
| k    | Cal   | 0.80 | mqq  | 0.800000 | 5470805.000000 |
| le l | Cal   | 0.80 | mqq  | 0.800000 | 5483462.500000 |
| k    | Cal   | 0.50 | ppm  | 0.500000 | 3390537,500000 |
| ¥    | Cal   | 0.50 | ppm  | 0.500000 | 3347330.250000 |
| ę.   | Cal   | 0.50 | ppm  | 0.500000 | 3366900.000000 |
| f    | Cal   | 0.05 | ppm  | 0.050000 | 321394.125000  |
| ŀ    | Cal.  | 0.05 | ppm  | 0.050000 | 318560.156250  |
| ۲    | Cal   | 0.05 | ppm  | 0.050000 | 323271.312500  |
| k    | Cal   | 0.01 | ppm  | 0.010000 | 68145.109375   |
| k    | Cal   | 0.01 | maga | 0.010000 | 63259.187500   |
| P    | Cal   | 0.01 | mag  | 0.010000 | 65909.328125   |

Calib Coef:


y=bx+a

a: (intercept) 5.1708e+03 b: 6.7062e+06

Corr Coef: 0.999645

Carryover: 0.215%

No Drift Peaks



### Hall Environmental Analysis Laboratory, Inc.

WO#:

1208093

30-Aug-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 3rd Qtr

| Sample ID | MB |
|-----------|----|
| l         |    |

SampType: MBLK

TestCode: EPA Method 300.0: Anions

Client ID: **PBW** 

Batch ID: R4626

RunNo: 4626

Prep Date:

Analysis Date: 8/2/2012

**PQL** 

0.50

0.50

SeqNo: 129896

Units: mg/L

Analyte Chloride Sulfate

Result ND ND

Result

SPK value SPK Ref Val

SPK value SPK Ref Val %REC LowLimit

%REC LowLimit HighLimit

%RPD **RPDLimit** 

%RPD

Qual

Sample ID MB

Prep Date:

Client ID: **PBW**  SampType: MBLK Batch ID: R4626

Analysis Date: 8/2/2012

TestCode: EPA Method 300.0: Anions

RunNo: 4626

SeqNo: 129948

Units: mg/L

HighLimit

**RPDLimit** 

Qual

Analyte Chloride Sulfate

**PQL** 0.50

ND ND 0.50

Qualifiers:

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reporting Detection Limit

Ε Value above quantitation range

S

Analyte detected below quantitation limits J

Spike Recovery outside accepted recovery limits

R RPD outside accepted recovery limits

Page 6 of 18

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1208093

30-Aug-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 3rd Qtr

| Sample ID 5ml rb            | SampType: MBLK |                  |           | TestCode: EPA Method 8260: Volatiles Short List |          |          |            |      |          |      |  |  |
|-----------------------------|----------------|------------------|-----------|-------------------------------------------------|----------|----------|------------|------|----------|------|--|--|
| Client ID: PBW              | Batch          | n ID: <b>R</b> 4 | 783       | F                                               | RunNo: 4 | 783      |            |      |          |      |  |  |
| Prep Date:                  | Analysis D     | ate: 8/          | 8/2012    | S                                               | eqNo: 1  | 34870    | Units: %RE | С    |          |      |  |  |
| Analyte                     | Result         | PQL              | SPK value | SPK Ref Val                                     | %REC     | LowLimit | HighLimit  | %RPD | RPDLimit | Qual |  |  |
| Surr: 1,2-Dichloroethane-d4 | 9.0            |                  | 10.00     |                                                 | 89.9     | 70       | 130        |      |          |      |  |  |
| Surr: 4-Bromofluorobenzene  | 10             |                  | 10.00     |                                                 | 104      | 70       | 130        |      |          |      |  |  |
| Surr: Dibromofluoromethane  | 9.6            |                  | 10.00     |                                                 | 96.4     | 70       | 130        |      |          |      |  |  |
| Surr: Toluene-d8            | 9.9            |                  | 10.00     |                                                 | 99.3     | 70       | 130        |      |          |      |  |  |

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1208093

30-Aug-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 3rd Qtr

| Sample ID 5ml b                     | SampT      | ype: MI         | BLK       | Tes         | tCode: El | PA Method | 8260B: VOL  | ATILES |          |      |
|-------------------------------------|------------|-----------------|-----------|-------------|-----------|-----------|-------------|--------|----------|------|
| Client ID: PBW                      | Batch      | n ID: <b>R4</b> | 693       | F           | RunNo: 4  | 693       |             |        |          |      |
| Prep Date:                          | Analysis D | ate: 8/         | 6/2012    | 5           | SeqNo: 1  | 31924     | Units: µg/L |        |          |      |
| Analyte                             | Result     | PQL             | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |
| Benzene                             | ND         | 1.0             |           |             |           |           | •           |        |          |      |
| Toluene                             | ND         | 1.0             |           |             |           |           |             |        |          |      |
| Ethylbenzene                        | ND         | 1.0             |           |             |           |           |             |        |          |      |
| Methyl tert-butyl ether (MTBE)      | ND         | 1.0             |           |             |           |           |             |        |          |      |
| 1,2,4-Trimethylbenzene              | ND         | 1.0             |           |             |           |           |             |        |          |      |
| 1,3,5-Trimethylbenzene              | ND         | 1.0             |           |             |           |           |             |        |          |      |
| 1,2-Dichloroethane (EDC)            | ND         | 1.0             |           |             |           |           |             |        |          |      |
| 1,2-Dibromoethane (EDB)             | ND         | 1.0             |           |             |           |           |             |        |          |      |
| Naphthalene                         | ND         | 2.0             |           |             |           |           |             |        |          |      |
| 1-Methylnaphthalene                 | ND         | 4.0             |           |             |           |           |             |        |          |      |
| 2-Methylnaphthalene<br>Bromobenzene | ND<br>ND   | 4.0<br>1.0      |           |             |           |           |             |        |          |      |
| Bromodichloromethane                | ND         | 1.0             |           |             |           |           |             |        |          |      |
| Bromoform                           | ND         | 1.0             |           |             |           |           |             |        |          |      |
| Bromomethane                        | ND         | 3.0             |           |             |           |           |             |        |          |      |
| 2-Butanone                          | ND         | 10              |           |             |           |           |             |        |          |      |
| Carbon disulfide                    | ND         | 10              |           |             |           |           |             |        |          |      |
| Carbon Tetrachloride                | ND         | 1.0             |           |             |           |           |             |        |          |      |
| Chlorobenzene                       | ND         | 1.0             |           |             |           |           |             |        |          |      |
| Chloroethane                        | ND         | 2.0             |           |             |           |           |             |        |          |      |
| Chloroform                          | ND         | 1.0             |           |             |           |           |             |        |          |      |
| Chloromethane                       | ND         | 3.0             |           |             |           |           |             |        |          |      |
| 2-Chlorotoluene                     | ND         | 1.0             |           |             |           |           |             |        |          |      |
| 4-Chlorotoluene                     | ND         | 1.0             |           |             |           |           |             |        |          |      |
| cis-1,2-DCE                         | ND         | 1.0             |           |             |           |           |             |        |          |      |
| cis-1,3-Dichloropropene             | ND         | 1.0             |           |             |           |           |             |        |          |      |
| 1,2-Dibromo-3-chloropropane         | ND         | 2.0             |           |             |           |           |             |        |          |      |
| Dibromochloromethane                | ND         | 1.0             |           |             |           |           |             |        |          |      |
| Dibromomethane                      | ND         | 1.0             |           |             |           |           |             |        |          |      |
| 1,2-Dichlorobenzene                 | ND         | 1.0             |           |             |           |           |             |        |          |      |
| 1,3-Dichlorobenzene                 | ND         | 1.0             |           |             |           |           |             |        |          |      |
| 1,4-Dichlorobenzene                 | ND         | 1.0             |           |             |           |           |             |        |          |      |
| Dichlorodifluoromethane             | ND         | 1.0             |           |             |           |           |             |        |          |      |
| 1,1-Dichloroethane                  | ND         | 1.0             |           |             |           |           |             |        |          |      |
| 1,1-Dichloroethene                  | ND         | 1.0             |           |             |           |           |             |        |          |      |
| 1,2-Dichloropropane                 | ND         | 1.0             |           |             |           |           |             |        |          |      |
| 1,3-Dichloropropane                 | ND         | 1.0             |           |             |           |           |             |        |          |      |
| 2,2-Dichloropropane                 | ND         | 2.0             |           |             |           |           |             |        |          |      |
| 1,1-Dichloropropene                 | ND         | 1.0             |           |             |           |           |             |        |          |      |
| Hexachlorobutadiene                 | ND         | 1.0             |           |             |           |           |             |        |          |      |
| 2-Hexanone                          | ND         | 10              |           |             |           |           |             |        |          |      |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Page 8 of 18

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1208093

30-Aug-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 3rd Qtr

| Sample ID 5ml b             | SampT       | ype: Mi          | BLK         | TestCode: EPA Method 8260B: VOLATILES |           |           |             |        |          |      |
|-----------------------------|-------------|------------------|-------------|---------------------------------------|-----------|-----------|-------------|--------|----------|------|
| Client ID: PBW              | Batch       | ID: R4           | 1693        | F                                     | RunNo: 4  | 693       |             |        |          |      |
| Prep Date:                  | Analysis D  | ate: 8/          | /6/2012     |                                       | SeqNo: 1  | 31924     | Units: µg/L |        |          |      |
| Analyte                     | Result      | PQL              | SDK value   | SPK Ref Val                           | •         | LowLimit  | -           | 0/ DDD | DDDL had |      |
| Isopropylbenzene            | ND          | 1.0              | OF IT VAIUE | SFR Rei Vai                           | 76REC     | LOWLITTIL | HighLimit   | %RPD   | RPDLimit | Qual |
| 4-Isopropyltoluene          | ND          | 1.0              |             |                                       |           |           |             |        |          |      |
| 4-Methyl-2-pentanone        | ND          | 10               |             |                                       |           |           |             |        |          |      |
| Methylene Chloride          | ND          | 3.0              |             |                                       |           |           |             |        |          |      |
| n-Butylbenzene              | ND          | 1.0              |             |                                       |           |           |             |        |          |      |
| n-Propylbenzene             | ND          | 1.0              |             |                                       |           |           |             |        |          |      |
| sec-Butylbenzene            | ND          | 1.0              |             |                                       |           |           |             |        |          |      |
| Styrene                     | ND          | 1.0              |             |                                       |           |           |             |        |          |      |
| tert-Butylbenzene           | ND          | 1.0              |             |                                       |           |           |             |        |          |      |
| 1,1,1,2-Tetrachloroethane   | ND          | 1.0              |             |                                       |           |           |             |        |          |      |
| 1,1,2,2-Tetrachloroethane   | ND          | 2.0              |             |                                       |           |           |             |        |          |      |
| Tetrachloroethene (PCE)     | ND          | 1.0              |             |                                       |           |           |             |        |          |      |
| trans-1,2-DCE               | ND          | 1.0              |             |                                       |           |           |             |        |          |      |
| trans-1,3-Dichloropropene   | ND          | 1.0              |             |                                       |           |           |             |        |          |      |
| 1,2,3-Trichlorobenzene      | ND          | 1.0              |             |                                       |           |           |             |        |          |      |
| 1,2,4-Trichlorobenzene      | ND          | 1.0              |             |                                       |           |           |             |        |          |      |
| 1,1,1-Trichloroethane       | ND          | 1.0              |             |                                       |           |           |             |        |          |      |
| 1,1,2-Trichloroethane       | ND          | 1.0              |             |                                       |           |           |             |        |          |      |
| Trichloroethene (TCE)       | ND          | 1.0              |             |                                       |           |           |             |        |          |      |
| Trichlorofluoromethane      | ND          | 1.0              |             |                                       |           |           |             |        |          |      |
| 1,2,3-Trichloropropane      | ND          | 2.0              |             |                                       |           |           |             |        |          |      |
| Vinyl chloride              | ND          | 1.0              |             |                                       |           |           |             |        |          |      |
| Xylenes, Total              | ND          | 1.5              |             |                                       |           |           |             |        |          |      |
| Surr: 1,2-Dichloroethane-d4 | 9.5         |                  | 10.00       |                                       | 94.5      | 70        | 130         |        |          |      |
| Surr: 4-Bromofluorobenzene  | 8.7         |                  | 10.00       |                                       | 86.9      | 70        | 130         |        |          |      |
| Surr: Dibromofluoromethane  | 10          |                  | 10.00       |                                       | 101       | 70        | 130         |        |          |      |
| Sum: Toluene-d8             | 9.4         |                  | 10.00       |                                       | 94.1      | 70        | 130         |        |          |      |
| Sample ID 1208093-001ams    | SampTy      | /pe: MS          | <del></del> | Test                                  | tCode: EF | PA Method | 8260B: VOL  | ATILES |          |      |
| Client ID: Injection Well   | Batch       | ID: R4           | 693         |                                       | lunNo: 40 |           |             |        |          |      |
| Prep Date:                  | Analysis Da | ate: <b>8</b> /0 | 6/2012      | S                                     | eqNo: 1   | 31927     | Units: µg/L |        |          |      |
| Analyte                     | Result      | PQL              | SPK value   | SPK Ref Val                           | %REC      | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |
| Benzene                     | 18          | 1.0              | 20.00       | 0                                     | 92.1      | 66.8      | 128         | _      |          |      |
| Tables                      |             | 4.0              |             |                                       |           |           |             |        |          |      |

### Qualifiers:

Toluene

Chlorobenzene

1,1-Dichloroethene

Trichloroethene (TCE)

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

23

20

19

18

9.9

9.2

9.8

1.0

1.0

1.0

1.0

20.00

20.00

20.00

20.00

10.00

10.00

10.00

2.589

0

0

0

- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

103

99.0

94.4

92.3

99.2

91.7

98.4

70

70

70

70

70

70

70

130

130

130

130

130

130

130

S Spike Recovery outside accepted recovery limits

Page 9 of 18

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1208093

30-Aug-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 3rd Qtr

Sample ID 1208093-001ams

SampType: MS

TestCode: EPA Method 8260B: VOLATILES

Client ID: Injection Well

Batch ID: R4693

RunNo: 4693

Prep Date:

Analysis Date: 8/6/2012

SeqNo: 131927 Units: µg/L

Analyte

Result **PQL**  SPK value SPK Ref Val %REC LowLimit

HighLimit

**RPDLimit** Qual

Surr: Toluene-d8

9.4

10.00

93.8

Sample ID 1208093-001amsd

SampType: MSD

TestCode: EPA Method 8260B: VOLATILES

%RPD

Client ID: Injection Well

Batch ID: R4693

RunNo: 4693

Units: ua/L

130

Prep Date:

Analysis Date: 8/6/2012

SeaNo: 131928

| Frep Date.                  | Allalysis | Jale. o/ | 0/2012    |             | seqivo: 1 | 31928    | Units: µg/L |      |          |      |   |
|-----------------------------|-----------|----------|-----------|-------------|-----------|----------|-------------|------|----------|------|---|
| Analyte                     | Result    | PQL      | SPK value | SPK Ref Val | %REC      | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |   |
| Benzene                     | 19        | 1.0      | 20.00     | 0           | 96.2      | 66.8     | 128         | 4.44 | 16.7     |      | _ |
| Toluene                     | 23        | 1.0      | 20.00     | 2.589       | 99.8      | 70       | 130         | 2.96 | 18.7     |      |   |
| Chlorobenzene               | 19        | 1.0      | 20.00     | 0           | 96.2      | 70       | 130         | 2.90 | 19.5     |      |   |
| 1,1-Dichloroethene          | 21        | 1.0      | 20.00     | 0           | 105       | 70       | 130         | 11.0 | 16.7     |      |   |
| Trichloroethene (TCE)       | 18        | 1.0      | 20.00     | 0           | 91.2      | 70       | 130         | 1.19 | 17.5     |      |   |
| Surr: 1,2-Dichloroethane-d4 | 10        |          | 10.00     |             | 102       | 70       | 130         | 0    | 0        |      |   |
| Surr: 4-Bromofluorobenzene  | 8.9       |          | 10.00     |             | 89.3      | 70       | 130         | 0    | 0        |      |   |
| Surr: Dibromofluoromethane  | 10        |          | 10.00     |             | 102       | 70       | 130         | 0    | 0        |      |   |
| Surr: Toluene-d8            | 9.2       |          | 10.00     |             | 92.0      | 70       | 130         | 0    | 0        |      |   |

|   | Sample ID 5ml rb            | SampT      | ype: ME | BLK       | Tes         | tCode: El | PA Method | 8260B: VOL  | ATILES |          |      |
|---|-----------------------------|------------|---------|-----------|-------------|-----------|-----------|-------------|--------|----------|------|
| 1 | Client ID: PBW              | Batch      | ID: R4  | 783       | F           | RunNo: 4  | 783       |             |        |          |      |
| ı | Prep Date:                  | Analysis D | ate: 8/ | 8/2012    | S           | SeqNo: 1  | 34876     | Units: µg/L |        |          |      |
|   | Analyte                     | Result     | PQL     | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |
|   | Acetone                     | ND         | 10      |           |             |           |           |             |        | ·        |      |
|   | Surr: 1,2-Dichloroethane-d4 | 9.0        |         | 10.00     |             | 89.9      | 70        | 130         |        |          |      |
|   | Surr: 4-Bromofluorobenzene  | 10         |         | 10.00     |             | 104       | 70        | 130         |        |          |      |
|   | Surr: Dibromofluoromethane  | 9.6        |         | 10.00     |             | 96.4      | 70        | 130         |        |          |      |
|   | Surr: Toluene-d8            | 9.9        |         | 10.00     |             | 99.3      | 70        | 130         |        |          |      |

|   | Sample ID b13               | Sampi      | ype: ME       | BLK       | Tes         | tCode: El | PA Method | 8260B: VOL  | ATILES |          |              |  |
|---|-----------------------------|------------|---------------|-----------|-------------|-----------|-----------|-------------|--------|----------|--------------|--|
|   | Client ID: PBW              | Batch      | 1D: <b>R4</b> | 783       | F           | RunNo: 4  | 783       |             |        |          |              |  |
|   | Prep Date:                  | Analysis D | ate: 8/       | 9/2012    | S           | SeqNo: 1  | 35116     | Units: µg/L |        |          |              |  |
| ı | Analyte                     | Result     | PQL           | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual         |  |
|   | Acetone                     | ND         | 10            |           |             |           |           |             | -      |          | <del>.</del> |  |
| ı | Surr: 1,2-Dichloroethane-d4 | 9.7        |               | 10.00     |             | 97.1      | 70        | 130         |        |          |              |  |
| l | Surr: 4-Bromofluorobenzene  | 9.9        |               | 10.00     |             | 99.3      | 70        | 130         |        |          |              |  |
|   | Surr: Dibromofluoromethane  | 10         |               | 10.00     |             | 100       | 70        | 130         |        |          |              |  |
| ı | Surr: Toluene-d8            | 9.4        |               | 10.00     |             | 93.8      | 70        | 130         |        |          |              |  |

### Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

- Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
  - Spike Recovery outside accepted recovery limits

Page 10 of 18

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1208093

30-Aug-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 3rd Qtr

| Sample ID b17               | SampT      | SampType: MBLK  |           |             | TestCode: EPA Method 8260B: VOLATILES |          |             |      |          |      |  |  |
|-----------------------------|------------|-----------------|-----------|-------------|---------------------------------------|----------|-------------|------|----------|------|--|--|
| Client ID: PBW              | Batch      | Batch ID: R4783 |           |             | RunNo: 4                              | 783      |             |      |          |      |  |  |
| Prep Date:                  | Analysis D | ate: 8/         | 9/2012    | s           | SeqNo: 1                              | 35117    | Units: µg/L |      |          |      |  |  |
| Analyte                     | Result     | PQL             | SPK value | SPK Ref Val | %REC                                  | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |  |  |
| Acetone                     | ND         | 10              |           |             |                                       |          |             |      |          |      |  |  |
| Surr: 1,2-Dichloroethane-d4 | 9.2        |                 | 10.00     |             | 91.8                                  | 70       | 130         |      |          |      |  |  |
| Surr: 4-Bromofluorobenzene  | 9.0        |                 | 10.00     |             | 89.7                                  | 70       | 130         |      |          |      |  |  |
| Surr: Dibromofluoromethane  | 9.6        |                 | 10.00     |             | 95.5                                  | 70       | 130         |      |          |      |  |  |
| Sur: Toluene-d8             | 10         |                 | 10.00     |             | 101                                   | 70       | 130         |      |          |      |  |  |

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1208093

30-Aug-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 3rd Qtr

| 1 | Sample ID 5ml rb            | SampT      | ype: Mi        | 3LK       | Tes         | tCode: T0 | CLP Volatil | es by 8260B |      |          |      |
|---|-----------------------------|------------|----------------|-----------|-------------|-----------|-------------|-------------|------|----------|------|
|   | Client ID: PBW              | Batch      | ID: <b>R</b> 4 | 783       | F           | RunNo: 4  | 783         |             |      |          |      |
|   | Prep Date:                  | Analysis D | ate: 8/        | 8/2012    | S           | SeqNo: 1  | 34943       | Units: %RE  | С    |          |      |
| ı | Analyte                     | Result     | PQL            | SPK value | SPK Ref Val | %REC      | LowLimit    | HighLimit   | %RPD | RPDLimit | Qual |
|   | Surr: 1,2-Dichloroethane-d4 | 0.0090     |                | 0.2000    |             | 4.50      | 70          | 130         | _    |          | S    |
|   | Surr: 4-Bromofluorobenzene  | 0.010      |                | 0.2000    |             | 5.20      | 73          | 131         |      |          | S    |
| ì | Surr: Dibromofluoromethane  | 0.0096     |                | 0.2000    |             | 4.82      | 70          | 130         |      |          | S    |
|   | Surr: Toluene-d8            | 0.0099     |                | 0.2000    |             | 4.96      | 70          | 130         |      |          | S    |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
  - S Spike Recovery outside accepted recovery limits

Page 12 of 18

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1208093

30-Aug-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 3rd Qtr

| Sample ID mb-3177           | Samp       | ype: MI  | BLK       | Tes         | tCode: El | PA Method | 8270C: Semi | volatiles |          |      |
|-----------------------------|------------|----------|-----------|-------------|-----------|-----------|-------------|-----------|----------|------|
| Client ID: PBW              | Batcl      | h ID: 31 | 77        | F           | RunNo: 4  | 706       |             |           |          |      |
| Prep Date: 8/3/2012         | Analysis D | )ate: 8/ | 7/2012    | \$          | SeqNo: 1  | 32557     | Units: µg/L |           |          |      |
| Analyte                     | Result     | PQL      | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD      | RPDLimit | Qual |
| Acenaphthene                | ND         | 10       |           |             |           |           |             |           |          |      |
| Acenaphthylene              | ND         | 10       |           |             |           |           |             |           |          |      |
| Aniline                     | ND         | 10       |           |             |           |           |             |           |          |      |
| Anthracene                  | ND         | 10       |           |             |           |           |             |           |          |      |
| Azobenzene                  | ND         | 10       |           |             |           |           |             |           |          |      |
| Benz(a)anthracene           | ND         | 10       |           |             |           |           |             |           |          |      |
| Benzo(a)pyrene              | ND         | 10       |           |             |           |           |             |           |          |      |
| Benzo(b)fluoranthene        | ND         | 10       |           |             |           |           |             |           |          |      |
| Benzo(g,h,i)perylene        | ND         | 10       |           |             |           |           |             |           |          |      |
| Benzo(k)fluoranthene        | ND         | 10       |           |             |           |           |             |           |          |      |
| Benzoic acid                | ND         | 20       |           |             |           |           |             |           |          |      |
| Benzyl alcohol              | ND         | 10       |           |             |           |           |             |           |          |      |
| Bis(2-chloroethoxy)methane  | ND         | 10       |           |             |           |           |             |           |          |      |
| Bis(2-chloroethyl)ether     | ND         | 10       |           |             |           |           |             |           |          |      |
| Bis(2-chloroisopropyl)ether | ND         | 10       |           |             |           |           |             |           |          |      |
| Bis(2-ethylhexyl)phthalate  | ND         | 10       |           |             |           |           |             |           |          |      |
| 4-Bromophenyl phenyl ether  | ND         | 10       |           |             |           |           |             |           |          |      |
| Butyl benzyl phthalate      | ND         | 10       |           |             |           |           |             |           |          |      |
| Carbazole                   | ND         | 10       |           |             |           |           |             |           |          |      |
| 4-Chloro-3-methylphenol     | ND         | 10       |           |             |           |           |             |           |          |      |
| 4-Chloroaniline             | ND         | 10       |           |             |           |           |             |           |          |      |
| 2-Chloronaphthalene         | ND         | 10       |           |             |           |           |             |           |          |      |
| 2-Chlorophenol              | ND         | 10       |           |             |           |           |             |           |          |      |
| 4-Chlorophenyl phenyl ether | ND         | 10       |           |             |           |           |             |           |          |      |
| Chrysene                    | ND         | 10       |           |             |           |           |             |           |          |      |
| Di-n-butyl phthalate        | ND         | 10       |           |             |           |           |             |           |          |      |
| Di-n-octyl phthalate        | ND         | 10       |           |             |           |           |             |           |          |      |
| Dibenz(a,h)anthracene       | ND         | 10       |           |             |           |           |             |           |          |      |
| Dibenzofuran                | ND         | 10       |           |             |           |           |             |           |          |      |
| 1,2-Dichlorobenzene         | ND         | 10       |           |             |           |           |             |           |          |      |
| 1,3-Dichlorobenzene         | ND         | 10       |           |             |           |           |             |           |          |      |
| 1,4-Dichlorobenzene         | ND         | 10       |           |             |           |           |             |           |          |      |
| 3,3´-Dichlorobenzidine      | ND         | 10       |           |             |           |           |             |           |          |      |
| Diethyl phthalate           | ND         | 10       |           |             |           |           |             |           |          |      |
| Dimethyl phthalate          | ND         | 10       |           |             |           |           |             |           |          |      |
| 2,4-Dichlorophenol          | ND         | 20       |           |             |           |           |             |           |          |      |
| 2,4-Dimethylphenol          | ND         | 10       |           |             |           |           |             |           |          |      |
| 4,6-Dinitro-2-methylphenol  | ND         | 20       |           |             |           |           |             |           |          |      |
| 2,4-Dinitrophenol           | ND         | 20       |           |             |           |           |             |           |          |      |
| 2,4-Dinitrotoluene          | ND         | 10       |           |             |           |           |             |           |          |      |
| 2,6-Dinitrotoluene          | ND         | 10       |           |             |           |           |             |           |          |      |
|                             |            |          |           |             |           |           |             |           |          |      |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Page 13 of 18

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1208093

30-Aug-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 3rd Qtr

|      | Sample ID mb-3177          | SampType      | e: ME | BLK       | Tes         | tCode: El | PA Method | 8270C: Semi | olatiles/ |          |      |
|------|----------------------------|---------------|-------|-----------|-------------|-----------|-----------|-------------|-----------|----------|------|
| I    | Client ID: PBW             | Batch ID      | : 31  | 77        | F           | RunNo: 47 | 706       |             |           |          |      |
| Ţ    | Prep Date: 8/3/2012        | Analysis Date | : 8/  | 7/2012    |             | SeqNo: 1  |           | Units: µg/L |           |          |      |
| ï    | Analyte                    |               | QL.   | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD      | RPDLimit | Qual |
| ľ    | Fluoranthene               | ND            | 10    |           |             |           |           |             |           |          |      |
| -    | Fluorene                   | ND            | 10    |           |             |           |           |             |           |          |      |
| ř    | Hexachlorobenzene          | ND            | 10    |           |             |           |           |             |           |          |      |
| ı    | Hexachlorobutadiene        | ND            | 10    |           |             |           |           |             |           |          |      |
|      | Hexachlorocyclopentadiene  | ND            | 10    |           |             |           |           |             |           |          |      |
|      | Hexachloroethane           | ND            | 10    |           |             |           |           |             |           |          |      |
| 1    | Indeno(1,2,3-cd)pyrene     | ND            | 10    |           |             |           |           |             |           |          |      |
| I    | Isophorone                 | ND            | 10    |           |             |           |           |             |           |          |      |
|      | 1-Methylnaphthalene        | ND            | 10    |           |             |           |           |             |           |          |      |
|      | 2-Methylnaphthalene        | ND            | 10    |           |             |           |           |             |           |          |      |
|      | 2-Methylphenol             | ND            | 10    |           |             |           |           |             |           |          |      |
|      | 3+4-Methylphenol           | ND            | 10    |           |             |           |           |             |           |          |      |
|      | N-Nitrosodi-n-propylamine  | ND            | 10    |           |             |           |           |             |           |          |      |
|      | N-Nitrosodimethylamine     | ND            | 10    |           |             |           |           |             |           |          |      |
|      | N-Nitrosodiphenylamine     | ND            | 10    |           |             |           |           |             |           |          |      |
|      | Naphthalene                | ND            | 10    |           |             |           |           |             |           |          |      |
|      | 2-Nitroaniline             | ND            | 10    |           |             |           |           |             |           |          |      |
|      | 3-Nitroaniline             | ND            | 10    |           |             |           |           |             |           |          |      |
|      | 4-Nitroaniline             | ND            | 20    |           |             |           |           |             |           |          |      |
|      | Nitrobenzene               | ND            | 10    |           |             |           |           |             |           |          |      |
|      | 2-Nitrophenol              | ND            | 10    |           |             |           |           |             |           |          |      |
|      | 4-Nitrophenol              | ND            | 10    |           |             |           |           |             |           |          |      |
|      | Pentachlorophenol          | ND            | 20    |           |             |           |           |             |           |          |      |
|      | Phenanthrene               | ND            | 10    |           |             |           |           |             |           |          |      |
| l, i | Phenol                     | ND            | 10    |           |             |           |           |             |           |          |      |
| -    | Pyrene                     | ND            | 10    |           |             |           |           |             |           |          |      |
| П    | Pyridine                   | ND            | 10    |           |             |           |           |             |           |          |      |
| ľ    | 1,2,4-Trichlorobenzene     | ND            | 10    |           |             |           |           |             |           |          |      |
|      | 2,4,5-Trichlorophenol      | ND            | 10    |           |             |           |           |             |           |          |      |
|      | 2,4,6-Trichlorophenol      | ND            | 10    |           |             |           |           |             |           |          |      |
|      | Surr: 2,4,6-Tribromophenol | 170           |       | 200.0     |             | 87.4      | 44.2      | 126         |           |          |      |
|      | Surr: 2-Fluorobiphenyl     | 80            |       | 100.0     |             | 79.9      | 37        | 114         |           |          |      |
|      | Surr: 2-Fluorophenol       | 110           |       | 200.0     |             | 56.1      | 23.4      | 98          |           |          |      |
|      | Surr: 4-Terphenyl-d14      | 83            |       | 100.0     |             | 82.8      | 41.3      | 116         |           |          |      |
|      | Surr: Nitrobenzene-d5      | 87            |       | 100.0     |             | 86.8      | 39.5      | 118         |           |          |      |
|      | Surr: Phenol-d5            | 99            |       | 200.0     |             | 49.4      | 20.9      | 95.9        |           |          |      |
|      |                            |               |       |           |             |           |           |             |           |          |      |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Page 14 of 18

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1208093

30-Aug-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 3rd Qtr

Sample ID MB-3160

Prep Date: 8/2/2012

SampType: MBLK

TestCode: EPA Method 7470: Mercury

Client ID: PBW

Batch ID: 3160

RunNo: 4640

Analysis Date: 8/3/2012

SeqNo: 130457

Units: mg/L

Analyte

SPK value SPK Ref Val **PQL** 

%REC LowLimit

HighLimit

%RPD

**RPDLimit** 

Qual

Mercury

ND 0.00020

### Qualifiers:

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits

Page 15 of 18

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1208093

30-Aug-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 3rd Qtr

| Sample ID MB-3199   | -        | Type: MI |           | TestCode: EPA 6010B: Total Recoverable Metals |             |          |             |      |          |      |  |
|---------------------|----------|----------|-----------|-----------------------------------------------|-------------|----------|-------------|------|----------|------|--|
| Client ID: PBW      | Bato     | h iD: 31 | 99        | F                                             | RunNo: 4849 |          |             |      |          |      |  |
| Prep Date: 8/6/2012 | Analysis | Date: 8/ | 14/2012   | SeqNo: 136952                                 |             |          | Units: mg/L |      |          |      |  |
| Analyte             | Result   | PQL      | SPK value | SPK Ref Val                                   | %REC        | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |  |
| Arsenic             | ND       | 0.020    |           |                                               |             |          |             |      |          |      |  |
| Barium              | ND       | 0.020    |           |                                               |             |          |             |      |          |      |  |
| Cadmium             | ND       | 0.0020   |           |                                               |             |          |             |      |          |      |  |
| Calcium             | ND       | 1.0      |           |                                               |             |          |             |      |          |      |  |
| Chromium            | ND       | 0.0060   |           |                                               |             |          |             |      |          |      |  |
| _ead                | ND       | 0.0050   |           |                                               |             |          |             |      |          |      |  |
| /lagnesium          | ND       | 1.0      |           |                                               |             |          |             |      |          |      |  |
| Potassium           | ND       | 1.0      |           |                                               |             |          |             |      |          |      |  |
| Selenium            | ND       | 0.050    |           |                                               |             |          |             |      |          |      |  |
| Silver              | ND       | 0.0050   |           |                                               |             |          |             |      |          |      |  |
| Sodium              | ND       | 1.0      |           |                                               |             |          |             |      |          |      |  |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Page 16 of 18

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1208093

30-Aug-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 3rd Qtr

Sample ID mb-1

SampType: MBLK

TestCode: SM2320B: Alkalinity

Client ID: **PBW**  Batch ID: R4833

RunNo: 4833

SeqNo: 136497

Units: mg/L CaCO3

Prep Date: Analyte

Analysis Date: 8/13/2012 **PQL** 

20

SPK value SPK Ref Val

Result

%REC LowLimit

HighLimit

%RPD

**RPDLimit** 

Qual

Total Alkalinity (as CaCO3)

ND

Qualifiers:

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit ND

Reporting Detection Limit

Ε Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Page 17 of 18

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1208093

30-Aug-12

Client:

Western Refining Southwest, Inc.

Project:

Client ID:

Injection Well 3rd Qtr

Sample ID MB-3211

SampType: MBLK

Batch ID: 3211

RunNo: 4720

**PBW** 

Sample ID 1208093-001CMS

Prep Date: 8/6/2012

Analysis Date: 8/8/2012

SeqNo: 132985

Units: mg/L

Analyte

Result **PQL** ND 20.0 SPK value SPK Ref Val

%REC LowLimit HighLimit

TestCode: SM2540C MOD: Total Dissolved Solids

%RPD **RPDLimit** 

Qual

Total Dissolved Solids

SampType: MS

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: Injection Well Prep Date: 8/6/2012

Batch ID: 3211

RunNo: 4720

Result

4770

Analysis Date: 8/8/2012

PQL

SeqNo: 132996

Units: mg/L

Analyte

SPK value SPK Ref Val

%REC LowLimit

HighLimit

Qual

**Total Dissolved Solids** 

4740

40.0

2000 2742

100

80

TestCode: SM2540C MOD: Total Dissolved Solids

%RPD

**RPDLimit** 

Sample ID 1208093-001CMSD

Prep Date:

Client ID: Injection Well

8/6/2012

SampType: MSD

Batch ID: 3211

40.0

RunNo: 4720

Units: mg/L

Qual

Analyte Total Dissolved Solids Analysis Date: 8/8/2012 Result

2000

SPK value SPK Ref Val 2742

%REC LowLimit 101

SeqNo: 132997

HighLimit %RPD 120 0.505 **RPDLimit** 20

Qualifiers:

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Ε

Value above quantitation range

J Analyte detected below quantitation limits R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Page 18 of 18

RL Reporting Detection Limit



Hall Environmental Analysis Laboratory 4901 Hanvkins NE Albuquerque, NM 87105

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

### Sample Log-In Check List

Client Name: Western Refining Southwest, Inc Bloomfield Work Order Number: 1208093 Received by/date: Logged By: 8/1/2012 9:30:00 AM Lindsay Mangin 8/2/2012 12:55:15 PM Completed By: Lindsay Mangin 18/02/12 Reviewed By: Chain of Custody 1. Were seals intact? No Not Present ✔ 2. Is Chain of Custody complete? Yes V. No Not Present 3. How was the sample delivered? **UPS** Log In 4. Coolers are present? (see 19. for cooler specific information) NA · 5. Was an attempt made to cool the samples? Yes No V 6. Were all samples received at a temperature of >0° C to 6.0°C Approved by client. 7. Sample(s) in proper container(s)? Yes W No 8. Sufficient sample volume for indicated test(s)? Yes W No 9. Are samples (except VOA and ONG) properly preserved? Yes V No NA Yes No V 10. Was preservative added to bottles? Yes M No I No VOA Vials 11, VOA vials have zero headspace? Yes No V 12. Were any sample containers received broken? # of preserved 13. Does paperwork match bottle labels? Yes V No bottles checked (Note discrepancies on chain of custody) for pH; Yes W No 14. Are matrices correctly identified on Chain of Custody? (<2 or >12 unless noted) Adjusted? 15. Is it clear what analyses were requested? Yes V No il 16. Were all holding times able to be met? Yes V No i i (If no, notify customer for authorization.) Checked by: Special Handling (if applicable) 17. Was client notified of all discrepancies with this order? Yes No NA 🔽 Person Notified: Date: By Whom: Via: | eMail | Phone X Fax | In Person Regarding: w/ analysis Client Instructions: 18. Additional remarks: 19. Cooler Information

| ļ | Cooler No | Temp ºC | Condition | Seal Intact | Seal No | Seal Date | Signed By |
|---|-----------|---------|-----------|-------------|---------|-----------|-----------|
|   | 1         |         |           | Yes         |         |           |           |

|                         | HALL ENVIRONMENTAL ANALYSTS I AROBATODY | 773                | 4901 Hawkins NE - Albuqueraue, NM 87109 | 100          | 4na          |                  | Dies           | \286<br>\ZTT<br>\ZTT        | HPH 682 (M) | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | od (A)      | BTEX + M<br>BTEX + M<br>TPH Methr<br>ROGA 8 M<br>Anions (F,<br>8081 Pesti<br>8081 Pesti<br>8081 Pesti<br>8081 Pesti<br>8081 Pesti<br>8270 (Sem | ×                  | ×             | × | X       |              | ×              |                    | X  |  |   | emarks:                       |                  | If necessary, samples submitted to Hall Environmental may be subcombacted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report. |
|-------------------------|-----------------------------------------|--------------------|-----------------------------------------|--------------|--------------|------------------|----------------|-----------------------------|-------------------------------------------------|---------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|---|---------|--------------|----------------|--------------------|----|--|---|-------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | HALL                                    | 3 1 OTR www.hallen | 1                                       | 100          | 4na          | (les             | Dies           | 69)<br>\286                 | HAT<br>HAT<br>(M                                | 108<br>+ 3<br>+ 3                     | 18T<br>3 bo | nteM HqT                                                                                                                                       |                    |               |   | X       | X            |                |                    | X  |  |   | 8/1/12 9:30 Remarks:          | Date Time        | serves as notice of this possibility. Any sub-contracted data will be                                                                                                                                                            |
| Turn-Around Time:       | Standard 🗆 Rush                         |                    | Injection Well                          | Project #:   |              | Project Manager: |                |                             | Sampler: 45.b                                   |                                       |             | Container Preservative Type and # Type                                                                                                         | 3-VOA HCI          | 1-liter amber |   | 1-500ml | 1-350m H2504 | 1-500m   Na OH | 1-500ml Zai Actata | -7 |  | - | 400                           | Received by: Do  | ontracted to other accredited laboratories. This                                                                                                                                                                                 |
| Chain-of-Custody Record | Western Refining                        |                    | #50 CR 4990                             | eld NM 87413 | 505-632-4135 |                  |                | ★ Level 4 (Full Validation) |                                                 |                                       |             | ne Matrix Sample Request ID                                                                                                                    | Had INJECTION Well |               |   |         |              |                |                    |    |  |   | Relinquished by: Robot Krakan | Refinquished by: | ary, samples submitted to Hall Environmental may be subcor                                                                                                                                                                       |
| Cha                     | Client:                                 |                    | Mailing Address:                        |              | Phone #:     | email or Fax#:   | QA/QC Package: | □ Standard                  | Accreditation                                   | D EDD (Tyme)                          |             | Date Time                                                                                                                                      | 7-31-12 1:30       | _             |   |         |              |                |                    |    |  |   | Pate: Time:<br>7-3/-/2 3:80   | Date: Time:      | If necess                                                                                                                                                                                                                        |



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

November 07, 2012

Kelly Robinson

Western Refining Southwest, Inc.

#50 CR 4990

Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: Injection Well 10-11-12 OrderNo.: 1210682

### Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 10/12/2012 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <a href="www.hallenvironmental.com">www.hallenvironmental.com</a> or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Workorder Sample Summary

WO#:

1210682

07-Nov-12

CLIENT: Western Refining Southwest, Inc.

**Project:** Injection Well 10-11-12

|              |                  |        | <u>.</u>              |                        |         |
|--------------|------------------|--------|-----------------------|------------------------|---------|
| Lab SampleID | Client Sample ID | Tag No | Date Collected        | Date Received          | Matrix  |
| 1210682-001  | Injection Well   |        | 10/11/2012 9:00:00 AM | 10/12/2012 10:30:00 AM | Aqueous |
| 1210682-001  | Injection Well   |        | 10/11/2012 9:00:00 AM | 10/12/2012 10:30:00 AM | Aqueous |
| 1210682-001  | Injection Well   |        | 10/11/2012 9:00:00 AM | 10/12/2012 10:30:00 AM | Aqueous |
| 1210682-001  | Injection Well   |        | 10/11/2012 9:00:00 AM | 10/12/2012 10:30:00 AM | Aqueous |
| 1210682-001  | Injection Well   |        | 10/11/2012 9:00:00 AM | 10/12/2012 10:30:00 AM | Aqueous |

# Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/7/2012

CLIENT: Western Refining Southwest, Inc.

**Project:** Injection Well 10-11-12

Lab ID: 1210682-001

Client Sample ID: Injection Well

**Collection Date:** 10/11/2012 9:00:00 AM **Received Date:** 10/12/2012 10:30:00 AM

|                                       |        |         |               |     | 2012 10:50:00 AW       |
|---------------------------------------|--------|---------|---------------|-----|------------------------|
| Analyses                              | Result | RL Qu   | al Units      | DF  | Date Analyzed          |
| EPA METHOD 300.0: ANIONS              | ··     |         |               |     | Analyst: JRR           |
| Chloride                              | 1200   | 50      | mg/L          | 100 | 10/13/2012 1:23:58 PM  |
| Sulfate                               | 37     | 5.0     | mg/L          | 10  | 10/13/2012 1:11:34 PM  |
| EPA METHOD 7470: MERCURY              |        |         |               |     | Analyst: IDC           |
| Mercury                               | ND     | 0.00020 | mg/L          | 1   | 10/30/2012 6:06:43 PM  |
| <b>EPA 6010B: TOTAL RECOVERABLE</b>   | METALS |         |               |     | Analyst: JLF           |
| Arsenic                               | ND     | 0.020   | mg/L          | 1   | 10/18/2012 10:44:05 AM |
| Barium                                | 0.41   | 0.020   | mg/L          | 1   | 10/18/2012 10:44:05 AM |
| Cadmium                               | ND     | 0.0020  | mg/L          | 1   | 10/18/2012 10:44:05 AM |
| Calcium                               | 150    | 5.0     | mg/L          | 5   | 10/18/2012 10:54:52 AM |
| Chromium                              | ND     | 0.0060  | mg/L          | 1   | 10/18/2012 10:44:05 AN |
| Lead                                  | ND     | 0.0050  | mg/L          | 1   | 10/18/2012 10:44:05 AM |
| Magnesium                             | 44     | 1.0     | mg/L          | 1   | 10/18/2012 10:44:05 AM |
| Potassium                             | 14     | 1.0     | mg/L          | 1   | 10/18/2012 10:44:05 AM |
| Selenium                              | ND     | 0.050   | mg/L          | 1   | 10/24/2012 2:15:44 PM  |
| Silver                                | ND     | 0.0050  | mg/L          | 1   | 10/18/2012 10:44:05 AM |
| Sodium                                | 670    | 10      | mg/L          | 10  | 10/18/2012 11:19:04 AM |
| <b>EPA METHOD 8270C: SEMIVOLATILE</b> | ES     |         |               |     | Analyst: JDC           |
| Acenaphthene                          | ND     | 50      | μg/L          | 1   | 10/20/2012 7:09:26 PM  |
| Acenaphthylene                        | ND     | 50      | μg/L          | 1   | 10/20/2012 7:09:26 PM  |
| Aniline                               | ND     | 50      | μg/L          | 1   | 10/20/2012 7:09:26 PM  |
| Anthracene                            | ND     | 50      | μg/L          | 1   | 10/20/2012 7:09:26 PM  |
| Azobenzene                            | ND     | 50      | μg/L          | 1   | 10/20/2012 7:09:26 PM  |
| Benz(a)anthracene                     | ND     | 50      | μg/L          | 1   | 10/20/2012 7:09:26 PM  |
| Benzo(a)pyrene                        | ND     | 50      | μg/L          | 1   | 10/20/2012 7:09:26 PM  |
| Benzo(b)fluoranthene                  | ND     | 50      | μg/L          | 16  | 10/20/2012 7:09:26 PM  |
| Benzo(g,h,i)perylene                  | ND     | 50      | μg/L          | 1   | 10/20/2012 7:09:26 PM  |
| Benzo(k)fluoranthene                  | ND     | 50      | μg/L          | 1   | 10/20/2012 7:09;26 PM  |
| Benzoic acid                          | ND     | 100     | μg/L          | 1   | 10/20/2012 7:09:26 PM  |
| Benzyl alcohol                        | ND     | 50      | μg/L          | 1   | 10/20/2012 7:09:26 PM  |
| Bis(2-chloroethoxy)methane            | ND     | 50      | μg/L          | 1   | 10/20/2012 7:09:26 PM  |
| Bis(2-chloroethyl)ether               | ND     | 50      | μg/L          | 10  | 10/20/2012 7:09:26 PM  |
| Bis(2-chloroisopropyl)ether           | ND     | 50      | μg/L          | 10  | 10/20/2012 7:09:26 PM  |
| Bis(2-ethylhexyl)phthalate            | ND     | 50      | μ <b>g/</b> L | 1   | 10/20/2012 7:09:26 PM  |
| 4-Bromophenyl phenyl ether            | ND     | 50      | μg/L          | 1   | 10/20/2012 7:09:26 PM  |
| Butyl benzyl phthalate                | ND     | 50      | μg/L          | 1   | 10/20/2012 7:09:26 PM  |
| Carbazole                             | ND     | 50      | μg/L          | 1   | 10/20/2012 7:09:26 PM  |
| 4-Chloro-3-methylphenol               | ND     | 50      | μg/∟          | 1   | 10/20/2012 7:09:26 PM  |
| 4-Chloroaniline                       | ND     | 50      | μg/L          | 1   | 10/20/2012 7:09:26 PM  |
| 2-Chloronaphthalene                   | ND     | 50      | μg/L          | 1   | 10/20/2012 7:09:26 PM  |
| 2-Chlorophenol                        | ND     | 50      | μg/L          | 1   | 10/20/2012 7:09:26 PM  |

Matrix: AQUEOUS

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits 2 of 19

# **Analytical Report**

Lab Order 1210682

Date Reported: 11/7/2012

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

**Project:** Injection Well 10-11-12

Lab ID: 1210682-001

Client Sample ID: Injection Well

Collection Date: 10/11/2012 9:00:00 AM Received Date: 10/12/2012 10:30:00 AM

| Analyses                    | Result | RL Qu | al Units | DF        | Date Analyzed         |
|-----------------------------|--------|-------|----------|-----------|-----------------------|
| EPA METHOD 8270C: SEMIVOLA  | TILES  |       |          | · · · · · | Analyst: JD(          |
| 4-Chlorophenyl phenyl ether | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 PM |
| Chrysene                    | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 Pt |
| Di-n-butyl phthalate        | ND     | 50    | µg/L     | 9         | 10/20/2012 7:09:26 PI |
| Di-n-octyl phthalate        | ND     | 100   | μg/L     | 1         | 10/20/2012 7:09:26 PI |
| Dibenz(a,h)anthracene       | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 Pf |
| Dibenzofuran                | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 PI |
| 1,2-Dichlorobenzene         | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 PI |
| 1,3-Dichlorobenzene         | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 PI |
| 1,4-Dichlorobenzene         | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 PI |
| 3,3'-Dichlorobenzidine      | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 Pi |
| Diethyl phthalate           | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 PI |
| Dimethyl phthalate          | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 PI |
| 2,4-Dichlorophenol          | ND     | 100   | μg/L     | 1         | 10/20/2012 7:09:26 PI |
| 2,4-Dimethylphenol          | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 P  |
| 4,6-Dinitro-2-methylphenol  | ND     | 100   | μg/L     | 1         | 10/20/2012 7:09:26 P  |
| 2,4-Dinitrophenol           | ND     | 100   | μg/L     | 1         | 10/20/2012 7:09:26 P  |
| 2,4-Dinitrotoluene          | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 P  |
| 2,6-Dinitrotoluene          | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 P  |
| Fluoranthene                | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 P  |
| Fluorene                    | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 P  |
| Hexachiorobenzene           | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 P  |
| Hexachlorobutadiene         | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 P  |
| Hexachlorocyclopentadiene   | ND     | 50    | μg/L     | 35        | 10/20/2012 7:09:26 P  |
| Hexachloroethane            | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 PI |
| Indeno(1,2,3-cd)pyrene      | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 P  |
| Isophorone                  | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 PI |
| 1-Methylnaphthalene         | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 PI |
| 2-Methylnaphthalene         | ND     | 50    | µg/∟     | 1         | 10/20/2012 7:09:26 PI |
| 2-Methylphenol              | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 PI |
| 3+4-Methylphenol            | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 PI |
| N-Nitrosodi-n-propylamine   | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 PI |
| N-Nitrosodimethylamine      | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 Pt |
| N-Nitrosodiphenylamine      | ND     | 50    | μg/L     | 3         | 10/20/2012 7:09:26 PM |
| Naphthalene                 | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 Pt |
| 2-Nitroaniline              | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 Pt |
| 3-Nitroaniline              | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 Pi |
| 4-Nitroaniline              | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 Pt |
| Nitrobenzene                | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 PM |
| 2-Nitrophenol               | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 PM |
| 4-Nitrophenol               | ND     | 50    | µg/L     | 1         | 10/20/2012 7:09:26 PM |
| Pentachlorophenol           | ND     | 100   | μg/L     | 1         | 10/20/2012 7:09:26 PM |
| Phenanthrene                | ND     | 50    | μg/L     | 1         | 10/20/2012 7:09:26 PM |

Matrix: AQUEOUS

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery finits 2 of 19

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

**Project:** Injection Well 10-11-12

Lab ID: 1210682-001

Client Sample ID: Injection Well

Collection Date: 10/11/2012 9:00:00 AM Received Date: 10/12/2012 10:30:00 AM

| Analyses                        | Result |           |          |     |                       |
|---------------------------------|--------|-----------|----------|-----|-----------------------|
|                                 | Kesuit | RL Qu     | al Units | DF  | Date Analyzed         |
| EPA METHOD 8270C: SEMIVOLATILES |        |           |          |     | Analyst: JDC          |
| Phenol                          | ND     | 50        | μg/L     | 1   | 10/20/2012 7:09:26 PM |
| Pyrene                          | ND     | 50        | μg/L     | 1   | 10/20/2012 7:09:26 PM |
| Pyridine                        | ND     | 50        | μg/L     | 1   | 10/20/2012 7:09:26 PM |
| 1,2,4-Trichlorobenzene          | ND     | 50        | μg/L     | 1   | 10/20/2012 7:09:26 PM |
| 2,4,5-Trichlorophenol           | ND     | 50        | μg/L     | 1   | 10/20/2012 7:09:26 PM |
| 2,4,6-Trichlorophenol           | ND     | 50        | μg/L     | 1   | 10/20/2012 7:09:26 PM |
| Surr: 2,4,6-Tribromophenol      | 98.5   | 42.9-124  | %REC     | 1   | 10/20/2012 7:09:26 PM |
| Surr: 2-Fluorobiphenyl          | 84.5   | 40-108    | %REC     | 1   | 10/20/2012 7:09:26 PM |
| Surr: 2-Fluorophenol            | 72.0   | 23.6-94.8 | %REC     | 1   | 10/20/2012 7:09:26 PM |
| Surr: 4-Terphenyl-d14           | 85.9   | 41.9-103  | %REC     | 1   | 10/20/2012 7:09:26 PM |
| Surr: Nitrobenzene-d5           | 100    | 42.6-114  | %REC     | - 3 | 10/20/2012 7:09:26 PM |
| Surr: Phenol-d5                 | 57.0   | 20.3-74.7 | %REC     | 1   | 10/20/2012 7:09:26 PM |
| EPA METHOD 8260B: VOLATILES     |        |           |          |     | Analyst: MMS          |
| Benzene                         | ND     | 10        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| Toluene                         | ND     | 10        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| Ethylbenzene                    | ND     | 10        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| Methyl tert-butyl ether (MTBE)  | ND     | 10        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| 1,2,4-Trimethylbenzene          | ND     | 10        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| 1,3,5-Trimethylbenzene          | ND     | 10        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| 1,2-Dichloroethane (EDC)        | ND     | 10        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| 1,2-Dibromoethane (EDB)         | ND     | 10        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| Naphthalene                     | ND     | 20        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| 1-Methylnaphthalene             | ND     | 40        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| 2-Methylnaphthalene             | ND     | 40        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| Acetone                         | 130    | 100       | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| Bromobenzene                    | ND     | 10        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| Bromodichloromethane            | ND     | 10        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| Bromoform                       | ND     | 10        | µg/L     | 10  | 10/19/2012 1:17:34 PM |
| Bromomethane                    | ND     | 30        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| 2-Butanone                      | ND     | 100       | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| Carbon disulfide                | ND     | 100       | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| Carbon Tetrachloride            | ND     | 10        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| Chlorobenzene                   | ND     | 10        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| Chloroethane                    | ND     | 20        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| Chloroform                      | ND     | 10        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| Chloromethane                   | ND     | 30        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| 2-Chlorotoluene                 | ND     | 10        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| 4-Chlorotoluene                 | ND     | 10        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| cis-1,2-DCE                     | ND     | 10        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| cis-1,3-Dichloropropene         | ND     | 10        | μg/L     | 10  | 10/19/2012 1:17:34 PM |
| 1,2-Dibromo-3-chloropropane     | ND     | 20        | μg/L     | 10  | 10/19/2012 1:17:34 PM |

Matrix: AQUEOUS

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits 4 of 19

# Analytical Report

Lab Order 1210682

Date Reported: 11/7/2012

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

**Project:** Injection Well 10-11-12

**Lab ID:** 1210682-001

Client Sample ID: Injection Well

Collection Date: 10/11/2012 9:00:00 AM Received Date: 10/12/2012 10:30:00 AM

| Analyses                    | Result | RL Qu       | al Units | DF | Date Analyzed         |
|-----------------------------|--------|-------------|----------|----|-----------------------|
| EPA METHOD 8260B: VOLATILES |        | <del></del> |          |    | Analyst: MMS          |
| Dibromochloromethane        | ND     | 10          | µg/L     | 10 | 10/19/2012 1:17:34 PM |
| Dibromomethane              | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PM |
| 1,2-Dichlorobenzene         | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PM |
| 1,3-Dichlorobenzene         | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PM |
| 1,4-Dichlorobenzene         | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PM |
| Dichlorodifluoromethane     | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PN |
| 1,1-Dichloroethane          | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PN |
| 1,1-Dichloroethene          | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PN |
| 1,2-Dichloropropane         | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PN |
| 1,3-Dichloropropane         | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PN |
| 2,2-Dichloropropane         | ND     | 20          | μg/L     | 10 | 10/19/2012 1:17:34 PN |
| 1,1-Dichloropropene         | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PN |
| Hexachlorobutadiene         | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PN |
| 2-Hexanone                  | ND     | 100         | μg/L     | 10 | 10/19/2012 1:17:34 PN |
| Isopropylbenzene            | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PN |
| 4-Isopropyltoluene          | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PM |
| 4-Methyl-2-pentanone        | ND     | 100         | μg/L     | 10 | 10/19/2012 1:17:34 PM |
| Methylene Chloride          | ND     | 30          | μg/L     | 10 | 10/19/2012 1:17:34 PM |
| n-Butylbenzene              | ND     | 30          | μg/L     | 10 | 10/19/2012 1:17:34 PM |
| n-Propylbenzene             | ND     | 10          | µg/∟     | 10 | 10/19/2012 1:17:34 PM |
| sec-Butylbenzene            | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PM |
| Styrene                     | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PM |
| tert-Butylbenzene           | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PM |
| 1,1,1,2-Tetrachioroethane   | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PM |
| 1,1,2,2-Tetrachloroethane   | ND     | 20          | μg/L     | 10 | 10/19/2012 1:17:34 PM |
| Tetrachloroethene (PCE)     | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PM |
| trans-1,2-DCE               | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PM |
| trans-1,3-Dichloropropene   | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PM |
| 1,2,3-Trichlorobenzene      | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PN |
| 1,2,4-Trichlorobenzene      | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PM |
| 1,1,1-Trichloroethane       | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PM |
| 1,1,2-Trichloroethane       | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PN |
| Trichloroethene (TCE)       | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PM |
| Trichlorofluoromethane      | ND     | 10          | µg/L     | 10 | 10/19/2012 1:17:34 PM |
| 1,2,3-Trichloropropane      | ND     | 20          | μg/L     | 10 | 10/19/2012 1:17:34 PN |
| Vinyl chloride              | ND     | 10          | μg/L     | 10 | 10/19/2012 1:17:34 PN |
| Xylenes, Total              | ND     | 15          | μg/L     | 10 | 10/19/2012 1:17:34 PN |
| Surr: 1,2-Dichloroethane-d4 | 95.9   | 70-130      | %REC     | 10 | 10/19/2012 1:17:34 PM |
| Surr: 4-Bromofluorobenzene  | 102    | 70-130      | %REC     | 10 | 10/19/2012 1:17:34 PN |
| Surr: Dibromofluoromethane  | 102    | 70-130      | %REC     | 10 | 10/19/2012 1:17:34 PN |
| Surr: Toluene-d8            | 96.0   | 70-130      | %REC     | 10 | 10/19/2012 1:17:34 PN |

Matrix: AQUEOUS

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits 5 of 19

### **Analytical Report**

Lab Order 1210682

Date Reported: 11/7/2012

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 10-11-12

Lab ID: 1210682-001

Client Sample ID: Injection Well

Collection Date: 10/11/2012 9:00:00 AM Received Date: 10/12/2012 10:30:00 AM

| Analyses                     | Result    | RL Qua | al Units   | DF | Date Analyzed          |
|------------------------------|-----------|--------|------------|----|------------------------|
| EPA 120.1: SPECIFIC CONDUCTA | ANCE      |        |            |    | Analyst: JML           |
| Conductivity                 | 4600      | 0.010  | µmhos/cm   | 1  | 10/15/2012 12:32:45 PM |
| SM4500-H+B: PH               |           |        |            |    | Analyst: JML           |
| рН                           | 7.35      | 1.68 H | l pH units | 1  | 10/15/2012 12:32:45 PM |
| SM2320B: ALKALINITY          |           |        |            |    | Analyst: JML           |
| Bicarbonate (As CaCO3)       | 510       | 20     | mg/L CaCO3 | 1  | 10/15/2012 12:32:45 PM |
| Carbonate (As CaCO3)         | ND        | 2.0    | mg/L CaCO3 | 1  | 10/15/2012 12:32:45 PM |
| Total Alkalinity (as CaCO3)  | 510       | 20     | mg/L CaCO3 | 1  | 10/15/2012 12:32:45 PM |
| SM2540C MOD: TOTAL DISSOLV   | ED SOLIDS |        |            |    | Analyst: KS            |
| Total Dissolved Solids       | 2910      | 100    | mg/L       | 1  | 10/16/2012 7:08:00 PM  |

Matrix: AQUEOUS

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
  - Spike Recovery outside accepted recovery himses 6 of 19

### CASE NARRATIVE

November 2, 2012

Lab Name: Anatek Labs, Inc. 1282 Alturas Drive, Moscow, ID 83843 www.anateklabs.com FL NELAP E87893, NV ID13-2004-31, WA DOE C126, OR ELAP ID200001, MT 0028, ID, CO, NM

Project Tracking No.: 1210682 Anatek Batch: 121017011

Project Summary: One (1) water sample was received on 10/11/2012 for reactive cyanide, reactive sulfide, pH, and flashpoint analysis. The sample was received with appropriate chain of custody at 4.5C.

Client Sample ID 1210682-001E / Injection Well Anatek Sample ID Method/Prep Method 121017011-001

EPA 1010/150.1/SW 846 CH7

### QA/QC Checks

| Parameters                          | Yes / No | Exceptions / Deviations |
|-------------------------------------|----------|-------------------------|
| Sample Holding Time Valid?          | Υ        | NA                      |
| Surrogate Recoveries Valid?         | Υ        | NA                      |
| QC Sample(s) Recoveries Valid?      | Y        | NA                      |
| Method Blank(s) Valid?              | Y        | NA                      |
| Tune(s) Valid?                      | NA       | NA                      |
| Internal Standard Responses Valid?  | NA       | NA                      |
| Initial Calibration Curve(s) Valid? | Υ        | NA                      |
| Continuing Calibration(s) Valid?    | Υ        | NA                      |
| Comments:                           | Υ        | NA                      |

### 1. Holding Time Requirements

No problems encountered.

### 2. GC/MS Tune Requirements

N/A

### 3. Calibration Requirements

No problems encountered.

### 4. Surrogate Recovery Requirements

N/A.

### 5. QC Sample (LCS/MS/MSD) Recovery Requirements

No problems encountered.

### 6. Method Blank Requirements

No problems encountered.

| 7. | Internal | Standard | 8 | Response | Rec | uirements |
|----|----------|----------|---|----------|-----|-----------|
|    |          |          |   |          |     |           |

N/A.

### 8. Comments

No problems encountered.

I certify that this data package is in compliance with the terms and conditions of the contract. Release of the data contained in this data package has been authorized by the Laboratory Manager or his designee.

Approved by:

Page 2 of 16

# Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste, D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

121017011

Address:

4901 HAWKINS NE SUITE D **ALBUQUERQUE, NM 87109** 

Project Name:

1210682

Attn:

ANDY FREEMAN

### **Analytical Results Report**

10/11/2012

Sample Number

121017011-001

Sampling Date

Date/Time Received 10/16/2012 1:05 PM

Client Sample ID

1210682-001E / INJECTION WELL

Sampling Time

9:00 AM

Sample Location

Comments

| Parameter          | Result | Units    | PQL | Analysis Date | Analyst | Method    | Qualifier |
|--------------------|--------|----------|-----|---------------|---------|-----------|-----------|
| Cyanide (reactive) | ND     | mg/L     | 0.1 | 10/22/2012    | CRW     | SW846 CH7 |           |
| Flashpoint         | >200   | ٩F       |     | 10/25/2012    | KFG     | EPA 1010  |           |
| pH <sup>©</sup>    | 7.37   | ph Units | 507 | 10/18/2012    | ETL     | EPA 150.1 |           |
| Reactive sulfide   | 6.43   | mg/L     | 1   | 10/24/2012    | ЛТ      | SW846 CH7 |           |

**Authorized Signature** 

John Coddington, Lab Manager

MCL

**EPA's Maximum Contaminant Level** 

ND

Not Detected

PQL

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87693; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095

# Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Address:

4901 HAWKINS NE SUITE D

**ALBUQUERQUE, NM 87109** 

Attn:

ANDY FREEMAN

Batch #:

121017011

Project Name:

1210682

Analytical Results Report
Quality Control Data

| Lab Control Sam     | ple               |                                       | •              | •              |              |             | -                  |       |             | 1,1           |
|---------------------|-------------------|---------------------------------------|----------------|----------------|--------------|-------------|--------------------|-------|-------------|---------------|
| Parameter           |                   | LCS Result                            | Unit           | s LCS          | Spike        | %Rec        | AR %Re             | c Pro | p Date      | Analysis Date |
| Reactive sulfide    |                   | 0.180                                 | mg/l           | L.             | 0.2          | 90.0        | 70-130             | 10/   | 24/2012     | 10/24/2012    |
| Cyanide (reactive)  |                   | 0.487                                 | mg/l           | L              | 0.5          | 97.4        | 80-120             | 10/   | 22/2012     | 10/22/2012    |
| Lab Control Sam     | pie Duplicate     | <del>_</del> ·                        |                |                |              | ·           |                    |       |             | <u>.</u>      |
| Parameter           |                   | LCSD                                  | D-4-           | LCSD           |              |             | AR                 |       |             |               |
| Reactive sulfide    |                   | <b>Result</b><br>0.180                | Units          | Spike          | %Rec         | %RPD        | 701/U E            |       |             | Anaiysis Date |
| Meacave suince      | <del></del>       | 0.180                                 | mg/L           | 0.2            | 90.0         | 0.0         | 0-25               | 10/2  | 1/2012      | 10/24/2012    |
| Matrix Spike        |                   | · · · · · · · · · · · · · · · · · · · |                |                |              | <del></del> | <u> </u>           |       |             |               |
| Sample Number Pa    | ırameter          |                                       | Sample         | MS             | 1114-        |             | IS                 | AR    |             |               |
| •                   | eactive sulfide   |                                       | Result<br>6.43 | Result<br>12.9 | Unite        | . vp        | ike %Re            |       |             | -             |
|                     | yanide (reactive) |                                       | ND             | 0.453          | mg/L<br>mg/L |             | 03 80.6<br>.5 90.6 |       |             |               |
|                     | ,,                | <u></u>                               |                | 0.400          | ng/L         |             | ,08 c.             | 80-12 | 0 10/22/201 | 2 10/22/2012  |
| Matrix Spike Dupi   | licate            | ···                                   | <u></u>        | · //           |              |             |                    |       |             | <u> </u>      |
| Parameter           |                   | MSD                                   | 1 t ta-        | MSD            | <b>44 m</b>  |             | A                  |       |             |               |
| Cyanide (reactive)  |                   | <b>Result</b><br>0.468                | Units          | Spike          | %Re          |             | Jun 1              | _     | rep Date    | Analysis Date |
| - Change (Legerise) | <u> </u>          | 0.408                                 | mg/L           | 0.5            | 93.0         | 5 3         | .3 0-:             | 25 10 | /22/2012    | 10/22/2012    |
| Method Blank        |                   | <u></u>                               | _              |                |              |             |                    |       |             |               |
| Parameter           |                   |                                       | Re             | sult           | Uni          | lts         | PQL                |       | Prep Date   | Analysis Date |
| Cyanide (reactive)  |                   |                                       | N              | ID             | mg           | /L          | 0.1                |       | 1/22/2012   | 10/22/2012    |
| Reactive sulfide    |                   |                                       |                | ID .           | mg/          |             | 1                  |       | /24/2012    | 10/24/2012    |

AR

Acceptable Range

ND Not Detected

PQL

Practical Quantitation Limit

RPD

Relative Percentage Difference

Comments;

Certifications held by Anstek Lebs ID: EPA:ID00013; A2:0701; CO:ID00013; FL(NELAP):E87693; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0026; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anstek Lebs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0085

# Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

### **Login Report**

**NM** 

Customer Name: HALL ENVIRONMENTAL ANALYSIS LAB

Order ID:

121017011

4901 HAWKINS NE SUITE D

**Order Date:** 

10/17/2012

ALBUQUERQUE

87109

Contact Name: ANDY FREEMAN

Project Name: 1210682

**Comment:** 

Sample #;

121017011-001

Customer Sample #:

Water

1210682-001E / INJECTION WELL

Recv'd:

V

Collector:

Date Collected:

10/11/201

Quantity:

Matrix:

Date Received:

10/16/2012 1:05:00 P

Comment:

| Test                          | Lab      | Method        | Due Date   | Priority           |
|-------------------------------|----------|---------------|------------|--------------------|
| CYANIDE REACTIVE              | М        | SW846 CH7     | 10/26/2012 | Normal (6-10 Days) |
| FLASHPOINT                    | М        | EPA 1010      | 10/26/2012 | Normai (6-10 Days) |
| pH                            | М        | EPA 150.1     | 10/26/2012 | Normai (6-10 Days) |
| SULFIDE REACTIVE              | M        | SW846 CH7     | 10/26/2012 | Normai (6-10 Days) |
| SA                            | MPLE CON | DITION RECORD |            |                    |
| Samples received in a cooler? |          |               | Yes        |                    |
| Samples received intact?      |          |               | Yes        |                    |

| Samples received in a cooler?                   | Yes |
|-------------------------------------------------|-----|
| Samples received intact?                        | Yes |
| What is the temperature inside the cooler?      | 4.5 |
| Samples received with a COC?                    | Yes |
| Samples received within holding time?           | Yes |
| Are all sample bottles properly preserved?      | Yes |
| Are VOC samples free of headspace?              | N/A |
| Is there a trip blank to accompany VOC samples? | N/A |
| Labels and chain agree?                         | Yes |

| 1    |
|------|
|      |
| (    |
| 200  |
| - 2  |
|      |
| -    |
|      |
| CINE |
| Г    |

1st SAMP

10/16/2012

1210682

121017 011 HALL Last 10/26/2012

10/11/201 1st RCVD

Fr. t. A. B. W. W. W. W.

(208) 882-9246

MHII

SAMPLE

1210682-001E Injection Well

**ω** 4.

Ųī 6

10 9

ÇÜ

CITY, STATE, ZIP. MOSCOW, ID 83843

1282 Alturas Dr

SUB CONTRAITOR: Anatek Labs

COMPANY:

Anatek Labs, Inc.

PHONE: ACCOUNT #:

(208) 883-2839

EMAIL: ĪĄ.

CLIENT SAMPLE ID 50(IHDPE HOTTLE Aqueous 10/11/2012 9:00:00 AM | 3 RCI LEVEL 4 MATRIX COLLECTION DATE 0 # CONTAINERS 0 0 ō MWBS ANALYTICAL COMMENTS Page 6 of 16

| Page | # |
|------|---|
|      |   |

# Flashpoint Analysis

Sample Matrix - Soil (1), Sludge (2), Oil (3), Water (4), Other (5)

| Sample ID      | Analyses                              | Sample                                  | Analyst  | Temp - °C | Temp - °F   | ī      |
|----------------|---------------------------------------|-----------------------------------------|----------|-----------|-------------|--------|
| <u>L.</u>      | Date                                  | Matrix                                  | Initials |           | 1           |        |
| 120727018-01   | 7/30/2012                             | 4/ 420                                  | 12       |           | 7200° F     | 1      |
| 12.0727025-001 |                                       | 5/ Ganid                                | 124      |           | 1450A       | 1      |
| -002           | 1                                     | 1                                       | 9-       |           | 1410F       | ]      |
|                | 5/9/13/2                              | -/ 720                                  | 11/2-    |           | 7 130 7     |        |
| 125257579-ST   |                                       |                                         |          |           | 1.63 5      |        |
| -007           | <u>.</u>                              |                                         | اسسانت   |           | 1 65° m     |        |
|                |                                       | 5/ Linuid                               | nu       |           | >200°F      |        |
| 123810097-01   |                                       | 47 H36                                  | "WM      |           | 12200       |        |
| 44444          | 8 29/2012                             | 5/ Liquid                               | me       |           | 720007      |        |
| [2083000]-08   | 8/31/2012                             | 4/420                                   | 144      |           | >2000F      | 1      |
|                | 9/04/2012                             | 5/Liquid                                | Ma       |           | >200°=      |        |
| 12033104370)   |                                       |                                         |          |           | <50°F       | •      |
| -007           |                                       |                                         |          |           | 7200°F      |        |
| ~053           |                                       |                                         |          |           | ×200°F      | 6.5-4  |
| -004           |                                       |                                         |          |           | -1250f 115% | 4/4/12 |
| 121002054-00   | 10/04/2012                            | 5/Liquid                                | m        |           | 850=        | 7/4/12 |
| 12/004/001-001 | 4-                                    | <u> </u>                                |          |           | <640 F      |        |
|                | 10/08/2012                            | 5/Ligned                                | m        |           | 135°⊨       |        |
| -002           | · +-                                  | 14                                      | J.,      |           | 1500P       |        |
| 121717011-00   | 10/25/2012                            | 4 Water                                 | non      |           | >200°F      |        |
| ļ              |                                       |                                         |          |           |             |        |
| <del></del>    |                                       |                                         |          |           |             |        |
|                |                                       | <u> </u>                                |          |           |             |        |
| <del></del>    |                                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          |           |             |        |
|                |                                       |                                         |          |           |             | 26     |
|                |                                       |                                         |          |           |             |        |
|                |                                       |                                         |          |           | ,           |        |
|                |                                       |                                         |          |           |             |        |
|                | · · · · · · · · · · · · · · · · · · · |                                         |          |           |             |        |

<sup>\*</sup> SAFETY GLASSES REQUIRED.

# pH - SM4500H+B / Alkalinity SM2320B

| _        |
|----------|
|          |
| 2        |
| 147      |
| ఠ        |
| 7        |
|          |
| 150      |
|          |
| 90       |
| 모        |
| 몱        |
| Ŧ        |
| 프        |
| Z        |
| -4       |
| Ţ        |
| 닯        |
| 1        |
| 4        |
| <u>a</u> |
| 蔔        |
| 5        |
| 4        |
| 8        |
| ቯ        |
|          |

| _                       | 1                        |                      | _                   |                     |                      |                       |                                                                     |
|-------------------------|--------------------------|----------------------|---------------------|---------------------|----------------------|-----------------------|---------------------------------------------------------------------|
| Method QC Requirements: | its LFB/Blank every 10   |                      | % Recovery 85-115%  |                     | Amount Spiked (mg/L) | 100                   | n 007858                                                            |
| Method                  | pH 7 within 0.1 pH units | Slope 95-102%        |                     |                     | Expires              | 11/18/2012            | urefte: CAT 10uL, sn 600055 - pH Meter: Orion Model 620A, sn 007858 |
| Expires                 | Sep-13                   | Dec-13               | Sep-12              | Apr 2013            | Conc.                | 1N                    | 600055 - pH Mete                                                    |
| Solution #              | M854-01                  | M854-02              | M854-03             | A046-07             | Solution #           | M637-04               | ırette: CAT 10uL, sn                                                |
| Reagent                 | pH Buffer 4 (Red)        | pH Buffer 7 (Yellow) | pH Buffer 10 (Blue) | 0.02N H2SO4 Titrant | Standard             | Matrix Spike Solution | Contribu                                                            |

|                        | <del></del>            |              |             |      | ,         | _          |   |   |   |   |   |   |   |   |   |   |
|------------------------|------------------------|--------------|-------------|------|-----------|------------|---|---|---|---|---|---|---|---|---|---|
|                        | *                      | L            |             |      |           |            |   |   |   |   |   |   |   |   | Í |   |
| _                      | Bit.<br>Carbonate      |              |             |      |           |            |   |   |   |   |   |   | 0 | 0 | 0 | 0 |
| Alkalinity (mg/L)      | Bit-<br>carbonate      | ٥            |             | ٥    | 0         | 0          |   |   | 0 | 0 | 0 |   |   | 0 | 0 | 0 |
| Alkalini               | Cerbonate              |              | 0           |      |           |            | 0 | 0 |   |   |   | 0 | 0 | 0 | 0 | 0 |
|                        | Total                  | 0            | 0           | 0    | 0         | 0          | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 (mL)                 | C<br>4.2               |              |             |      |           |            |   |   |   |   |   |   |   |   |   |   |
| Titrant vol to pH (mL) | B<br>4.5               |              |             |      |           |            |   |   |   | 1 |   |   |   |   |   |   |
| Titran                 | A<br>8.3               |              |             |      |           |            |   |   |   |   |   |   |   |   |   |   |
|                        | Sample<br>Vol.<br>(mL) |              |             | -    |           |            |   |   |   |   |   |   |   |   |   |   |
|                        | pH 7<br>Buffer         | 7.iO         |             |      |           |            |   |   |   | ₹ |   |   |   |   |   |   |
|                        | Slope                  | 101.5        |             |      |           |            |   |   |   |   |   |   |   |   |   |   |
|                        | pH 10<br>Cai           |              |             |      |           |            |   |   |   |   |   | 7 |   |   |   |   |
|                        | 라 4<br>오래              | 3,95 10.00   |             |      |           |            |   |   |   |   |   |   |   |   |   |   |
|                        | 뜐                      | 7.53         | 7,51        | 2.08 | 7.37      | 10.39      |   |   |   |   |   |   |   |   |   |   |
|                        | Temp<br>(°C)           | 34.8         | 19.9        | 19,0 | 19.8      | Do.01 0.05 |   |   |   |   |   |   |   |   |   |   |
|                        | Sample                 | 100-81010161 | (20)-<br>Pa | 500- | 12011-001 | 100-450016 |   |   |   |   |   |   |   |   |   |   |

Analysis Date: 10-18-13

Analyst: EAC

| ıg/L.                                                                                                                             | ر                 | <b>;</b> | lfide             |           |                    | Initials                               | MAC          | _      |        |       |       |       |         |         |         |        |        |        |         | 1     |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|-------------------|-----------|--------------------|----------------------------------------|--------------|--------|--------|-------|-------|-------|---------|---------|---------|--------|--------|--------|---------|-------|
| 1. 1 blank per batch, must be < 20 ug/L. 2. 1 LFB per batch must be +/- 30%. 3. 1ml iodine reacts with 0.4 mg Sulfide  21024H25R_ |                   | Date     | 21-22-07          | _         |                    |                                        |              |        |        |       |       |       |         |         |         | 1      |        |        |         |       |
| 1. 1 blank per ba                                                                                                                 | 2. 1 LFB ner bate |          | 3. 1ml iodine rea |           | 121024H25R         | Concentration (mg/L)                   | 120.0        | 0.0383 | 0.345  | 0.1.0 | 0.130 | 0.020 | 0.0795  | 18500   | 0.0381  | 8350.0 | 0.0379 | 0.0378 | 6.43    | 12.86 |
| 201                                                                                                                               |                   |          | <u> </u>          |           | T- 1               | Concentration<br>(mg/sample)           | 0.020        | 0.020  | 051.0  | 0.120 | 091.0 | 0.050 | 00.0    | 0.00.0  | 0,020   | 0.020  | 0.020  | 0.020  | 0.160   | 0.350 |
| Date Made/Exnires                                                                                                                 |                   |          | 12/31/2009        |           |                    | lodine amount<br>(50 uL<br>increments) | 25           | 50     | 450    | 254   | 452   | 50    | (0.0    | 29      | 50      | 22     | 50     | 50     | 400     | 202   |
| Concentration                                                                                                                     | Z                 |          | % by weight       |           | 9                  | Sample<br>Volume                       | 525          | 522    | 4      | 0001  |       | 4     | 503     | 524     | 525     | 519    | 528    | 625    | 24.9    | 1     |
|                                                                                                                                   | Iodine 0.025 N    | HCI 6N   |                   | Indicator | Zinc Acetate 99.9% | Sample                                 | (2001,062-81 | ec ,   | SM 2 - |       | 16    | 19.   | 18045-7 | 19049.5 | 23016.5 | 0)-    | -(5    | .8     | 1-1106) | 2M) - |

Comments

or to the mean to a manage of

# otal Cyanide by Semi-Automated Colorimetry lethod: EPA 335.4\SM-4500-CN-E istillation Bench Sheet

Weak Acid Dissociable Cyanide by SM 4500-CN-I (check WAD column)

otal Cyanide MS/MSD/LCS Soln: ree Cyanide MS/MSD/LCS Soln: M884-06 Exp:10/15/13

M879-06 Exp:9/10/13

Method requirements: All QC +/- 10%

Equipment: Midi-vap

Instrument: ALPCHEM FIA 3000

Absorbance: 570nm

|     | Sample ID    | Matrix      | Preserved | Sample<br>Amount (mL)** | Initial<br>Multiplier* | Final<br>Multiplier | Spike Amount<br>(mL) | WAD?<br>(check if<br>yes) |
|-----|--------------|-------------|-----------|-------------------------|------------------------|---------------------|----------------------|---------------------------|
| 14  | 121011-049-4 | 50, pm      | Numl      | 50ml                    | 28-8                   | 28.8                |                      |                           |
| 4   | yms          | -4          | · · ·     | 1                       | BA 199                 |                     | Int                  |                           |
| r‡  | - Yensp      |             |           |                         | NAME OF                | 1                   |                      |                           |
| 14  | -W5          |             |           |                         | LX                     | l y                 |                      |                           |
| 1   | -180         |             |           |                         | 4                      | {                   |                      |                           |
|     | -5           |             |           |                         | 29.9                   | 79.9                |                      |                           |
|     | -6           |             |           |                         | 30.4                   | 30,4                |                      |                           |
| ī 🗜 | -4           |             |           |                         | 78.9                   | 28.9                |                      |                           |
| 1   | 21010018-1   | 1           |           |                         |                        |                     |                      |                           |
|     | 121011064-2  | WWPEN       | +         |                         | (X                     | _X                  |                      |                           |
| 1/  | 21018021-1   | reactivessi | Maple     | 50mc                    | 27-7                   | 27.9                |                      |                           |
| 2   | luns         |             |           |                         |                        |                     | Inl                  |                           |
| 3   | - lmsn       |             |           |                         | 4                      | 4                   |                      |                           |
| 1   | -W5          |             |           |                         | <b>&gt;</b>            | 1×                  | _                    |                           |
| 5   | -M           |             |           |                         | 4                      | ₹                   |                      |                           |
| 3   | 25-1         |             |           |                         | 28.7                   | 28.7                |                      |                           |
| 7   | 26-1         | +           |           |                         | 17.1                   | 17.9                |                      |                           |
| 3/  | 2017011-1    | un redive   |           |                         | X                      | lx                  |                      |                           |
| 3   | lins         |             |           |                         |                        |                     | Ind                  |                           |
| 2   | myn          | 1           | 4         | 4                       | - ₹                    | 4                   | 4                    |                           |

If soils this calculation is taken from cyanide extraction bench sheet.

<sup>\*\*</sup> If soils, mLs of extract used for distillation.

| Extraction Reagents:  | Reagent #: |
|-----------------------|------------|
| methyl red indicator  | A051-01    |
| 18 N H₂SO₄            | A053-08    |
| sulfamic acid         | R009-12    |
| 0.025N NaOH           | R014-16    |
| 51% MgCl <sub>2</sub> | A053-07    |

Analytical Reagents: Reagent #:
Barbituric Acid R038-13
Sodium Phosphate R026-23
Chloramine-t R048-09
Pyridine R043-03

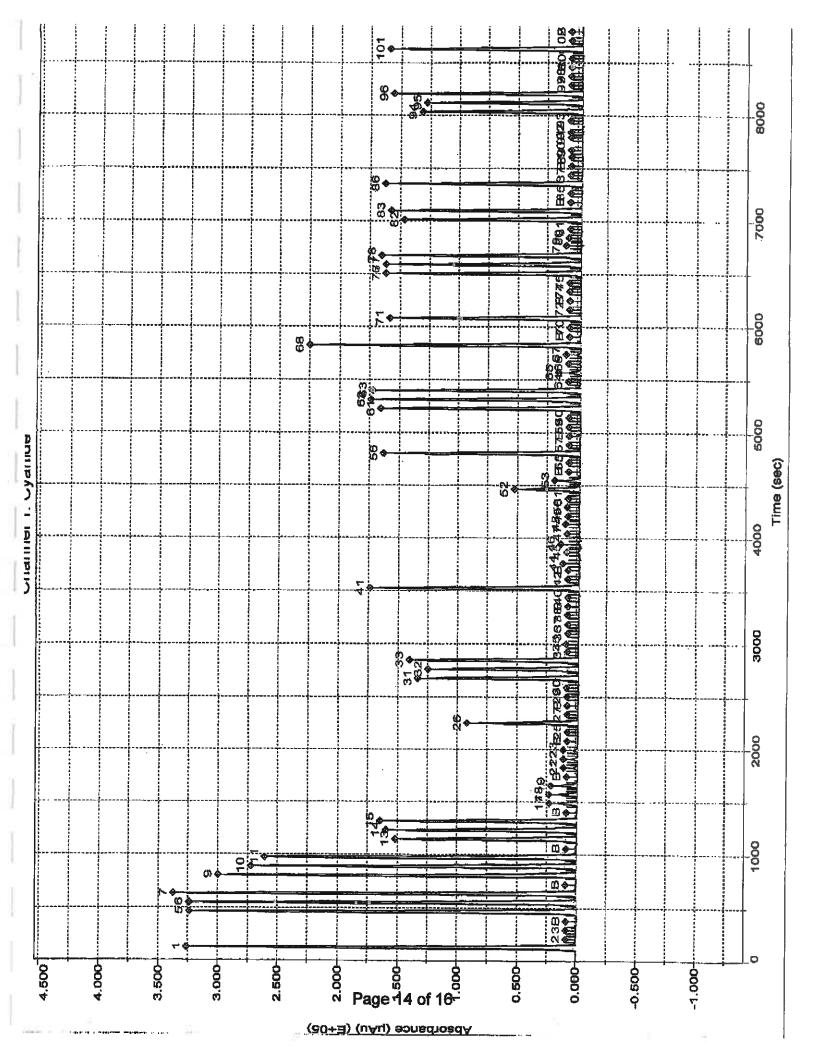
stillation Initials/Date Distilled: MW W/W/

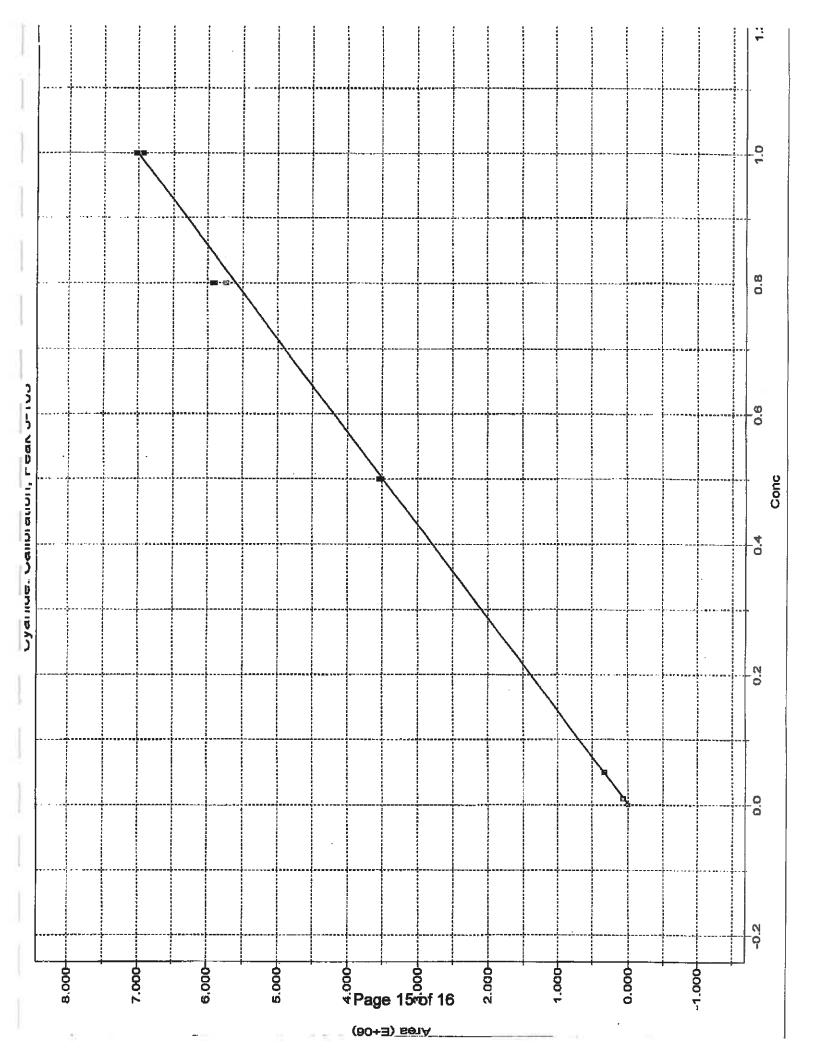
Analyst Initials/Date Analyzed MW 10/22/12

I'e name: T:\DATA1\FLOW4\2012\EPA335.4\102212C2.RST

ate: October 22, 2012

perator: CRW


121022FIACNRW


|     | eak           | Cup | Name             | Туре | Dil | W.t.          | 2           | Area    | Calc. | (ppm)     |
|-----|---------------|-----|------------------|------|-----|---------------|-------------|---------|-------|-----------|
|     |               |     |                  |      |     | <b></b>       |             |         |       |           |
|     |               | 2   | Sync             | SYNC |     | 1             | 1           | 6896128 |       | 0.985156  |
|     |               | 0   | Carryover        | CO   |     | 1             | 1           | 16248   |       | 0.004798  |
|     |               | 0   | Carryover        | CO   |     | 1             | 1           | -1347   |       | 0.002291  |
|     |               | 0   | Baseline         | RB   |     | 1             | 1           | -5625   |       | 0.001681  |
|     |               | 2   | Cal 1.00 ppm     | C    |     | 1             | 1           | 7026224 |       | 1.003694  |
|     |               | 2   | Cal 1.00 ppm     | C    |     | 1             | 1           | 6923783 |       | 0.989097  |
|     |               | 2   | Cal 1.00 ppm     | C    |     | 1             | 1           | 7012644 |       | 1.001759  |
| 1   |               | 0   | Baseline         | RB   |     | 1             | 1           | ~4419   |       | 0.001853  |
|     | _             | 3   | Cal 0.80 ppm     | C    |     | 1             | 1           | 5734824 |       | 0.B19675  |
| 1   | ລ             | 3   | Cal 0.80 ppm     | C    |     | 1             | 1           | 5895692 |       | 0.842598  |
|     | 1             | 3   | Cal 0.80 ppm     | C    |     | 1             | 1           | 5926719 |       | 0.847019  |
|     | _             | 0   | Baseline         | RB   |     | 1             | 1           | 6658    |       | 0.003431  |
|     | 3             | 4   | Cal 0.50 ppm     | Ċ    |     | 1             | 1           | 3525813 |       | 0.504898  |
| - 1 | 4             | 4   | Cal 0.50 ppm     | C    |     | 1             | 1           | 3503091 |       | 0.501661  |
|     | 5             | 4   | Cal 0.50 ppm     | C    |     | 1             | #1 <u>1</u> | 3544872 |       | 0.507614  |
|     | -,            | 0   | Baseline         | RB   |     | 1             | 1           | 7206    |       | 0.003509  |
|     | 7             | 5   | Cal 0.05 ppm     | C    |     | 1             | 1           | 330488  |       | 0.049576  |
| -1  | 3             | 5   | Cal 0.05 ppm     | C    |     | 1             | 1           | 328535  |       | 0.049298  |
| - ( | 9             | 5   | Cal 0.05 ppm     | C    |     | 1             | 1           | 326599  |       | 0.049022  |
|     | -             | 0   | Baseline         | RB   |     | 1 7           | 1           | 3289    |       | 0.002951  |
|     | 1             | 6   | Cal 0.01 ppm     | C    |     | 1             | 1           | 67522   |       | 0.012104  |
| -1  | 2             | 6   | Cal 0.01 ppm     | C    |     | 1             | 1           | 64335   |       | 0.011650  |
| - [ | 3             | 6   | Cal 0.01 ppm     | C    |     | 1             | 1           | 71374   |       | 0.012653  |
| ,   | _             | ٥   | Baseline         | RB   |     | 1.            | 1           | 2328    |       | 0.002814  |
|     | 5             | 1   | Blank            | BLNK |     | 1             | 1           | -3589   |       | 0.001971  |
| - [ | 6             | 7   | ICV 0.25 ppm     | CCV  |     | 1             | 1           | 1812828 |       | 0.260804  |
| - 1 | 7             | 1   | Blank            | BLNK |     | 1             | 1           | 3475    |       | 0.002978  |
| - 1 | _             | 0   | Baseline         | RB   |     | 1             | 1           | 3745    |       | 0.003016  |
|     | 9             | 8   | 121017039-BL     | U    |     | 1             | 1           | 21154   |       | 0.005497  |
| П   | 2             | 9   | 121017039-001    | U    |     | 1             | 1           | 5777    |       | 0.003306  |
| -   | 1             | 10  | 121017039-001MS  | U    |     | 1             | 1           | 2830796 |       | 0.405861  |
|     | 3             | 11  | 121017039-001MSI |      |     | 1             | 1           | 2704044 | }     | 0.387799  |
|     | 3             | 12  | 121017039-LCS    | σ    |     | 1             | 1           | 3068466 |       | 0.439728  |
| - 1 | 4             | 13  | 121017039-002    | Ü    |     | 1             | 1           | 701     |       | 0.002582  |
| 1   | 5             | 1.4 | 121017039-003    | Ü    |     | 1             | 1           | 10956   |       | 0.004044  |
|     | 5             | 15  | 121017039~004    | υ    |     | 1             | 1           | 180     |       | 0.002508  |
|     | 7             | 16  | 121011045-001    | U    |     | 1             | 1           | 4229    |       | 0.003085  |
| 1   | 3             | 17  | 121011047-001    | U    |     | 1             | 1           | -5655   |       | 0.001677  |
| _   |               |     | Baseline         | RB   |     | 1             | 1           | -2539   |       | 0.002121  |
|     | þ             | 1   | Blank            | BLNK |     | 1             | 1           | -6362   |       | 0.001576  |
|     | 1             | 4   | CCV 0.5 ppm      | CCV  |     | 1             | 1           | 3683226 |       | 0.527329  |
| -1  | 2             | 1   | Blank            | BLNK |     | 1             | 1           | -4448   |       | 0.001849  |
| 1   |               |     | Read Baseline    | RB   |     | 1             | 1           | -2614   |       | 0.002110  |
|     | 4             | 18  | 121011044-001    | U    |     | 1             | 1           | 8811    |       | 0.003738  |
|     | 5<br><b>6</b> | 19  | 121011046-001    | Ü    |     | 1             | 1           | 17784   |       | 0.005017  |
| -1  | 5             | 20  | 121012023-001    | U    |     | 1             | 1           | 19745   |       | 0.005296  |
|     | 7             | 21  | 121012023-002    | ט    |     | 1             | 1           | 3578    |       | 0.002992  |
|     | 3             | 22  | 121016064-001    | U    |     | 1             | 1           | 16321   |       | 0.004808  |
| 1   | 9             | 23  | 121016064-002    | U    |     | 1             | 1           | 12962   |       | 0.004330  |
| -1  | 2             | 24  | 121016064-003    | U    |     | 1             | 1.          | 24899   |       | 0.006031  |
|     | 1             | 25  | 121016064-004    | U    |     | 1             | 1           | 7742    |       | 0.003586  |
|     | 2             | 26  | 121017039-005    | ט    |     | 1             | 1           | 1065183 |       | 0.154267  |
| ×   | 3             | 27  | 121017039-006    | Ū    |     | 1             | 1           | 259646  |       | 0.039481  |
|     |               |     | Baseline         | RB   |     | 1             | 1           | -4918   |       | 0.001782  |
| 1   | 5             |     | Blank            | BLNK |     | 1             | 1           | -3462   |       | 0.001989  |
|     | 5             |     | CCV 0.5 ppm      | CCV  |     | 1             | 1           | 3553014 |       | 0.508774  |
| į,  | 7             |     | Blank            | BLNK |     | 1             | 1           | -1855   |       | 0.002218  |
|     |               |     | Read Baseline    | RB   |     | ī             | 1           | 8664    |       | 0.003717  |
|     | 9             | 28  | 121011049-BL     | U    |     | 1             | 1           | -2062   |       | 0.002189  |
|     | 2             | 29  | 121011049-004    | ט    | 28. |               | 1           | 4978    |       | 0.091925  |
|     | 1             | 30  |                  | Ü    | 28. |               | 1           | 3504808 |       | 4.454871  |
|     | 2             |     | 121011049-004MSD |      | 28  | 8.8           | 1           | 3560151 |       | 14.681992 |
| 1   | 3             |     | 121011049-LCS    | U    |     | 1             | 1           | 3570142 |       | 0.511215  |
|     | 4             | 33  |                  | U    | 29. |               | 1           | 14327   |       | 0.135268  |
|     | 5             |     | 121011049-006    | Ū    | ₽â€ | ight 11 of 16 | 1           | 192177  |       | 0.907959  |
|     | 6             | 35  | 121011049-007    | U    | 28. | 9             | 1           | 14137   |       | 0.129963  |
|     |               |     |                  |      |     |               |             |         |       |           |

| 36 | 121010018-001    | U    | 221  | 1   | 57327     | 2.353950  |
|----|------------------|------|------|-----|-----------|-----------|
| 37 | 121011064-002    | U    | 8 1  | 1   | 4561180   | 0.652435  |
| 0  | Baseline         | RB   | 1    | 1.  | 4290      | 0.003094  |
| 1  | Blank            | BLNK | 1    | 1   | -4766     | 0.001803  |
| 4  | CCV 0.5 ppm      | CCV  | 1    | 1   | 3565866   | 0.510606  |
| 1  | Blank            | BLNK | 1    | 1   | -2990     | 0.002057  |
| 0  | Baseline         | RB   | 1    | 1   | -673      | 0.002387  |
| 38 | 121018024-BL     | U    | 1    | 1   | -2068     | 0.002188  |
| 39 | 121018024-001    | U    | 27.9 | 1   | 3977      | 0.085072  |
| 40 | 121018024-001MS  | ט    | 27.9 | 1   | 3329258   | 13.305229 |
| 41 | 121018024-001MS  | ט ס  | 27.9 | A 1 | L 3400022 |           |
| 42 | 121018024-LCS    | U    | 1    | 1   | 3401070   | 0.487123  |
| 43 | 121018025-001    | Ū    | 28.7 | 1   | 4755      | 0.090695  |
| 44 | 121018026-001    | Ų    | 27.9 | 1.  | 25061     | 0.168897  |
| 45 | .121017011-001   | U    | .1.  | 1   | -6380     | 0.001573  |
| 46 | ·121017011-001MS | ט    | 1    | 1   | 3158807   | 0.452601  |
| 47 | 121017011-001MS  | ט ס  | 1    | 1   | 3270089   | 0.468459  |
| 0  | Baseline         | RB   | 1    | 1   | 2133      | 0.002786  |
| 1  | Blank            | BLNK | 1    | 1   | -5834     | 0.001651  |
| 4  | CCV 0.5 ppm      | ÇCV  | 1    | 1   | 3558024   | 0.509488  |
| 1  | Blank            | BLNK | 1    | 1   | 9428      | 0.003826  |
| 0  | Baseline         | RB   | 1    | 1   | 1524      | 0.002700  |
| 48 | R                | ប    | 1    | 1   | -137      | 0.002463  |
| 49 | R                | ט    | 1    | 1   | 9061      | 0.003774  |
| 50 | R                | U    | 1    | 1   | 9574      | 0.003847  |
| 51 | 121017039-BL     | U    | 1    | 1   | -167      | 0.002459  |
| 52 | 121017039-001    | ט    | 1    | 1   | 10798     | 0.004021  |
| 53 | 121017039-001MS  | _    | 1    | 1   | 2855315   | 0.409355  |
| 54 | 121017039-001MS  | ט כ  | 1    | 1   | . 2727674 | 0.391166  |
| 55 | 121017039~LCS    | Ü    | 1    | 1   | 3254267   | 0.466204  |
| 56 | R                | Ü    | 1    | 1   | 3157      | 0.002932  |
| 57 | Ř                | Ü    | 1    | 1   | 6806      | 0.003452  |
| 0  | Baseline         | RB   | 1    | 1   | 376       | 0.002536  |
| 1  | Blank            | BLNK | 1    | 1   | -7122     | 0.001468  |
| 4  | CCV 0.5 ppm      | CCV  | 1    | 1   | 3616182   | 0.517776  |
| 1  | Blank            | BLNK | 1    | 1   | -5670     | 0.001675  |
| 0  | Baseline         | RB   | 1    | 1   | -6489     | 0.001558  |
|    |                  |      |      |     |           |           |

| ak | Cup                      | Flags |
|----|--------------------------|-------|
|    | 2<br>0<br>0              |       |
|    | 0<br>2<br>2              | BL    |
|    | ō                        | BL    |
|    | 3<br>3<br>3              | OL    |
|    | 0<br>4<br>4              | BL    |
|    | 200022203330444055506660 | BL    |
|    | 0<br>6<br>6              | BL    |
|    | 6                        | OL    |
|    | 0<br>1<br>7<br>1         | BL    |
|    | 8<br>0                   | BL    |

| 1                                              |          |         |  |
|------------------------------------------------|----------|---------|--|
| 0                                              | 9        |         |  |
| 1                                              | 10       |         |  |
| 2<br>3<br>4<br>5<br>6<br>7                     | 11<br>12 |         |  |
| 4                                              | 13       |         |  |
| ີ<br>6                                         | 14<br>15 |         |  |
| 7                                              | 16       |         |  |
| B                                              | 17<br>0  | 13.7    |  |
| э                                              | 1        | BL      |  |
| 1                                              | 4        |         |  |
| 2                                              | 1<br>0   | BL      |  |
| 4                                              | 18       |         |  |
| 5 6                                            | 19       |         |  |
| 7                                              | 20<br>21 |         |  |
| 3                                              | 22       |         |  |
| 3<br>9<br>0<br>1<br>2                          | 23<br>24 |         |  |
| 1                                              | 25       |         |  |
| 2                                              | 26       |         |  |
| 3                                              | 27<br>0  | BL      |  |
| 5                                              | 1.       |         |  |
| 5<br>6<br>7                                    | 4<br>1   |         |  |
|                                                | 0        | BL      |  |
| 9<br>1<br>2<br>3                               | 28<br>29 |         |  |
| 1                                              | 30       |         |  |
| 2                                              | 31       |         |  |
| 3                                              | 32<br>33 |         |  |
| 5                                              | 34       |         |  |
| 5<br>7                                         | 35       |         |  |
| 3                                              | 36<br>37 |         |  |
|                                                | 0        | BL      |  |
| ວ<br>1                                         | 1<br>4   |         |  |
| 2                                              | 1        |         |  |
|                                                | 0<br>38  | BL      |  |
| 5                                              | 39       |         |  |
| 6                                              | 40       |         |  |
| 3                                              | 41<br>42 |         |  |
| 9                                              | 43       |         |  |
| 4<br>5<br>6<br>7<br>8<br>9<br>7<br>1<br>2<br>3 | 44<br>45 |         |  |
| Ş                                              | 46       |         |  |
|                                                | 47       |         |  |
| 5<br>6<br>7                                    | 0<br>1   | BL      |  |
| 6                                              | 4        |         |  |
| 7                                              | 1<br>0   | BL      |  |
| Э                                              | 48       | ريد ميد |  |
| 2                                              | 49       |         |  |
| ₁.<br>2                                        | 50<br>51 |         |  |
| 3                                              | 52       |         |  |
| 4                                              | 53<br>54 |         |  |
| 901234567B                                     | 55       |         |  |
| 7                                              | 56       |         |  |
| 3                                              | 57<br>0  | BL      |  |
| 00                                             | 1        |         |  |





TIE Hame: I: /DATAI/EHOW4/&UL&/EPA555.4/IUZXIXCX.KST

ale: October 22, 2012

perator: CRW

| Name | €    |            | Conc     | Area           |
|------|------|------------|----------|----------------|
|      |      |            |          |                |
| Cal  | 1.00 | <b>ppm</b> | 1.000000 | 7026223.500000 |
| Cal  | 1.00 | ppm        | 1.000000 | 6923783.000000 |
| Cal  | 1.00 | ppm        | 1.000000 | 7012644.000000 |
| Cal  | 0.80 | ppm        | 0.800000 | 5734824.000000 |
| Cal  | 0.80 | ppm        | 0.800000 | 5895692.500000 |
| Cal  | 0.80 | ppm        | 0.800000 | 5926719.000000 |
| Çal  | 0.50 | ppm        | 0.500000 | 3525813.250000 |
| Cal  | 0.50 | ppm        | 0.500000 | 3503091.000000 |
| Cal  | 0.50 | ppm        | 0.500000 | 3544872.500000 |
| Cal  | 0.05 | ppm        | 0.050000 | 330488.250000  |
| Cal  | 0.05 | ppm        | 0.050000 | 328535.125000  |
| Cal  | 0.05 | ppm        | 0.050000 | 326599.437500  |
| Cal  | 0.01 | ppm        | 0.010000 | 67521.554688   |
| Cal  | 0.01 | ppm        | 0.010000 | 64335.367188   |
| Cal  | 0.01 | ppm        | 0.010000 | 71374.187500   |

Calib Coef:

y∞bx+a

a: (intercept) -1.7422e+04 b: 7.0177e+06

Corr Coef: 0.999327

Carryover:

0.236%

No Drift Peaks

# Hall Environmental Analysis Laboratory, Inc.

WO#:

**RPDLimit** 

1210682

07-Nov-12

**Client:** 

Western Refining Southwest, Inc.

Project:

Injection Well 10-11-12

Sample ID MB

SampType: MBLK

TestCode: EPA Method 300.0: Anions

Client ID: **PBW**  Batch ID: R6225

RunNo: 6225

Analysis Date: 10/13/2012

Units: mg/L

Prep Date: Analyte

**PQL** SPK value SPK Ref Val

SeqNo: 179335

%REC LowLimit

HighLimit

%RPD

Qual

Chloride Sulfate

ND ND 0.50

0.50

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

Analyte detected below quantitation limits

Sample pH greater than 2

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

RPD outside accepted recovery limits

Page 7 of 19

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1210682

07-Nov-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 10-11-12

| ١  |                                              |              |              |           |             |           |           |             |        |          |      |
|----|----------------------------------------------|--------------|--------------|-----------|-------------|-----------|-----------|-------------|--------|----------|------|
| į, | Sample ID 5ml rb                             | Samp⊤yr      | e: ME        | BLK       | Tes         | tCode: EF | PA Method | 8260B: VOL  | ATILES |          |      |
|    | Client ID: PBW                               | Batch I      | D: <b>R6</b> | 432       | F           | RunNo: 64 | 432       |             |        |          |      |
| i. | Prep Date:                                   | Analysis Dat | e: 10        | 0/19/2012 | S           | eqNo: 1   | 84843     | Units: µg/L |        |          |      |
|    | Analyte                                      | Result       | PQL          | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |
|    | Benzene                                      | ND           | 1.0          |           |             |           |           |             |        | <u> </u> |      |
|    | Toluene                                      | ND           | 1.0          |           |             |           |           |             |        |          |      |
|    | Ethylbenzene                                 | ND           | 1.0          |           |             |           |           |             |        |          |      |
|    | Methyl tert-butyl ether (MTBE)               | ND           | 1.0          |           |             |           |           |             |        |          |      |
|    | 1,2,4-Trimethylbenzene                       | ND           | 1.0          |           |             |           |           |             |        |          |      |
|    | 1,3,5-Trimethylbenzene                       | ND           | 1.0          |           |             |           |           |             |        |          |      |
|    | 1,2-Dichloroethane (EDC)                     | ND           | 1.0          |           |             |           |           |             |        |          |      |
|    | 1,2-Dibromoethane (EDB)                      | ND           | 1.0          |           |             |           |           |             |        |          |      |
|    | Naphthalene                                  | ND           | 2.0          |           |             |           |           |             |        |          |      |
|    | 1-Methylnaphthalene                          | ND           | 4.0          |           |             |           |           |             |        |          |      |
|    | 2-Methylnaphthalene                          | ND           | 4.0          |           |             |           |           |             |        |          |      |
| Π, | Acetone                                      | ND           | 10           |           |             |           |           |             |        |          |      |
|    | Bromobenzene                                 | ND           | 1.0          |           |             |           |           |             |        |          |      |
|    | Bromodichloromethane                         | ND           | 1.0          |           |             |           |           |             |        |          |      |
|    | Bromoform                                    | ND           | 1.0          |           |             |           |           |             |        |          |      |
|    | Bromomethane                                 | ND           | 3.0          |           |             |           |           |             |        |          |      |
|    | 2-Butanone                                   | ND           | 10           |           |             |           |           |             |        |          |      |
|    | Carbon disulfide                             | ND           | 10           |           |             |           |           |             |        |          |      |
|    | Carbon Tetrachloride                         | ND           | 1.0          |           |             |           |           |             |        |          |      |
|    | Chlorobenzene                                | ND           | 1.0          |           |             |           |           |             |        |          |      |
| 1  | Chloroethane                                 | ND           | 2.0          |           |             |           |           |             |        |          |      |
| 1  | Chloroform                                   | ND           | 1.0          |           |             |           |           |             |        |          |      |
| ı  | Chloromethane                                | ND           | 3.0          |           |             |           |           |             |        |          |      |
| ;  | 2-Chlorotoluene                              | ND           | 1.0          |           |             |           |           |             |        |          |      |
| ,  | 1-Chlorotoluene                              | ND           | 1.0          |           |             |           |           |             |        |          |      |
| (  | cis-1,2-DCE                                  | ND           | 1.0          |           |             |           |           |             |        |          |      |
| (  | cis-1,3-Dichloropropene                      | ND           | 1.0          |           |             |           |           |             |        |          |      |
|    | 1,2-Dibromo-3-chloropropane                  | ND           | 2.0          |           |             |           |           |             |        |          |      |
| ı  | Dibromochloromethane                         | ND           | 1.0          |           |             |           |           |             |        |          |      |
| ı  | Dibromomethane                               | ND           | 1.0          |           |             |           |           |             |        |          |      |
|    | 1,2-Dichlorobenzene                          | ND           | 1.0          |           |             |           |           |             |        |          |      |
|    | 1,3-Dichlorobenzene                          | ND           | 1.0          |           |             |           |           |             |        |          |      |
|    | 1,4-Dichlorobenzene                          | ND           | 1.0          |           |             |           |           |             |        |          |      |
|    | Dichlorodifluoromethane                      | ND           | 1.0          |           |             |           |           |             |        |          |      |
|    | I,1-Dichloroethane                           | ND           | 1.0          |           |             |           |           |             |        |          |      |
|    | i,1-Dichloroethene                           | ND           | 1.0          |           |             |           |           |             |        |          |      |
|    | ,2-Dichloropropane                           | ND           | 1.0          |           |             |           |           |             |        |          |      |
|    | ,3-Dichloropropane                           | ND           | 1.0          |           |             |           |           |             |        |          |      |
|    | -Dichloropropane ND 2.0                      |              |              |           |             |           |           |             |        |          |      |
|    | 1,1-Dichloropropene                          | • •          |              |           |             |           |           |             |        |          |      |
|    | -lexachlorobutadiene                         | ND           | 1.0          |           |             |           |           |             |        |          |      |
| ,  | - कर कर के विकास के का का बार का का के से कि |              |              |           |             |           |           |             |        |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Sample pH greater than 2

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 8 of 19

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1210682

07-Nov-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 10-11-12

| Sample ID 5ml rb            | SampTy      | pe: MI        | BLK       | TestCode: EPA Method 8260B: VOLATILES |          |           |             |        |          |      |  |  |  |  |
|-----------------------------|-------------|---------------|-----------|---------------------------------------|----------|-----------|-------------|--------|----------|------|--|--|--|--|
| Client ID: PBW              | Batch       | ID: Re        | 432       | F                                     | RunNo: 6 | 432       |             |        |          |      |  |  |  |  |
| Prep Date:                  | Analysis Da | ate: 10       | 0/19/2012 | \$                                    | SeqNo: 1 | 84843     | Units: µg/L |        |          |      |  |  |  |  |
| Analyte                     | Result      | PQL           | SPK value | SPK Ref Val                           | %REC     | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |  |  |  |  |
| 2-Hexanone                  | ND          | 10            |           |                                       |          |           |             |        |          |      |  |  |  |  |
| Isopropylbenzene            | ND          | 1.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| 4-isopropyltoluene          | ND          | 1.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| 4-Methyl-2-pentanone        | ND          | 10            |           |                                       |          |           |             |        |          |      |  |  |  |  |
| Methylene Chloride          | ND          | 3.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| n-Butylbenzene              | ND          | 3.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| n-Propylbenzene             | ND          | 1.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| sec-Butylbenzene            | ND          | 1.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| Styrene                     | ND          | 1.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| tert-Butylbenzene           | ND          | 1.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| 1,1,1,2-Tetrachloroethane   | ND          | 1.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| 1,1,2,2-Tetrachloroethane   | ND          | 2.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| Tetrachloroethene (PCE)     | ND          | 1.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| trans-1,2-DCE               | ND          | 1.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| trans-1,3-Dichloropropene   | ND          | 1.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| 1,2,3-Trichlorobenzene      | ND          | 1.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| 1,2,4-Trichlorobenzene      | ND          | 1.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| 1,1,1-Trichloroethane       | ND          | 1.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| 1,1,2-Trichloroethane       | ND          | 1.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| Trichloroethene (TCE)       | ND          | 1.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| Trichlorofluoromethane      | ND          | 1.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| 1,2,3-Trichloropropane      | ND          | 2.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| Vinyl chloride              | ND          | 1.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| Xylenes, Total              | ND          | 1.5           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| Surr: 1,2-Dichloroethane-d4 | 11          |               | 10.00     |                                       | 105      | 70        | 130         |        |          |      |  |  |  |  |
| Surr: 4-Bromofluorobenzene  | 9.5         |               | 10.00     |                                       | 95.3     | 70        | 130         |        |          |      |  |  |  |  |
| Surr: Dibromofluoromethane  | 10          |               | 10.00     |                                       | 103      | 70        | 130         |        |          |      |  |  |  |  |
| Surr: Toluene-d8            | 10          |               | 10.00     |                                       | 102      | 70        | 130         |        |          |      |  |  |  |  |
| Sample ID <b>b6</b>         | SampTy      | pe: ME        | BLK       | Tes                                   | Code: El | PA Method | 8260B: VOLA | ATILES | <u> </u> |      |  |  |  |  |
| Client ID: PBW              | Batch       | ID: <b>R6</b> | 432       | R                                     | unNo: 64 | 432       |             |        |          |      |  |  |  |  |
| Prep Date:                  | Analysis Da | te: 10        | /19/2012  | S                                     | eqNo: 1  | 84881     | Units: µg/L |        |          |      |  |  |  |  |
| Analyte                     | Result      | PQL           | SPK value | SPK Ref Val                           | %REC     | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |  |  |  |  |
| Benzene                     | ND          | 1.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |
| Toluene                     | ND          | 1.0           |           |                                       |          |           |             |        |          |      |  |  |  |  |

#### Qualifiers:

Ethylbenzene

Methyl tert-butyl ether (MTBE)

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

1,2-Dichloroethane (EDC)

Value exceeds Maximum Contaminant Level.

ND

ND

ND

ND

ND

1.0

1.0

1.0

1.0

1.0

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 9 of 19

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1210682

07-Nov-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 10-11-12

| Sample ID <b>b6</b>         | SampTy      | /ne· Mi | RI K      | TestCode: EPA Method 8260B: VOLATILES |          |          |              |       |          |      |  |  |  |  |
|-----------------------------|-------------|---------|-----------|---------------------------------------|----------|----------|--------------|-------|----------|------|--|--|--|--|
| Client ID: PBW              |             | ID: Re  |           |                                       | RunNo: 6 |          | UZUUD. YUL   | TILES |          |      |  |  |  |  |
| Prep Date:                  | Analysis Da |         |           |                                       | SeqNo: 1 |          | Unites south | na/l  |          |      |  |  |  |  |
|                             |             |         |           |                                       |          |          | Units: µg/L  |       |          |      |  |  |  |  |
| Analyte                     | Result      | PQL     | SPK value | SPK Ref Val                           | %REC     | LowLimit | HighLimit    | %RPD  | RPDLimit | Qual |  |  |  |  |
| 1,2-Dibromoethane (EDB)     | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| Naphthalene                 | ND          | 2.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| 1-Methylnaphthalene         | ND          | 4.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| 2-Methylnaphthalene         | ND          | 4.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| Acetone                     | ND          | 10      |           |                                       |          |          |              |       |          |      |  |  |  |  |
| Bromobenzene                | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| Bromodichloromethane        | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| Bromoform                   | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| Bromomethane                | ND          | 3.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| 2-Butanone                  | ND          | 10      |           |                                       |          |          |              |       |          |      |  |  |  |  |
| Carbon disulfide            | ND          | 10      |           |                                       |          |          |              |       |          |      |  |  |  |  |
| Carbon Tetrachloride        | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| Chlorobenzene               | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| Chloroethane                | ND          | 2.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| Chloroform                  | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| Chloromethane               | ND          | 3.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| 2-Chlorotoluene             | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| 4-Chlorotoluene             | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| cis-1,2-DCE                 | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| cis-1,3-Dichloropropene     | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| 1,2-Dibromo-3-chloropropane | ND          | 2.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| Dibromochloromethane        | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| Dibromomethane              | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| 1,2-Dichlorobenzene         | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| 1,3-Dichlorobenzene         | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| 1,4-Dichlorobenzene         | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| Dichlorodifluoromethane     | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| 1,1-Dichloroethane          | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| 1,1-Dichloroethene          | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| 1,2-Dichloropropane         | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| 1,3-Dichloropropane         | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| 2,2-Dichloropropane         | ND          | 2.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| 1,1-Dichloropropene         | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| Hexachlorobutadiene         | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| 2-Hexanone                  | ND          | 10      |           |                                       |          |          |              |       |          |      |  |  |  |  |
| Isopropylbenzene            | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| 4-isopropyltoluene          | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| 4-Methyl-2-pentanone        | ND          | 10      |           |                                       |          |          |              |       |          |      |  |  |  |  |
| Methylene Chloride          | ND          | 3.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| n-Butylbenzene              | ND          | 3.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| n-Propylbenzene             | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |
| 11-3 Topytoenzene           | ND          | 1.0     |           |                                       |          |          |              |       |          |      |  |  |  |  |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Sample pH greater than 2

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 10 of 19

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1210682

07-Nov-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 10-11-12

|                             |            |               |           | TestCode: EPA Method 8260B: VOLATILES |          |           |             |        |          |      |  |  |
|-----------------------------|------------|---------------|-----------|---------------------------------------|----------|-----------|-------------|--------|----------|------|--|--|
| Sample ID <b>b6</b>         | Samp⊺      | ype: ME       | BLK       | Tes                                   | tCode: E | PA Method | 8260B: VOL  | ATILES |          |      |  |  |
| Client ID: PBW              | Batch      | 1D: <b>R6</b> | 432       | F                                     | RunNo: 6 | 432       |             |        |          |      |  |  |
| Prep Date:                  | Analysis D | ate: 10       | )/19/2012 | 5                                     | SeqNo: 1 | 84881     | Units: µg/L |        |          |      |  |  |
| Analyte                     | Result     | PQL           | SPK value | SPK Ref Val                           | %REC     | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |  |  |
| sec-Butylbenzene            | ND         | 1.0           |           |                                       |          |           |             |        |          |      |  |  |
| Styrene                     | ND         | 1.0           |           |                                       |          |           |             |        |          |      |  |  |
| tert-Butylbenzene           | ND         | 1.0           |           |                                       |          |           |             |        |          |      |  |  |
| 1,1,1,2-Tetrachloroethane   | ND         | 1.0           |           |                                       |          |           |             |        |          |      |  |  |
| 1,1,2,2-Tetrachloroethane   | ND         | 2.0           |           |                                       |          |           |             |        |          |      |  |  |
| Tetrachloroethene (PCE)     | ND         | 1.0           |           |                                       |          |           |             |        |          |      |  |  |
| trans-1,2-DCE               | ND         | 1.0           |           |                                       |          |           |             |        |          |      |  |  |
| trans-1,3-Dichloropropene   | ND         | 1.0           |           |                                       |          |           |             |        |          |      |  |  |
| 1,2,3-Trichlorobenzene      | ND         | 1.0           |           |                                       |          |           |             |        |          |      |  |  |
| 1,2,4-Trichlorobenzene      | ND         | 1.0           |           |                                       |          |           |             |        |          |      |  |  |
| 1,1,1-Trichloroethane       | ND         | 1.0           |           |                                       |          |           |             |        |          |      |  |  |
| 1,1,2-Trichloroethane       | ND         | 1.0           |           |                                       |          |           |             |        |          |      |  |  |
| Trichloroethene (TCE)       | ND         | 1.0           |           |                                       |          |           |             |        |          |      |  |  |
| Trichlorofluoromethane      | ND         | 1.0           |           |                                       |          |           |             |        |          |      |  |  |
| 1,2,3-Trichloropropane      | ND         | 2.0           |           |                                       |          |           |             |        |          |      |  |  |
| Vinyl chloride              | ND         | 1.0           |           |                                       |          |           |             |        |          |      |  |  |
| Xylenes, Total              | ND         | 1.5           |           |                                       |          |           |             |        |          |      |  |  |
| Surr: 1,2-Dichloroethane-d4 | 9.9        |               | 10.00     |                                       | 98.6     | 70        | 130         |        |          |      |  |  |
| Surr: 4-Bromofluorobenzene  | 9.9        |               | 10.00     |                                       | 98.6     | 70        | 130         |        |          |      |  |  |
| Surr: Dibromofluoromethane  | 10         |               | 10.00     |                                       | 105      | 70        | 130         |        |          |      |  |  |
| Surr: Toluene-d8            | 10         |               | 10.00     |                                       | 101      | 70        | 130         |        |          |      |  |  |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1210682

07-Nov-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 10-11-12

| 4  |                             |             |         |           |             |           | <u>-</u> |             |           |          |      |  |  |  |  |
|----|-----------------------------|-------------|---------|-----------|-------------|-----------|----------|-------------|-----------|----------|------|--|--|--|--|
| į  | Sample ID mb-4322           | SampTy      | -       |           |             |           |          | 8270C: Semi | volatiles |          |      |  |  |  |  |
| I  | Client ID: PBW              | Batch       | ID: 43  | 22        | F           | RunNo: 62 | 287      |             |           |          |      |  |  |  |  |
| ,  | Prep Date: 10/16/2012       | Analysis Da | ate: 10 | )/16/2012 | 8           | SeqNo: 18 | B1174    | Units: µg/L | j/L       |          |      |  |  |  |  |
| i  | Analyte                     | Result      | PQL     | SPK value | SPK Ref Val | %REC      | LowLimit | HighLimit   | %RPD      | RPDLimit | Qual |  |  |  |  |
| l  | Acenaphthene                | ND          | 10      |           | -           | -         |          |             |           |          |      |  |  |  |  |
|    | Acenaphthylene              | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
| ř  | Aniline                     | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
| 1  | Anthracene                  | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
| ١  | Azobenzene                  | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
|    | Benz(a)anthracene           | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
| 1  | Benzo(a)pyrene              | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
| ļ  | Benzo(b)fluoranthene        | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
|    | Benzo(g,h,i)perylene        | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
| ĺ  | Benzo(k)fluoranthene        | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
| l  | Benzoic acid                | ND          | 20      |           |             |           |          |             |           |          |      |  |  |  |  |
| 7  | Benzyl alcohol              | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
| ì  | Bis(2-chloroethoxy)methane  | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
| l  | Bis(2-chloroethyl)ether     | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
| ł, | Bis(2-chloroisopropyl)ether | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
|    | Bis(2-ethylhexyl)phthalate  | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
| Ϊ  | 4-Bromophenyl phenyl ether  | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
| ŀ  | Butyl benzyl phthalate      | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
|    | Carbazole                   | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
| i  | 4-Chloro-3-methylphenol     | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
| l  | 4-Chloroaniline             | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
|    | 2-Chloronaphthalene         | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
|    | 2-Chlorophenol              | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
| l  | 4-Chlorophenyl phenyl ether | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
| ŀ  | Chrysene                    | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
|    | Di-n-butyl phthalate        | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
| l  | Di-n-octyl phthalate        | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
|    | Dibenz(a,h)anthracene       | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
|    | Dibenzofuran                | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
| í  | 1,2-Dichlorobenzene         | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
|    | 1,3-Dichlorobenzene         | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
|    | 1,4-Dichlorobenzene         | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
|    | 3,3'-Dichlorobenzidine      | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
|    | Diethyl phthalate           | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
|    | Dimethyl phthalate          | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
|    | 2,4-Dichlorophenol          | ND          | 20      |           |             |           |          |             |           |          |      |  |  |  |  |
|    | 2,4-Dimethylphenol          | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
|    | 4,6-Dinitro-2-methylphenol  | ND          | 20      |           |             |           |          |             |           |          |      |  |  |  |  |
|    | 2,4-Dinitrophenol           | ND          | 20      |           |             |           |          |             |           |          |      |  |  |  |  |
|    | 2,4-Dinitrotoluene          | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
|    | 2,6-Dinitrotoluene          | ND          | 10      |           |             |           |          |             |           |          |      |  |  |  |  |
|    |                             |             |         |           |             |           |          |             |           |          |      |  |  |  |  |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 12 of 19

# Hall Environmental Analysis Laboratory, Inc.

WO#: 1210682

07-Nov-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 10-11-12

| Client ID:         PBW         Batch ID:         4322           Prep Date:         10/16/2012         Analysis Date:         10/16/201           Analyte         Result         PQL         SPK v           Fluoranthene         ND         10 | RunNo: 2 SeqNo: alue SPK Ref Val %RE | 181174      | Units: µg/L<br>HighLimit |          |             |      |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------|--------------------------|----------|-------------|------|--|--|--|--|
| Analyte Result PQL SPK v                                                                                                                                                                                                                       | ·                                    |             |                          |          |             |      |  |  |  |  |
|                                                                                                                                                                                                                                                | alue SPK Ref Val %RE                 | C LowLimit  |                          |          | Units: µg/L |      |  |  |  |  |
|                                                                                                                                                                                                                                                | <u> </u>                             | O LOWEIIIII |                          | %RPD     | RPDLimit    | Qual |  |  |  |  |
|                                                                                                                                                                                                                                                |                                      |             | I IIgii Liiiit           | 70131 15 | N DEIIII    | Quai |  |  |  |  |
| Fluorene ND 10                                                                                                                                                                                                                                 |                                      |             |                          |          |             |      |  |  |  |  |
| Hexachlorobenzene ND 10                                                                                                                                                                                                                        |                                      |             |                          |          |             |      |  |  |  |  |
| Hexachlorobutadiene ND 10                                                                                                                                                                                                                      |                                      |             |                          |          |             |      |  |  |  |  |
| Hexachlorocyclopentadiene ND 10                                                                                                                                                                                                                |                                      |             |                          |          |             |      |  |  |  |  |
| Hexachloroethane ND 10                                                                                                                                                                                                                         |                                      |             |                          |          |             |      |  |  |  |  |
| Indeno(1,2,3-cd)pyrene ND 10                                                                                                                                                                                                                   |                                      |             |                          |          |             |      |  |  |  |  |
| Isophorone ND 10                                                                                                                                                                                                                               |                                      |             |                          |          |             |      |  |  |  |  |
| 1-Methylnaphthalene ND 10                                                                                                                                                                                                                      |                                      |             |                          |          |             |      |  |  |  |  |
| 2-Methylnaphthalene ND 10                                                                                                                                                                                                                      |                                      |             |                          |          |             |      |  |  |  |  |
| 2-Methylphenol ND 10                                                                                                                                                                                                                           |                                      |             |                          |          |             |      |  |  |  |  |
| 3+4-Methylphenol ND 10                                                                                                                                                                                                                         |                                      |             |                          |          |             |      |  |  |  |  |
| N-Nitrosodi-n-propylamine ND 10                                                                                                                                                                                                                |                                      |             |                          |          |             |      |  |  |  |  |
| N-Nitrosodimethylamine ND 10                                                                                                                                                                                                                   |                                      |             |                          |          |             |      |  |  |  |  |
| N-Nitrosodiphenylamine ND 10                                                                                                                                                                                                                   |                                      |             |                          |          |             |      |  |  |  |  |
| Naphthalene ND 10                                                                                                                                                                                                                              |                                      |             |                          |          |             |      |  |  |  |  |
| 2-Nitroaniline ND 10                                                                                                                                                                                                                           |                                      |             |                          |          |             |      |  |  |  |  |
| 3-Nitroaniline ND 10                                                                                                                                                                                                                           |                                      |             |                          |          |             |      |  |  |  |  |
| 4-Nitroaniline ND 10                                                                                                                                                                                                                           |                                      |             |                          |          |             |      |  |  |  |  |
| Nitrobenzene ND 10                                                                                                                                                                                                                             |                                      |             |                          |          |             |      |  |  |  |  |
| 2-Nitrophenol ND 10                                                                                                                                                                                                                            |                                      |             |                          |          |             |      |  |  |  |  |
| 4-Nitrophenol ND 10                                                                                                                                                                                                                            |                                      |             |                          |          |             |      |  |  |  |  |
| Pentachlorophenol ND 20                                                                                                                                                                                                                        |                                      |             |                          |          |             |      |  |  |  |  |
| Phenanthrene ND 10                                                                                                                                                                                                                             |                                      |             |                          |          |             |      |  |  |  |  |
| Phenoi ND 10                                                                                                                                                                                                                                   |                                      |             |                          |          |             |      |  |  |  |  |
| Pyrene ND 10                                                                                                                                                                                                                                   |                                      |             |                          |          |             |      |  |  |  |  |
| Pyridine ND 10                                                                                                                                                                                                                                 |                                      |             |                          |          |             |      |  |  |  |  |
| 1,2,4-Trichlorobenzene ND 10                                                                                                                                                                                                                   |                                      |             |                          |          |             |      |  |  |  |  |
| 2,4,5-Trichlorophenol ND 10                                                                                                                                                                                                                    |                                      |             |                          |          |             |      |  |  |  |  |
| 2,4,6-Trichlorophenol ND 10                                                                                                                                                                                                                    |                                      |             |                          |          |             |      |  |  |  |  |
| Surr: 2,4,6-Tribromophenol 140 20                                                                                                                                                                                                              | 00.0 71.                             |             | 126                      |          |             |      |  |  |  |  |
| Surr: 2-Fluorobiphenyl 86 10                                                                                                                                                                                                                   | 0.00                                 | .2 37       | 114                      |          |             |      |  |  |  |  |
| Surr: 2-Fluorophenol 110 20                                                                                                                                                                                                                    | 00.0 56                              | .3 23.4     | 98                       |          |             |      |  |  |  |  |
|                                                                                                                                                                                                                                                | 00.0 75.                             | -           | 116                      |          |             |      |  |  |  |  |
|                                                                                                                                                                                                                                                | 00.0 97.                             |             | 118                      |          |             |      |  |  |  |  |
| Surr: Phenol-d5 100 20                                                                                                                                                                                                                         | 00.0 52                              | .2 20.9     | 95.9                     |          |             |      |  |  |  |  |

### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 13 of 19

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1210682

07-Nov-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 10-11-12

Sample ID 1210682-001c dup

SampType: dup

TestCode: EPA 120.1: Specific Conductance

Client ID: Injection Well Batch ID: R6237

**PQL** 

RunNo: 6237

Prep Date:

Analysis Date: 10/15/2012

SeqNo: 179731

Units: µmhos/cm

Analyte

Result

SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD **RPDLimit**  Qual

Conductivity

4600

0.010

0.651 20

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range Е
- Analyte detected below quantitation limits
- Sample pH greater than 2

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
  - RPD outside accepted recovery limits

Page 14 of 19

# Hall Environmental Analysis Laboratory, Inc.

WO#:

**RPDLimit** 

1210682

07-Nov-12

Client:

Western Refining Southwest, Inc.

**Project:** 

Injection Well 10-11-12

Sample ID MB-4546

SampType: mblk

TestCode: EPA Method 7470: Mercury

Client ID: PBW

Batch ID: 4546

10/30/2012

RunNo: 6596

Units: mg/L

Prep Date: Analyte

Analysis Date: 10/30/2012 **PQL** 

SeqNo: 190478 SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD

Qual

Mercury

ND 0.00020

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range Е
- Analyte detected below quantitation limits
- Sample pH greater than 2

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
  - RPD outside accepted recovery limits

Page 15 of 19

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1210682

07-Nov-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 10-11-12

| Sample ID MB-43  | <b>29</b> Samp  | Туре: МВ   | LK          | TestCode: EPA 6010B: Total Recoverable Metals |          |          |             |      |          |      |  |  |  |  |
|------------------|-----------------|------------|-------------|-----------------------------------------------|----------|----------|-------------|------|----------|------|--|--|--|--|
| Client ID: PBW   | Bate            | ch ID: 432 | 29          | R                                             | lunNo: 6 | 333      |             |      |          |      |  |  |  |  |
| Prep Date: 10/16 | i/2012 Analysis | Date: 10   | /18/2012    | S                                             | eqNo: 1  | 82303    | Units: mg/L |      |          |      |  |  |  |  |
| Analyte          | Result          | PQL        | SPK value   | SPK Ref Val                                   | %REC     | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |  |  |  |  |
| Arsenic          | ND              | 0.020      |             |                                               |          |          |             |      |          |      |  |  |  |  |
| Barium           | ND              | 0.020      |             |                                               |          |          |             |      |          |      |  |  |  |  |
| Cadmium          | ND              | 0.0020     |             |                                               |          |          |             |      |          |      |  |  |  |  |
| Calcium          | ND              | 1.0        |             |                                               |          |          |             |      |          |      |  |  |  |  |
| Chromium         | ND              | 0.0060     |             |                                               |          |          |             |      |          |      |  |  |  |  |
| Lead             | ND              | 0.0050     |             |                                               |          |          |             |      |          |      |  |  |  |  |
| Magnesium        | ND              | 1.0        |             |                                               |          |          |             |      |          |      |  |  |  |  |
| Potassium        | ND              | 1.0        |             |                                               |          |          |             |      |          |      |  |  |  |  |
| Silver           | ND              | 0.0050     |             |                                               |          |          |             |      |          |      |  |  |  |  |
| Sodium           | ND              | 1.0        |             |                                               |          |          |             |      |          |      |  |  |  |  |
| Camala ID 14D 40 |                 | T M.D.     | <del></del> |                                               | <u> </u> |          |             | _    |          |      |  |  |  |  |

| Sam     | ple ID | MB-4329    | SampT      | уре: МЕ | BLK       | Tes         | als      | <u></u>  |           |      |          |      |
|---------|--------|------------|------------|---------|-----------|-------------|----------|----------|-----------|------|----------|------|
| Clien   | t ID:  | PBW        | Batch      | ID: 43  | 29        | F           | RunNo: 6 | 462      |           |      |          |      |
| Prep    | Date:  | 10/16/2012 | Analysis D | ate: 10 | )/24/2012 | S           | SeqNo: 1 | 85746    | ı         |      |          |      |
| Analy   | /te    |            | Result     | PQL     | SPK value | SPK Ref Val | %REC     | LowLimit | HighLimit | %RPD | RPDLimit | Qual |
| Onland. |        |            | MPS        | 0.050   |           |             |          |          | -         |      |          |      |

Selenium ND 0.050

### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 16 of 19

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1210682

07-Nov-12

Client:

Western Refining Southwest, Inc.

Project:

Prep Date:

Injection Well 10-11-12

Sample ID 1210682-001c dup

SampType: dup

TestCode: SM4500-H+B: pH

Client ID: Injection Well

Batch ID: R6237

**PQL** 

RunNo: 6237

HighLimit

Analysis Date: 10/15/2012

SPK value SPK Ref Val

SeqNo: 179738

%REC LowLimit

Units: pH units

%RPD

**RPDLimit** 

Qual

Analyte pΗ

7.36 1.68

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

Analyte detected below quantitation limits

Sample pH greater than 2

Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

RPD outside accepted recovery limits

Page 17 of 19

# Hall Environmental Analysis Laboratory, Inc.

WO#:

**RPDLimit** 

1210682

07-Nov-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 10-11-12

Sample ID mb-1

SampType: mblk

TestCode: SM2320B: Alkalinity

Client ID: PBW

Batch ID: R6237 Analysis Date: 10/15/2012 RunNo: 6237

Prep Date: Analyte

**PQL** 

SeqNo: 179709 SPK value SPK Ref Val %REC LowLimit Units: mg/L CaCO3

%RPD

HighLimit

Qual

Total Alkalinity (as CaCO3)

ND 20

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH greater than 2

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- RPD outside accepted recovery limits

Page 18 of 19

## Hall Environmental Analysis Laboratory, Inc.

WO#:

1210682

07-Nov-12

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 10-11-12

Sample ID MB-4296

SampType: MBLK

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: **PBW**  Batch ID: 4296

RunNo: 6273

Prep Date: 10/15/2012

Analysis Date: 10/16/2012

SeqNo: 180753

%REC LowLimit

Units: mg/L

HighLimit

Qual

Analyte **Total Dissolved Solids**  Result **PQL** ND 20.0

Sample ID 1210682-001CMS

SampType: MS

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: Injection Well

Prep Date: 10/15/2012

Batch ID: 4296 Analysis Date: 10/16/2012

**PQL** 

RunNo: 6273 SeqNo: 180774

Units: mg/L

**RPDLimit** 

Analyte

Result 8040

8000

SPK value SPK Ref Val

SPK value SPK Ref Val

%REC LowLimit 103

HighLimit

%RPD **RPDLimit** 

%RPD

Qual

**Total Dissolved Solids** 

100 5000

2910

TestCode: SM2540C MOD: Total Dissolved Solids

Sample ID 1210682-001CMSD Client ID: Injection Well

SampType: MSD Batch ID: 4296

RunNo: 6273

Prep Date: 10/15/2012

Analysis Date: 10/16/2012

SeqNo: 180775

Units: mg/L

**RPDLimit** 

Qual

Analyte

Result PQL

SPK value SPK Ref Val

%REC LowLimit

HighLimit

%RPD 0.498

Total Dissolved Solids

100

5000

2910

102

120

20

Qualifiers:

Value exceeds Maximum Contaminant Level.

Value above quantitation range

Analyte detected below quantitation limits

Sample pH greater than 2

B Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Not Detected at the Reporting Limit

Page 19 of 19



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-410; Website: www.hallenvironmental.com

# Sample Log-In Check List

| Client Name: Western Refining Southwest, Inc.Bloomfield                                   | Work Order Number: 1210682                        |
|-------------------------------------------------------------------------------------------|---------------------------------------------------|
| Received by/date: /b/12/12                                                                |                                                   |
| Logged By: Lindeay Mangin 10/12/2012 10:30:0                                              | 7 PM                                              |
| Completed By: Lindsey Mangin 10/12/2012 2:40:37                                           | 7 PM                                              |
| Reviewed By: 0121                                                                         | 12                                                |
| Chain of Custody                                                                          |                                                   |
| 1. Were seals intact?                                                                     | Yes ☐ No ☐ Not Present ☑                          |
| 2. Is Chain of Custody complete?                                                          | Yes 🗹 No 🗌 Not Present 🗌                          |
| 3. How was the sample delivered?                                                          | <u>FedEx</u>                                      |
| <u>Log In</u>                                                                             |                                                   |
| 4. Coolers are present? (see 19. for cooler specific information)                         | Yes ☑ No ☐ NA ☐                                   |
| 5. Was an attempt made to cool the samples?                                               | Yes 🗹 No 🗆 NA 🗆                                   |
| 6. Were all samples received at a temperature of >0° C to 6.0°C                           | Yes ☑ No ☐ NA ☐                                   |
| 7. Sample(s) in proper container(s)?                                                      | Yes 🗹 No 🗌                                        |
| 8. Sufficient sample volume for indicated test(s)?                                        | Yes 🗹 No 🗆                                        |
| g, Are samples (except VOA and ONG) properly preserved?                                   | Yes 🗹 No 🗌                                        |
| 10. Was preservative added to bottles?                                                    | Yes □ No 🗹 NA □                                   |
| 11. VOA vials have zero headspace?                                                        | Yes ☑ No ☐ No VOA Vials ☐                         |
| 12. Were any sample containers received broken?                                           | Yes No 🗹                                          |
| 13. Does paperwork match bottle labels?<br>(Note discrepancies on chain of custody)       | Yes ✓ No ☐ # of preserved bottles checked for pH: |
| 14. Are matrices correctly identified on Chain of Custody?                                | Yes No (<2 or 12)unless noted)                    |
| 15. Is it clear what analyses were requested?                                             | Yes V No Adjusted?                                |
| 16. Were all holding times able to be met?<br>(If no, notify customer for authorization.) | Yes ☑ No ☐ Checked by:                            |
| Special Handling (If applicable)                                                          |                                                   |
| 17. Was client notified of all discrepancies with this order?                             | Yes 🗆 No 🗆 NA 🗹                                   |
| Person Notified: Date                                                                     |                                                   |
| By Whom: Via:                                                                             | ☐ eMail ☐ Phone ☐ Fax ☐ In Person                 |
| Regarding:                                                                                |                                                   |
| Client Instructions:                                                                      |                                                   |
| 18. Additional remarks:                                                                   |                                                   |
| 19. Cooler Information                                                                    |                                                   |
| Cooler No Temp C Condition Seal Intact Seal No 1 1.3 Good Yes                             | Seal Date Signed By                               |

|                         | HALL ENVIRONMENTAL      | www hallanvironmental com | 4901 Hawkins NE - Albuqueraue, NM 87109 | Tel. 505-345-3975 Fax 505-345-4107 | Ana                   | (%)<br>(%)<br>()<br>()<br>()<br>() | 77.77.77.77.77.77.77.77.77.77.77.77.77. | ) d (3:5)                      | TPH (2008)          | 08   40V () () () () () () () () () () () () ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BTEX + MTE BTEX + MTE BTEX + MTE TPH Method 8310 (PNA 6 8260B (VOA 8 8260B (VOA 8 8270 (Semi- | .*                             | *             | *       |        | ×             | X           | ,×           | X              |  |  | Remarks:                       |                         |
|-------------------------|-------------------------|---------------------------|-----------------------------------------|------------------------------------|-----------------------|------------------------------------|-----------------------------------------|--------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------|---------------|---------|--------|---------------|-------------|--------------|----------------|--|--|--------------------------------|-------------------------|
| Turn-Around Time:       | Standard 🗆 Rush         | Project Name:             | INJECTION Well 10-11-12                 |                                    |                       | Project Manager:                   |                                         |                                | Sampler: MATT A BOD | A The same and the same of the | Container Preservative HEALING Type and # Type                                                | 3-10A HC1 -001                 | 1-liter Amber | 1-500ml | 1-50ml | 1-350ml H2504 | 1-50ml HNO3 | 1-500ml NaOH | 1-50m Triketal |  |  | Received by Time 10/12/12 1930 | Recalived by: Date Time |
| Chain-of-Custody Record | Client: Westrn Refining |                           | Mailing Address: #50 CR 4990            | Bloomfield, nM 87413               | Phone #: 505-632-4135 | email or Fax#:                     | QA/QC Package:                          | ☐ Standard ★ (Full Validation) | Accreditation       | □ EDD (Type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Matrix Sample Request ID                                                                      | 10-12- 9:00 Has Injection well |               |         |        |               |             |              |                |  |  | Rollmywished by: Kalbar        | Time: Relinquished бу:  |

if necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

# **APPENDIX C**



# **Hall Environmental Analysis Laboratory**

# **QUALITY ASSURANCE PLAN**

Effective Date: July 2<sup>nd</sup>, 2012

**Revision 9.5** 

www.hallenvironmental.com

Control Number: 00000120

Approved By:

Andy Freeman

Laboratory Manager

Approved By:

Carolyn Swanson

Date

Quality Assurance/Quality Control Officer

Approved By:

Andy Freeman

Date

**Organics Technical Director** 

Approved By:

Ian Cameron

Date

**Inorganics Technical Director** 

Approved By:

eva Jensen Da

Microbiology Technical Director

# **Table of Contents**

| Section | Title                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>Page</u> |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.0     | Title Page                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1           |
| 2.0     | Table of Contents                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3           |
| 3.0     | Introduction Purpose of Document Objectives Policies                                                                                                                                                                                                                                                                                                                                                                                                     | 6           |
| 4.0     | Organization and Responsibility Company Certifications Personnel  Laboratory Director Laboratory Manager/ Lead Technical Director Quality Assurance Officer Business/Project Manager Section Managers/Technical Directors Health and Safety/Chemical Hygiene Officer Analyst I-III Laboratory Technician Sample Control Manager Sample Custodians Delegations in the Absence of Key Personnel Personnel Qualifications and Training Organizational Chart | 9           |
| 5.0     | Receipt and Handling of Samples Sampling Procedures Containers Preservation Sample Custody Chain of Custody Receiving Samples Logging in Samples and Storage Disposal of Samples                                                                                                                                                                                                                                                                         | 21          |
| 6.0     | Analytical Procedures List of Procedures Used Criteria for Standard Operating Procedures                                                                                                                                                                                                                                                                                                                                                                 | 24          |

| 7.0  | Calibration Thermometers Refrigerators/Freezers Ovens Analytical/Table Top Balances Instrument Calibration pH Meter Other Analytical Instrumentation and Equipment Standards Reagents                                                                                                                         | 29 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 8.0  | Maintenance                                                                                                                                                                                                                                                                                                   | 33 |
| 9.0  | Data Integrity                                                                                                                                                                                                                                                                                                | 34 |
| 10.0 | Quality Control Internal Quality Control Checks Precision, Accuracy, Detection Limit Quality Control Parameter Calculations Mean Standard Deviation Percent Recovery (%R) Confidence Intervals Relative Percent Difference (RPD) Uncertainty Measurements Calibration Calculations Concentration Calculations | 35 |
| 11.0 | Data Reduction, Validation, and Reporting Data Reduction Validation Reports and Records                                                                                                                                                                                                                       | 48 |
| 12.0 | Corrective Action                                                                                                                                                                                                                                                                                             | 50 |
| 13.0 | Quality Assurance Audits, Reports and Complaints Internal/External Systems' Audits Management Reviews Complaints Internal and External Reports                                                                                                                                                                | 52 |
| 14.0 | References                                                                                                                                                                                                                                                                                                    | 55 |

This Page was intentionally left blank.

Page 5 of 56 Quality Assurance Plan 9.5 Effective July 2nd, 2012

#### 3.0 Introduction

### **Purpose of Document**

The purpose of this Quality Assurance Plan is to formally document the quality assurance policies and procedures of Hall Environmental Analysis Laboratory, Inc. (HEAL), for the benefit of its employees, clients, and accrediting organizations. HEAL continually implements all aspects of this plan as an essential and integral part of laboratory operations in order to ensure that high quality data is produced in an efficient and effective manner.

### **Objectives**

The objective of HEAL is to achieve and maintain excellence in environmental testing. This is accomplished by developing, incorporating and documenting the procedures and policies specified by each of our accrediting authorities and outlined in this plan. These activities are carried out by a laboratory staff that is analytically competent, well-qualified, and highly trained. An experienced management team, knowledgeable in their area of expertise, monitors them. Finally, a comprehensive quality assurance program governs laboratory practices and ensures that the analytical results are valid, defensible, reproducible, reconstructable and of the highest quality.

HEAL establishes and thoroughly documents its activities to ensure that all data generated and processed will be scientifically valid and of known and documented quality. Routine laboratory activities are detailed in method specific standard operating procedures (SOP). All data reported meets the applicable requirements for the specific method that is referenced, ORELAP, TCEQ, EPA, client specific requirements and/or State Bureaus. In the event that these requirements are ever in contention with each other, it is HEAL's policy to always follow the most prudent requirement available. For specific method requirements refer to HEAL's Standard Operating Procedures (SOP's), EPA methods, Standard Methods 20<sup>th</sup> edition, ASTM methods or state specific methods.

HEAL management ensures that this document is correct in terms of required accuracy and data reproducibility, and that the procedures contain proper quality control measures. HEAL management additionally ensures that all equipment is reliable, well-maintained and appropriately calibrated. The procedures and practices of the laboratory are geared towards not only strictly following our regulatory requirements but also allowing the flexibility to conform to client specific specifications. Meticulous records are maintained for all samples and their respective analyses so that results are well-documented and defensible in a court of law.

The HEAL Quality Assurance/Quality Control Officer (QA/QCO) and upper management are responsible for supervising and administering this quality assurance program, and ensuring each individual is responsible for its proper implementation. All HEAL

management remains committed to the encouragement of excellence in analytical testing and will continue to provide the necessary resources and environment conducive to its achievement.

#### **Policies**

Understanding that quality cannot be mandated, it is the policy of this laboratory to provide an environment that encourages all staff members to take pride in the quality of their work. In addition to furnishing proper equipment and supplies, HEAL stresses the importance of continued training and professional development. Further, HEAL recognizes the time required for data interpretation. Therefore, no analyst should feel pressure to sacrifice data quality for data quantity. Each staff member must perform with the highest level of integrity and professional competence, always being alert to problems that could compromise the quality of their technical work.

Management and senior personnel supervise analysts closely in all operations. Under no circumstance is the willful act or fraudulent manipulation of analytical data condoned. Such acts must be reported immediately to HEAL management. Reported acts will be assessed on an individual basis and resulting actions could result in dismissal. The laboratory staff is encouraged to speak with lab managers or senior management if they feel that there are any undo commercial, financial, or other pressures, which might adversely affect the quality of their work; or in the event that they suspect that data quality has been compromised in any way. HEAL's Quality Assurance/Quality Control Officer is available if any analyst and/or manager wishes to anonymously report any suspected or known breaches in data integrity.

Understanding the importance of meeting customer requirements in addition to the requirements set forth in statutory and regulatory requirements, HEAL shall periodically seek feedback from customers and evaluate the feedback in order to initiate improvements.

All proprietary rights and client information at HEAL (including national security concerns) are considered confidential. No information will be given out without the express verbal or written permission of the client. All reports generated will be held in the strictest of confidence.

HEAL shall continually improve the effectiveness of its management system through the use of the policies and procedures outlined in this Quality Assurance Plan. Quality control results, internal and external audit findings, management reviews, new and continual training and corrective and preventive actions are continually evaluated to identify possible improvements and to ensure that appropriate communication processes are taking place regarding the effectiveness of the management system. HEAL shall ensure that the integrity of the quality system is maintained when changes to the system are planned and implemented.

This is a controlled document. Each copy is assigned a unique tracking number and when released to a client or accrediting agency the QA/QCO keeps the tracking number on file. This document is reviewed on an annual basis to ensure that it is valid and representative of current practices at HEAL.

## 4.0 Organization and Responsibility

### Company

HEAL is accredited in accordance with the 2009 TNI standard (see NELAC accredited analysis list in the Document Control Logbook), through ORELAP and TCEQ and by the Arizona Department of Health Services. Additionally, HEAL is qualified as defined under the State of New Mexico Water Quality Control Commission regulations and the New Mexico State Drinking Water Bureau. HEAL is a locally owned small business that was established in 1991. HEAL is a full service environmental analysis laboratory with analytical capabilities that include both organic and inorganic methodologies and has performed analyses of soil, water, and air as well as various other matrices for many sites in the region. HEAL's client base includes local, state and federal agencies, private consultants, commercial industries as well as individual homeowners. HEAL has performed as a subcontractor to the state of New Mexico and to the New Mexico Department of Transportation. HEAL has been acclaimed by its customers as producing quality results and as being adaptive to client-specific needs.

The laboratory is divided into an organic section and an inorganic section. Each section has a designated manager/technical director. The technical directors report directly to the laboratory manager, who oversees all operations.

#### Certifications

ORELAP - NELAC Oregon Primary accrediting authority.

TCEQ - NELAC Texas Secondary accrediting authority.

The Arizona Department of Health Services

The New Mexico Drinking Water Bureau

The New Mexico Department of Health

See the current Document Control Logbook for copies of current licenses and licensed parameters, or refer to our current list of certifications online at <a href="https://www.hallenvironmental.com">www.hallenvironmental.com</a>.

In the event of a certification being revoked or suspended, HEAL will notify, in writing, those clients that require the affected certification.

#### Personnel

HEAL management ensures the competence of all who operate equipment, perform environmental tests, evaluate results, and sign test reports. Personnel performing specific tasks shall be qualified on the basis of appropriate education, training, experience and /or demonstrated skills.

HEAL ensures that all personnel are aware of the relevance and importance of their activities and how each employee contributes to the achievement of the objectives defined throughout this document.

All personnel shall be responsible for complying with HEAL's quality assurance/quality control requirements that pertain to their technical function. Each technical staff member must have a combination of experience and education to adequately demonstrate specific knowledge of their particular function and a general knowledge of laboratory operations, test methods, quality assurance/quality control procedures, and records management.

All employees' training certificates and diplomas are kept on file with demonstrations of capability for each method they perform. An Organizational Chart can be found at the end of this section and a personnel list is available in the current Document Control Logbook.

### **Laboratory Director**

The Laboratory Director is responsible for overall technical direction and business leadership of HEAL. The Laboratory Manager, the Project Manager and Quality Assurance/Quality Control Officer report directly to the Laboratory Director. Someone with a minimum of 7 years of directly related experience and a bachelor's degree in a scientific or engineering discipline should fill this position.

## **Laboratory Manager/Lead Technical Director**

The Laboratory Manager shall exercise day—to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results. The Laboratory Manager shall be experienced in the fields of accreditation for which the laboratory is approved or seeking accreditation. The Laboratory Manager shall certify that personnel with appropriate educational and/or technical background perform all tests for which HEAL is accredited. Such certification shall be documented.

The Laboratory Manager shall monitor standards of performance in quality control and quality assurance and monitor the validity of the analyses performed and data generated at HEAL to assure reliable data.

The Laboratory Manager is responsible for the daily operations of the laboratory. The Laboratory Manager is the lead technical director of the laboratory and, in conjunction

with the section technical directors, is responsible for coordinating activities within the laboratory with the overall goal of efficiently producing high quality data within a reasonable time frame.

In events where employee scheduling or current workload is such that new work cannot be incorporated, without missing hold times, the Laboratory Manager has authority to modify employee scheduling, re-schedule projects or, when appropriate, allocate the work to approved subcontracting laboratories.

Additionally, the laboratory manager reviews and approves new analytical procedures and methods, and performs a final review of most analytical results. The Laboratory Manager provides technical support to both customers and HEAL staff.

The Laboratory Manager also observes the performance of supervisors to ensure that good laboratory practices and proper techniques are being taught and utilized, and to assist in overall quality control implementation and strategic planning for the future of the company. Other duties include assisting in establishing laboratory policies that lead to the fulfillment of requirements for various certification programs, assuring that all Quality Assurance and Quality Control documents are reviewed and approved, and assisting in conducting Quality Assurance Audits.

The laboratory manager addresses questions or complaints that cannot be answered by the section managers.

The Laboratory Manager shall have a bachelor's degree in a chemical, environmental, biological sciences, physical sciences or engineering field, and at least five years of experience in the environmental analysis of representative inorganic and organic analytes for which the laboratory seeks or maintains accreditation.

## **Quality Assurance Quality Control Officer**

The Quality Assurance/Quality Control Officer (QA/QCO) serves as the focal point for QA/QC and shall be responsible for the oversight and/or review of quality control data. The QA/QCO functions independently from laboratory operations and shall be empowered to halt unsatisfactory work and/or prevent the reporting of results generated from an out-of-control measurement system. The QA/QCO shall objectively evaluate data and perform assessments without any outside/managerial influence. The QA/QCO shall have direct access to the highest level of management at which decisions are made on laboratory policy and/or resources. The QA/QCO shall notify laboratory management of deficiencies in the quality system in periodic, independent reports.

The QA/QCO shall have general knowledge of the analytical test methods for which data review is performed and have documented training and/or experience in QA/QC procedures and in the laboratory's quality system. The QA/QCO will have a

minimum of a BS in a scientific or related field and a minimum of three years of related experience.

The QA/QCO shall schedule and conduct internal audits as per the Internal Audit SOP at least annually, monitor and trend Corrective Action Reports as per the Data Validation SOP, periodically review control charts for out of control conditions, and initiate any appropriate corrective actions.

The QA/QCO shall oversee the analysis of proficiency testing in accordance with our standards and monitor any corrective actions issued as a result of this testing.

The QA/QCO reviews all standard operating procedures and statements of work in order to assure their accuracy and compliance to method and regulatory requirements.

The QA/QCO shall be responsible for maintaining and updating this quality manual.

### Project Manager

The role of the project manager is to act as a liaison between HEAL and our clients. The Project Manager updates clients on the status of projects in-house, prepares quotations for new work, and is responsible for HEAL's marketing effort.

All new work is assessed by the Project Manager and reviewed with the other managers so as to not exceed the laboratory's capacity. In events where employee scheduling or current workload is such that new work cannot be incorporated without missing hold times, the Project Manager has authority to re-schedule projects.

It is also the duty of the project manager to work with the Laboratory Manager and QA/QCO to insure that before new work is undertaken, the resources required and accreditations requested are available to meet the client's specific needs.

Additionally, the Project Manager can initiate the review of the need for new analytical procedures and methods, and perform a final review of some analytical results. The Project Manager provides technical support to customers. Someone with a minimum of 2 years of directly related experience and a bachelor's degree in a scientific or engineering discipline should fill this position.

#### **Technical Directors**

Technical Directors are full-time members of the staff at HEAL who exercise day-to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results for their department within HEAL. A Technical Director's duties shall include, but not be limited to, monitoring standards of performance in quality

control and quality assurance, monitoring the validity of the analyses performed and the data generated in their sections to ensure reliable data, overseeing training and supervising departmental staff, scheduling incoming work for their sections, and monitoring laboratory personnel to ensure that proper procedures and techniques are being utilized. They supervise and implement new Quality Control procedures as directed by the QA/QCO, update and maintain quality control records including, but not limited to, training forms, IDOCs, ADOCPs, and MDLs, and evaluate laboratory personnel in their Quality Control activities. In addition, technical directors are responsible for upholding the spirit and intent of HEAL's data integrity procedures.

As Technical Directors of their associated section, they review analytical data to acknowledge that data meets all criteria set forth for good Quality Assurance practices. Someone with a minimum of 2 years of experience in the environmental analysis of representative analytes for which HEAL seeks or maintains accreditation and a bachelor's degree in a scientific or related discipline should fill this position.

### Section Supervisors

Section Supervisors are full time members of staff at HEAL who exercise day-to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results for their department within HEAL. Section Supervisors report directly to their technical director. A Section Supervisor's duties shall include, but not be limited to, monitoring standards of performance in quality control and quality assurance, monitoring the validity of the analyses performed and the data generated in their sections to ensure reliable data, overseeing training and supervising departmental staff, scheduling incoming work for their sections, and monitoring laboratory personnel to ensure that proper procedures and techniques are being utilized. They supervise and implement new Quality Control procedures as directed by the QA/QCO, update and maintain quality control records including, but not limited to, training forms, IDOCs. ADOCPs, and MDLs, and evaluate laboratory personnel in their Quality Control activities. In addition, Section Supervisors are responsible for upholding the spirit and intent of HEAL's data integrity procedures. Section Supervisors update their Technical Director on the status and needs of their departments and submit all Quality Control documents to their technical director for their review, approval and signature.

As section supervisors, they review analytical data to acknowledge that data meets all criteria set forth for good Quality Assurance practices. Someone with a minimum of 2 years of experience in the environmental analysis of representative analytes for which HEAL seeks or maintains accreditation and a bachelor's degree, or equivalent experience in a scientific or related discipline should fill this position.

Health and Safety / Chemical Hygiene Officer

Page 13 of 56 Quality Assurance Plan 9.5 Effective July 2nd, 2012 Refer to the most recent version of the Health and Safety and Chemical Hygiene Plans for the roles, responsibilities, and basic requirements of the Health and Safety Officer (H&SO) and the Chemical Hygiene Officer (CHO). These jobs can be executed by the same employee.

### Analyst I, II and III

Analysts are responsible for the analysis of various sample matrices including, but not limited to, solid, aqueous, and air, as well as the generation of high quality data in accordance with the HEAL SOPs and QA/QC guidelines in a reasonable time as prescribed by standard turnaround schedules or as directed by the Section Manager or Laboratory Manager.

Analysts are responsible for making sure all data generated is entered in the database in the correct manner and the raw data is reviewed, signed and delivered to the appropriate peer for review. An analyst reports daily to the section manager and will inform them as to material needs of the section specifically pertaining to the analyses performed by the analyst. Additional duties may include preparation of samples for analysis, maintenance of lab instruments or equipment, and cleaning and providing technical assistance to lower level laboratory staff.

The senior analyst in the section may be asked to perform supervisory duties as related to operational aspects of the section. The analyst may perform all duties of a lab technician.

The position of Analyst is a full or part time hourly position and is divided into three levels, Analyst I, II, and III. All employees hired into an Analyst position at HEAL must begin as an Analyst I and remain there at a minimum of three months regardless of their education and experience. Analyst I must have a minimum of an AA in a related field or equivalent experience (equivalent experience means years of related experience can be substituted for the education requirement). An Analyst I is responsible for analysis, instrument operation, including calibration and data reduction. Analyst II must have a minimum of an AA in a related field or equivalent experience and must have documented and demonstrated aptitude to perform all functions of an Analyst II. An Analyst II is responsible for the full analysis of their test methods, routine instrument maintenance, purchase of consumables as dictated by their Technical Director, advanced data reduction, and basic data review. Analyst II may also assist Analyst III in method development and, as dictated by their Technical Director, may be responsible for the review and/or revision of their method specific SOPs. Analyst III must have Bachelors degree or equivalent experience and must have documented and demonstrated aptitude to perform all functions of an Analyst III. An Analyst III is responsible for all tasks completed by an Analyst I and II as well as advanced data review, non-routine instrument maintenance, assisting their technical director in basic supervisory duties and method development.

## **Laboratory Technician**

A laboratory technician is responsible for providing support to analysts in the organics, inorganics and disposal departments. Laboratory Technicians can assist analysts in basic sample preparation, general laboratory maintenance, glassware washing, chemical inventories, sample disposal and sample kit preparation. This position can be filled by someone without the education and experience necessary to obtain a position as an analyst.

### Sample Control Manager

The sample control manager is responsible for receiving samples and reviewing the sample login information after it has been entered into the computer. The sample control manager also checks the samples against the chain-of-custody for any sample and/or labeling discrepancies prior to distribution.

The sample control manager is responsible for sending out samples to the sub-contractors along with the review and shipping of field sampling bottle kits. The sample control manager acts as a liaison between the laboratory and field sampling crew to ensure that the appropriate analytical test is assigned. If a discrepancy is noted, the sample control manager or sample custodian will contact the customer to resolve any questions or problems. The sample control manager is an integral part of the customer service team.

This position should be filled by someone with a high school diploma and a minimum of 2 years of related experience and can also be filled by a senior manager.

### Sample Custodians

Sample Custodians work directly under the Sample Control Manager. They are responsible for sample intake into the laboratory and into the LIMS. Sample Custodians take orders from our clients and prepare appropriate bottle kits to meet the clients' needs. Sample Custodians work directly with the clients in properly labeling and identifying samples as well as properly filling out legal COCs. When necessary, Sample Custodians contact clients to resolve any questions or problems associated with their samples. Sample Custodians are responsible for distributing samples throughout the laboratory and are responsible for notifying analysts of special circumstances such as short holding times or improper sample preservation upon receipt.

### Sample Disposal Custodian

The sample disposal custodian is responsible for characterizing and disposing of samples in accordance to the most recent version of the sample disposal SOP. The sample disposal custodian collects waste from the laboratory and transports it to the disposal warehouse for storage and eventual disposal. The sample disposal custodian is responsible for maintaining the disposal warehouse and following the requirements for documentation, integrity, chemical hygiene and health and safety as set forth in the various HEAL administrative SOPs. The sample disposal custodian is responsible for overseeing any laboratory technicians employed at the disposal warehouse.

This position should be filled by someone with a high school diploma and a minimum of 1 year of related experience.

### Bookkeeper

The Bookkeeper is responsible for the preparation of quarterly financials and quarterly payroll reports. The bookkeeper monitors payables, receivables, deposits, pays all bills and maintains an inventory of administrative supplies. The Bookkeeper completes final data package assembly and oversees the consignment of final reports. The Bookkeeper assists in the project management of drinking water compliance samples for NMED and NMEFC and any other tasks as assigned by the Laboratory Manager. This position should be filled by someone with a degree in accounting or a minimum of a high school diploma and at least 4 years of directly related experience.

### **Administrative Assistant**

The Administrative Assistant is responsible for aiding administrative staff in tasks that include but are not limited to: the processing and consignment of final reports, and the generation of client specific spreadsheets. This position should be filled by someone with a minimum of a high school diploma.

### IT Specialist

The IT Specialist is responsible for the induction and maintenance of all hard and software technology not maintained through a service agreement. The IT Specialist follows the requirements of this document, all regulatory documents and the EPAs Good Automated Laboratory Practices. This position should be filled by someone with a degree in a computer related field, or at least two years of directly related experience.

## **Delegations in the Absence of Key Personnel**

Planned absences shall be preceded by notification to the Laboratory Manager. The appropriate staff members shall be informed of the absence. In the case of unplanned absences, the superior shall either assume the responsibilities and duties or delegate the responsibilities and duties to another appropriately qualified employee.

In the event that the Laboratory Manager is absent for a period of time exceeding fifteen consecutive calendar days, another full-time staff member meeting the basic qualifications and competent to temporarily perform this function will be designated. If this absence exceeds thirty-five consecutive calendar days, HEAL will notify ORELAP in writing of the absence and the pertinent qualifications of the temporary laboratory manager.

## **Laboratory Personnel Qualification and Training**

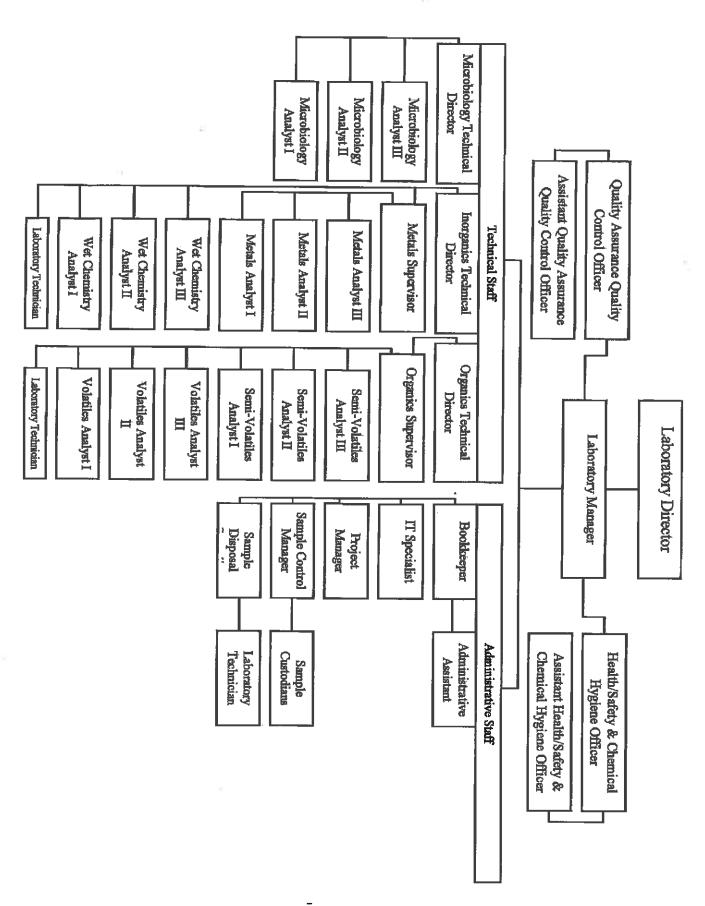
All personnel joining HEAL shall undergo orientation and training. During this period the new personnel shall be introduced to the organization and their responsibilities, as well as the policies and procedures of the company. They shall also undergo on-the-job training and shall work with trained staff. They will be shown required tasks and be observed while performing them.

When utilizing staff undergoing training, appropriate supervision shall be dictated and overseen by the appropriate section technical director. Prior to analyzing client samples, a new employee, or an employee new to a procedure, must meet the following basic requirements. The SOP and Method for the analysis must be read and signed by the employee indicating that they read, understand, and intend to comply with the requirements of the documents. The employee must undergo documented training. Training is conducted by a senior analyst familiar with the procedure and overseen by the section Technical Director. This training is documented by any means deemed appropriate by the trainer and section Technical Director, and kept on file in the employees file located in the QA/QCO's office. The employee must perform a successful Initial Demonstration of Proficiency (IDOC). See the current Document Control Logbook for the training documents and checklists utilized at HEAL to ensure that all of these requirements are met. Once all of the above requirements are met it is incumbent upon the section Technical Director to determine at which point the employee can begin to perform the test unsupervised. A Certification to Complete Work Unsupervised (see the current Document Control Logbook) is then filled out by the employee and technical director.

IDOCs are required for all new analysts and methods prior to sample analysis. IDOCs are also required any time there is a change in the instrument, analyte list or method. If more than twelve months have passed since an analyst performed an IDOC and they have not performed the method and/or have not met the continuing DOC requirements, the analyst must perform an IDOC prior to resuming the test.

All IDOCs shall be documented through the use of the certification form which can be found in the current Document Control Logbook. IDOCs are performed by analyzing four Laboratory Control Spikes (LCSs). Using the results of the LCSs the mean recovery is calculated in the appropriate reporting units and the standard deviations of the population sample (n-1) (in the same units) as well as the relative percent difference for each parameter of interest. When it is not possible or pertinent to determine mean and standard deviations HEAL assesses performance against establish and documented criteria dictated in the method SOP. The mean and standard deviation are compared to the corresponding acceptance criteria for precision and accuracy in the test method (if applicable) or in laboratory-generated acceptance criteria. In the event that the HEAL SOP or test method fail to establish the pass/fail criteria the default limits of +/- 20% for calculated recovery and <20% relative percent difference based on the standard deviation will be utilized. If all parameters meet the acceptance criteria, the IDOC is successfully completed. If any one of the parameters do not meet the acceptance criteria, the performance is unacceptable for that parameter and the analyst must either locate and correct the source of the problem and repeat the test for all parameters of interest or repeat the test for all parameters that failed to meet criteria. Repeat failure, however, confirms a general problem with the measurement system. If this occurs the source of the problem must be identified and the test repeated for all parameters of interest.

New employees that do not have prior analysis experience will not be allowed to perform analysis until they have demonstrated attention to detail with minimal errors in the assigned tasks. To ensure a sustained level of quality performance among staff members, continuing demonstration of capability shall be performed at least once a year. These are as an Annual Documentation of Continued Proficiency (ADOCP).


At least once per year an ADOCP must be completed. This is achieved by the acceptable performance of a blind sample (typically by using a PT sample, but can be a single blind (to the analyst) sample), by performing another IDOC, or by summarizing the data of four consecutive laboratory control samples with acceptable levels of precision and accuracy (these limits are those currently listed in the LIMS for an LCS using the indicated test method.) ADOCPs are documented using a standard form and are kept on file in each analyst's employee folder.

Each new employee shall be provided with data integrity training as a formal part of their new employee orientation. Each new employee will sign an ethics and data integrity agreement to ensure that they understand that data quality is our main objective. Every HEAL employee recognizes that although turn around time is important, quality is put above any pressure to complete the task expediently. Analysts are not compensated for passing QC parameters nor are incentives given for the quantity of work produced. Data Integrity and Ethics training are performed on an annual basis in order to remind all employees of HEAL's policy on data quality. Employees are required to understand that any infractions of the laboratory data integrity procedures will result in a detailed investigation that could lead to very serious

consequences including immediate termination, debarment, or civil/criminal prosecution.

Training for each member of HEAL's technical staff is further established and maintained through documentation that each employee has read, understood, and is using the latest version of this Quality Assurance Manual. Training courses or workshops on specific equipment, analytical techniques, or laboratory procedures are documented through attendance sheets, certificates of attendance, training forms, or quizzes. This training documentation is located in analyst specific employee folders in the QA/QCO Office. On the front of all methods, SOPs, and procedures for HEAL, there is a signoff sheet that is signed by all pertinent employees, indicating that they have read, understand, and agree to perform the most recent version of the document.

The effectiveness of training will be evaluated during routine data review, annual employee reviews, and internal and external audits. Repetitive errors, complaints and audit findings serve as indicators that training has been ineffective. When training is deemed to have been ineffective a brief review of the training process will be completed and a re-training conducted as soon as possible.



Quality Assurance Plan 9.5 Effective July 2nd, 2012

### 5.0 Receipt and Handling of Samples

### Sampling

#### **Procedures**

HEAL does not provide field sampling for any projects. Sample kits are prepared and provided for clients upon request. The sample kits contain the appropriate sampling containers (with a preservative when necessary), labels, blue ice (The use of 'blue ice' by anyone except HEAL personnel is discouraged because it generally does not maintain the appropriate temperature of the sample. If blue ice is used, it should be completely frozen at the time of use, the sample should be chilled before packing, and special notice taken at sample receipt to be certain the required temperature has been maintained.), a cooler, chain-of-custody forms, plastic bags, bubble wrap, and any special sampling instructions. Sample kits are reviewed prior to shipment for accuracy and completeness.

#### Containers

Containers which are sent out for sampling are purchased by HEAL from a commercial source. Glass containers are certified "EPA Cleaned" QA level 1. Plastic containers are certified clean when required. These containers are received with a Certificate of Analysis verifying that the containers have been cleaned according to the EPA wash procedure. Containers are used once and discarded. If the samples are collected and stored in inappropriate containers the laboratory may not be able to accurately quantify the amount of the desired components. In this case, re-sampling may be required.

#### Preservation

If sampling for analyte(s) requires preservation, the sample custodians fortify the containers prior to shipment to the field, or provide the preservative for the sampler to add in the field. The required preservative is introduced into the vials in uniform amounts and done so rapidly to minimize the risk of contamination. Vials that contain a preservative are labeled appropriately. If the samples are stored with inappropriate preservatives, the laboratory may not be able to accurately quantify the amount of the desired components. In this case re-sampling may be required.

Refer to the current Login SOP and/or the current price book for detailed sample receipt and handling procedures, appropriate preservation and holding time requirements.

### **Sample Custody**

### Chain-of-Custody Form

A Chain-of-Custody (COC) form is used to provide a record of sample chronology from the field to receipt at the laboratory. HEAL's COC contains the client's name, address, phone and fax numbers, the project name and number, the project manager's name, and the field sampler's name. It also identifies the date and time of sample collection, sample matrix, field sample ID number, number/volume of sample containers, sample temperature upon receipt, and any sample preservative information.

There is also a space to record the HEAL ID number assigned to samples after they are received. Next to the sample information is a space for the client to indicate the desired analyses to be performed. There is a section for the client to indicate the data package level as well as any accreditation requirements. Finally, there is a section to track the actual custody of the samples. The custody section contains lines for signatures, dates and times when samples are relinquished and received. The COC form also includes a space to record special sample related instructions, sampling anomalies, time constraints, and any sample disposal considerations.

It is paramount that all COCs arrive at HEAL complete and accurate so that the samples can be processed and allocated for testing in a timely and efficient manner. A sample chain-of-custody form can be found in the current Document Control Logbook or on line at www.hallenvironmental.com.

### **Receiving Samples**

Samples are received by authorized HEAL personnel. Upon arrival, the COC is compared to the respective samples. After the samples and COC have been determined to be complete and accurate, the sampler signs over the COC. The HEAL staff member in turn signs the chain-of-custody, also noting the current date, time, and sample temperature. This relinquishes custody of the samples from the sampler and delegates sample custody to HEAL. The first (white) copy of the COC form is filed in the appropriate sample folder. The second (yellow) copy of the COC form is filed in the COC file in the sample control manger's office. The third (pink) copy of the COC form is given to the person who has relinquished custody of the samples.

# Logging in Samples and Storage

Standard Operating Procedures have been established for the receiving and tracking of all samples (refer to the current HEAL Login SOP). These procedures ensure that samples are received and properly logged into the laboratory and that all associated documentation, including chain of custody forms, is complete and consistent with the samples received. Each sample set is given a unique HEAL tracking ID number.

Individual sample locations within a defined sample set are given a unique sample ID suffix-number. Labels with the HEAL numbers, and tests requested, are generated and placed on their respective containers. The pH of preserved, non-volatile samples is checked and noted if out of compliance. Due to the nature of the samples, the pHs of volatiles samples are checked after analysis. Samples are reviewed prior to being distributed for analysis.

Samples are distributed for analysis based upon the requested tests. In the event that sample volume is limited and different departments at HEAL are required to share the sample, volatile work takes precedence and will always be analyzed first before the sample is sent to any other department for analysis.

All samples that require thermal preservation shall be acceptably stored at a temperature range just above freezing to 6 °C.

Each project (sample set) is entered into the Laboratory Information Management System (LIMS) with a unique ID that will be identified on every container. The ID tag includes the Lab ID, Client ID, date and time of collection, and the analysis/analyses to be performed. The LIMS continually updates throughout the lab. Therefore, at any time, an analyst or manager may inquire about a project and/or samples status. For more information about the login procedures, refer to the Sample Login SOP.

### **Disposal of Samples**

Samples are held at HEAL for a minimum of thirty days and then transferred to the HEAL warehouse for disposal. Analytical results are used to characterize their respective sample contamination level(s) so that the proper disposal can be performed. These wastes will be disposed of according to their hazard as well as their type and level of contamination. Refer to the Hall Environmental Analysis Laboratory Chemical Hygiene Plan and current Sample Disposal SOP for details regarding waste disposal.

Waste drums are provided by an outside agency. These drums are removed by the outside agency and disposed of in a proper manner.

The wastes that are determined to be non-hazardous are disposed of as non-hazardous waste in accordance with the Chemical Hygiene Plan and Sample Disposal SOP.

### 6.0 Analytical Procedures

All analytical methods used at HEAL incorporate necessary and sufficient Quality Assurance and Quality Control practices. A Standard Operating Procedure (SOP) is used for each method to provide the necessary criteria to yield acceptable results. These procedures are reviewed at least annually and revised as necessary and are attached as a pdf file in the Laboratory Information Management System (LIMS) for easy access by each analyst. The sample is often consumed or altered during the analytical process. Therefore, it is important that each step in the analytical process be correctly followed in order to yield valid data.

When unforeseen problems arise, the analyst, technical director, and, when necessary, laboratory manager meet to discuss the factors involved. The analytical requirements are evaluated and a suitable corrective action or resolution is established. The client is notified in the case narrative with the final report or before, if the validity of their result is in question.

#### **List of Procedures Used**

Typically, the procedures used by HEAL are EPA approved methodologies or 20<sup>th</sup> edition Standard Methods. However, proprietary methods for client specific samples are sometimes used. The following tables list EPA and Standard Methods Method numbers with their corresponding analytes and/or instrument classification.

### Methods Utilized at HEAL

Drinking Water(DW) Non-Potable Water (NPW) Solids (S)

| Methodology | Matrix | Title of Method                                                    |  |
|-------------|--------|--------------------------------------------------------------------|--|
| 120.1       | DW     | "Conductonos/Consilio Conductonos Lunbras et 85.9 ON               |  |
|             | NPW    | "Conductance(Specific Conductance, uohms at 25 ° C)"               |  |
| 180.1       | DW     | (Tradition / Normal and a second a 20                              |  |
|             | NPW    | "Turbidity (Nephelometric)"                                        |  |
| 200.2       | DW     | "Sample Preparation Procedure For Spectrochemical                  |  |
|             | NPW    | Determination of Total Recoverable Elements"                       |  |
| 200.7       | DW     | "Determination of Metals and Trace Elements in Water and           |  |
|             | NPW    | Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry" |  |
| 200.8       | . DW   | *Determination of Trace Elements in Waters and Wastes by           |  |
|             | NPW    | Inductively Coupled Plasma-Mass Spectrometry."                     |  |
| 245.1       | DW     | "Mercury (Manual Cold Vapor Technique)"                            |  |
|             | NPW    |                                                                    |  |
| 300         | DW     |                                                                    |  |
|             | NPW    | "Determination of Inorganic Anions by Ion Chromatography"          |  |
|             | s      |                                                                    |  |

| T         |                                                                                                                                                                          |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|           | - "Oil and Grease"                                                                                                                                                       |  |
|           |                                                                                                                                                                          |  |
| S         | "Petroleum Hydrocarbons (Spectrophotometric, Infrared)"                                                                                                                  |  |
| DW        | "EDB, DBCP and 123TCP in Water by Microextraction and Gas Chromatography"                                                                                                |  |
| DW        | "Analysis of Organohalide Pesticides and Commercial Polychlorinated Biphenyl (PCB) Products in Water by Microextraction and Gas Chromatography"                          |  |
| DW        | "Determination of Chlorinated Acids in Water by Gas<br>Chromatography with an Electron Capture Detector"                                                                 |  |
| DW        | "Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry"                                                           |  |
| DW        | "Measurement of N-Methylcarbomoyloximes and N-Methylcarbamates in Water by Direct Aqueous Injection HPLC with Post Column Derivatization"                                |  |
| DW        | "Determination of Glyphosate in Drinking Water by Direct-<br>Aqueous Injection HPLC, Post-Column Derivatization, and<br>Fluorescence Detection"                          |  |
| DW        | "Determination of Haloacetic Acids and Dalapon in Drinking<br>Water by Ion-Exchange Liquid-Solid Extraction and Gas<br>Chromatography with an Electron Capture Detector" |  |
| DW        | Appendix A to Part 136 Methods for Organic Chemical<br>Analysis of Municipal and Industrial Wastewater Method 624-<br>Purgeables"                                        |  |
| DW        | Appendix A to Part 136 Methods for Organic Chemical<br>Analysis of Municipal and Industrial Wastewater Method 625-<br>Base/Neutrals and Acids"                           |  |
| S         | "Toxicity Characteristic Leaching Procedure"                                                                                                                             |  |
| S         | "Toxicity Characteristic Leaching Procedure"                                                                                                                             |  |
| NPW       | "N-Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated N-Hexane Extractable Material) by Extraction and Gravimetry"                                 |  |
| NPW       | "Acid Digestion of Waters for Total Recoverable or Dissolved<br>Metals for Analysis by FLAA or ICP Spectroscopy"                                                         |  |
| s         | "Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by FLAA or ICP Spectroscopy"                                                               |  |
| S         | "Acid Digestion of Sediment, Sludge, and Soils"                                                                                                                          |  |
| DW<br>NPW | "Separatory Funnel Liquid-Liquid Extraction"                                                                                                                             |  |
|           | DW DW DW DW DW NPW S S DW                                                                                                                                                |  |

| 3540          | s         | "Soxhlet Extraction"                                                                                   |  |
|---------------|-----------|--------------------------------------------------------------------------------------------------------|--|
| 3545          | s         | "Pressurized Fluid Extraction(PFE)"                                                                    |  |
| 3665          | NPW<br>S  | "Sulfuric Acid/Permanganate Cleanup"                                                                   |  |
| 5030B         | NPW       | "Purge-and-Trap for Aqueous Samples"                                                                   |  |
| 5035          | s         | "Closed-System Purge-and-Trap and Extraction for Volatile Organics in Soil and Waste Samples"          |  |
| 6010B         | NPW<br>S  | "Inductively Coupled Plasma-Atomic Emission Spectrometry"                                              |  |
| 6020          | NPW<br>S  | "Inductively Coupled Plasma-Mass Spectrometry"                                                         |  |
| 7470A         | NPW       | "Mercury in Liquid Waste (Manual Cold-Vapor Technique)"                                                |  |
| 7471A         | s         | "Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)"                                    |  |
| 8021B         | NPW       | "Aromatic and Halogenated Volatiles By Gas<br>Chromatography Using Photoionization and/or Electrolytic |  |
|               | 3         | Conductivity Detectors"                                                                                |  |
| 8015B         | NPW       | "Nonhalogenated Volatile Organics by Gas Chromatography"                                               |  |
|               | s         | (Gasoline Range and Diesel Range Organics)                                                             |  |
| 8015AZ        | s         | "C10-C32 Hydrocarbons in Soil-8015AZ"                                                                  |  |
| 8081A         | NPW<br>S  | "Organochlorine Pesticides by Gas Chromatography"                                                      |  |
| 8082          | NPW<br>S  | "Polychlorinated Biphenyls (PCBs) by Gas Chromatography"                                               |  |
| 8260B         | NPW<br>S  | "Volatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS)"                          |  |
| 8270C         | NPW<br>S  | "Semivolatile Organic Compounds by Gas Chromatography/<br>Mass Spectrometry (GC/MS)"                   |  |
| 8310          | NPW<br>S  | "Polynuclear Aromatic Hydrocarbons"                                                                    |  |
| 9045C         | S         | "Soil and Waste pH"                                                                                    |  |
| 9060          | NPW       | "Total Organic Carbon"                                                                                 |  |
| 9067          | NPW<br>S  | "Phenolics (Spectrophotometric, MBTH With Distillation)"                                               |  |
| 9095          | s         | Paint Filter                                                                                           |  |
| Walkley/Black | S         | FOC/TOC WB                                                                                             |  |
| SM2320 B      | DW<br>NPW | "Alkalinity"                                                                                           |  |
|               |           |                                                                                                        |  |

| SM2540 C         | DW        | "Total Dissolved Solids Dried at 180° C"                 |  |
|------------------|-----------|----------------------------------------------------------|--|
|                  | NPW       | Total Biosolved Colles Blied at 100 C                    |  |
| SM2540 D         | NPW       | "Total Suspended Solids Dried at 103-105° C"             |  |
| SM4500-CL G      | DW        | "Chlorine (Residual) 4500-CL G. DPD Colorimetric Method" |  |
| SM4500-H+B       | DW<br>NPW | "pH Value"                                               |  |
| SM4500-NH3<br>C  | NPW<br>S  | "4500-NH3" Ammonia                                       |  |
| SM4500-Norg<br>C | NPW<br>S  | "4500-Norg" Total Kjeldahl Nitrogen (TKN)                |  |
| SM5210 B         | NPW       | "5210 B. 5-day BOD Test"                                 |  |
| SM5310 B         | DW        | "5310" Total Organic Carbon (TOC)                        |  |
| 8000B            | NPW       | "Determinative Chromate graphic Consulting"              |  |
|                  | S         | "Determinative Chromatographic Separations"              |  |
| 8000C            | NPW       | "Determinative Chromategraphic Conservices"              |  |
|                  | S         | "Determinative Chromatographic Separations"              |  |

# **Criteria for Standard Operating Procedures**

HEAL has Standard Operating Procedures (SOPs) for each of the test methods listed above. These SOPs are based upon the listed methods and detail the specific procedure and equipment utilized as well as the quality requirements necessary to prove the integrity of the data. SOPs are reviewed or revised every twelve months or sooner if necessary. The review/revision is documented in the Master SOP Logbook filed in the QA/QC Office. All SOPs are available in the LIMS linked under the specific test method. Administrative SOPs, which are not linked in the LIMS, are available on desktops throughout the laboratory in the link to administrative SOPs folder.

Hand written corrections or alterations to SOPs are not permitted. In the event that a correction is needed and a revision is not immediately possible, a corrective action report will be generated documenting the correction or alteration, signed by the section Technical Director and the QA/QC Officer and will be scanned into the current SOP and will document the change until a new revision is possible.

Each HEAL test method SOP shall include or reference the following topics where applicable:

Identification of the test method;

Applicable matrix or matrices;

Limits of detection and quantitation;

Scope and application, including parameters to be analyzed;

Summary of the test method;

Definitions;

Interferences;

Safety;

Equipment and supplies;

Reagents and standards;

Sample collection, preservation, shipment and storage;

Quality control parameters;

Calibration and standardization;

Procedure;

Data analysis and calculations;

Method performance;

Pollution prevention:

Data assessment and acceptance criteria for quality control measures;

Corrective actions for out-of-control data:

Contingencies for handling out-of-control or unacceptable data;

Waste management;

References; and

Any tables, diagrams, flowcharts and validation data.

#### 7.0 Calibration

All equipment and instrumentation used at HEAL are operated, maintained and calibrated according to manufacturers' guidelines, as well as criteria set forth in applicable analytical methodology. Personnel who have been properly trained in their procedures perform the operation and calibration. Brief descriptions of the calibration processes for our major laboratory equipment and instruments are found below.

#### **Thermometers**

The thermometers in the laboratory are used to measure the temperatures of the refrigerators, freezers, ovens, water baths, incubators, hot blocks, ambient laboratory conditions, TCLP Extractions, digestion blocks, and samples at the time of log-in. All NIST traceable thermometers are either removed from use upon their documented expiration date or they are checked annually with a NIST-certified thermometer and a correction factor is noted on each thermometer log. See the most current Login SOP for detailed procedures on this calibration procedure.

Data Loggers are used to record refrigerator temperatures. These data loggers are calibrated quarterly with NIST-certified thermometers.

### Refrigerators/Freezers

Each laboratory refrigerator or freezer contains a thermometer capable of measuring to a minimum precision of 0.1°C. The thermometers are kept with the bulb immersed in liquid. Each day of use, the temperatures of the refrigerators are recorded to insure that the refrigerators are within the required designated range. Samples are stored separately from the standards to reduce the risk of contamination.

See the current Catastrophic Failure SOP for the procedure regarding how to handle failed refrigerators or freezers.

#### Ovens

The ovens contain thermometers graduated by 1° C. The ovens are calibrated quarterly against NIST thermometers and checked each day of use as required and in whatever way is dictated by or appropriate for the method in use.

### **Analytical and Table Top Balances**

The table top balances are capable of weighing to a minimum precision of 0.01 grams. The analytical balances are capable of weighing to a minimum precision of 0.0001 grams. Records are kept of daily calibration checks for the balances in use. Working weights are used in these checks. The balances are annually certified by an outside source and the certifications are on file with the QA/QCO.

Balances, unless otherwise indicated by method specific SOPs, will be checked each day of use with at least two weights that will bracket the working range of the balance for the day. Daily balance checks will be done using working weights that are calibrated annually against Class S weights. Class S weights are calibrated by an external provider as required. The Class S weights are used once a year, or more frequently if required, to assign values to the Working Weights. During the daily balance checks, the working weights are compared to their assigned values and must pass in order to validate the calibration of the balance. The assigned values, as well as the daily checks, for the working weights are recorded in the balance logbook for each balance.

### **Instrument Calibration**

An instrument calibration is the relationship between the known concentrations of a set of calibration standards introduced into an analytical instrument and the measured response they produce. Calibration curve standards are a prepared series of aliquots at various known concentration levels from a primary source reference standard. Specific mathematical types of calibration techniques are outlined in SW-846 8000B and/or 8000C. The entire initial calibration must be performed prior to sample analyses.

The lowest standard in the calibration curve must be at or below the required reporting limit.

Refer to the current SOP to determine the minimum requirement for calibration points.

Most compounds tend to be linear and a linear approach should be favored when linearity is suggested by the calibration data. Non-linear calibration should be considered only when a linear approach cannot be applied. It is not acceptable to use an alternate calibration procedure when a compound fails to perform in the usual manner. When this occurs, it is indicative of instrument issues or operator error.

If a non-linear calibration curve fit is employed, a minimum of six calibration levels must be used for second-order (quadratic) curves.

When more than 5 levels of standards are analyzed in anticipation of using second-order calibration curves, all calibration points MUST be used regardless of the calibration option employed. The highest or lowest calibration point may be excluded for the purpose of narrowing the calibration range and meeting the requirements for a specific calibration option. Otherwise, unjustified exclusion of calibration data is expressly forbidden.

Analytical methods vary in QC acceptance criteria. HEAL follows the method specific guidelines for QC acceptance. The specific acceptance criteria are outlined in the analytical methods and their corresponding SOPs.

### pH Meter

The pH meter measures to a precision of 0.01 pH units. The pH calibration logbook contains the calibration before each use, or each day of use, if used more than once per day. It is calibrated using a minimum of 3 certified buffers. Also available with the pH meter is a magnetic stirrer with a temperature sensor. See the current pH SOP (SM4500 H+ B) for specific details regarding calibration of the pH probe.

# Other Analytical Instrumentation and Equipment

The conductivity probe is calibrated as needed and checked daily when in use.

Eppendorf (or equivalent brands) pipettes are checked gravimetrically prior to use.

#### Standards

All of the source reference standards used are ordered from a reliable commercial vendor. A Certificate of Analysis (CoA), which verifies the quality of the standard, accompanies the standards from the vendor. The Certificates of Analysis are dated and stored on file by the Technical Directors or their designee. These standards are traceable to the National Institute of Standards (NIST). When salts are purchased and used as standards the certificate of purity must be obtained from the vendor and filed with the CoAs.

All standard solutions, calibration curve preparations, and all other quality control solutions are labeled in a manner that can be traced back to the original source reference standard. All source reference standards are entered into the LIMS with an appropriate description of the standard. Dilutions of the source reference standard (or any mixes of the source standards) are fully tracked in the LIMS. Standards are labeled with the date opened for use and with an expiration date.

As part of the quality assurance procedures at HEAL, analysts strictly adhere to manufacturer recommendations for storage times/expiration dates and policies of analytical standards and quality control solutions.

### Reagents

HEAL ensures that the reagents used are of acceptable quality for their intended purpose. This is accomplished by ordering high quality reagents and adhering to good laboratory practices so as to minimize contamination or chemical degradation. All reagents must meet any specifications noted in the analytical method. Refer to the current Purchase of Consumables SOP for details on how this is accomplished and documented.

Upon receipt, all reagents are assigned a separate ID number, and logged into the LIMS. All reagents shall be labeled with the date received into the laboratory and again with the date opened for use. Recommended shelf life, as defined by the manufacturer, shall be documented and controlled. Dilutions or solutions prepared shall be clearly labeled, dated, and initialed. These solutions are traceable back to their primary reagents and do not extend beyond the expiration date listed for the primary reagent.

All gases used with an instrument shall meet specifications of the manufacturer. All safety requirements that relate to maximum and/or minimum allowed pressure, fitting types, and leak test frequency, shall be followed. When a new tank of gas is placed in use, it shall be checked for leaks and the date put in use will be written in the instrument maintenance logbook.

HEAL continuously monitors the quality of the reagent water and provides the necessary indicators for maintenance of the purification systems in order to assure that the quality of laboratory reagent water meets established criteria for all analytical methods.

Reagent blank samples are also analyzed to ensure that no contamination is present at detectable levels. The frequency of reagent blank analysis is typically the same as calibration verification samples. Refrigerator storage blanks are stored in the volatiles refrigerator for a period of one week and analyzed and replaced once a week.

### 8.0 Maintenance

Maintenance logbooks are kept for each major instrument and all support equipment in order to document all repair and maintenance. In the front of the logbook, the following information is included:

Unique Name of the Item or Equipment
Manufacturer
Type of Instrument
Model Number
Serial Number
Date Received and Date Placed into Service
Location of Instrument
Condition of Instrument Upon Receipt

For routine maintenance, the following information shall be included in the log:

Maintenance Date
Maintenance Description
Maintenance Performed by Initials

A manufacturer service agreement (or equivalent) covers most major instrumentation to assure prompt and reliable response to maintenance needs beyond HEAL instrument operator capabilities.

Refer to the current Maintenance and Troubleshooting SOP for each section in the laboratory for further information.

### 9.0 Data Integrity

For HEAL's policy on ethics and data integrity, see section 3.0 of this document. Upon being hired, and annually there after, all employees at HEAL undergo documented data integrity training. All new employees sign an Ethics and Data Integrity Agreement, documenting their understanding of the high standards of integrity required at HEAL and outlining their responsibilities in regards to ethics and data integrity. See the current Document Control Logbook for a copy of this agreement.

In instances of ethical concern, analysts are required to report the known or suspected concern to their Technical Director, the Laboratory Manager, or the QA/QCO. This will be done in a confidential and receptive environment, allowing all employees to privately discuss ethical issues or report items of ethical concern.

Once reported and documented, the ethical concern will be immediately elevated to the Laboratory Manager and the need for an investigation, analyst remediation, or termination will be determined on a case-by-case basis.

All reported instances of ethical concern will be thoroughly documented and handled in a manner sufficient to rectify any breaches in data integrity with an emphasis on preventing similar incidences from happening in the future.

### 10.0 Quality Control

### **Internal Quality Control Checks**

HEAL utilizes various internal quality control checks, including duplicates, matrix spikes, matrix spike duplicates, method blanks, laboratory control spikes, laboratory control spike duplicates, surrogates, internal standards, calibration standards, quality control charts, proficiency tests and calculated measurement uncertainty.

Refer to the current method SOP to determine the frequency and requirements of all quality controls. In the event that the frequency of analysis is not indicated in the method specific SOP, duplicate samples, laboratory control spikes (LCS), Method Blanks (MB), and matrix spikes and matrix spike duplicates (MS/MSD) are analyzed for every batch of twenty samples.

When sample volume is limited on a test that requires an MS/MSD an LCSD shall be analyzed to demonstrate precision and accuracy and when possible a sample duplicate will be analyzed.

Duplicates are identical tests repeated for the same sample or matrix spike in order to determine the precision of the test method. A Relative Percent Difference (RPD) is calculated as a measure of this precision. Unless indicated in the SOP, the default acceptance limit is </= 20%.

Matrix Spikes and Matrix Spike Duplicates are spiked samples (MS/MSD) that are evaluated with a known added quantity of a target compound. This is to help determine the accuracy of the analyses and to determine the matrix affects on analyte recovery. A percent recovery is calculated to assess the quality of the accuracy. In the event that the acceptance criteria is not outlined in the SOP, a default limits of 70-130% will be utilized. When an MSD is employed an RPD is calculated and when not indicated in the SOP shall be acceptable at

When appropriate for the method, a Method Blank should be analyzed with each batch of samples processed to assess contamination levels in the laboratory. MBs consist of all the reagents measured and treated as they are with samples, except without the samples. This enables the laboratory to ensure clean reagents and procedures. Guidelines should be in place for accepting or rejecting data based on the level of contamination in the blank. In the event that these guidelines are not dictated by the SOP or in client specific work plans, the MB should be less than the MDL reported for the analyte being reported.

A Laboratory Control Spike and Laboratory Control Spike Duplicate (LCS/LCSD) are reagent blanks, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. It is generally used to establish intra-laboratory or analyst-specific precision and bias or to assess the performance of all or a portion of the measurement system. Guidelines are outlined in each

SOP for the frequency and pass fail requirements for LCS and LCSDs. These limits can be set utilizing control charts as discussed below.

Surrogates are utilized when dictated by method and are substances with properties that mimic the analytes of interest. The surrogate is an analyte that is unlikely to be found in environmental samples. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for surrogates.

Internal Standards are utilized when dictated by the method and are known amounts of standard added to a test portion of a sample as a reference for evaluating and controlling the precision and bias of the applied analytical method. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for Internal Standards.

Proficiency Test (PT) Samples are samples provided by an unbiased third party. They are typically analyzed twice a year, between five and seven months apart, or at any other interval as defined in the method SOP. They contain a pre-determined concentration of the target compound, which is unknown to HEAL. HEAL's management and all analysts shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance criteria, sequence of analytical steps, number of replicates and other procedures as used when analyzing routine samples. PT results are reported as normal samples, within the working range of the associated calibration curve. In the event an analyte concentration is less than the PQL, the result shall be reported as less than the PQL.

With regards to analyzing PT Samples HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seek accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall not attempt to obtain the assigned value of any PT sample from the PT Provider.

Upon receiving a Not Acceptable PT result for any analyte, a root cause analysis is conducted and the cause of the failure determined and corrected. As defined by TNI, two out of the past three PTs must be acceptable to maintain accreditation for any given analyte. If this requirement is not met a successful history will be reestablished by the analysis of an additional PT sample. For accredited tests, the PT provider will be notified, when the PT is for corrective action purposes. The analysis dates of successive PT samples for the same accredited analyte shall be at least fifteen days apart.

Calibration standards are standards run to calibrate. Once the calibration is established the same standards can be analyzed as Continuing Calibration Verifications (CCV), used to confirm the consistency of the instrumentation. Calibration standards can be utilized at the beginning and end of each batch, or more frequently as required. Typically Continuing

Calibration Blanks (CCB) are run in conjunction with CCVs. Refer to the current method SOP for frequency and pass/fail requirements of CCVs and CCBs.

Control Limits are limits of acceptable ranges of the values of quality control checks. The control limits approximate a 99% confidence interval around the mean recovery. Any matrix spike, surrogate, or LCS results outside of the control limits require further evaluation and assessment. This should begin with the comparison of the results from the samples or matrix spike with the LCS results. If the recoveries of the analytes in the LCS are outside of the control limits, then the problem may lie with the application of the extraction, with cleanup procedures, or with the chromatographic procedure. Once the problem has been identified and addressed, corrective action may include reanalysis of samples or reextraction followed by reanalysis. When the LCS results are within the control limits, the issue may be related to the sample matrix or to the use of an inappropriate extraction, cleanup, and/or determinative method for the matrix. If the results are to be used for regulatory compliance monitoring, then steps must be taken to demonstrate that the analytes of concern can be determined in the sample matrix at the levels of interest. Data generated with laboratory control samples that fall outside of the established control limits are judged to be generated during an "out-of-control" situation. These data are considered suspect and shall be repeated or reported with qualifiers.

Control limits are to be updated only by Technical Directors, Section Supervisors or the Quality Assurance Officer. Control limits should be established and updated according to the requirements of the method being utilized. When the method does not specify, and control limits are to be generated or updated for a test, the following guidelines shall be utilized.

Limits should typically be generated utilizing the most recent 20-40 data values. In order to obtain an even distribution across multiple instruments and to include more than a single day's worth of data, surrogate limits should be generated using around 100 data values. The data values used shall not reuse values that were included in the previous Control Limit update. The data values shall also be reviewed by the LIMS for any Grubbs Outliers, and if identified, the outliers must be removed prior to generating new limits. The results used to update control limits should meet all other QC criteria associated with the determinative method. For example, MS/MSD recoveries from a GC/MS procedure should be generated from samples analyzed after a valid tune and a valid initial calibration that includes all analytes of interest. Additionally, no analyte should be reported when it is beyond the working range of the calibration currently in use. MS/MSD and surrogate limits should be generated using the same set of extraction, cleanup, and analysis procedures.

All generated limits should be evaluated for appropriateness. Where limits have been established for MS/MSD samples, the LCS/LCSD limits should fall within those limits, as the LCS/LCSD are prepared in a clean matrix. Surrogate limits should be updated using all sample types and should be evaluated to ensure that all instruments as well as a reasonable dispersion across days are represented by the data. LCS/LCSD recovery limits should be evaluated to verify that they are neither inappropriately wide nor unreasonably tight. The default LCS/LCSD acceptance limits of 70-130% and RPD of 20% (or those limits

specified by the method for LCS/LCSD and/or CCV acceptability), should be used to help make this evaluation. Technical directors may choose to use warning limits when they feel their generated limits are too wide, or default LCS limits when they feel their limits have become arbitrarily tight.

Once new Control Limits have been established and updated in the LIMS, the Control Charts shall be printed and reviewed by the appropriate section supervisor and primary analyst performing the analysis for possible trends and compared to the previous Control Charts. The technical director initials the control charts, indicating that they have been reviewed and that the updated Limits have been determined to be accurate and appropriate. Any manual alterations to the limits will be documented and justified on the printed control chart. These initialed charts are then filed in the QA/QCO office.

Once established, control limits should be reviewed after every 20-30 data values and updated at least every six months, provided that there are sufficient points to do so. The limits used to evaluate results shall be those in place at the time that the sample was analyzed. Once limits are updated, those limits apply to all subsequent analyses.

When updating surrogate control limits, all data, regardless of sample/QC type, shall be updated together and assigned one set of limits for the same method/matrix.

In the event that there are insufficient data points to update limits that are over a year old, the default limits, as established in the method or SOP, shall be re-instated. Refer to the requirements in SW-846 method 8000B and 8000C for further guidance on generating control limits.

Calculated Measurement Uncertainty is calculated annually using LCSs in order to determine the laboratory specific uncertainty associated with each test method. These uncertainty values are available to our clients upon request and are utilized as a trending tool internally to determine the effectiveness of new variables introduced into the procedure over time.

# Precision, Accuracy, Detection Levels

#### Precision

The laboratory uses sample duplicates, laboratory control spike duplicates, and matrix spike duplicates to assess precision in terms of relative percent difference (RPD). HEAL requires the RPD to fall within the 99% confidence interval of established control charts or an RPD of less than 20% if control charts are not available. RPD's greater than these limits are considered out-of-control and require an appropriate response.

RPD = 2 x (Sample Result – Duplicate Result) X 100 (Sample Result + Duplicate Result)

Page 38 of 56 Quality Assurance Plan 9.5 Effective July 2nd, 2012

### Accuracy

The accuracy of an analysis refers to the difference between the calculated value and the actual value of a measurement. The accuracy of a laboratory result is evaluated by comparing the measured amount of QC reference material recovered from a sample and the known amount added. Control limits can be established for each analytical method and sample matrix. Recoveries are assessed to determine the method efficiency and/or the matrix effect.

Analytical accuracy is expressed as the Percent Recovery (%R) of an analyte or parameter. A known amount of analyte is added to an environmental sample before the sample is prepared and subsequently analyzed. The equation used to calculate percent recovery is:

%Recovery = {(concentration\* recovered)/(concentration\* added)} X 100

HEAL requires that the Percent Recovery to fall within the 99 % confidence interval of established control limits. A value that falls outside of the confidence interval requires a warning and process evaluation. The confidence intervals are calculated by determining the mean and sample standard deviation. If control limits are not available, the range of 80 to 120% is used unless the specific method dictates otherwise. Percent Recoveries outside of this range mandate additional action such as analyses by Method of Standard Additions, additional sample preparation(s) where applicable, method changes, and out-of-control action or data qualification.

#### **Detection Limit**

Current practices at HEAL define the Detection Limit (DL) as the smallest amount that can be detected above the baseline noise in a procedure within a stated confidence level.

HEAL presently utilizes an Instrument Detection Limit (IDL), a Method Detection Limit (MDL), and a Practical Quantitation Limit (PQL). The relationship between these levels is approximately

IDL: MDL: PQL = 1:5:5.

The IDL is a measure of the sensitivity of an analytical instrument. The IDL is the amount which, when injected, produces a detectable signal in 99% of the analyses at that concentration. An IDL can be considered the minimum level of analyte concentration that is detectable above random baseline noise.

<sup>\*</sup>or amount

The MDL is a measure of the sensitivity of an analytical method. MDL studies are required annually for each quality system matrix, technology and analyte, unless indicated otherwise in the referenced method. An MDL determination (as required in 40CFR part 136 Appendix B) consists of replicate spiked samples carried through all necessary preparation steps. The spike concentration is three times the standard deviation of three replicates of spikes. At least seven replicates are spiked and analyzed and their standard deviation(s) calculated. Routine variability is critical in passing the 10 times rule and is best achieved by running the MDLs over different days and when possible over several calibration events. Standard Methods and those methods used for drinking water analysis must have MDL studies that are performed over a period of at least three days in order to include day to day variations. The method detection limit (MDL) can be calculated using the standard deviation according to the formula:

$$MDL = s * t (99\%),$$

where t (99%) is the Student's t-value for the 99% confidence interval. The t-value depends on the number of trials used in calculating the sample standard deviation, so choose the appropriate value according to the number of trials.

| Number of Trials | t(99%) |
|------------------|--------|
| 6                | 3.36   |
| 7                | 3.14   |
| 8                | 3.00   |
| 9                | 2.90   |

The calculated MDL must not be less than 10 times the spiked amount or the study must be performed again with a lower concentration.

Where there are multiple MDL values for the same test method in the LIMS the highest MDL value is utilized.

The PQL is significant because different laboratories can produce different MDLs although they may employ the same analytical procedures, instruments and sample matrices. The PQL is about two to five times the MDL and represents a practical, and routinely achievable, reporting level with a good certainty that the reported value is reliable. It is often determined by regulatory limits. The reported PQL for a sample is dependent on the dilution factor utilized during sample analysis.

In the event that an analyte will not be reported less than the PQL, an MDL study is not required and a PQL check shall be done, at least annually, in place of the MDL study. The PQL check shall consist of a QC sample spiked at or below the PQL. All sample-processing and analysis steps of the analytical method shall be included in the PQL check and shall be done for each quality system matrix, technology, and analyte. A successful check is one where the recovery of each analyte is within the

established method acceptance criteria. When this criterion is not defined by the method or SOP, a default limit of +/-50% shall be utilized.

### **Quality Control Parameter Calculations**

#### Mean

The sample mean is also known as the arithmetic average. It can be calculated by adding all of the appropriate values together, and dividing this sum by the number of values.

Average = 
$$(\Sigma x_i)/n$$

 $x_i$  = the value x in the i<sup>th</sup> trial n = the number of trials

#### Standard Deviation

The sample standard deviation, represented by s, is a measure of dispersion. The dispersion is considered to be the difference between the average and each of the values  $x_i$ . The variance,  $s^2$ , can be calculated by summing the squares of the differences and dividing by the number of differences. The sample standard deviation, s, can be found by taking the square root of the variance.

Standard deviation = 
$$s = [\sum (x_i - average)^2 / (n-1)]^{1/2}$$

# Percent Recovery (LCS and LCSD)

# Percent Recovery (MS, MSD)

#### **Control Limits**

Page 41 of 56 Quality Assurance Plan 9.5 Effective July 2nd, 2012 Control Limits are calculated by the LIMS using the average percent recovery (x), and the standard deviation (s).

Upper Control Limit = x + 3sLower Control Limit = x - 3s

These control limits approximate a 99% confidence interval around the mean recovery.

## RPD (Relative Percent Difference)

Analytical precision is expressed as a percentage of the difference between the results of duplicate samples for a given analyst. Relative percent difference (RPD) is calculated as follows:

RPD = 2 x (Sample Result – Duplicate Result) X 100 (Sample Result + Duplicate Result)

### **Uncertainty Measurements**

Uncertainty, as defined by ISO, is the parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurement. Ultimately, uncertainty measurements are used to state how good a test result is and to allow the end user of the data to properly interpret their reported data. All procedures allow for some uncertainty. For most analyses, the components and estimates of uncertainty are reduced by following well-established test methods. To further reduce uncertainty, results generally are not reported below the lowest calibration point (PQL) or above the highest calibration point (UQL). Understanding that there are many influential quantities affecting a measurement result, so many in fact that it is impossible to identify all of them, HEAL calculates measurement uncertainty at least annually using LCSs. These estimations of measurement uncertainty are kept on file in the method folders in the QA/QC office.

Measurement Uncertainty contributors are those that may be determined statistically. These shall be generated by estimating the overall uncertainty in the entire analytical process by measuring the dispersion of values obtained from laboratory control samples over time. At least 20 of the most recent LCS data points are gathered. The standard deviation(s) is calculated using these LCS data points. Since it can be assumed that the possible estimated values of the spikes are approximately normally distributed with approximate standard deviation(s), the unknown value of the spike is

believed to lie in 95% confidence interval, corresponding to an uncertainty range of +/- 2(s).

Calculate standard deviation (s) and 95% confidence interval according to the following formulae:

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{(n-1)}}$$

Where: s = standard deviation

x = number in series

 $\bar{x}$  = calculated mean of series n = number of samples taken

95% confidence =  $2 \times s$ 

Example: Assuming that after gathering 20 of the most recent LCS results for Bromide, we have calculated the standard deviations of the values and achieved a result of 0.0326, our measurement of uncertainty for Bromide (at 95% confidence =  $2 \times s$ ) is 0.0652.

### **Total Nitrogen**

Total nitrogen is calculated as follows:

Total Nitrogen = TKN + NO<sub>2</sub> + NO<sub>3</sub>

#### **Calibration Calculations**

1. Response Factor or Calibration Factor:

$$RF = ((A_x)(C_{is}))/((A_{is})(C_x))$$

 $CF=(A_x)/(C_x)$ 

a. Average RF or CF

$$RF_{AVE} = \Sigma RF_i / n$$

b. Standard Deviation

$$s = SQRT \{ [\Sigma (RF_I - RF_{AVE})^2] / (n-1) \}$$

c. Relative Standard Deviation

Page 43 of 56 Quality Assurance Plan 9.5 Effective July 2nd, 2012

#### Where:

 $A_x$  = Area of the compound

 $C_x$  = Concentration of the compound

Ais = Area of the internal standard

Cis = Concentration of the internal standard

n = number of pairs of data

RF<sub>i</sub> = Response Factor (or other determined value)

RF<sub>AVE</sub> = Average of all the response factors

 $\Sigma$  = the sum of all the individual values

### 2. Linear Regression

y=mx+b

a. Siope (m)

$$\mathbf{m} = (\mathbf{n} \Sigma \mathbf{x}_i \mathbf{y}_i - (\mathbf{n} \Sigma \mathbf{x}_i)^* (\mathbf{n} \Sigma \mathbf{y}_i)) / (\mathbf{n} \Sigma \mathbf{x}_i^2 - (\Sigma \mathbf{x}_i)^2)$$

b. intercept (b)

$$b = y_{AVE} - m^*(x_{AVE})$$

c. Correlation Coefficient (cc)

CC (r) ={ 
$$\Sigma((x_i-x_{ave})^*(y_i-y_{ave}))$$
 } / {  $SQRT((\Sigma(x_i-x_{ave})^2)^*(\Sigma(y_i-y_{ave})^2))$  } Or CC (r) =[( $\Sigma w * \Sigma wxy$ ) - ( $\Sigma wx * \Sigma wy$ )] / ( $sqrt(([( $\Sigma w * \Sigma wx^2) - (\Sigma wx * \Sigma wx)])^*[( $\Sigma w * \Sigma wy^2$ ) - ( $\Sigma wy * \Sigma wy$ )])))]$$ 

d. Coefficient of Determination

$$COD(r^2) = CC*CC$$

#### Where:

y = Response (Area) Ratio A<sub>x</sub>/A<sub>is</sub>

 $x = Concentration Ratio C_x/C_{is}$ 

m = slope

b = intercept

n = number of replicate x,y pairs

 $x_i$  = individual values for independent variable

yı = individuai values for dependent variable

Page 44 of 56 Quality Assurance Plan 9.5 Effective July 2nd, 2012  $\Sigma$  = the sum of all the individual values

 $x_{ave}$  = average of the x values

 $y_{ave} = average of the y values$ 

w = weighting factor, for equal weighting w=1

### 3. Quadratic Regression

$$y = ax^2 + bx + c$$

### a. Coefficient of Determination

COD (r<sup>2</sup>) =( 
$$\Sigma(y_i-y_{ave})^2 - \{[(n-1)/(n-p)] * [\Sigma(y_i-Y_i)^2]\}$$
 ) /  $\Sigma(y_i-y_{ave})^2$ 

### Where:

 $y = Response (Area) Ratio A_x/A_{is}$ 

x = Concentration Ratio C<sub>x</sub>/C<sub>is</sub>

 $a = x^2$  coefficient

b = x coefficient

c = intercept

 $y_i$  = individual values for each dependent variable

x<sub>i</sub> = individual values for each independent variable

yave = average of the y values

n = number of pairs of data

p = number of parameters in the polynomial equation (i.e., 3 for third order, 2 for second order)

 $Yi = ((2*a*(C_x/C_{is})^2)-b^2+b+(4*a*c))/(4a)$ 

# b. Coefficients (a,b,c) of a Quadratic Regression

$$a = S_{(x2y)}S_{(xx)}-S_{(xy)}S_{(xx2)} / S_{(xx2)}S_{(xx2)}-[S_{(xx2)}]^{2}$$

$$b = S_{(xy)}S_{(x2x2)} - S_{(x2y)}S_{(xx2)} / S_{(xx3)}S_{(x2x2)} - [S_{(xx2)}]^2$$

$$c = [(\Sigma yw)/n] - b^*[(\Sigma xw)/n] - a^*[\Sigma(x^2w)/n]$$

#### Where:

n = number of replicate x,y pairs

x = x values

y = y values

 $w = S^{-2} / (\Sigma S^{-2}/n)$ 

 $S_{(xx)} = (\Sigma x^2 w) - [(\Sigma x w)^2 / n]$ 

 $S_{(xy)} = (\Sigma xyw) - [(\Sigma xw)^*(\Sigma yw) / n]$ 

 $S_{(xx2)} = (\Sigma x^3 w) - [(\Sigma xw)^*(\Sigma x^2 w) / n]$ 

 $S_{(x2y)} = (\Sigma x^2 yw) - [(\Sigma x^2 w)^* (\Sigma yw) / n]$ 

Page 45 of 56 Quality Assurance Plan 9,5

Effective July 2nd, 2012

 $S_{(x2x2)} = (\Sigma x^4 w) - [(\Sigma x^2 w)^2 / n]$ Or If unweighted calibration, w=1 S(xx) = (Sx2) - [(Sx)2 / n]S(xy) = (Sxy) - [(Sx)\*(Sy) / n]S(xx2) = (Sx3) - [(Sx)\*(Sx2) / n]S(x2y) = (Sx2y) - [(Sx2)\*(Sy) / n]S(x2x2) = (Sx4) - [(Sx2)2 / n]

#### Concentration Calculations

### On-Column Concentration for Average RRF Calibration using Internal Standard

On-Column Concentration  $C_x = ((A_x)(C_{is}))/((A_{is})(RF_{AVE}))$ 

### On-Column Concentration for Average CF Calibration using External Standard

On-Column Concentration  $C_x = (A_x)/(CF_{AVE})$ 

### **On-Column Concentration for Linear Calibration**

If determining an external standard, then exclude the Ais and Cis for internal standards On-Column Concentration  $C_x = ((Absolute\{[(A_x)/(A_{ia})] - b\})/m) * C_{ia}$ 

Where: m = slope

b = intercept

 $A_x = Area of the Sample$ 

C<sub>is</sub> = Concentration of the Internal Standard

A<sub>is</sub> = Area of the Internal Standard

#### On-Column Concentration for Quadratic Calibration

If determining an external standard, then exclude the  $A_{le}$  and  $C_{le}$  for internal standards On-Column Concentration =[(+SQRT(b2-(4\*a\*(c-y)))-b)/(2\*a)] \* C<sub>is</sub>

Where:  $a = x^2$  coefficient

b = x coefficient

c = intercept

y = Area Ratio = A<sub>x</sub>/A<sub>ix</sub>

Cis = Concentration of the Internal Standard

### Final Concentration (Wet Weight)

Concentration for Extracted Samples = (On-Column Conc)(Dilution)(Final Volume) (Initial Amount)(Injection Volume) Concentration for Purged Samples = (On-Column Conc)(Purged Amount)(Dilution) (Purged Amount)

#### **Dry Weight Concentration**

Dry Weight Concentration = Final Concentration Wet Weight **Total Solids** 

### **Percent Difference**

% Difference= Absolute(Continuing Calibration RRF - Average RRF) \* 100

> Page 46 of 56 Quality Assurance Plan 9.5 Effective July 2nd, 2012

### Average RRF

#### **Percent Drift**

% Drift= Absolute(Calculated Concentration - Theoretical Concentration) \* 100
Theoretical Concentration

#### **Dilution Factor**

Dilution Factor =(Volume of Solvent + Solute) / Volume of Solute

#### **Relative Retention Time**

RRT =RT of Compound / RT of ISTD

### **Breakdown Percent**

Breakdown = <u>Area of DDD + Area of DDE</u> Average (DDT, DDE and DDD)

-or-

<u>Area of Endrin Ketone + Area of Endrin Aldehyde</u> Average (Endrin, Endrin Ketone, Endrin Aldehyde)

# 11.0 Data Reduction, Validation, Reporting, and Record Keeping

All data reported must be of the highest possible accuracy and quality. During the processes of data reduction, validation, and report generation, all work is thoroughly checked to insure that error is minimized.

#### **Data Reduction**

The analyst who generated the data usually performs the data reduction. The calculations include evaluation of surrogate recoveries (where applicable), and other miscellaneous calculations related to the sample quantitation.

If the results are computer generated, then the formulas must be confirmed by hand calculations, at minimum, one per batch.

See the current Data Validation SOP for details regarding data reduction.

#### Validation

A senior analyst, most often the section supervisor, validates the data. All data undergoes peer review. If an error is detected, it is brought to the analyst's attention so that he or she can rectify the error, and perform further checks to ensure that all data for that batch is sound. Previous and/or common mistakes are stringently monitored throughout the validation process. Data is reported using appropriate significant figure criteria. In most cases, two significant digits are utilized, but three significant digits can be used in QC calculations. Significant digits are not rounded until after the last step of a sample calculation. All final reports undergo a review by the laboratory manager, the project manager, or their designee, to provide a logical review of all results before they are released to the client.

If data is to be manually transferred between media, the transcribed data is checked by a peer. This includes data typing, computer data entry, chromatographic data transfer, data table inclusion to a cover letter, or when data results are combined with other data fields.

All hand-written data from run logs, analytical standard logbooks, hand-entered data logbooks, or on instrument-generated chromatograms, are systematically archived should the need for future retrieval arise.

See the current Data Validation SOP for details regarding data validation.

### Reports and Records

All records at HEAL are retained and maintained through the procedures outlined in the most recent version of the Records Control SOP.

Sample reports are compiled by the Laboratory Information Management System (LIMS). Most data is transferred directly from the instruments to the LIMS. After being processed by the analyst and reviewed by a data reviewer, final reports are approved and signed by the senior laboratory management. A comparative analysis of the data is performed at this point. For example, if TKN and NH3 are analyzed on the same sample, the NH3 result should never be greater than the TKN result. Lab results and reports are released only to appropriately designated individuals. Release of the data can be by fax, email, electronic deliverables, or mailed hard copy.

When a project is completed, the final report, chain of custody, any relevant supporting data, and the quality assurance/control worksheets are scanned as a .pdf file onto the main server. Original client folders are kept on file and are arranged by project number. Additionally, all electronic data is backed up routinely on the HEAL main server. The backup includes raw data, chromatograms, and report documents. Hard copies of chromatograms are stored separately according to the instrument and the analysis date. All records and analytical data reports are retained in a secure location as permanent records for a minimum period of five years (unless specified otherwise in a client contract). Access to archived information shall be documented with an access log. Access to archived electronic reports and data will be password protected. In the event that HEAL transfers ownership or terminates business practices, complete records will be maintained or transferred according to the client's instructions.

After issuance, the original report shall remain unchanged. If a correction to the report is necessary, then an additional document shall be issued. This document shall have a title of "Addendum to Test Report or Correction to Original Report", or equivalent. Demonstration of original report integrity comes in two forms. First, the report date is included on each page of the final report. Second, each page is numbered in sequential order, making the addition or omission of any data page(s) readily detectable.

#### 12.0 Corrective Action

Refer to the most recent version of the Data Validation SOP for the procedure utilized in filling out a Corrective Action Report. A blank copy of the corrective action report is available in the current Document Control Logbook.

The limits that have been defined for data acceptability also form the basis for corrective action initiation. Initiation of corrective action occurs when the data generated from continuing calibration standard, sample surrogate recovery, laboratory control spike, matrix spike, or sample duplicates exceed acceptance criteria. If corrective action is necessary, the analyst or the section supervisor will coordinate to take the following guidelines into consideration in order to determine and correct the measurement system deficiency:

Check all calculations and data measurements systems (Calibrations, reagents, instrument performance checks, etc.).

Assure that proper procedures were followed.

Unforeseen problems that arise during sample preparation and/or sample analysis that lead to treating a sample differently from documented procedures shall be documented with a corrective action report. The section supervisor and laboratory manager shall be made aware of the problem at the time of the occurrence. See the appropriate SOP regarding departures from documented procedures.

Continuing calibration standards below acceptance criteria can not be used for reporting analytical data unless method specific criteria states otherwise.

Continuing calibration standards above acceptance criteria can be used to report data as long as the failure is isolated to a single standard and the corresponding samples are non-detect for the failing analyte.

Samples with non-compliant surrogate recoveries should be reanalyzed, unless deemed unnecessary by the supervisor for matrix, historical data, or other analysis-related anomalies.

Laboratory and Matrix Spike acceptance criteria vary significantly depending on method and matrix. Analysts and supervisors meet and discuss appropriate corrective action measures as spike failures occur.

Sample duplicates with RPD values outside control limits require supervisor evaluation and possible reanalysis.

A second mechanism for initiation of corrective action is that resulting from Quality Assurance performance audits, system audits, inter- and intra-laboratory comparison studies. Corrective Actions initiated through this mechanism will be monitored and coordinated by the laboratory QA/QCO.

All corrective action forms are entered in the LIMS and included with the raw data for peer review, signed by the technical director of the section and included in the case narrative to the client whose samples were affected. All Corrective action forms in the LIMS are reviewed by the QA/QCO.

# 13.0 Quality Assurance Audits, Reports and Complaints

# Internal/External Systems' Audits, Performance Evaluations, and Complaints

Several procedures are used to assess the effectiveness of the quality control system. One of these methods includes internal performance evaluations, which are conducted by the use of control samples, replicate measurements, and control charts. External performance audits, which are conducted by the use of inter-laboratory checks, such as participation in laboratory evaluation programs and performance evaluation samples available from a NELAC-accredited Proficiency Standard Vendor, are another method.

Proficiency samples will be obtained twice per year from an appropriate vendor for all tests and matrices for which we are accredited and for which PTs are available. HEAL participates in soil, waste water, drinking water, and underground storage tank PT studies. Copies of results are available upon request. HEAL's management and all analysts shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities, and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance criteria, sequence of analytical steps, number of replicates, and other procedures as used when analyzing routine samples.

With regards to analyzing PT Samples, HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seek accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall not attempt to obtain the assigned value of any PT sample from the PT Provider.

Internal Audits are performed annually by the QA/QCO in accordance with the current Internal Audit SOP. The system audit consists of a qualitative inspection of the QA system in the laboratory and an assessment of the adequacy of the physical facilities for sampling, calibration, and measurement. This audit includes a careful evaluation and review of laboratory quality control procedures. Internal audits are performed using the guidelines outlined below, which include, but are not limited to:

- 1. Review of staff qualifications, demonstration of capability, and personnel training programs
- 2. Storage and handling of reagents, standards, and samples
- 3. Standard preparation logbook and LIMS procedures
- 4. Extraction logbooks
- 5. Raw data logbooks
- 6. Analytical logbooks or batch printouts and instrument maintenance logbooks
- 7. Data review procedures

- 8. Corrective action procedures
- 9. Review of data packages, which is performed regularly by the lab manager/QA Officer.

The QA/QCO will conduct these audits on an annual basis.

### **Management Reviews**

HEAL management shall periodically, and at least annually, conduct a review of the laboratory's quality system and environmental testing activities to ensure their continuing suitability and effectiveness, and to introduce necessary changes or improvements. The review shall take account of:

- 1. the suitability and implementation of policies and procedures
- 2. reports from managerial and supervisory personnel
- 3. the outcome of recent internal audits
- 4. corrective and preventive actions
- 5. assessments by external bodies
- 6. the results of inter-laboratory comparisons or proficiency tests
- 7. changes in volume and type of work
- 8. client feed back
- 9. complaints
- 10. other relevant factors, such as laboratory health and safety, QC activities, resources, and staff training.

Findings from management reviews and the actions that arise from them shall be recorded and any corrective actions that arise shall be completed in an appropriate and agreed upon timescale.

# Complaints

Complaints from clients are documented and given to the laboratory manager. The lab manager shall review the information and contact the client. If doubt is raised concerning the laboratory's policies or procedures, then an audit of the section or sections may be performed. All records of complaints and subsequent actions shall be maintained in the client compliant logbook for five years unless otherwise stated.

### **Internal and External Reports**

The QA/QCO is responsible for preparation and submission of quality assurance reports to the appropriate management personnel as problems and issues arise. These reports include the assessment of measurement systems, data precision and accuracy, and the results of performance and system audits. Additionally, they include significant QA problems, corrective actions, and recommended resolution measures. Reports of these Quality Assurance Audits describe the particular activities audited, procedures utilized in the examination and evaluation of laboratory records, and data validation procedures. Finally, there are procedures for evaluating the performance of Quality Control and Quality Assurance activities, and laboratory deficiencies and the implementation of corrective actions with the review requirements.





# RECEIVED OCD

2014 JAH 31 P 12: 112

January 30, 2014

Carl Chavez New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Dr Santa Fe, NM 87505

### FedEx Tracking #:

RE:

Western Refining Southwest, Inc. - Bloomfield Refinery 2013 Annual Class I Well Report Non-Hazardous Injection Well Permit # - UIC-CL-009 API # - 30- 45-29002

Mr. Chavez,

Bloomfield Refinery is submitting the 2013 Annual Class I Well Report. The well is located in the NE/4, SE/4 of Section 27, Township 29 North, Range 11 West, NMPM, San Juan County, New Mexico and is operated by Western Refining Southwest, Inc.

If you need more information, please contact me at (505) 632-8013.

Sincerely,

Ron Weaver

Regional Terminals Manager Western Refining Southwest, Inc.

Cc: Brandon Powell (NMOCD Aztec District Office)
Randy Schmaltz (WNR – Bloomfield)

Allen Hains – Western Refining (WNR - El Paso)

## ANNUAL CLASS I WELL REPORT

Waste Disposal Well #1 January – December 2013

是是自己的人的,但是是一种的人的,我们就是这个的人,我们就是这个人的人,我们就是这个人的人,也不是一个人的人,也是这个人的人的,我们就是这个人的人,我们就是一个



Western Refining Southwest, Inc.
Bloomfield Refinery
Bloomfield, New Mexico
Permit # - UIC-CL1-009
API # - 30-45-29002

Submitted January 30, 2014

Prepared by:

Kelly Robinson

**Environmental Supervisor** 

## Certification

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

Ron Weaver

Regional Terminals Manager

## TABLE OF CONTENTS

| EXECUTI           | IVE SUMMARY                                                     | 1  |
|-------------------|-----------------------------------------------------------------|----|
| 1.0               | INTRODUCTION                                                    |    |
| 2.0               | SUMMARY OF ACTIVITIES                                           | 4  |
| 3.0<br>3.1<br>3.2 | INJECTION VOLUME Injection Volume Injection Well Down-Time      | 5  |
| 4.0               | SAMPLING AND CHEMICAL ANALYSIS                                  | 6  |
| 5.0<br>5.1        | TESTING AND MAINTENANCE ACTIVITIES Mechanical Integrity Testing |    |
| 6.0<br>6.1<br>6.2 | WELL EVALUATION Well Evaluation Area of Review (AOR)            | 8  |
| 7.0<br>7.1<br>7.2 | CONCLUSIONS AND RECOMMENDATIONS Conclusions                     | 9  |
| 8.0               | REFERENCES                                                      | 11 |

#### **LIST OF FIGURES**

Figure 1 Site Location Map Figure 2 Well Schematic

Figure 3 Disposal Well and Area Wells

#### **LIST OF TABLES**

Table 1 Monthly Injection Well Report

Table 2 Area of Review

Table 3 2012 Quarterly Analytical Summary

#### LIST OF APPENDICES

Appendix A Form C-103 Notifications

Appendix B Laboratory Analytical Reports

Appendix C Laboratory Quality Assurance Plan

#### **EXECUTIVE SUMMARY**

This report provides a summary of activities conducted in 2013 on Waste Disposal Well #1 (WDW-#1) at the Bloomfield Refinery. The following is a summary of well operations and well testing activities performed in 2012.

#### **Operational Summary**

**Injection Volume -** The volume injected into the disposal well during 2013 was 12,110,780 gallons. Western Refining suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation.

Sampling and Chemical Analyses - Injection fluids samples were collected on a quarterly basis for chemical analysis, with the following exception. A quarterly sample was not collected during the first quarter of 2013 due to the fact that that injection well was not in operation from mid-January through March 2013. Quarterly samples were collected during the 2<sup>nd</sup>, 3<sup>rd</sup>, and 4<sup>th</sup> quarters of 2013. Analytical results did not exhibit characteristics of hazardous waste.

**Maintenance Operations -** No down-hole maintenance activities were conducted in 2013.

Mechanical Integrity Tests - The 2013 well testing program witnessed by a representative of the New Mexico Oil Conservation Division (NMOCD) included a High-Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrity Test. Results of these tests prove that the operational integrity of the well is sound.

**Area of Review (AOR) -** No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of WDW #1.

#### Recommendations

Western will continue the routine monitoring, maintenance, and testing programs which

include quarterly chemical analysis of injection fluids, mechanical integrity testing, and Bradenhead testing. Western will continue to utilize the maximum operating injection pressure at the wellhead as permitted by Discharge Permit GW-130.

#### 1.0 INTRODUCTION

This report provides a summary of activities conducted during 2013 on Waste Disposal Well #1 (WDW #1). The disposal well is part of the Bloomfield Refinery operations. The refinery is located immediately south of Bloomfield, New Mexico in San Juan County. The well location is depicted in Figure 1. The physical address of the facility is as follows:

#### **Bloomfield Refinery**

#50 County Road 4990 Bloomfield, NM 87413

The Bloomfield Refinery is located on approximately 263 acres. Bordering the facility is a combination of federal and private properties. Public property managed by the Bureau of Land Management lies to the south. The majority of undeveloped land in the vicinity of the facility is used extensively for oil and gas production and, in some instances, grazing. U.S. Highway 550 is located approximately one-half mile west of the facility. The topography of the main portion of the site is generally flat with steep bluffs to the north.

WDW #1 is owned by San Juan Refining Company, a New Mexico corporation. It is operated by Western Refining Southwest, Inc. formerly known as Giant Industries Arizona, Inc. an Arizona corporation.

#### 1.1 Well Information

Well Name & Number: Waste Disposal Well #1

OCD UIC: UIC-CL1-009
OCD Discharge Plan Permit Number: GW-130

Well Classification: Class I Non-hazardous

API Number: 30-045-29002

Legal Location: 1250 FEL, 2442FSL, I Sec 27 T29S R11E Physical Address: #50 Road 4990, Bloomfield, NM 87413

#### 2.0 SUMMARY OF ACTIVITIES

The following list of activities was conducted in 2012 on WDW #1 located at the Bloomfield Refinery:

|   | 04/04/12 | 2 1 0 4 2012 C 1' E             |
|---|----------|---------------------------------|
| • | 04/24/13 | 2nd Quarter 2013 Sampling Event |
| • | 07/22/13 | 3rd Quarter 2013 Sampling Event |
| • | 09/19/13 | Bradenhead Test                 |
| • | 09/19/13 | High-Pressure Shut-Down Test    |
| • | 09/19/13 | Mechanical Integrity Test       |
| • | 11/07/13 | 4th Quarter 2013 Sampling Event |

An analytical sample was not collected during the first quarter of 2013 due to the fact that the injection well was not operational for most of the quarterly. Quarterly samples collected for laboratory analysis were submitted to Hall Environmental Laboratories located in Albuquerque, New Mexico. Copies of the analytical reports are provided in Appendix B. A summary of the analytical results is provided in Table 3.

A representative of New Mexico Oil Conservation Division (NMOCD) was on-site to witness the Bradenhead Test, High-Pressure Shut-Down Test, and Mechanical Integrity Test on September 19, 2013. A copy of the test reports is provided in Appendix A.

The Annual Pressure Fall-Off Test was not conducted in 2013. In an e-mail to Western from NMOCD dated August 2, 2012, it states that Fall-Off Test frequency requirements are being evaluated by NMOCD and operators will be notified by NMOCD when a Fall Off Test is required. Western did not receive notification from NMOCD that a Fall-Off Test was required for 2013.

### 3.0 INJECTION VOLUME

The Monthly Injection Well Report summarizing injection volumes and well performance parameters is presented as Table 1.

#### 3.1 Injection Volume

The volume injected into the disposal well during 2013 was 12,110,780 gallons. Throughout 2013 the Bloomfield Refinery injection well operated within the operational limits of less than 1,150 psi.

#### 3.2 Injection Well Down-Time

The injection well was down approximately 5,130 hours in 2013. Decreased volume of plant produced water during 2013 resulted in extended periods in which the injection well was not operational. General maintenance activities on the injection well equipment upstream of the injection well also contributed to the injection well down-time during 2013.

#### 4.0 SAMPLING AND CHEMICAL ANALYSIS

Samples were collected of the injection water on a quarterly basis and analyzed for the following per Item #9 of the Bloomfield Refinery Class I (Non-Hazardous) Disposal Well UIC-CL1-009 (GW-130) Discharge Permit Renewal dated March 23, 2004:

- Volatile Organic Compounds (VOCs);
- Semi-Volatile Organic Compounds (SVOCs);
- General Chemistry Parameters (included calcium, potassium, magnesium, sodium, bicarbonate, carbonate, chloride, sulfate, total dissolved solids, pH, and conductivity);
- RCRA 8 Metals; and
- RCRA Characteristics for Ignitability, Corrosivity, and Reactivity.

First quarter samples were not collected due to the well not being operational during that time. Second quarter samples were collected April 24, 2013. Third quarter samples were collected July 22, 2013. Fourth quarter samples were collected November 7, 2013. A summary of the analytical results is provided in Table 3.

All quarterly samples collected for laboratory analysis were submitted to Hall Environmental Analysis Laboratory located in Albuquerque, NM. The analytical results conclude that the injected water did not exhibit characteristics of hazardous waste. The respective quarterly analytical reports and Laboratory Quality Assurance Plan are provided in Appendices B and C, respectively.

#### 5.0 TESTING AND MAINTENANCE ACTIVITIES

In addition to the conducting general preventative maintenance activities on the injection well equipment, the following testing and well maintenance activities were conducted during 2012:

 Mechanical Integrity Testing (including high-pressure shutdown and Bradenhead Testing)

All activities were conducted following NMOCD approval, and such documentation is provided in Appendix A. The following is a brief summary of the testing and well maintenance activities conducted in 2012.

### 5.1 Mechanical Integrity Testing

A representative of New Mexico Oil Conservation Division (NMOCD) was on-site to witness a High Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrity Test (MIT) on September 19, 2013. All tests were witnessed by Monica Kuehling of NMOCD-Aztec. The MIT held at 520 psi for 30 minutes, therefore confirming the integrity of the well. A copy of the Test Reports is provided in Appendix A.

#### 6.0 WELL EVALUATION

#### 6.1 Well Evaluation

In 2013, the injection well operated normally and within the operation limit of 1,150 psi. The increased down-time of well operations when compared to 2012 operational hours is mostly contributed to the decrease in produced water at the Bloomfield facility.

#### 6.2 Area of Review (AOR)

The Area of Review data was updated in the 2011 Annual Bottomhole Pressure Surveys and Pressure Fall-Off Tests for Waste Disposal Well #1Report (Cobb & Associates, 2011). At that time, no new wells were found in the one-mile radius.

Fifty-eight wells were found within a one-mile radius of WDW #1, which injects water into the Mesaverde formation. The wells and status are spotted on an area map, Figure 3, with a well number listed with the well data in Table 2. Of these wells, 15 have been plugged and abandoned. Four wells are classified as dry holes and are believed to be plugged and abandoned. Twenty-four wells produce petroleum from shallow zones. One well is an Entrada injection well. Fourteen wells produce petroleum from the Dakota and Gallup zones, which are deeper than the Mesaverde interval used for injection purposes. No wells are producing from the injection interval within a one-mile radius of WDW #1.

Twenty-four of the 59 wells have penetrated the injection zone. Of these, three have been plugged. Five wells are currently producing from shallow zones and 14 wells produce from deep zones. There are two injection wells including WDW #1 and Ashcroft SWD #1 well.

No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of WDW #1.

### 7.0 CONCLUSIONS AND RECOMMENDATIONS

The following is a summary of well operations and well testing activities performed in 2013.

#### 7.1 Conclusions

**Injection Volume -** The volume injected into the disposal well during 2013 was 12,110,780 gallons. Western Refining suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation.

Sampling and Chemical Analyses - Injection fluids samples were collected for chemical analysis on a quarterly basis when the well was operational. Analytical results did not exhibit characteristics of hazardous waste.

**Maintenance Operations -** No down-hole maintenance activities were conducted in 2013.

**Mechanical Integrity Tests -** The 2013 well testing program witnessed by a representative of OCD included a High-Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrity Test. Results of these tests prove that the operational integrity of the well is sound.

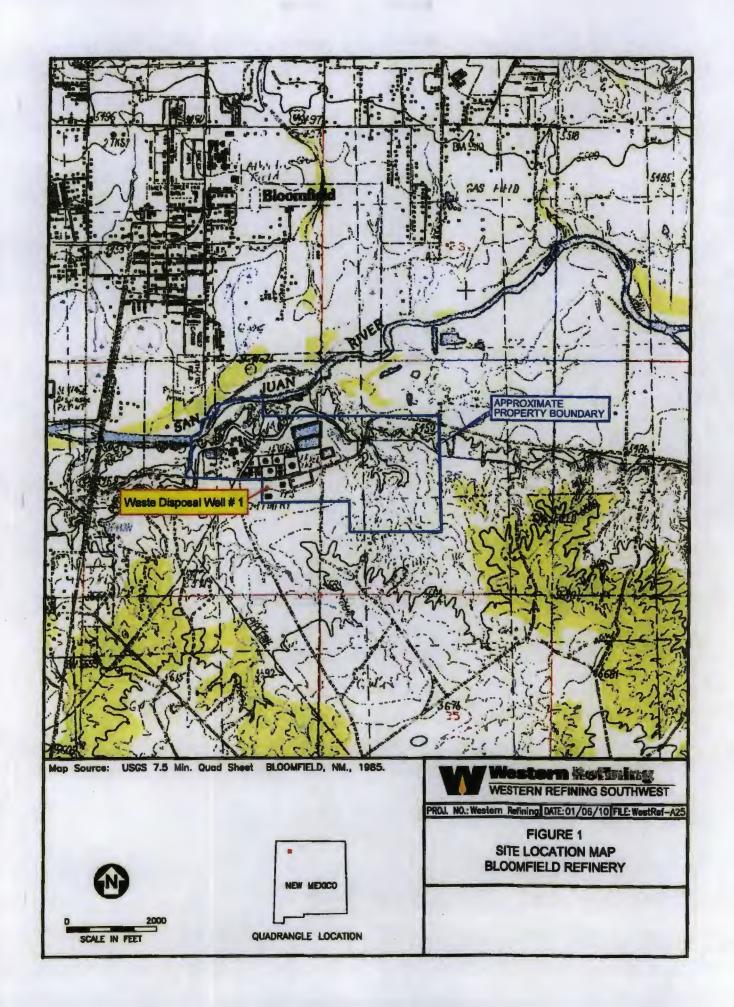
**Well Evaluation** – The injection well operated normally within the operational limit of 1,150 psi throughout 2013.

**Area of Review (AOR) -** No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of WDW #1.

#### 7.2 Recommendations

Western will continue the routine monitoring, maintenance, and testing programs which include quarterly chemical analysis of injection fluids, high-pressure shut-down testing,

mechanical integrity testing, and Bradenhead testing in 2014. Western will continue to utilize the maximum operating injection pressure at the wellhead as permitted by Discharge Permit GW-130.


## 8.0 REFERENCES

Cobb & Associates, 2009a, Evaluation of Disposal Well #1 Bloomfield Refinery, August 26, 2009.

Cobb & Associates, 2011, 2011 Annual Bottomhole Pressure Surveys and Pressure Fall-Off Tests for Waste Disposal Well #1Report December 21, 2011.

Bloomfield Refinery Class I (Non-Hazardous) Disposal Well UIC-CL1-009 (GW-130) Discharge Permit Renewal dated March 23, 2004.

## **FIGURES**



WESTERN REFINING DISPOSAL WELL #1 NW, SW SECTION 26, T29N, R11W

NO.: 30-045-29002



8-5/8", 48#/ft, Surface Casing @ 830'

TOC: Surface Hole Size: 11.0"

Tubing: 2-7/8", Acid Resistant Fluoroline Cement Lined

Wt of Tubing: 6.5 #/ft

Wt of Tubing Lined: 7.55 #/ft

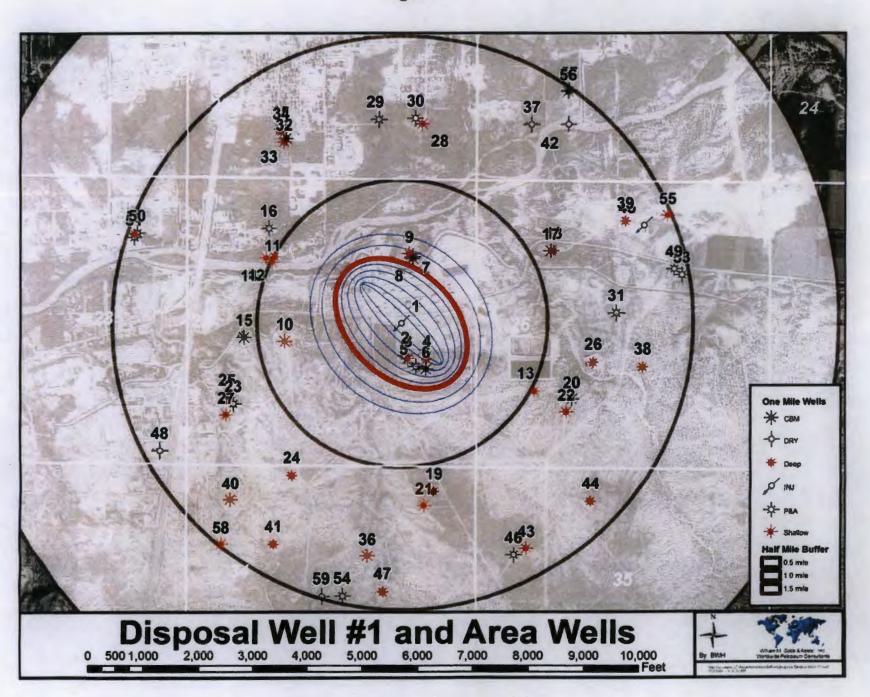
Tubing ID: 2.128"
Tubing Drift ID: 2.000"

Minimum ID @ Packer: ~1.87" estimated

Packer: Unknown Packer Type @ 3221'
Could be a Guiberson or similar model Uni-6

Perforations: 3276' - 3408' 4JSPF 0.5 EHD Top of the Cliff House Formation: 3276'

Fill was cleaned out of well on 4/20/06 Fill was orginally tagged at 3325'


Perforations: 3435' - 3460' 4JSPF 0.5 EHD Top of the Menefee Formation: 3400'

RBP: 3520'

5-1/2", 15.5#/ft, Production Casing @3600'

TOC: Surface Hole Size: 7-7/8"

Figure 3



## **TABLES**

#### TABLE 1

#### WESTERN REFINING SOUTHWEST, INC. - BLOOMFIELD TERMINAL P.O. BOX 159 **BLOOMFIELD, NEW MEXICO 87413**

#### MONTHLY INJECTION WELL REPORT **DISCHARGE PLAN GW-130** NE1/4 SE1/4 SECTION 27, T29N, R11W NMPM, SAN JUAN COUNTY, NEW MEXICO

|        | AMOUNT<br>OF WATER | AMOUNT<br>TO SOLAR | TOTALIZER<br>AMOUNT | DOWN- | 10.1   | ECTION PRESSU | IDE    |                  | INUI AD DDESSU | IDE    |       | ON-LINE |       |
|--------|--------------------|--------------------|---------------------|-------|--------|---------------|--------|------------------|----------------|--------|-------|---------|-------|
|        |                    |                    |                     |       |        |               |        | ANNULAR PRESSURE |                |        |       |         |       |
| PERIOD | FROM RIVER         | EVAP PONDS         | INJECTED            | TIME  | MAX    | MIN           | AVG    | MAX              | MIN            | AVG    | MAX   | MIN     | AVG   |
| 2013   | (GALLONS)          | (GALLONS)          | (GALLONS)           | (HRS) | (PSIA) | (PSIA)        | (PSIA) | (PSIA)           | (PSIA)         | (PSIA) | (GPM) | (GPM)   | (GPM) |
|        |                    |                    |                     |       |        |               |        |                  |                |        |       |         |       |
| JAN    | 0                  | 1,665,000          | 432,517             | 352   | 921    | 7             | 845    | 233              | 112            | 152    | 47    | 0       | 11.9  |
| FEB    | 1,612              | 1,089,000          | 0                   | 672   | 8      | 0             | 6      | 184              | 151            | 171    | 0     | 0       | 0     |
| MAR    | 561                | 1,107,000          | 0                   | 744   | 2      | 0             | 1      | 197              | 184            | 191    | 0.0   | 0       | 0     |
|        |                    |                    |                     |       |        |               |        |                  |                |        |       |         |       |
| APR    | 2,160              | 739,512            | 496,488             | 371   | 963    | 0             | 399    | 135              | 199            | 177    | 74    | 0       | 13    |
| MAY    | 3                  | 0                  | 2,593,194           | 205.6 | 1125   | 0             | 781    | 198              | 144            | 156    | 82    | 0       | 57    |
| JUN    | 3,683              | 1,509,000          | 0                   | 720   | 0      | 0             | 0      | 146              | 143            | 145    | 0     | 0       | 0     |
|        |                    |                    |                     |       |        |               |        |                  |                |        |       |         |       |
| JUL    | 4,948              | 3,154,725          | 1,545,275           | 426   | 1114   | 0             | 473    | 180              | 143            | 151    | 82    | 0       | 35    |
| AUG    | 1,199              | 0                  | 3,072,399           | 6     | 1119   | 963           | 1080   | 166              | 143            | 151    | 82    | 40      | 68    |
| SEP    | 0                  | 1,276,842          | 256,158             | 416   | 1106   | 0             | 111    | 124              | 169            | 147    | 63    | 0       | 6     |
|        |                    |                    |                     |       |        |               |        |                  |                |        |       |         |       |
| OCT    | 0                  | 0                  | 1,507,869           | 380   | 1119   | 0             | 538    | 113              | 170            | 139    | 79    | 0       | 35    |
| NOV    | 1,698              | 0                  | 1,943,003           | 151   | 1063   | 0             | 820    | 243              | 108            | 142    | 63    | 0       | 44    |
| DEC    | 1,001              | 641,123            | 263,877             | 686   | 1076   | 0             | 165    | 257              | 108            | 218    | 64    | 0       | 7     |

The total amount injected in 2013 is:

Colour DATE: 1/28/14

| Map<br>Seq. | Miles to<br>DW1 | WELLNAME             | #   | <u>APINO</u> | Perf<br>Top | Perf<br>Bottom | <u>Total</u><br><u>Depth</u> | P&A Date  | ULSTR        | OPERATOR         | RESERVOIR       | Status  | <u>Pen.</u><br>Inj.<br>Zone |
|-------------|-----------------|----------------------|-----|--------------|-------------|----------------|------------------------------|-----------|--------------|------------------|-----------------|---------|-----------------------------|
| 1           | 0.00            | DISPOSAL             | 1   | 30-045-29002 | 3276        | 3514           | 3514                         |           | I-27-29N-11W | WESTERN REFINING | MESAVERDE       | INJ     | Yes                         |
| 2           | 0.11            | DAVIS GAS COM F      | 1   | 30-045-07825 | 6157        | 6298           | 6298                         | 19-Jan-94 | I-27-29N-11W | BP AMERICA       | DAKOTA          | P&A     | Yes                         |
| 3           | 0.12            | DAVIS GAS COM G      | 1   | 30-045-23554 | 2827        | 2839           | 2839                         |           | I-27-29N-11W | XTO ENERGY, INC  | CHACRA          | Shallow | No                          |
| 4           | 0.15            | DAVIS GAS COM F      | 1R  | 30-045-30833 | 5314        | 5646           | 6177                         |           | I-27-29N-11W | XTO ENERGY, INC  | GALLUP          | Deep    | Yes                         |
| 5           | 0.16            | Davis Pooled Unit    | 1   | 30-045-07812 |             |                | 1717                         | 18-Oct-82 | I-27-29N-11W | Pre-Ongard       | PICTURED CLIFFS | P&A     | No                          |
| 6           | 0.18            | JACQUE               | 1   | 30-045-34463 | 1543        | 1714           | 1714                         |           | I-27-29N-11W | HOLCOMB O&G      | FRUITLAND COAL  | СВМ     | No                          |
| 7           | 0.23            | JACQUE               | 2   | 30-045-34409 | 1483        | 1689           | 1689                         |           | H-27-29N-11W | HOLCOMB O&G      | FRUITLAND COAL  | СВМ     | No                          |
| 8           | 0.23            | Davis PU/FB Umbarger | 2   | 30-045-07883 |             |                | 1800                         | 18-Aug-55 | H-27-29N-11W | Pre-Ongard       |                 | P&A     | No                          |
| 9           | 0.24            | DAVIS GAS COM F      | 1E  | 30-045-24084 | 2701        | 2810           | 6262                         |           | H-27-29N-11W | XTO ENERGY, INC  | CHACRA          | Shallow | Yes                         |
| 10          | 0.41            | CONGRESS             | 18  | 30-045-25673 | 1680        | 1770           | 5808                         |           | K-27-29N-11W | Burlington       | PICTURED CLIFFS | Shallow | Yes                         |
| 11          | 0.49            | LAUREN KELLY         | 1   | 30-045-27361 | 1326        | 1354           | 1354                         |           | F-27-29N-11W | MANANA GAS INC   | FRUITLAND SAND  | Shallow | No                          |
| 12          | 0.49            | MANGUM               | 1E  | 30-045-24673 | 6024        | 6160           | 6160                         |           | F-27-29N-11W | Burlington       | DAKOTA          | Deep    | Yes                         |
| 13          | 0.51            | CALVIN               | 1   | 30-045-12003 | 6176        | 6348           | 6348                         |           | M-26-29N-11W | Burlington       | DAKOTA          | Deep    | Yes                         |
| 14          | 0.52            | MARIAN S             | 1   | 30-045-27365 | 2578        | 2710           | 2710                         |           | F-27-29N-11W | MANANA GAS INC   | CHACRA          | Shallow | No                          |
| 15          | 0.55            | MANGUM               | 1   | 30-045-07835 | 1388        | 1661           | 6214                         |           | L-27-29N-11W | Burlington       | FRUITLAND COAL  | CBM     | Yes                         |
| 16          | 0.56            | Black Diamond        | 1   | 30-045-07896 |             |                | 800                          | 09-Nov-78 | C-27-29N-11W | Pre-Ongard       |                 | P&A     | No                          |
| 17          | 0.57            | DAVIS GAS COM J      | 1   | 30-045-25329 | 1462        | 1645           | 4030                         |           | F-26-29N-11W | HOLCOMB O&G      | FRUITLAND COAL  | CBM     | Yes                         |
| 18          | 0.58            | SULLIVAN GAS COM D   | 1E  | 30-045-24083 | 6086        | 6242           | 6242                         |           | F-26-29N-11W | XTO ENERGY, INC  | DAKOTA          | Deep    | Yes                         |
| 19          | 0.60            | CONGRESS             | 16  | 30-045-25657 | 6086        | 6148           | 6148                         |           | A-34-29N-11W | Burlington       | GALLUP          | Deep    | Yes                         |
| 20          | 0.64            | CALVIN               | 100 | 30-045-31118 | 1468        | 1760           | 1760                         |           | N-26-29N-11W | Burlington       | FRUITLAND COAL  | CBM     | No                          |
| 21          | 0.64            | SUMMIT               | 9   | 30-045-24574 | 2747        | 2857           | 2857                         |           | A-34-29N-11W | Burlington       | CHACRA          | Shallow | No                          |
| 22          | 0.64            | CONGRESS             | 9   | 30-045-24572 | 2746        | 2869           | 2869                         |           | N-26-29N-11W | ENERGEN          | CHACRA          | Shallow | No                          |
| 23          | 0.64            | Garland "B"          | 1   | 30-045-07903 | 1664        | 1747           | 1747                         | 27-Jun-75 | M-27-29N-11W | Pre-Ongard       | PICTURED CLIFFS | P&A     | No                          |
| 24          | 0.65            | SUMMIT               | 15  | 30-045-25707 | 5326        | 5970           | 5970                         |           | C-34-29N-11W | ENERGEN          | GALLUP          | Deep    | Yes                         |

Table 2

| Map<br>Seq. | Miles to<br>DW1 | WELLNAME           | #  | APINO        | Perf<br>Top | Perf<br>Bottom | Total<br>Depth | P&A Date  | ULSTR        | OPERATOR        | RESERVOIR         | <u>Status</u> | Pen.<br>Inj.<br>Zone |
|-------------|-----------------|--------------------|----|--------------|-------------|----------------|----------------|-----------|--------------|-----------------|-------------------|---------------|----------------------|
| 25          | 0.65            | GARLAND            | 3  | 30-045-24573 | 2668        | 2790           | 2790           |           | M-27-29N-11W | ENERGEN         | CHACRA            | Shallow       | No                   |
| 26          | 0.67            | CALVIN             | 3  | 30-045-25612 | 5295        | 5870           | 5870           |           | K-26-29N-11W | Burlington      | GALLUP            | Deep          | Yes                  |
| 27          | 0.68            | GARLAND B          | 1R | 30-045-21732 | 1648        | 1678           | 1678           |           | M-27-29N-11W | Burlington      | PICTURED CLIFFS   | Shallow       | No                   |
| 28          | 0.70            | NANCY HARTMAN      | 2  | 30-045-26721 | 2627        | 2754           | 2754           |           | P-22-29N-11W | MANANA GAS INC  | CHACRA            | Shallow       | No                   |
| 29          | 0.71            | GRACE PEARCE       | 1  | 30-045-07959 | 1380        | 1466           | 1466           | 02-Mar-00 | O-22-29N-11W | JOHN C PICKETT  | FRUITLAND SAND    | P&A           | No                   |
| 30          | 0.72            | HARTMAN            | 1  | 30-045-07961 | 6072        | 6274           | 6274           | 14-Jun-99 | P-22-29N-11W | MANANA GAS INC  | DAKOTA            | P&A           | Yes                  |
| 31          | 0.73            | Davis              | 1  | 30-045-07776 |             |                | 1917           | 11-Nov-58 | M-26-29N-11W | Pre-Ongard      | (N/A)             | P&A           | No                   |
| 32          | 0.75            | MARY JANE          | 1  | 30-045-26731 | 2622        | 2732           | 2732           |           | N-22-29N-11W | MANANA GAS INC  | CHACRA            | Shallow       | No                   |
| 33          | 0.76            | ROYAL FLUSH        | 1  | 30-045-34312 | 1440        | 1608           | 1608           |           | N-22-29N-11W | MANANA GAS INC  | FRUITLAND COAL    | CBM           | No                   |
| 34          | 0.79            | соок               | 1  | 30-045-07940 | 6052        | 6226           | 6226           |           | N-22-29N-11W | MANANA GAS INC  | DAKOTA            | Deep          | Yes                  |
| 35          | 0.79            | соок               | 2  | 30-045-13089 | 1390        | 1410           | 1410           |           | N-22-29N-11W | MANANA GAS INC  | FRUITLAND SAND    | Shallow       | No                   |
| 36          | 0.82            | SHELLY             | 2  | 30-045-20755 | 1726        | 1736           | 1736           |           | G-34-29N-11W | CHAPARRAL O&G   | PICTURED CLIFFS   | Shallow       | No                   |
| 37          | 0.82            | HARE               | 3  | 30-545-02123 |             |                | 2335           |           | M-23-29N-11W | Pre-Ongard      | FARMINGTON        | DRY           | No                   |
| 38          | 0.84            | CALVIN             | 1F | 30-045-33093 | 6172        | 6430           | 6430           |           | J-26-29N-11W | Burlington      | DAKOTA            | Deep          | Yes                  |
| 39          | 0.85            | SULLIVAN GAS COM D | 1  | 30-045-07733 | 6047        | 6160           | 6160           |           | B-26-29N-11W | XTO ENERGY, INC | DAKOTA            | Deep          | Yes                  |
| 40          | 0.85            | ELLEDGE FEDERAL 34 | 11 | 30-045-24834 | 1060        | 1064           | 1525           |           | D-34-29N-11W | MCELVAIN O&G    | FARMINGTON,NORTH  | Shallow       | No                   |
| 41          | 0.89            | CONGRESS           | 7E | 30-045-24835 | 6202        | 6347           | 6347           |           | F-34-29N-11W | Burlington      | DAKOTA            | Deep          | Yes                  |
| 42          | 0.90            | HARE               | 4  | 30-545-02124 |             |                | 2015           |           | O-23-29N-11W | Pre-Ongard      | FARMINGTON        | DRY           | No                   |
| 43          | 0.90            | CONGRESS           | 4E | 30-045-24837 | 2784        | 2906           | 6328           |           | E-35-29N-11W | Burlington      | CHACRA            | Shallow       | Yes                  |
| 44          | 0.90            | CONGRESS           | 15 | 30-045-25675 | 5369        | 5943           | 5943           |           | C-35-29N-11W | Burlington      | GALLUP            | Deep          | Yes                  |
| 45          | 0.90            | ASHCROFT SWD       | 1  | 30-045-30788 | 6952        | 7070           | 7382           |           | B-26-29N-11W | XTO ENERGY, INC | MORRISON BLUFF EN | INJ           | Yes                  |
| 46          | 0.90            | LEA ANN            | 1  | 30-045-20752 | 1776        | 1790           | 1790           | 18-Dec-99 | E-35-29N-11W | CHAPARRAL O&G   | PICTURED CLIFFS   | P&A           | No                   |
| 47          | 0.94            | CONGRESS           | 5  | 30-045-07672 | 6171        | 6340           | 6340           |           | G-34-29N-11W | Burlington      | DAKOTA            | Deep          | Yes                  |
| 48          | 0.94            | Viles EE           | 1  | 30-045-07751 |             |                | 870            |           | P-28-29N-11W | Pre-Ongard      |                   | DRY           | No                   |

Table 2

| Map<br>Seq. | Miles to<br>DW1 | WELLNAME                 | Ħ  | APINO        | Perf<br>Top | Perf<br>Bottom | <u>Total</u><br><u>Depth</u> | P&A Date  | ULSTR        | OPERATOR        | RESERVOIR       | Status  | Pen.<br>Inj.<br>Zone |
|-------------|-----------------|--------------------------|----|--------------|-------------|----------------|------------------------------|-----------|--------------|-----------------|-----------------|---------|----------------------|
| 49          | 0.95            | Sullivan                 | 1X | 30-045-29107 |             |                | 900                          | 23-Jun-55 | G-26-29N-11W | Pre-Ongard      | PICTURED CLIFFS | P&A     | No                   |
| 50          | 0.97            | Madsen Selby Pooled Unit | 2  | 30-045-07895 |             |                | 1600                         | 05-May-78 | A-28-29N-11W | Pre-Ongard      | PICTURED CLIFFS | P&A     | No                   |
| 51          | 0.97            | Masden-Selby             | 3  | 30-045-07762 |             |                | 600                          | 05-Jun-78 | A-28-29N-11W | Pre-Ongard      |                 | P&A     | No                   |
| 52          | 0.97            | MASDEN GAS COM           | 1  | 30-045-07894 | 6023        | 6125           | 6125                         |           | A-28-29N-11W | XTO ENERGY, INC | DAKOTA          | Deep    | Yes                  |
| 53          | 0.97            | Sullivan                 | 1  | 30-045-07870 |             |                | 1420                         | 31-Aug-53 | G-26-29N-11W | Pre-Ongard      | PICTURED CLIFFS | P&A     | No                   |
| 54          | 0.98            | CONGRESS                 | 1  | 30-045-07674 |             |                | PC                           | 30-Oct-53 | J-34-29N-11W | Pre-Ongard      | PICTURED CLIFFS | P&A     | No                   |
| 55          | 0.98            | EARL B SULLIVAN          | 1  | 30-045-23163 | 2750        | 2761           | 2761                         |           | B-26-29N-11W | XTO ENERGY, INC | CHACRA          | Shallow | No                   |
| 56          | 0.99            | STATE GAS COM BS         | 1  | 30-045-23550 | 1470        | 1648           | 2761                         |           | K-23-29N-11W | HOLCOMB O&G     | FRUITLAND COAL  | СВМ     | No                   |
| 57          | 0.99            | PEARCE GAS COM           | 1  | 30-045-07985 | 6154        | 6182           | 6182                         | 10-Mar-97 | K-23-29N-11W | BP AMERICA      | DAKOTA          | P&A     | Yes                  |
| 58          | 0.99            | CHAPARRAL                | 1  | 30-045-20609 | 1712        | 1731           | 1731                         |           | E-34-29N-11W | CHAPARRAL O&G   | PICTURED CLIFFS | Shallow | No                   |
| 59          | 0.99            | CONGRESS                 | 2  | 30-545-02151 |             |                | FrtInd                       |           | -34-29N-11W  | Pre-Ongard      | FRUITLAND SAND  | DRY     | No                   |

|               | <u>Total</u> | Pen Inj. Zone |    |  |  |
|---------------|--------------|---------------|----|--|--|
| <u>Status</u> | Wells        | Yes           | No |  |  |
| P&A           | 15           | 3             | 12 |  |  |
| Dry           | 4            | 0             | 4  |  |  |
| INJ           | 2            | 2             | 0  |  |  |
| СВМ           | 7            | 2             | 5  |  |  |
| Shallow       | 17           | 3             | 14 |  |  |
| Deep          | 14           | 14            | 0  |  |  |
| Total         | 59           | 24            | 35 |  |  |

Injection Well 2013 Quarterly Analytical Summary

| r                                                | Toxicity        |             |              |                |                |
|--------------------------------------------------|-----------------|-------------|--------------|----------------|----------------|
|                                                  | Characteristics | 1st Quarter | 2nd Quarter  | 3rd Quarter    | 4th Quarter    |
| Volatile Organic Compounds (ug/L)                | Characteristics | 13t Quarter | 4/24/2013    | 7/22/2013      | 11/7/2013      |
| 1,1,1,2-Tetrachloroethane                        |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| 1,1,1-Trichloroethane                            | ,               | ns          | <2.0         | < 1.0          | < 1.0          |
| 1,1,2,2-Tetrachloroethane                        |                 | ns          | <4.0         | < 2.0          | < 2.0          |
| 1,1,2-Trichloroethane                            |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| 1,1-Dichloroethane                               |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| 1,1-Dichloroethene                               |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| 1,1-Dichloropropene                              |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| 1,2,3-Trichlorobenzene<br>1,2,3-Trichloropropane |                 | ns          | <2.0<br><4.0 | < 1.0<br>< 2.0 | < 1.0<br>< 2.0 |
| 1,2,4-Trichlorobenzene                           |                 | ns<br>ns    | <2.0         | < 1.0          | < 1.0          |
| 1,2,4-Trientorobenzene                           |                 | ns          | <2.0         | < 1.0          | 1.0            |
| 1,2-Dibromo-3-chloropropane                      |                 | ns          | <4.0         | < 2.0          | < 2.0          |
| 1,2-Dibromoethane (EDB)                          |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| 1,2-Dichlorobenzene                              |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| 1,2-Dichloroethane (EDC)                         | 500             | ns          | <2.0         | < 1.0          | < 1.0          |
| 1,2-Dichloropropane                              |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| 1,3,5-Trimethylbenzene                           |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| 1,3-Dichlorobenzene                              |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| 1,3-Dichloropropane                              |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| 1,4-Dichlorobenzene                              | 7500            | ns          | <2.0         | < 1.0          | < 1.0          |
| I-Methylnaphthalene                              |                 | ns          | <8.0         | < 4.0          | < 4.0          |
| 2,2-Dichloropropane                              |                 | ns          | <4.0         | < 2.0          | < 2.0          |
| 2-Butanone                                       |                 | ns          | <20          | < 10           | < 10           |
| 2-Chlorotoluene                                  |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| 2-Hexanone                                       |                 | ns          | <20          | < 10           | < 10           |
| 2-Methylnaphthalene                              |                 | ns          | <8.0         | < 4.0          | < 4.0          |
| 4-Chlorotoluene                                  |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| 4-Isopropyltoluene                               |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| 4-Methyl-2-pentanone                             |                 | ns          | <20<br>81    | < 10<br>78     | < 10<br>34     |
| Acetone<br>Benzene                               | 500             | ns          | <2.0         | < 1.0          | < 1.0          |
| Bromobenzene                                     | 300             | ns<br>ns    | <2.0         | < 1.0          | < 1.0          |
| Bromodichloromethane                             |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| Bromoforin                                       |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| Bromomethane                                     |                 | ns          | <6.0         | < 3.0          | < 3.0          |
| Carbon disulfide                                 |                 | ns          | <20          | < 10           | < 10           |
| Carbon Tetrachloride                             | 500             | ns          | <2.0         | < 1.0          | < 1.0          |
| Chlorobenzene                                    | 100000          | ns          | <2.0         | < 1.0          | < 1.0          |
| Chloroethane                                     |                 | ns          | <4.0         | < 2.0          | < 2.0          |
| Chloroform                                       | 6000            | ns          | <2.0         | < 1.0          | < 1.0          |
| Chloromethane                                    |                 | ns          | <6.0         | < 3.0          | < 3.0          |
| cis-1,2-DCE                                      |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| cis-1,3-Dichloropropene                          |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| Dibroinochloromethane                            |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| Dibromomethane                                   |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| Dichlorodifluoromethane                          |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| Ethylbenzene<br>Hexachlorohutadiene              | 500             | ns          | <2.0<br><2.0 | < 1.0<br>< 1.0 | < 1.0<br>< 1.0 |
| Isopropylbenzene                                 | 300             | ns<br>ns    | <2.0         | < 1.0          | < 1.0          |
| Methyl tert-butyl ether (MTBE)                   |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| Methylene Chloride                               |                 | ns          | <6.0         | < 3.0          | < 3.0          |
| Naphthalene                                      |                 | ns          | <4.0         | < 2.0          | < 2.0          |
| n-Butylbenzene                                   |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| n-Propylbenzene                                  |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| sec-Butylbenzene                                 |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| Styrene                                          |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| tert-Butylbenzene                                |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| Tetrachloroethene (PCE)                          |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| Toluene                                          |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| trans-1,2-DCE                                    |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| trans-1,3-Dichloropropene                        |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| Trichloroethene (TCE)                            |                 | ns          | <2.0         | < 1.0          | < 1.0          |
| Trichlorofluoromethane                           | 200             | ns          | <2.0         | < 1.0          | < 1.0          |
| Vinyl chloride                                   | 200             | ns          | <2.0         | < 1.0          | < 1.0          |
| Xylenes, Total                                   | L               | ns          | <3.0         | < 1.5          | < 1.5          |

Injection Well 2013 Quarterly Analytical Summary

|                                             | Toxicity        | 1-4 0       | 2-40          | 2-4 0        | Ath Owerton  |
|---------------------------------------------|-----------------|-------------|---------------|--------------|--------------|
| Semi-Volatile Organic Compounds (ug/L)      | Characteristics | 1st Quarter | 2nd Quarter   | 3rd Quarter  | 4th Quarter  |
| 1,2,4-Trichlorobenzene                      |                 | ns          | < 50          | <50          | < 50         |
| 1,2-Dichlorobenzene                         |                 | ns          | < 50          | <50          | < 50         |
| 1,3-Dichlorobenzene                         |                 | ns          | < 50          | <50          | < 50         |
| 1,4-Dichlorobenzene                         | 7500            | ns          | < 50          | <50          | < 50         |
| 1-Methylnaphthalene                         |                 | ns          | < 50          | <50          | < 50         |
| 2,4,5-Trichlorophenol                       | 2000            | ns          | < 50          | <50          | < 50<br>< 50 |
| 2,4,6-Trichlorophenol<br>2,4-Dichlorophenol | 2000            | ns          | < 50<br>< 100 | <50<br><100  | < 100        |
| 2,4-Dimethylphenol                          |                 | ns<br>ns    | < 50          | <50          | < 50         |
| 2,4-Dinitrophenol                           |                 | ns          | < 100         | <100         | < 100        |
| 2,4-Dinitrotoluene                          | 130             | ns          | < 50          | < 50         | < 50         |
| 2,6-Dinitrotoluene                          |                 | ns          | < 50          | < 50         | < 50         |
| 2-Chloronaphthalene                         |                 | ns          | < 50          | < 50         | < 50         |
| 2-Chlorophenol                              |                 | ns          | < 50          | < 50         | < 50         |
| 2-Methylnaphthalene                         |                 | ns          | < 50          | < 50         | < 50         |
| 2-Methylphenol                              |                 | ns          | < 50          | < 50         | < 50         |
| 2-Nitroaniline                              | İ               | ns          | < 50          | < 50         | < 50         |
| 2-Nitrophenol                               |                 | πs          | < 50          | < 50         | < 50         |
| 3,3'-Dichlorobenzidine                      |                 | ns          | < 50<br>< 50  | < 50<br>< 50 | < 50<br>< 50 |
| 3+4-Methylphenol 3-Nitroaniline             | ł               | ns          | < 50          | < 50         | < 50         |
| 4,6-Dinitro-2-methylphenol                  |                 | ns<br>ns    | < 100         | < 100        | < 100        |
| 4-Bromophenyl phenyl ether                  | •               | ns          | < 50          | < 50         | < 50         |
| 4-Chloro-3-methylphenol                     |                 | ns          | < 50          | < 50         | < 50         |
| 4-Chloroaniline                             |                 | ns          | < 50          | < 50         | < 50         |
| 4-Chlorophenyl phenyl ether                 | · ·             | ns          | < 50          | < 50         | < 50         |
| 4-Nitroaniline                              | ]               | ns          | < 50          | < 50         | < 50         |
| 4-Nitrophenol                               |                 | ns          | < 50          | < 50         | < 50         |
| Acenaphthene                                |                 | ns          | < 50          | <50          | < 50         |
| Acenaphthylene                              |                 | ns          | < 50          | <50          | < 50         |
| Aniline                                     |                 | ns          | < 50          | <50          | < 50         |
| Anthracene                                  |                 | ns          | < 50<br>< 50  | <50<br><50   | < 50<br>< 50 |
| Azobenzene<br>Benz(a)anthracene             |                 | ns          | < 50          | <50<br><50   | < 50         |
| Benzo(a)pyrene                              | ł               | ns<br>ns    | < 50          | <50          | < 50         |
| Benzo(b)fluoranthene                        |                 | ns          | < 50          | <50          | < 50         |
| Benzo(g,h,i)perylene                        | t               | ns          | < 50          | <50          | < 50         |
| Benzo(k)fluoranthene                        | i               | ns          | < 50          | <50          | < 50         |
| Benzoic acid                                |                 | ns          | < 100         | <100         | <200         |
| Benzyl alcohol                              |                 | ns          | < 50          | < 50         | < 50         |
| Bis(2-chloroethoxy)methane                  | Ì               | ns          | < 50          | <50          | < 50         |
| Bis(2-chloroethyl)ether                     |                 | ns          | < 50          | <50          | < 50         |
| Bis(2-chloroisopropyl)ether                 | ļ               | ns          | < 50          | <50          | < 50         |
| Bis(2-ethylhexyl)phthalate                  |                 | ns          | < 50          | <50          | < 50         |
| Butyl benzyl phthalate                      | l               | ns          | < 50          | <50          | < 50         |
| Carbazole<br>Chrysene                       | -               | ns          | < 50<br>< 50  | <50<br><50   | < 50<br>< 50 |
| Dibenz(a,h)anthracene                       | ł               | ns<br>ns    | < 50<br>< 50  | <50<br><50   | < 50         |
| Dibenzofuran                                | i               | ns          | < 50          | <50          | < 50         |
| Diethyl phthalate                           | 1               | ns          | < 50          | <50          | < 50         |
| Dimethyl phthalate                          |                 | ns          | < 50          | <50          | < 50         |
| Di-n-butyl phthalate                        |                 | ns          | < 50          | <50          | < 50         |
| Di-n-octyl phthalate                        |                 | ns          | < 100         | <50          | < 100        |
| Fluoranthene                                |                 | ns          | < 50          | <50          | < 50         |
| Fluorene                                    |                 | ns          | < 50          | <50          | < 50         |
| Hexachlorobenzene                           | 130             | ns          | < 50          | <50          | < 50         |
| Hexachlorogyalopentadiene                   | 500             | ns          | < 50<br>< 50  | <50<br><50   | < 50<br>< 50 |
| Hexachlorocyclopentadiene Hexachloroethane  | 3000            | ns          | < 50<br>< 50  | <50<br><50   | < 50<br>< 50 |
| Indeno(1,2,3-cd)pyrene                      | 5000            | ns<br>ns    | < 50          | <50<br><50   | < 50         |
| Isophorone                                  |                 | ns          | < 50          | <50<br><50   | < 50         |
| Naphthalene                                 |                 | ns          | < 50          | <50          | < 50         |
| Nitrobenzene                                | 2000            | ns          | < 50          | <50          | < 50         |
| N-Nitrosodimethylamine                      |                 | ns          | < 50          | <50          | < 50         |
| N-Nitrosodi-n-propylamine                   |                 | ns          | < 50          | <50          | < 50         |
| N-Nitrosodiphenylamine                      |                 | ns          | < 50          | <50          | < 50         |
| Pentachlorophenol                           | 100000          | ns          | < 100         | <100         | < 100        |
| Phenanthrene                                |                 | ns          | < 50          | <50          | < 50         |
| Phenol                                      |                 | ns          | < 50          | <50          | < 50         |
| Pyrene                                      | 5000            | ns          | < 50          | <50          | < 50         |
| Pyridine                                    | 5000            | ns          | < 50          | <50          | < 50         |

Injection Well 2013 Quarterly Analytical Summary

|                                          | Toxicity        |             |             |             |             |
|------------------------------------------|-----------------|-------------|-------------|-------------|-------------|
|                                          | Characteristics | 1st Quarter | 2nd Quarter | 3rd Quarter | 4th Quarter |
| General Chemistry (mg/L unless otherwi   | se stated)      |             |             |             |             |
| Specific Conductance (umhos/cm)          |                 | ns          | 5100        | 3400        | 4400        |
| Chloride                                 |                 | ns          | 1400        | 840         | 1300        |
| Sulfate                                  |                 | ns          | 11          | 39          | 23          |
| Total Dissolved Solids                   |                 | ns          | 3360        | 2140        | 2940        |
| pH (pH Units)                            | Ì               | ns          | 7.40        | 7.41        | 7.42        |
| Bicarbonate (As CaCO3)                   |                 | ns          | 490         | 340         | 430         |
| Carbonate (As CaCO3)                     | i               | ns          | <2.0        | <2.0        | <2.0        |
| Calcium                                  | 1               | ns          | 230         | 100         | 190         |
| Magnesium                                |                 | ns          | 51          | 26          | 51          |
| Potassium                                | 1               | ns          | 17          | 10          | 21          |
| Sodium                                   | 1               | ns          | 750         | 350         | 670         |
| Total Alkalinity (as CaCO3)              |                 | ns          | 490         | 340         | 430         |
| Total Metals (mg/L)                      |                 |             |             |             |             |
| Arsenic                                  | 5.0             | ns          | < 0.020     | < 0.020     | < 0.020     |
| Barium                                   | 100.0           | ns          | 0.47        | 0.27        | 0.34        |
| Cadmium                                  | 1.0             | ns          | < 0.0020    | <0.0020     | < 0.0020    |
| Chromium                                 | 5.0             | ns          | < 0.0060    | < 0.0060    | 0.014       |
| Lead                                     | 5               | ns          | 0.0066      | 0.0063      | < 0.0050    |
| Selenium                                 | 1               | ns          | < 0.050     | <0.050 *    | < 0.050     |
| Silver                                   | 5               | ns          | < 0.0050    | <0.050      | < 0.0050    |
| Mercury                                  | 0.2             | ns          | < 0.0010    | na          | < 0.00020   |
| gnitability, Corrosivity, and Reactivity |                 |             |             | The Mark    |             |
| Reactive Cyanide (mg/L)                  |                 | ns          | <0.1        | <0.01       | <1          |
| Reactive Sulfide (mg/kg)                 |                 | ns          | <1.0        | <1.0        | 2.32        |
| Ignitability (°F)                        | < 140° F        | ns          | >200        | >200        | >200        |
| Corrosivity (ph Units)                   | <2 or≥ 12.5     | ns          | 7.28        | 6.74        | 6.98        |

Notes:

\* = Selenium was qualified as an estimate due to the fact that the opening QC was outside of the normal accepted limits.

na = inadvertantly not analyzed by the laboratory.

## APPENDIX A

#### Krakow, Matt

From:

Chavez, Carl J, EMNRD [CarlJ.Chavez@state.nm.us]

Sent:

Wednesday, September 18, 2013 1:04 PM

To:

Krakow, Matt

Cc:

Kuehling, Monica, EMNRD

Subject:

RE: MIT, Bradenhead and high pressure test

Attachments:

C-103 Sundry Approval 9-18-2013.pdf

Follow Up Flag: Flag Status:

Follow up Flagged

Matt:

Please find attached the OCD C-103 Sundry approval of the above subject tests.

Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Drive, Santa Fe, New Mexico 87505

Office: (505) 476-3490

E-mail: CarlJ.Chavez@State.NM.US

Website: http://www.emnrd.state.nm.us/ocd/

"Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of the

Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at

http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental

From: Krakow, Matt [mailto:Matt.Krakow@wnr.com]

Sent: Tuesday, September 17, 2013 2:04 PM

To: Chavez, Carl J, EMNRD

Subject: RE: MIT, Bradenhead and high pressure test

Carl,

The High Pressure Test is to verify that the well shuts off below the approved maximum well pressure so it is not the Fall Off Test. The MIT is the standard Annulus Test. We have coordinated it all with Monica as well.

THANKS,
MATTHEW KRAKOW
Environmental Coordinator

## Western Refining Southwest Inc.

111 County Road 4990 Bloomfield, NM 87413

P: 505-632-4169 F: 505-632-4021

matt.krakow@wnr.com

www.wnr.com

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]

Sent: Tuesday, September 17, 2013 1:20 PM

To: Krakow, Matt

Cc: Kuehling, Monica, EMNRD

Subject: RE: MIT, Bradenhead and high pressure test

Matt:

Good afternoon. The MIT is the Standard Annulus Test I believe? What is the "High Pressure Shutdown Test"? Is this a Fall-Off Test?

Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Drive, Santa Fe, New Mexico 87505

Office: (505) 476-3490

E-mail: CarlJ.Chavez@State.NM.US

Website: http://www.emnrd.state.nm.us/ocd/

"Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of the

Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at

http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental

From: Krakow, Matt [mailto:Matt.Krakow@wnr.com]

Sent: Tuesday, September 17, 2013 1:05 PM

To: Chavez, Carl J, EMNRD

Subject: MIT, Bradenhead and high pressure test

Carl,

Western Refining has scheduled a MIT, Bradenhead and High Pressure Test on Thursday Sept. 19. Monica Kuehling is scheduled to observe the tests. I have attached the C-103.

THANKS,
MATTHEW KRAKOW
Environmental Coordinator

Western Refining Southwest Inc.

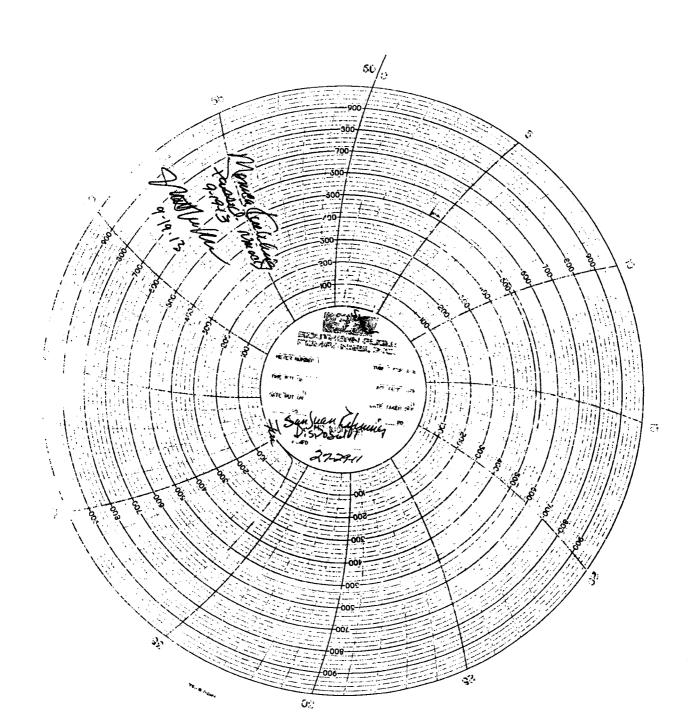
111 County Road 4990 Bloomfield, NM 87413

P: 505-632-4169 F: 505-632-4021

matt.krakow@wnr.com

www.wnr.com

| Submit 1 Copy To Appropriate District Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | State of New Me                                                                                                                                     | xico                                  | Form C-103                                       |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------|--|--|--|
| District 1 - (575) 393-6161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Energy, Minerals and Natu                                                                                                                           | ral Resources                         | Revised August 1, 2011                           |  |  |  |
| 1625 N. French Dr., Hobbs, NM 88240<br>District II - (575) 748-1283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                     |                                       | WELL API NO.<br>30-045-29002-00                  |  |  |  |
| 811 S. First St., Artesia, NM 88210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OIL CONSERVATION                                                                                                                                    |                                       | 5. Indicate Type of Lease                        |  |  |  |
| <u>District III</u> (505) 334-6178<br>1000 Rio Brazos Rd., Aztec, NM 87410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1220 South St. Fran                                                                                                                                 |                                       | STATE ☐ FEE ☒                                    |  |  |  |
| District IV - (505) 476-3460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Santa Fe, NM 87                                                                                                                                     | <b>75</b> 05                          | 6. State Oil & Gas Lease No.                     |  |  |  |
| 1220 S. St. Francis Dr., Santa Fe, NM<br>87305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                     |                                       | N/A                                              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SUNDRY NOTICES AND REPORTS ON WELLS                                                                                                                 |                                       |                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (DO NOT USE THIS FORM FOR PROPOSALS TO DRILL OR TO DEEPEN OR PLUG BACK TO A DIFFERENT RESERVOIR. USE "APPLICATION FOR PERMIT" (FORM C-101) FOR SUCH |                                       |                                                  |  |  |  |
| PROPOSALS.)  1. Type of Well: Oil Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gus Well 🔀 Other – (Disposal V                                                                                                                      | U-11\                                 | 8. Well Number: #001                             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fining Co. / Western Refining South                                                                                                                 |                                       | 9. OGRID Number: 037218                          |  |  |  |
| Bloomfield Refinery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                     | repopulation                          | 7. OGACID I (MARINO). 03/216                     |  |  |  |
| 3. Address of Operator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                     |                                       | 10. Pool name or Wildcat:                        |  |  |  |
| # 50 Road 4990, Bloomfield, NM,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87413                                                                                                                                               | . 1911                                | Blanco/Mesa Verde                                |  |  |  |
| 4. Well Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                       |                                                  |  |  |  |
| Unit Letter I : 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 142 feet from the south                                                                                                                             | line and12:                           | 50 feet from the East line                       |  |  |  |
| Section 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Township 29 S                                                                                                                                       | Range 11 E                            | NMPM County San Juan                             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11. Elevation (Show whether DR,                                                                                                                     | RKB, RT, GR, etc.,                    |                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                       |                                                  |  |  |  |
| 12 Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Appropriate Box to Indicate N                                                                                                                       | ature of Notice                       | Report or Other Date                             |  |  |  |
| 12. CHOCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Appropriate box to maicate it                                                                                                                       | aime of money,                        | Report of Outer Data                             |  |  |  |
| NOTICE OF IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ITENTION TO:                                                                                                                                        | SUB                                   | SEQUENT REPORT OF:                               |  |  |  |
| PERFORM REMEDIAL WORK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PLUG AND ABANDON 🔲                                                                                                                                  | REMEDIAL WOR                          |                                                  |  |  |  |
| TEMPORARILY ABANDON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHANGE PLANS                                                                                                                                        | COMMENCE DRI                          |                                                  |  |  |  |
| PULL OR ALTER CASING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MULTIPLE COMPL                                                                                                                                      | CASING/CEMEN                          | TJOB []                                          |  |  |  |
| DOWNHOLE COMMINGLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                     |                                       |                                                  |  |  |  |
| OTHER: Annual MIT, Bradenhead,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | High Pressure Shutdown Test 🗵                                                                                                                       | OTHER:                                |                                                  |  |  |  |
| 13. Describe proposed or comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oleted operations. (Clearly state all p                                                                                                             | pertinent details, an                 | d give pertinent dates, including estimated date |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     | C. For Multiple Co                    | mpletions: Attach wellbore diagram of            |  |  |  |
| proposed completion or rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ompletion.                                                                                                                                          |                                       |                                                  |  |  |  |
| Western Refining Southwest, Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bloomfield Refinery requests permi                                                                                                                  | ission to perform th                  | e annual MIT, Bradenhead and High Pressure       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                       | on Thursday, September 19th, 2013. Monica        |  |  |  |
| Kuchling has agreed to be here to m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                     | •                                     | , , , , , , , , , , , , , , , , , , , ,          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                       |                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                       |                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                       |                                                  |  |  |  |
| Spud Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rig Release Da                                                                                                                                      | ite:                                  |                                                  |  |  |  |
| - L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                     | <u> </u>                              |                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                       |                                                  |  |  |  |
| I hereby certify that the information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | above is true and complete to the be                                                                                                                | est of my knowledg                    | e and belief.                                    |  |  |  |
| 20 -11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>[                                    </i>                                                                                                        |                                       |                                                  |  |  |  |
| SIGNATURE /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TITLE EO                                                                                                                                            | vironmental Coord                     | inator DATE 9/17/2013                            |  |  |  |
| WAY - WAY A WARE A STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF T | 1 2 2 444                                                                                                                                           | · · · · · · · · · · · · · · · · · · · | 7/1//2015                                        |  |  |  |
| Type or print nameMatthew Kr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | akow E-mail address                                                                                                                                 | : <u>matt.krakow@</u>                 | w.mr.com PHONE: _505-632-4169                    |  |  |  |
| For State Use Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                     | •                                     |                                                  |  |  |  |
| APPROVED BY: Land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | him TITLE Envi                                                                                                                                      | 11-                                   | man aliabasa                                     |  |  |  |
| Conditions of Approval (if apy):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | THILE ENVI                                                                                                                                          | COMMENTAL EN                          | DATE 9/18/2013                                   |  |  |  |




## 7-17-13

# NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

## MECHANICAL INTEGRITY TEST REPORT

|                                                                 | (TA OR UIC)        |                                                                                    |
|-----------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------|
| Date of Test 9-19-13 O  Property Name WS Sul                    |                    | ang API # 30-0                                                                     |
| Property Name Wish Sul                                          | Well # Loc         | cation: Unit I Seco Two Rge //                                                     |
| Land Type:  State Federal Private/ Indian                       | P                  | Water Injection It Water Disposal Gas Injection roducing Oil/Gas essure obervation |
| Temporarily Abandoned Well (Y/N):_                              | TA Expires:        |                                                                                    |
| Casing Pres.  Bradenhead Pres.  Tubing Pres.  Int. Casing Pres. | Tbg. SI Pres       | Max. Inj. Pres                                                                     |
| Pressured annulus up to 550                                     | psi. for 30 mins.  | Test passed failed                                                                 |
| REMARKS:                                                        | 3221               |                                                                                    |
| Variation of the second                                         | 1 3208-3276        | · · · · · · · · · · · · · · · · · · ·                                              |
| Tay pr                                                          | 1 3208 3216        |                                                                                    |
| Welliose to 530                                                 | last 15 min of tes | 54.                                                                                |
| K:115 at 1136                                                   |                    |                                                                                    |
|                                                                 | Witness Nouce      | a Kuhling                                                                          |
| (Position)                                                      |                    | Revised 02-11-02                                                                   |
| mike Charlie witnesse                                           | of the test        | •                                                                                  |





## NEW MEXICO ENERGY, MINERALS & NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION
AZTEC DISTRICT OFFICE
1000 RIO BRAZOS ROAD
AZTEC NM 87410
(505) 334-6178 FAX: (505) 334-6170
http://emnrd.state.nm.us/ocd/District III/3distric.htm

#### BRADENHEAD TEST REPORT

(submit 1 copy to above address) Well No. / Location: Unit / Section / Township Range // Property Name/ Well Status (Shut-In or Producing) Initial PSI: Tubing & Intermediate 1/1 OPEN BRADENHEAD AND INTERMEDIATE TO ATMOSPHERE INDIVIDUALLY FOR 15 MINUTES EACH **PRESSURE** FLOW CHARACTERISTICS Bradenhead **INTERM** Testing BRADENHEAD INTERMEDIATE BH Int Csg Int Csg TIME Steady Flow 5 min 10 min Surges Down to Nothing 15 min 20 min Nothing 25 min Gas & Water 30 min Water If bradenhead flowed water, check all of the descriptions that apply below: CLEAR FRESH SALTY SULFUR BLACK BRADENHEAD **5 MINUTE SHUT-IN PRESSURE** (Position) E-mail address \_\_\_\_

## APPENDIX B



Hall Environmental Analysis Laboratory
4901 Hawkins NE

Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

May 23, 2013

Kelly Robinson

Western Refining Southwest, Inc.

#50 CR 4990

Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: Injection Well 2nd Otr 4-24-13

OrderNo.: 1304A43

#### Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 4/25/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <a href="www.hallenvironmental.com">www.hallenvironmental.com</a> or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109

#### Lab Order 1304A43

Date Reported: 5/23/2013

#### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

Project: Injection Well 2nd Qtr 4-24-13

Collection Date: 4/24/2013 10:15:00 AM

**Lab ID:** 1304A43-001

Matrix: AQUEOUS

Received Date: 4/25/2013 9:10:00 AM

| Analyses                     | Result                                | RL Q   | ıal Units | DF  | Date Analyzed         | Batch  |
|------------------------------|---------------------------------------|--------|-----------|-----|-----------------------|--------|
| EPA METHOD 300.0: ANIONS     | · · · · · · · · · · · · · · · · · · · |        |           |     | Analyst               | JRR    |
| Chloride                     | 1400                                  | 50     | mg/L      | 100 | 4/25/2013 10:59:38 PM | R10139 |
| Sulfate                      | 11                                    | 5.0    | mg/L      | 10  | 4/25/2013 10:47:14 PM | R10139 |
| EPA METHOD 7470: MERCURY     |                                       |        |           |     | Analyst               | : IDC  |
| Mercury                      | ND                                    | 0.0010 | mg/L      | 5   | 4/26/2013 5:09:18 PM  | 7179   |
| EPA 6010B: TOTAL RECOVERABLE | E METALS                              |        |           |     | Analyst               | JLF    |
| Arsenic                      | ND                                    | 0.020  | mg/L      | 1   | 5/3/2013 6:51:56 PM   | 7191   |
| Barium                       | 0.47                                  | 0.020  | mg/L      | 1   | 5/3/2013 6:51:56 PM   | 7191   |
| Cadmium                      | ND                                    | 0.0020 | mg/L      | 1   | 5/3/2013 6:51:56 PM   | 7191   |
| Calcium                      | 230                                   | 5.0    | mg/L      | 5   | 5/6/2013 3:16:19 PM   | 7191   |
| Chromium                     | ND                                    | 0.0060 | mg/L      | 1   | 5/3/2013 6:51:56 PM   | 7191   |
| Lead                         | 0.0066                                | 0.0050 | mg/L      | 1   | 5/3/2013 6:51:56 PM   | 7191   |
| Magnesium                    | 51                                    | 5.0    | mg/L      | 5   | 5/6/2013 3:16:19 PM   | 7191   |
| Potassium                    | 17                                    | 5.0    | mg/L      | 5   | 5/6/2013 3:16:19 PM   | 7191   |
| Selenium                     | ND                                    | 0.050  | mg/L      | 1   | 5/3/2013 6:51:56 PM   | 7191   |
| Silver                       | ND                                    | 0.0050 | mg/L      | 1   | 5/3/2013 6:51:56 PM   | 7191   |
| Sodium                       | 750                                   | 10     | mg/L      | 10  | 5/6/2013 3:18:31 PM   | 7191   |
| EPA METHOD 8270C: SEMIVOLATI | LES                                   |        | ·         |     | Analyst               | : JDC  |
| Acenaphthene                 | ND                                    | 50     | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |
| Acenaphthylene               | ND                                    | 50     | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |
| Aniline                      | ND                                    | 50     | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |
| Anthracene                   | ND                                    | 50     | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |
| Azobenzene                   | ND                                    | 50     | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |
| Benz(a)anthracene            | ND                                    | 50     | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |
| Benzo(a)pyrene               | ND                                    | 50     | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |
| Benzo(b)fluoranthene         | ND                                    | 50     | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |
| Benzo(g,h,i)perylene         | ND                                    | 50     | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |
| Benzo(k)fluoranthene         | ND                                    | 50     | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |
| Benzoic acid                 | ND                                    | 100    | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |
| Benzyl alcohol               | ND                                    | 50     | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |
| Bis(2-chloroethoxy)methane   | ND                                    | 50     | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |
| Bis(2-chloroethyl)ether      | ND                                    | 50     | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |
| Bis(2-chloroisopropyl)ether  | ND                                    | 50     | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |
| Bis(2-ethylhexyl)phthalate   | ND                                    | 50     | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |
| 4-Bromophenyl phenyl ether   | ND                                    | 50     | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |
| Butyl benzyl phthalate       | ND                                    | 50     | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |
| Carbazole                    | ND                                    | 50     | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |
| 4-Chloro-3-methylphenol      | ND                                    | 50     | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |
| 4-Chloroaniline              | ND                                    | 50     | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |
| 2-Chloronaphthalene          | ND                                    | 50     | μg/L      | 1   | 5/2/2013 5:17:31 PM   | 7235   |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting LimitR RPD outside accepted recovery limits
- Page 1 of 17
- R RPD outside accepted recovery limits
  S Spike Recovery outside accepted recovery limits

#### Lab Order 1304A43

Date Reported: 5/23/2013

#### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

Project: Injection Well 2nd Qtr 4-24-13

Collection Date: 4/24/2013 10:15:00 AM

Lab ID: 1304A43-001

Matrix: AQUEOUS Received Date: 4/25/2013 9:10:00 AM

| Analyses                    | Result | RL Qu | al Units      | DF | Date Analyzed       | Batch  |
|-----------------------------|--------|-------|---------------|----|---------------------|--------|
| EPA METHOD 8270C: SEMIVOLA  | ATILES |       |               |    | Analys              | t: JDC |
| 2-Chlorophenol              | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| 4-Chlorophenyl phenyl ether | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| Chrysene                    | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| Di-n-butyl phthalate        | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| Di-n-octyl phthalate        | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| Dibenz(a,h)anthracene       | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| Dibenzofuran                | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| 1,2-Dichlorobenzene         | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| 1,3-Dichlorobenzene         | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| 1,4-Dichlorobenzene         | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| 3,3'-Dichlorobenzidine      | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| Diethyl phthalate           | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| Dimethyl phthalate          | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| 2,4-Dichlorophenol          | ND     | 100   | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| 2,4-Dimethylphenol          | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| 4,6-Dinitro-2-methylphenol  | ND     | 100   | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| 2,4-Dinitrophenol           | ND     | 100   | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| 2,4-Dinitrotoluene          | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| 2,6-Dinitrotoluene          | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| Fluoranthene                | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| Fluorene                    | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| Hexachlorobenzene           | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| Hexachlorobutadiene         | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| Hexachlorocyclopentadiene   | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| Hexachloroethane            | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| Indeno(1,2,3-cd)pyrene      | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| Isophorone                  | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| 1-Methylnaphthalene         | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| 2-Methylnaphthalene         | ND     | 50    | µg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| 2-Methylphenol              | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| 3+4-Methylphenol            | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| N-Nitrosodi-n-propylamine   | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| N-Nitrosodimethylamine      | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| N-Nitrosodiphenylamine      | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| Naphthalene                 | ND     | 50    | µg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| 2-Nitroaniline              | ND     | 50    | μ <b>g</b> /L | 1  | 5/2/2013 5:17:31 PM | 7235   |
| 3-Nitroaniline              | ND     | 50    | μ <b>g</b> /L | 1  | 5/2/2013 5:17:31 PM | 7235   |
| 4-Nitroaniline              | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| Nitrobenzene                | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |
| 2-Nitrophenol               | ND     | 50    | μg/L          | 1  | 5/2/2013 5:17:31 PM | 7235   |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 17

- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Lab Order 1304A43

Date Reported: 5/23/2013

#### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

Collection Date: 4/24/2013 10:15:00 AM Injection Well 2nd Qtr 4-24-13 Lab ID: 1304A43-001 Matrix: AQUEOUS Received Date: 4/25/2013 9:10:00 AM

| Analyses                       | Result           | RL Q      | ual Units | DF | Date Analyzed         | Batch         |
|--------------------------------|------------------|-----------|-----------|----|-----------------------|---------------|
| EPA METHOD 8270C: SEMIVOLATILE | s                |           |           |    | Analys                | t: JDC        |
| 4-Nitrophenol                  | ND               | 50        | μg/L      | 1  | 5/2/2013 5:17:31 PM   | 7235          |
| Pentachlorophenol              | ND               | 100       | μg/L      | 1  | 5/2/2013 5:17:31 PM   | 7235          |
| Phenanthrene                   | ND               | 50        | μg/L      | 1  | 5/2/2013 5:17:31 PM   | 7235          |
| Phenol                         | ND               | 50        | μg/L      | 1  | 5/2/2013 5:17:31 PM   | 7235          |
| Pyrene                         | ND               | 50        | μg/L      | 1  | 5/2/2013 5:17:31 PM   | 7235          |
| Pyridine                       | ND               | 50        | μg/L      | 1  | 5/2/2013 5:17:31 PM   | 7235          |
| 1,2,4-Trichlorobenzene         | ND               | 50        | μg/L      | 1  | 5/2/2013 5:17:31 PM   | 7235          |
| 2,4,5-Trichlorophenol          | ND               | 50        | μg/L      | 1  | 5/2/2013 5:17:31 PM   | 7235          |
| 2,4,6-Trichlorophenol          | ND               | 50        | μg/L      | 1  | 5/2/2013 5:17:31 PM   | 7235          |
| Surr: 2,4,6-Tribromophenol     | 84.5             | 41.5-117  | %REC      | 1  | 5/2/2013 5:17:31 PM   | 7235          |
| Surr: 2-Fluorobiphenyl         | 71.0             | 29.1-112  | %REC      | 1  | 5/2/2013 5:17:31 PM   | 7235          |
| Surr: 2-Fluorophenol           | 45.3             | 11.9-98.6 | %REC      | 1  | 5/2/2013 5:17:31 PM   | 7235          |
| Surr: 4-Terphenyl-d14          | 66.6             | 46-111    | %REC      | 1  | 5/2/2013 5:17:31 PM   | 7235          |
| Surr: Nitrobenzene-d5          | 68.6             | 34.9-112  | %REC      | 1  | 5/2/2013 5:17:31 PM   | 7235          |
| Surr: Phenol-d5                | 45.1             | 17.5-88.3 | %REC      | 1  | 5/2/2013 5:17:31 PM   | 7235          |
| EPA METHOD 8260B: VOLATILES    |                  |           |           |    | Analys                | t: <b>RAA</b> |
| Benzene                        | ND               | 2.0       | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |
| Toluene                        | ND               | 2.0       | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |
| Ethylbenzene                   | NO               | 2.0       | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |
| Methyl tert-butyl ether (MTBE) | СN               | 2.0       | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |
| 1,2,4-Trimethylbenzene         | NO               | 2.0       | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |
| 1,3,5-Trimethylbenzene         | C <sub>1</sub> N | 2.0       | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |
| 1,2-Dichloroethane (EDC)       | CN               | 2.0       | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |
| 1,2-Dibromoethane (EDB)        | ND               | 2.0       | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |
| Naphthalene                    | ND               | 4.0       | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |
| 1-Methylnaphthalene            | ND               | 8.0       | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |
| 2-Methylnaphthalene            | ND               | 8.0       | μg/L      | 2  | 4/29/2013 12:25:05 PM | /I R1019      |
| Acetone                        | 81               | 20        | μg/L      | 2  | 4/29/2013 12:25:05 PM | /I R1019      |
| Bromobenzene                   | ND               | 2.0       | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |
| Bromodichloromethane           | ND               | 2.0       | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |
| Bromoform                      | ND               | 2.0       | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |
| Bromomethane                   | ND               | 6.0       | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |
| 2-Butanone                     | ND               | 20        | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |
| Carbon disulfide               | NO               | 20        | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |
| Carbon Tetrachloride           | NO               | 2.0       | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |
| Chlorobenzene                  | ND               | 2.0       | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |
| Chloroethane                   | NID              | 4.0       | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |
| Chloroform                     | NID              | 2.0       | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |
| Chloromethane                  | NID              | 6.0       | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |
| 2-Chlorotoluene                | CIM              | 2.0       | μg/L      | 2  | 4/29/2013 12:25:05 PM | / R1019       |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 17

- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits

Lab Order 1304A43

Date Reported: 5/23/2013

#### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Injection Well 2nd Qtr 4-24-13

**Lab ID:** 1304A43-001

Project:

Client Sample ID: Injection Well

Collection Date: 4/24/2013 10:15:00 AM

Received Date: 4/25/2013 9:10:00 AM

| Analyses                    | Result | RL Q | ual Units | DF | Date Analyzed         | Batch    |
|-----------------------------|--------|------|-----------|----|-----------------------|----------|
| EPA METHOD 8260B: VOLATILES |        |      |           |    | Analyst               | : RAA    |
| 4-Chlorotoluene             | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| cis-1,2-DCE                 | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| cis-1,3-Dichloropropene     | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| 1,2-Dibromo-3-chloropropane | ND     | 4.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| Dibromochloromethane        | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| Dibromomethane              | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| 1,2-Dichlorobenzene         | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| 1,3-Dichlorobenzene         | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| 1,4-Dichlorobenzene         | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| Dichlorodifluoromethane     | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| 1,1-Dichloroethane          | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| 1,1-Dichloroethene          | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| 1,2-Dichloropropane         | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| 1,3-Dichloropropane         | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| 2,2-Dichloropropane         | ND     | 4.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| 1,1-Dichloropropene         | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| Hexachlorobutadiene         | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| 2-Hexanone                  | ND     | 20   | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| Isopropylbenzene            | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| 4-Isopropyltoluene          | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| 4-Methyl-2-pentanone        | ND     | 20   | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| Methylene Chloride          | ND     | 6.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| n-Butylbenzene              | ND     | 6.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| n-Propylbenzene             | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| sec-Butylbenzene            | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| Styrene                     | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| tert-Butylbenzene           | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| 1,1,1,2-Tetrachloroethane   | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| 1,1,2,2-Tetrachloroethane   | ND     | 4.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | R10192   |
| Tetrachloroethene (PCE)     | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | 1 R10192 |
| trans-1,2-DCE               | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | 1 R10192 |
| trans-1,3-Dichloropropene   | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | 1 R10192 |
| 1,2,3-Trichlorobenzene      | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | 1 R10192 |
| 1,2,4-Trichlorobenzene      | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | 1 R10192 |
| 1,1,1-Trichloroethane       | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | 1 R10192 |
| 1,1,2-Trichloroethane       | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | 1 R10192 |
| Trichloroethene (TCE)       | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | 1 R10192 |
| Trichlorofluoromethane      | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | 1 R10192 |
| 1,2,3-Trichloropropane      | ND     | 4.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | 1 R10192 |
| Vinyl chloride              | ND     | 2.0  | μg/L      | 2  | 4/29/2013 12:25:05 PM | 1 R10192 |

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Page 4 of 17
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

#### Lab Order 1304A43

Date Reported: 5/23/2013

#### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Injection Well 2nd Qtr 4-24-13

**Lab ID:** 1304A43-001

Client Sample ID: Injection Well

**Collection Date:** 4/24/2013 10:15:00 AM

Received Date: 4/25/2013 9:10:00 AM

| Result | RL (                                                                             | Qual                                                                                                      | Units                                                                                                          | DF                                                                                                                                                                                  | Date Analyzed                                                                                                                                                                                        | Batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| '      |                                                                                  |                                                                                                           |                                                                                                                |                                                                                                                                                                                     | Analys                                                                                                                                                                                               | : RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND     | 3.0                                                                              |                                                                                                           | μg/L                                                                                                           | 2                                                                                                                                                                                   | 4/29/2013 12:25:05 PM                                                                                                                                                                                | R10192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 85.4   | 70-130                                                                           |                                                                                                           | %REC                                                                                                           | 2                                                                                                                                                                                   | 4/29/2013 12:25:05 PM                                                                                                                                                                                | R10192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 88.3   | 69.5-130                                                                         |                                                                                                           | %REC                                                                                                           | 2                                                                                                                                                                                   | 4/29/2013 12:25:05 PM                                                                                                                                                                                | R10192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 81.0   | 70-130                                                                           |                                                                                                           | %REC                                                                                                           | 2                                                                                                                                                                                   | 4/29/2013 12:25:05 PM                                                                                                                                                                                | 1 R10192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 84.6   | 70-130                                                                           |                                                                                                           | %REC                                                                                                           | 2                                                                                                                                                                                   | 4/29/2013 12:25:05 PM                                                                                                                                                                                | R10192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                                                                  |                                                                                                           |                                                                                                                |                                                                                                                                                                                     | Analys                                                                                                                                                                                               | t: JML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5100   | 0.010                                                                            |                                                                                                           | µmhos/cm                                                                                                       | 1                                                                                                                                                                                   | 4/29/2013 6:42:20 PM                                                                                                                                                                                 | R10197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                                                                  |                                                                                                           |                                                                                                                |                                                                                                                                                                                     | Analys                                                                                                                                                                                               | t: JML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7.40   | 1.68                                                                             | Η                                                                                                         | pH units                                                                                                       | 1                                                                                                                                                                                   | 4/29/2013 6:42:20 PM                                                                                                                                                                                 | R10197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                                                                  |                                                                                                           |                                                                                                                |                                                                                                                                                                                     | Analys                                                                                                                                                                                               | t: JML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 490    | 20                                                                               |                                                                                                           | mg/L CaCO3                                                                                                     | 1                                                                                                                                                                                   | 4/29/2013 6:42:20 PM                                                                                                                                                                                 | R10197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND     | 2.0                                                                              |                                                                                                           | mg/L CaCO3                                                                                                     | 1                                                                                                                                                                                   | 4/29/2013 6:42:20 PM                                                                                                                                                                                 | R10197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 490    | 20                                                                               |                                                                                                           | mg/L CaCO3                                                                                                     | 1                                                                                                                                                                                   | 4/29/2013 6:42:20 PM                                                                                                                                                                                 | R10197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| OLIDS  |                                                                                  |                                                                                                           |                                                                                                                |                                                                                                                                                                                     | Analys                                                                                                                                                                                               | t: KS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3360   | 100                                                                              | ٠                                                                                                         | mg/L                                                                                                           | 1                                                                                                                                                                                   | 5/1/2013 3:31:00 PM                                                                                                                                                                                  | 7222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | ND<br>85.4<br>88.3<br>81.0<br>84.6<br>5100<br>7.40<br>490<br>ND<br>490<br>SOLIDS | ND 3.0 85.4 70-130 88.3 69.5-130 81.0 70-130 84.6 70-130 5100 0.010 7.40 1.68 490 20 ND 2.0 490 20 SOLIDS | ND 3.0 85.4 70-130 88.3 69.5-130 81.0 70-130 84.6 70-130  5100 0.010  7.40 1.68 H  490 20 ND 2.0 490 20 SOLIDS | ND 3.0 μg/L 85.4 70-130 %REC 88.3 69.5-130 %REC 81.0 70-130 %REC 84.6 70-130 %REC  5100 0.010 μmhos/cm  7.40 1.68 Η pH units  490 20 mg/L CaCO3 ND 2.0 mg/L CaCO3 490 20 mg/L CaCO3 | ND 3.0 μg/L 2 85.4 70-130 %REC 2 88.3 69.5-130 %REC 2 81.0 70-130 %REC 2 84.6 70-130 %REC 2 5100 0.010 μmhos/cm 1 7.40 1.68 Η pH units 1 490 20 mg/L CaCO3 1 ND 2.0 mg/L CaCO3 1 490 20 mg/L CaCO3 1 | Analysi  ND 3.0 μg/L 2 4/29/2013 12:25:05 PM  85.4 70-130 %REC 2 4/29/2013 12:25:05 PM  88.3 69.5-130 %REC 2 4/29/2013 12:25:05 PM  81.0 70-130 %REC 2 4/29/2013 12:25:05 PM  84.6 70-130 %REC 2 4/29/2013 12:25:05 PM  Analysi  5100 0.010 μmhos/cm 1 4/29/2013 6:42:20 PM  Analysi  7.40 1.68 Η pH units 1 4/29/2013 6:42:20 PM  Analysi  490 20 mg/L CaCO3 1 4/29/2013 6:42:20 PM  ND 2.0 mg/L CaCO3 1 4/29/2013 6:42:20 PM  490 20 mg/L CaCO3 1 4/29/2013 6:42:20 PM  Analysi  Analysi  Analysi  Analysi  Analysi  Analysi  Analysi  Analysi  Analysi |

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 5

Page 5 of 17

- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

#### CASE NARRATIVE

May 21, 2013

Lab Name: Anatek Labs, Inc. 1282 Alturas Drive, Moscow, ID 83843 www.anateklabs.com FL NELAP E87893, NV ID13-2004-31, WA DOE C126, OR ELAP ID200001, MT 0028, ID, CO, NM

**Project Tracking No.: 1304A43 Anatek Batch: 130430038** 

Project Summary: One (1) water sample was received on 4/30/2013 for RCI analysis. The sample was received

in good condition and with the appropriate chain of custody. The samples was received at 2.7C.

Client Sample ID

Anatek Sample ID Method/Prep Method

<u>Client Sample ID</u>

1304A43-001E / INJECTION

Anatek Sample ID

130430038-001

SW846 Ch7/EPA 1010/150.1

WELL

#### **QA/QC Checks**

| Parameters                          | Yes / No | Exceptions / Deviations |
|-------------------------------------|----------|-------------------------|
| Sample Holding Time Valid?          | Υ        | NA                      |
| Surrogate Recoveries Valid?         | NA       | NA                      |
| QC Sample(s) Recoveries Valid?      | Υ        | NA                      |
| Method Blank(s) Valid?              | Υ        | NA                      |
| Tune(s) Valid?                      | NA       | NA                      |
| Internal Standard Responses Valid?  | NA       | NA                      |
| Initial Calibration Curve(s) Valid? | Y        | <b>NA</b>               |
| Continuing Calibration(s) Valid?    | Y        | NA                      |
| Comments:                           | Y        | NA                      |

#### 1. Holding Time Requirements

No problems encountered.

#### 2. GC/MS Tune Requirements

NA.

#### 3. Calibration Requirements

No problems encountered.

#### 4. Surrogate Recovery Requirements

NA.

#### 5. QC Sample (LCS/MS/MSD) Recovery Requirements

No problems encountered.

#### 6. Method Blank Requirements

The method blanks were non-detect (<MDL) for all analytes. No problems encountered.

#### 7. Internal Standard(s) Response Requirements

N/A

#### 8. Comments

NA

I certify that this data package is in compliance with the terms and conditions of the contract. Release of the data contained in this data package has been authorized by the Laboratory Manager or his designee.

Approved by:

Page 2 of 17

1282 Alturas Drive • Moscow, iD 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: HALL ENVIRONMENTAL ANALYSIS LAB

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

130430038

**Project Name:** 

1304A43

#### **Analytical Results Report**

Sample Number

130430038-001

Sampling Date 4/24/2013

Date/Time Received 4/30/2013 12:18 PM

Sampling Time 10:15 AM

Client Sample ID Matrix 1304A43-001E / INJECTION WELL

Water

Sample Location

Comments

| Parameter          | Result | Units    | PQL | Analysis Date | Analyst | Method    | Qualifier |
|--------------------|--------|----------|-----|---------------|---------|-----------|-----------|
| Cyanide (reactive) | ND     | mg/L     | 0.1 | 5/14/2013     | CRW     | SW846 CH7 |           |
| Flashpoint         | >200   | °F       |     | 5/10/2013     | KFG     | EPA 1010  |           |
| pН                 | 7.28   | ph Units |     | 5/6/2013      | AJT     | EPA 150.1 |           |
| Reactive suifide   | ND     | mg/L     | 1   | 5/3/2013      | AJT     | SW846 CH7 |           |

**Authorized Signature** 

John Coddington, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND

Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soll/solid results are reported on a dry-weight basis unless otherwise noted.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

**Client:** 

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

130430038

Address:

4901 HAWKINS NE SUITE D **ALBUQUERQUE, NM 87109** 

Project Name:

1304A43

Attn:

**ANDY FREEMAN** 

**Analytical Results Report Quality Control Data** 

| Lab Control Sai    | mple               |                |                  |                  |       |       |             |            |            |           |               |
|--------------------|--------------------|----------------|------------------|------------------|-------|-------|-------------|------------|------------|-----------|---------------|
| Parameter          |                    | LCS Resul      | t Units          | LCS              | Spike | %Rec  | AR          | %Rec       | Prep       | Date      | Analysis Date |
| Cyanide (reactive) |                    | 0.528          | mg/L             | . (              | 0.65  | 105.6 | 80          | -120       | 5/14/      | 2013      | 5/14/2013     |
| Reactive sulfide   |                    | 0.18           | mg/L             |                  | D.2   | 90.0  | 80          | )-120      | 5/3/2      | 2013      | 5/3/2013      |
| Lab Control Sa     | mple Duplicate     | <del></del>    |                  |                  |       |       |             |            |            |           |               |
| Parameter          |                    | LCSD<br>Result | Units            | LCSD             | '%Rec | %RF   | n 4         | AR<br>KRPD | Prep D     | 3-4a      | Analysis Date |
| Reactive sulfide   |                    | 0.16           | mg/L             | <b>Spike</b> 0.2 | 80.0  | 11.8  |             | 0-20       | •          | 2013      | 5/3/2013      |
| Matrix Spike       |                    |                |                  |                  |       |       |             |            |            |           |               |
| Sample Number      | Parameter          |                | Sample<br>Result | MS<br>Result     | Unit  |       | MS<br>Spike | %Rec       | AR<br>%Rec | Prep Date | Analysis Date |
| 130501035-001      | Reactive sulfide   |                | ND               | 17.93            | mg/L  |       | эріке<br>20 | 89.7       | 70-130     | 5/3/201   |               |
| 130430038-001      | Cyanide (reactive) |                | ND               | 0.493            | mg/l  |       | 0.5         | 98.6       | 80-120     | 5/14/201  |               |
| Matrix Spike Du    | uplicate           |                |                  |                  |       |       |             |            |            |           |               |
| •                  |                    | MSD            | ** **            | MSD              |       |       |             | AR         | _          |           |               |
| Parameter          |                    | Result         | Units            | Spike            | %R    |       | 4RPD        | %RPD       |            | p Date    | Analysis Date |
| Cyanide (reactive) |                    | 0.481          | mg/L             | 0.5              | 96    | .2    | 2.5         | 0-25       | 5/1        | 4/2013    | 5/14/2013     |
| Method Blank       |                    |                |                  |                  |       |       |             |            |            |           |               |
| Parameter          |                    |                | Re               | sult             | Ųr    | nits  |             | PQL        | P          | rep Date  | Analysis Date |
| Cyanide (reactive) |                    |                | N                | <b>i</b> D       | m     | g/L   |             | 0.1        | 5/1        | 14/2013   | 5/14/2013     |
| Reactive sulfide   |                    |                | N                | <b>I</b> D       | m     | g/L   |             | 1          | 5          | /3/2013   | 5/3/2013      |

AR

Acceptable Range

ND

Not Detected

**PQL** 

Practical Quantitation Limit

RPD

Relative Percentage Difference

#### Comments:

Certifications held by Anates Lisbs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anates Lisbs WA: EPA:WA00169; ID:WA00169; WA:C586; MT:Cert0095

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

#### **Login Report**

Customer Name: HALL ENVIRONMENTAL ANALYSIS LAB

Order ID:

130430038

4901 HAWKINS NE SUITE D

Order Date:

4/30/2013

**ALBUQUERQUE** 

NM

87109

**Contact Name: ANDY FREEMAN** 

Project Name: 1304A43

Comment:

| Sample #: | 1304300  | 38-001 | Customer Sample #: | 1304A43-001E / INJECTION | WELL      |
|-----------|----------|--------|--------------------|--------------------------|-----------|
| Recv'd:   | <b>7</b> | Co     | llector:           | Date Collected:          | 4/24/2013 |

Quantity:

Matrix:

Water

13

4/30/2013 12:18:00 PM Date Received:

Comment:

| Test             | Lab | Method    | Due Date  | Priority           |
|------------------|-----|-----------|-----------|--------------------|
| CYANIDE REACTIVE | М   | SW846 CH7 | 5/10/2013 | Normal (6-10 Days) |
| FLASHPOINT       | M   | EPA 1010  | 5/10/2013 | Normal (6-10 Days) |
| pН               | M   | EPA 150.1 | 5/10/2013 | Normal (6-10 Days) |
| SULFIDE REACTIVE | M   | SW846 CH7 | 5/10/2013 | Normal (6-10 Days) |

#### SAMPLE CONDITION RECORD

| Samples received in a cooler?                   | Yes |
|-------------------------------------------------|-----|
| Samples received intact?                        | Yes |
| What is the temperature inside the cooler?      | 2.7 |
| Samples received with a COC?                    | Yes |
| Samples received within holding time?           | Yes |
| Are all sample bottles properly preserved?      | Yes |
| Are VOC samples free of headspace?              | N/A |
| is there a trip blank to accompany VOC samples? | N/A |
| Labels and chain agree?                         | Yes |

#### HALL ENVIRONMENTAL ANALYSIS LABORATORY

### CHAIN OF CUSTODY RECORD

| PAGE: 1 | OP: 1 |
|---------|-------|

130430 038 HALL Last 5/10/2013 1st SAMP 4/24/2013 1st RCVD 4/30/2013

| SUB CC  | NIRATOR: Anate   | k Labs COMPANY:  | Anatek Labs, Inc. |                | PEONE:            | (208) 883-2839 | FAX:      | (208) 882-9246 |
|---------|------------------|------------------|-------------------|----------------|-------------------|----------------|-----------|----------------|
| ADDIKE  | 1282 A           | Alturas Dr       |                   |                | ACCOUNT #:        |                | email:    |                |
| CITY, 8 | CATE, ZEP: Mosco | w, ID 83843      |                   |                |                   |                |           |                |
| ПЕМ     | SAMPLE           | CLIENT SAMPLE ID | BOTTLE<br>TYPE    | MATRIX         | ollection<br>date | # CONTAINENS   | ANALYTICA | L COMMENTS     |
| 1       | 1304A43-001E     | Injection Well   | 500PLNAOH         | Aqueous 4/24/2 | 013 10:15:00 AM   | 2 RCI          | MWB       |                |

| SPECIAL INSTRUCTIONS / COMMEN                                                                                                                                                   | 13:                          |                                                                                   |                                                                    |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|--|--|
| Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you. |                              |                                                                                   |                                                                    |  |  |  |  |  |  |  |
| Relinquisted By:                                                                                                                                                                | Date: 425/2013 Time: 2:21 PM | ANATEK LABS RECEIVING LIST  RECEIVED INTACT  LABELS & CHAINS AGREE  NO HEADSPACE  | REPORT TRANSMITTAL DESURED:  India cost) [] FAX [] EMAIL [] ONLINE |  |  |  |  |  |  |  |
| Relinquished By:                                                                                                                                                                | Date: Time:                  | CUSTODY SEALS PRESENT  PRESERVATIVES: Zinc Acetate No. 6 H                        | FOR LAB USE ONLY C Attempt to Coal ?                               |  |  |  |  |  |  |  |
| TAT:                                                                                                                                                                            | ard   RUSSEI                 | NUMBER OF CONTAINERS: SHIPPED VIA: F. DATE & TIME: 4/30/13 12/18 INSPECTED BY: BT |                                                                    |  |  |  |  |  |  |  |

# Total Cyanide by Semi-Automated ColorImetry Wethod: EPA 335.4\SM-4500-CN-E Distillation Bench Sheet

Weak Acid Dissociable Cyanide by SM 4500-CN-I (check WAD column)

Free Cyanide MS/MSD/LCS Soln:

M918-03 Exp:4/16/14 M918-04 Exp:4/17/14 Method requirements: All QC +/- 10%

Equipment: Midi-vap

Instrument: ALPCHEM FIA 3000

Absorbance: 570nm

|           | mple ID<br>ಳೇ               | Matrix     | Preserved | Sample<br>Amount (mL)** | Initial<br>Multiplier* | Final<br>Multiplier | Spike Amount<br>(mL) | WAD?<br>(check if<br>yes) |
|-----------|-----------------------------|------------|-----------|-------------------------|------------------------|---------------------|----------------------|---------------------------|
| 1         | 130501008-                  | seil con   | Nall      | 50mc                    | 259                    | 759                 |                      |                           |
| 2         | -lms                        |            |           |                         |                        |                     | lul                  |                           |
| 3         | -lmso                       |            |           |                         | 4_                     |                     |                      |                           |
| 4         | -45                         |            |           |                         | 1×                     | 14                  | +                    |                           |
| 5         | 170                         |            |           |                         | <b>X</b>               | *                   |                      |                           |
| <u>6</u>  | 130422022-7                 |            |           |                         | 70                     | 700                 |                      |                           |
| 7         | 30510075-1                  | 4          |           |                         | 109                    | 109                 |                      |                           |
| 8         | 130508054-6                 |            |           |                         | l×_                    | lx                  |                      |                           |
| 9         | 130509012-6                 |            |           |                         |                        |                     |                      |                           |
| 10        | 130513012-2                 | WW         | <u> </u>  | 4                       |                        | 4_                  |                      |                           |
| <u>11</u> | 130430038-1                 | reative in | Na011     | 50ml                    | -lx                    | ŀΧ                  |                      |                           |
| 12        | -Ims                        |            |           | j                       |                        | 1                   | lunt                 |                           |
| 13        |                             |            |           |                         |                        |                     | 1                    |                           |
| 14        |                             |            |           |                         |                        |                     | 1                    |                           |
| 15        | BL                          | 4          |           |                         |                        |                     |                      |                           |
| <u>16</u> | 130 508054 pm               |            |           |                         |                        |                     | lun(                 |                           |
| 17        | -bis0                       | *          |           |                         |                        |                     | 4-                   |                           |
| 18        | 30510074-1                  | INN        |           |                         |                        |                     |                      |                           |
| <u>19</u> |                             |            |           |                         |                        |                     | land                 |                           |
| 20        | * If poils this solaulation | 4          | 4         | transfer baseb at       | 4                      | 4                   | 1                    |                           |

<sup>\*</sup> If soils this calculation is taken from cyanide extraction bench sheet.

<sup>\*\*</sup> If soils, mLs of extract used for distillation.

| Extraction Reagents:                | Reagent #: | Analytical Reagents: | Reagent #: |
|-------------------------------------|------------|----------------------|------------|
|                                     | A063-01    | Barbituric Acid      | R038-13    |
| 18 N H <sub>2</sub> SO <sub>4</sub> | A065-02    | Sodium Phosphate     | R029-16    |
| sulfamic acid                       | R068-19    | Chloramine-t         | R048-09    |
| 0.025N NaOH                         | R014-16    | Pyridine             | R043-03    |
| 51% MgCl₂                           | A063-03    | •                    |            |

Distillation Initials/Date Distilled: 5/14/13

Analyst Initials/Date Analyzed M/ 5/19/13



#### Calibration Standards Preparation Form for Methods SM4500CN-E and **EPA 335.4**

The following sample sequences have been analyzed using the standard information below on the FIA FS3000:

Cn- (Simple Cyanide) Calibration Stock Standard Number: M889-04

Cn-(Simple Cyanide) Calibration Stock Standard Concentration: 1000 ug/ mL Cn- (Simple Cyanide) Calibration Stock Standard Expiration Date: 10/31/2013

Cn- (Total Cyanide) Matrix Spiking Standard Number: M918-03

Cn- (Total Cyanide) Matrix Spiking Standard Concentration: 25 ug/ mL Cn- (Total Cyanide) Matrix Spiking Standard Expiration Date: 04/16/2014

Cn- (Simple Cyanide) Initial Calibration Verification Stock Standard Number: M898-01

Cn- (Simple Cyanide) Initial Calibration Verification Stock Standard Concentration: 1000 ug/ml Cn- (Simple Cyanide) Initial Calibration Verification Stock Standard Expiration Date: 12/26/2013

Initial Calibration Dilution Template

| Desired Concentration<br>(ppb) | Stock Concentration (ppm) | uL Standard Added | Final Volume (mL) |
|--------------------------------|---------------------------|-------------------|-------------------|
| 1000                           | 1000                      | 100               | 100               |
| 800                            | 1000                      | 40                | 50                |
| 500 (CCV)                      | 1000                      | 50                | 100               |
| 50*                            | 1.0                       | 2500              | 50                |
| 10*                            | 1.0                       | 500               | 50                |

<sup>\* 50</sup> and 10 ppb calibration standard prepared using 1.0 ppm calibration standard.

Initial Calibration Verification Dilution Template (ICV)

| Tarrest Course and Course   | THE TOTAL STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF | MANON TATTANDO    |                   |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
| Desired Concentration (ppb) | Stock Concentration (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | uL Standard Added | Finai Volume (mL) |
| 250                         | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25                | 100               |

Total Cyanide MS/MSD/LCS prepared by adding 1 mL of M918-03 to 50 mL sample. WAD Cyanide MS/MSD/LCS prepared by adding 1 mL of M918-04 to 50 mL sample.

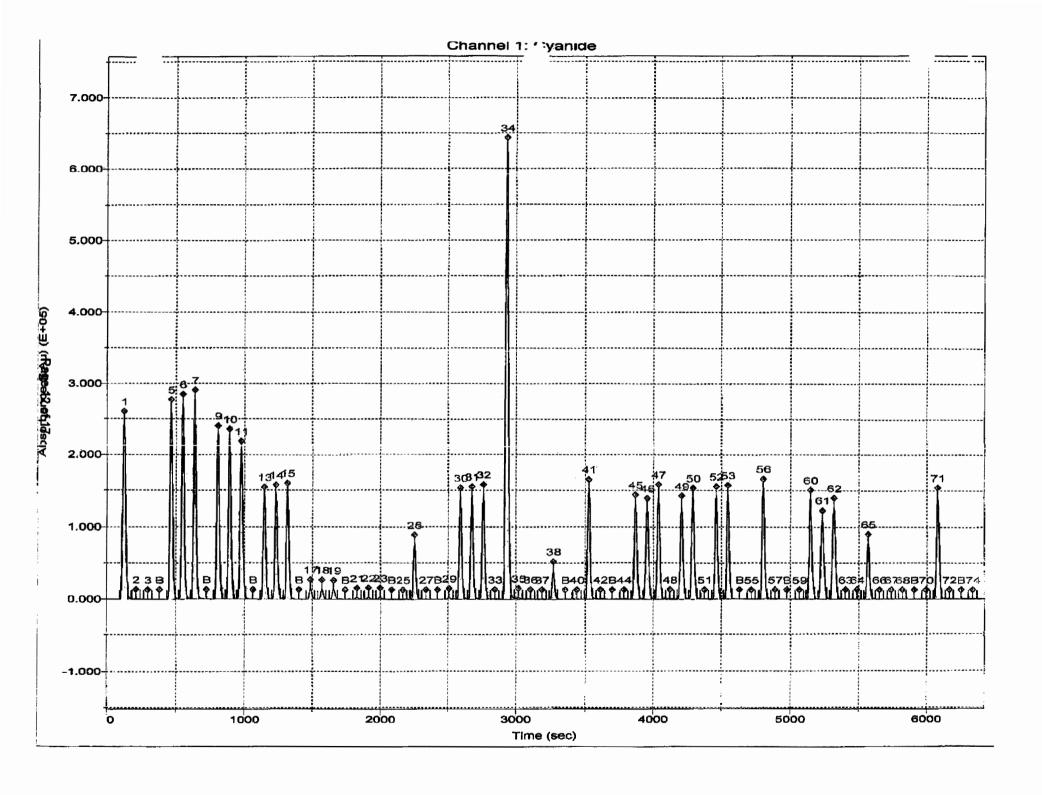
Analysts Initials/Date: 4/50/15

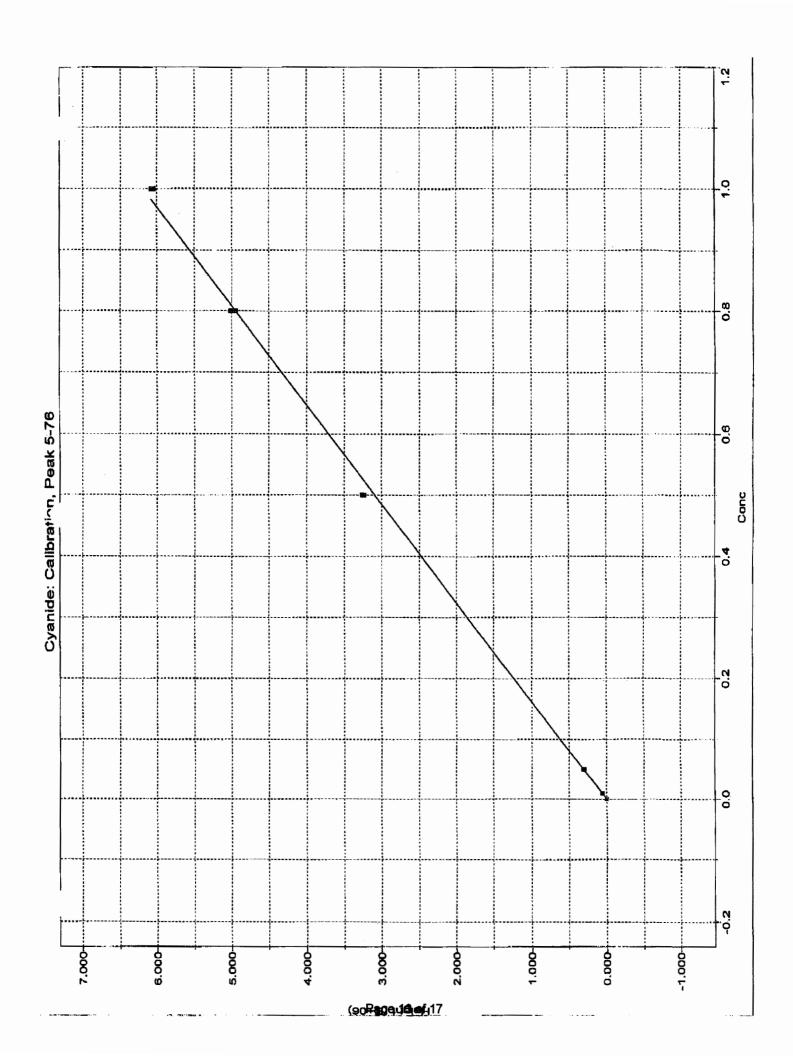
Analysts Initials/Date: 5/14/13

Pipettes: A04003282

2751528/2752498

'ile name: T:\DATA1\FLOW4\2013\EPA335.4\051413CM.RST 'ate: May 14, 2013 'perator: CRW


DMW 5-15-13


| Perc      | acor.    | CKW               |        | VVV       | >      |               |                                     |            |
|-----------|----------|-------------------|--------|-----------|--------|---------------|-------------------------------------|------------|
| '¢        | Cup      | Name              | Type   | Dil Wt    |        | Area          | Calc. (ppm)                         |            |
|           | 2        | Sync              | SYNC   | 1         | 1      | 6038980       | 0.976643                            |            |
|           | 0        | Carryover         | co     | ī         | ī      | 18010         | 0.003511                            |            |
| ,         | ō        | Carryover         | co     | ī         | ĩ      | 2575          | 0.001016                            |            |
| ;         | 0        | Baseline          | RB     | ī         | ī      | -1881         | 0.000296                            |            |
| ,         | 2        | Cal 1.00 ppm      | С      | 1         | ī      | 6044285       | 0.977500                            |            |
| ;         | 2        | Cal 1.00 ppm      | С      | 1         | 1      | 6066860       | 0.981149                            |            |
| ,         | 2        | Cal 1.00 ppm      | Ċ      | ī         | 1      | 6074882       | 0.982445                            |            |
| 3         | 0        | Baseline          | RB     | 1         | 1      | -2392         | 0.000214                            |            |
| 1         | 3        | Cal 0.80 ppm      | C      | 1         | 1      | 4942340       | 0.799399                            |            |
| . 0       | 3        | Cal 0.80 ppm      | С      | 1         | 1      | 4946887       | 0.800135                            |            |
| .1        | 3        | Cal 0.80 ppm      | С      | 1         | 1      | 5011107       | 0.810514                            |            |
| \$        | 0        | Baseline          | RB     | 1         | 1      | 429           | 0.000669                            |            |
| .3        | 4        | Cal 0.50 ppm      | C      | 1         | 1      | 3235292       | 0.523500                            |            |
| .4        | 4        | Cal 0.50 ppm      | С      | 1         | 1      | 3234827       | 0.523425                            |            |
| .5        | 4        | Cal 0.50 ppm      | С      | 1         | 1      | 3256325       | 0.526900                            |            |
| 3         | 0        | Baseline          | RB     | 1         | 1      | -552          | 0.000511                            |            |
| .7        | 5        | Cal 0.05 ppm      | С      | 1         | 1      | 300741        | 0.049207                            |            |
| .8        | 5        | Cal 0.05 ppm      | C      | 1         | 1      | 299279        | 0.048971                            |            |
| . 9       | 5        | Cal 0.05 ppm      | С      | 1 .       | 1      | 304102        | 0.049750                            |            |
| 3         | 0        | Baseline          | RB     | 1         | 1      | -224          | 0.000564                            |            |
| !1        | 6        | Cal 0.01 ppm      | ¢      | 1         | 1      | 58197         | 0.010006                            |            |
| :2        | 6        | Cal 0.01 ppm      | С      | 1         | 1      | 57781         | 0.009939                            |            |
| :3        | 6        | Cal 0.01 ppm      | С      | 1         | 1      | 58574         | 0.010067                            |            |
| 3         | 0        | Baseline          | RB     | 1         | 1      | -308          | 0.000550                            |            |
| ?5        | 1        | Blank             | BLNK   | 1         | 1      | -1103         | 0.000422                            |            |
| <u></u> 6 | 7        | ICV 0.25 ppm      | CCA    | 1         | 1      | 1652560       | 0.267693                            |            |
| :7        | 1        | Blank             | BLNK   | 1         | 1      | -290          | 0.000553                            |            |
| 3         | 0        | Baseline          | RB     | 1         | 1      | 897           | 0.000745                            |            |
| 2:        | 8        | 130501028-001     | Ü      | 259       | 1      | 38284         | 1.758032                            |            |
| 30        | 9        | 130501028-001MS   |        | 259       | 1_     | 3088314       | 129.433945                          |            |
| 31        | 10       | 130501028-001MS   |        | 259       | , 1    |               |                                     |            |
| 32        | 11<br>12 | 130501028-LCS     | Ü      | 1         | 1      | 3260699       | 0.527606                            |            |
| 33<br>34  | 13       | 130501028-BL      | Ü      | 1         | 1      | 3.377         | 0.001146                            | delitional |
| 35        | 14       | 130422022-007     | U<br>U | 20<br>109 | 1<br>1 | 14952298      | 48.344933 A<br>0.594545<br>0.001843 | 100        |
| 36        | 15       | 4 130508054-006   | Ü      |           |        | 30035<br>7690 | 0.594545                            | WX,        |
| 37        | 16       | 130509042-006     | Ü      | 1<br>1    | 1<br>1 | 914           | 0.001843                            | below      |
| 38        | 17       | 3 130513012-002   | ΰ      | 1         | ī      | 824775        | 0.133903                            |            |
| 3         | ő        | Baseline          | RB     | i         | ī      | -79           | 0.000587                            |            |
| 10        | ĭ        | Blank             | BLNK   |           | ī      | -944          | 0.000448                            |            |
| 11        | 4        | CCV 0.5 ppm       | CCV    | ī         | ī      | 3311329       | 0.535790                            |            |
| 12        | 1        | Blank             | BLNK   | ī         | ī      | -2419         | 0.000209                            |            |
| 3         | ō        | Read Baseline     | RB     | ī         | ī      | -814          | 0.000469                            |            |
| 14        | 18       | 130430038-001 Q   |        | 1         | 1      | 4148          | 0.001270                            |            |
| 15        | 19       | 130430038-001MS   |        | ī         | 1      | 3043535       | 0.492508                            |            |
| 16        | 20       | 130430038-001MSI  | ט כ    | 1         | 1      |               | 5 0.480835                          |            |
| 17        | 21       | 130430038-LCS     | υ      | 1         | 1      | 3261260       | 0.527697                            |            |
| 18        | 22       | 130430038-BL      | υ      | 1         | 1      | -1539         | 0.000351                            |            |
| 19        | 23       | √130508054-006MS  | ΝĎ     | 1         | 1      | 3000574       | 0.485564                            |            |
| 50        | 24       | √130508054-006MS  |        | 1         | 1      | 319824        | 2 0.517512                          |            |
| 51        | 25       | -130510074-001 NA | / ซ    | ļ         | 1      | -7577         | -0.000625                           |            |
| 52        | 26       | 130510074-001Ms   |        | 1         | 1      | 3073429       | 0.497339                            |            |
| 53        | 27       | 130510074-001MS   |        | 1         | 1      |               | 5 0.492155                          |            |
| 3         | 0        | Baseline          | RB     | 1         | 1      | -1660         | 0.000332                            |            |
| 55        | 1        | Blank             | BLNK   |           | 1      | -5872         | -0.000349                           |            |
| 56        | 4        | CCV 0.5 ppm       | CCV    | 1.        | 1      | 3256631       | 0.526949                            |            |
| 57        | 1        | Blank             | BLNK   | 1         | 1      | -4282         | -0.000092                           |            |
| 3         | 0        | Read Baseline     | RB     | 1         | 1      | -899          | 0.000455                            |            |
| 5 !       | 28       | 130510079-001 F   |        | 1.1       | 1      | -2333         | 0.000245                            |            |
| 56        | 29       | 130510079-001MS   |        | 1.1       | 1      | 3130370       | 0.557196                            |            |
| 61        | 30       | 130510079-001MSI  |        | 1.1       | 1      |               |                                     |            |
| 62        | 31       | 130510079-LCS     | U      | 1         | 1      | 3273632       | 0.529697                            |            |
| 63        | 32       | 130510079-BL      | U      | 1         | 1      | -1264         | 0.000396                            | _          |
| 64        | 33       | 130513014-001     | Ŭ      | 1.1       | 1      | 1884          | 0.000995                            |            |
| 65        | 34       | \$130422022-007   | Ü      | 200       | 1      | 1775712       | 57.519485                           |            |
| 66        | 35       | R                 | Ü      | 1         | 1      | -1877         | 0.000297                            |            |

| sak | Cup | Name          | Type | Dil | Wt | Area    | Calc. (ppm) |
|-----|-----|---------------|------|-----|----|---------|-------------|
|     |     | ~~~~~         |      |     |    |         |             |
| 7   | 36  | R             | Ü    | 1   | 1  | -236    | 0.000562    |
| 3   | 37  | R             | Ü    | . 1 | 1  | -552    | 0.000511    |
|     | 0   | Baseline      | RB   | 1   | 1  | -803    | 0.000470    |
|     | 1   | Blank         | BLNK | 1   | 1  | -2064   | 0.000266    |
| 1   | 4   | CCV 0.5 ppm   | CCV  | 1   | 1  | 3305444 | 0.534838    |
| 2   | 1   | Blank         | BLNK | 1   | 1  | -5046   | -0.000215   |
|     | 0   | Read Baseline | RB   | 1   | 1  | -257    | 0.000559    |
| 4   | 38  |               | U    | 1   | 1  | -2169   | 0.000250    |

| eak<br>                                        | Cup                          | Flags          |
|------------------------------------------------|------------------------------|----------------|
|                                                | 200022203330444055506660171  | BL             |
|                                                | 2 0 3                        | BL             |
| 3                                              | 3<br>0<br>4                  | BL             |
| 3<br>4<br>5                                    | 4<br>4<br>0<br>5             | BL .           |
| 8<br>9<br>:                                    | 5<br>5<br>0<br>6             | BL             |
| 2<br>3<br>5<br>6<br>7                          | 6<br>6<br>0                  | BL             |
|                                                | 8                            | BL             |
| 0<br>1<br>2                                    | 9<br>10<br>11<br>12          |                |
| 9<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 13<br>14<br>15<br>16         | HI<br>FL<br>FL |
| 8<br>0<br>1<br>2                               | 17<br>0                      | BL             |
|                                                | 1<br>4<br>1<br>0<br>18<br>19 | BL             |
| 4<br>5<br>6<br>7<br>8<br>9<br>0<br>1<br>2<br>3 | 20<br>21<br>22               |                |
| 9<br>0<br>1<br>2                               | 23<br>24<br>25<br>26         | LO             |
| 3<br>5<br>6<br>7                               | 27<br>0<br>1                 | BL<br>LO       |
| 7                                              | 4<br>1<br>0                  | LO<br>BL       |

| > 1-       | ~~~ | E1    |
|------------|-----|-------|
| ?eak       | Cup | Flags |
|            |     |       |
| <b>5</b> 9 | 28  |       |
| 5.0        | 29  |       |
| 51         | 30  |       |
| 52         | 31  |       |
| 53         | 32  |       |
| 54         | 33  |       |
| 55         | 34  |       |
| 56         | 35  |       |
| \$7        | 36  |       |
| 38         | 37  |       |
| 3          | 0   | BL    |
| 10         | 1   |       |
| 71         | 4   |       |
| 12         | 1   | ro    |
| 3          | 0   | BL    |
| 14         | 38  |       |





guntaer outspiction, seak o to

ile name: T:\DATA1\FLOW4\2013\EPA335.4\051413CM.RST ate: May 14, 2013 perator: CRW

| me  |      | Conc | Area      |                |
|-----|------|------|-----------|----------------|
|     |      |      |           |                |
| Cal | 1.00 | ppm  | 1.000000  | 6044285.000000 |
| Cal | 1.00 | ppm  | 1.000000  | 6066860.000000 |
| Çal | 1.00 | ppm  | 1.000000  | 6074881.500000 |
| Cal | 0.80 | ppm  | 0.800000  | 4942339.500000 |
| Cal | 0.80 | ppm  | 0.800000  | 4946887.000000 |
| Cal | 0.80 | ppm  | 0.800000  | 5011107.000000 |
| Cal | 0.50 | ppm  | 0.500000  | 3235291.750000 |
| Cal | 0.50 | ppm  | 0.500000  | 3234827.000000 |
| Cal | 0.50 | ppm  | 0.500000  | 3256325.250000 |
| Cal | 0.05 | ppm  | 0.050000  | 300741.343750  |
| Çal | 0.05 | ppm  | .0.050000 | 299278.562500  |
| Çal | 0.05 | ppm  | 0.050000  | 304102.375000  |
| Cal | 0.01 | ppm  | 0.010000  | 58197.007812   |
| Cal | 0.01 | mqq  | 0.010000  | 57780.523438   |
| Çal | 0.01 | mqq  | 0.010000  | 58574.269531   |

Calib Coef:

y=bx+a

a: (intercept) -3.7130e+03 b: -3.7130e+03 b:

0.999387 Corr Coef:

Carryover: 0.298%

No Drift Peaks

### Flashpoint Analysis

### Sample Matrix - Soil (1), Sludge (2), Oil (3), Water (4), Other (5)

|    | Sample ID        | Analyses  | Sample     | Analyst  | Temp - °C | Temp - °F    |
|----|------------------|-----------|------------|----------|-----------|--------------|
| į  |                  | Date      | Matrix     | Initials |           |              |
|    | 30306001001      | 3/8/2013  | Linuid 5   | Wa       |           | <50°F        |
| İ  | 13031200         | 013/14/13 | Liquid/5   | Mu       |           | <50° F       |
|    | 30322014-01      |           | 0:4/3      | Mh       |           | 179°F        |
| i  | 130327135-001    | 3/27/13   | H20/4      | in       |           | 7200F        |
|    | -002             | <u></u>   |            |          |           |              |
|    | 130327025-001    | 3/28/2013 | H201.4     | M        |           | >200°F       |
|    | 130727026-001    | 3/29/2013 | 4          |          |           | 7200°F       |
|    | 130728040-001    |           | 4.0/4      | Wh       |           | > 2000 =     |
|    | 130-101026-001   | 4/11/2013 | 450/4      | nen      |           | >200°F       |
|    | 130415008-001    | 4/15/2013 | H50/4      | nen      |           | 7200P        |
|    | 13041603100      | 2/4/23/13 | 4014       | mn       |           | 72000F       |
| ı  | 13042602000      | 4/39/13   | 420/4      | The      |           | 7200°F       |
| l  | <del>-</del> 202 | +         | ٠,         | 1        |           | 7200°F       |
| 1  | 30971038-002     | 5/7/13    | higaid/5   | Me       |           | >3000£       |
| ŀ  | -003             |           | 8          |          |           | 150°E        |
| -[ | -004             |           |            |          |           | 4442 E < 304 |
|    | -008             |           |            |          |           | 155°F        |
| 1  | -009             |           |            |          |           | 177°F        |
| -  | -010             |           | . +        | 4        |           | 53°₽         |
| l  | 13043004500      | 5/10/13   | Liquid/5   | M        |           | >200 E       |
| ]  | 36130038-01      |           | H20/4      | - I      |           | >250°F       |
|    | 130510076-00     | 5/15/13   | lighted /5 | Mr.      |           | 147°F        |
| 1  |                  |           | /          | •        |           |              |
|    |                  |           |            |          |           |              |
| ļ  |                  |           |            |          |           |              |
| 1  |                  |           |            |          |           |              |
|    |                  |           |            |          |           |              |
|    |                  |           |            |          |           |              |
| Į  |                  |           |            |          |           |              |

<sup>\*</sup> SAFETY GLASSES RÉQUIRED.

| Reagent              | Solution # | Expires | Method QC F              | Requirements:        |
|----------------------|------------|---------|--------------------------|----------------------|
| pH Buffer 4 (Red)    | M854-01    | Sep-13  | pH 7 within 0.1 pH units | LFB/Blank every 10 . |
| pH Buffer 7 (Yellow) | M854-02    | Dec-13  | Slope 95-102%            | MS/MSD Every 20      |
| pH Buffer 10 (Blue)  | A055-04    | Jan-14  |                          | % Recovery 85-115%   |
| 0.02N H2SO4 Titrant  | A055-03    | Nov-13  |                          |                      |

| Standard                                                                   | Solution # | Conc. | Expires | Amount Spiked (mg/L) |  |  |  |
|----------------------------------------------------------------------------|------------|-------|---------|----------------------|--|--|--|
| Matrix Spike Solution M891-01 1N 11/1/2013 100 (0.189 mL)                  |            |       |         |                      |  |  |  |
| Contriburette: CAT 10uL, sn 600055 - pH Meter: Orion Model 420A, sn 007858 |            |       |         |                      |  |  |  |

|                    |              |          |             |              |       |                |                         | Titrar   | t vol to p | H (mL)   |       | Alkalin   | ity (mg/l        | _)        |   |
|--------------------|--------------|----------|-------------|--------------|-------|----------------|-------------------------|----------|------------|----------|-------|-----------|------------------|-----------|---|
| Sample             | Temp<br>(°C) | pН       | pH 4<br>Cal | pH 10<br>Cal | Slope | pH 7<br>Buffer | Sample<br>Vol.<br>(mL)  | A<br>8.3 | B<br>4.5   | C<br>4.2 | Total | Carbonate | Bi-<br>carbonate | Hydroxide | % |
| 13050227-001       | 23.3         | 6.566    | 4,51        | الإحت.       | 10250 | 7.10           |                         |          |            |          |       |           |                  |           |   |
| ځىد-               | 24.4         | 6.91     |             |              |       |                |                         |          |            |          |       |           |                  |           |   |
| _5ءد-              | 24.08        | 6,14     | <u> </u>    | <u> </u>     |       |                |                         |          |            |          |       |           |                  |           |   |
| 130430036-001      | 11.8         | 7.73     |             |              |       |                |                         |          |            |          |       |           |                  |           |   |
| 13,2507,72,026,003 | 24.0         | 7.93     |             |              |       |                | _                       |          |            |          |       |           |                  |           |   |
|                    |              | <u> </u> | <u> </u>    |              |       |                | na Ministration Princip |          |            |          |       |           |                  |           |   |
|                    |              |          |             |              |       |                |                         |          |            |          |       |           |                  |           |   |
|                    |              |          |             |              |       |                |                         |          |            |          |       |           |                  |           |   |
|                    |              |          |             |              |       |                |                         |          |            |          |       |           |                  |           |   |
|                    |              |          |             |              |       |                |                         |          |            |          |       |           |                  |           |   |
|                    |              |          |             |              |       | *              |                         |          |            |          |       |           |                  |           |   |
|                    |              |          |             |              |       |                |                         |          |            |          |       |           |                  |           |   |
|                    |              |          |             |              |       |                |                         |          |            |          |       |           |                  |           |   |
|                    |              |          |             |              |       |                |                         |          |            |          |       |           |                  |           |   |
|                    |              |          |             |              |       |                |                         |          |            | ·        |       |           |                  |           |   |

| Analysis Date: 5-6-2013 | Analyst: AST |
|-------------------------|--------------|
|-------------------------|--------------|

### Sulfide by SM 4500-S<sup>2</sup> F

|                                  | Expires   |
|----------------------------------|-----------|
| Iodine 0.025 N (R069-16)         | Daily     |
| HCl 6N (R066-09)                 | Daily     |
| Starch Indicator 1%<br>(A057-04) | 1/11/2014 |
| Zinc Acetate (R069-15)           | 1/11/2018 |

### **Quality Control Information**

- 1. 1 blank per batch, must be < 20 ug/L.
- 2. 1 LFB per batch must be +/- 30%.
- 3. 50  $\mu L$  iodine reacts with 0.02 mg Sulfide Spike Standard Number:

|         | Sample                                  | Sample<br>Volume | lodine<br>amount<br>(50 µL<br>incremen<br>ts) | Concentration<br>(mg/sample) | Concentration<br>(mg/L)  | Spike<br>Amt | Date   | %<br>Recovery | Initials |
|---------|-----------------------------------------|------------------|-----------------------------------------------|------------------------------|--------------------------|--------------|--------|---------------|----------|
|         | 13が50で0できーコロー(四・5月)                     | 523 00           | 100                                           | 0,04                         | 0.0705                   |              | 5/3/13 |               | AST      |
| ٳ؞ۣ     | 130502017-001 ms 8.548<br>-003 ms 0.535 | 40ml             | 100                                           | ୭.୭ଫ୍ର                       | DS. 19.5 = 16.6          |              |        |               |          |
|         | 130502017-001 mi 8.548                  | 5 m4 (15 to 1)   | 3400                                          | 0.14                         | 28<br>24 x 0544 = 15.34  |              |        |               |          |
| 7<br>of | - D 3 7 m = 0.535                       | 5m/ PSx10        | 250                                           | وا.ه.                        | 20<br>2-0 x0,535 = 10.70 |              |        |               |          |
| 7       | . 205 ma 0, 447                         | 5mc (10x H)      | 450                                           | 0.15                         | 36<br>56=0.497=17.89     |              |        |               |          |
| ·       | 130450038-201                           | 42797 m2         | <b>8</b> 50                                   | 0.34                         | 0.4113                   |              |        |               |          |
|         | 1305 0103 100) ms 5,01                  | 50mc             | 150                                           | 0.00                         | 2.8 44.01 =4.00%         |              |        |               |          |
|         | 033 ->1 m: 6.04                         | 50m2             | 50                                            | 2 DX                         | 04 = 5.04 > 2.03         |              |        |               |          |
|         | 034-421 m=4.936                         | 50ml             | מיסו                                          | <u> </u>                     | ०% ५ धमद्र ३,५४          |              |        |               |          |
|         | 03-5-33/ M= 4.98                        | Sonk             | 50                                            |                              | DH 4+1.995=1.99          |              |        |               |          |
|         | 535- wins 1                             | 50mL             | 450                                           |                              | 36 24.99 = 17.93         | 209.2        |        | 89.7%         |          |
|         | - (5B                                   | 1000mL           | 450                                           | 0.14                         | 0.1%                     | 200          |        | 90%           |          |
|         | - L F B D                               |                  | 400                                           | 016                          | 0.16                     | _L           | l      | 50%           |          |

Comments forms Janusein 5/4/2013

#### **CASE NARRATIVE**

May 21, 2013

Lab Name: Anatek Labs, Inc. 1282 Alturas Drive, Moscow, ID 83843 www.anateklabs.com FL NELAP

E87893, NV ID13-2004-31, WA DOE C126, OR ELAP ID200001, MT 0028, ID, CO, NM

Project Tracking No.: 1304A43 Anatek Batch: 130430038

Project Summary: One (1) water sample was received on 4/30/2013 for RCI analysis. The sample was received

in good condition and with the appropriate chain of custody. The samples was received at 2.7C.

Client Sample ID

Anatek Sample ID Method/Prep Method

1304A43-001E / INJECTION

130430038-001

SW846 Ch7/EPA 1010/150.1

WELL

#### **QA/QC Checks**

| Parameters                          | Yes / No | Exceptions / Deviations |
|-------------------------------------|----------|-------------------------|
| Sample Holding Time Valid?          | Y        | NA                      |
| Surrogate Recoveries Valid?         | NA       | NA.                     |
| QC Sample(s) Recoveries Valid?      | Y        | NA <sup>r</sup>         |
| Method Blank(s) Valid?              | Υ        | NA                      |
| Tune(s) Valid?                      | NA       | NA.                     |
| Internal Standard Responses Valid?  | NA       | NA.                     |
| Initial Calibration Curve(s) Valid? | Y        | NA                      |
| Continuing Calibration(s) Valid?    | Y        | NA.                     |
| Comments:                           | Y        | NA                      |

#### 1. Holding Time Requirements

No problems encountered.

#### 2. GC/MS Tune Requirements

NA.

#### 3. Calibration Requirements

No problems encountered.

#### 4. Surrogate Recovery Requirements

NA.

#### 5. QC Sample (LCS/MS/MSD) Recovery Requirements

No problems encountered.

| <ol><li>Method Blank Requirement</li></ol> | i tra |
|--------------------------------------------|-------|

The method blanks were non-detect (<MDL) for all analytes. No problems encountered.

#### 7. Internal Standard(s) Response Requirements

N/A

#### 8. Comments

NA

I certify that this data package is in compliance with the terms and conditions of the contract. Release of the data contained in this data package has been authorized by the Laboratory Manager or his designee.

Approved by:

Page 2 of 17

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D · Spokane WA 99202 · (509) 838-3999 · Fax (509) 838-4433 · email spokane@anateklabs.com

**Client:** 

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

130430038

Address:

4901 HAWKINS NE SUITE D

**Project Name:** 

1304A43

Sampling Time 10:15 AM

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

#### **Analytical Results Report**

Sample Number

130430038-001

Sampling Date 4/24/2013 Date/Time Received 4/30/2013 12:18 PM

Client Sample ID Matrix

1304A43-001E / INJECTION WELL Water

Sample Location

Comments

| Parameter          | Result | Units    | PQL | Analysis Date | Analyst | Method    | Qualifler |
|--------------------|--------|----------|-----|---------------|---------|-----------|-----------|
| Cyanide (reactive) | ND     | mg/L     | 0.1 | 5/14/2013     | CRW     | SW846 CH7 |           |
| Flashpoint         | >200   | °F       |     | 5/10/2013     | KFG     | EPA 1010  |           |
| pH                 | 7.28   | ph Units |     | 5/6/2013      | AJT     | EPA 150.1 |           |
| Reactive sulfide:  | ND     | mg/L     | . 1 | 5/3/2013      | AJT     | SW846 CH7 |           |

**Authorized Signature** 

John Coddington, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND

Not Detected

PQL

Practical Quartitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: HALL ENVIRONMENTAL ANALYSIS LAB

4901 HAWKINS NE SUITE D

**ALBUQUERQUE, NM 87109** 

Attn:

ANDY FREEMAN

Batch #:

130430038

Project Name:

1304A43

## Analytical Results Report Quality Control Data

| Lab Control Sam    | ple                |                |                  |                  |       |       |             |               |            |           |               |
|--------------------|--------------------|----------------|------------------|------------------|-------|-------|-------------|---------------|------------|-----------|---------------|
| Parameter          |                    | LCS Result     | Units            | LCS              | Spike | %Rec  | AR          | %Rec          | Prep       | Date      | Analysis Date |
| Cyanide (reactive) |                    | 0.528          | mg/L             | (                | ).5   | 105.6 | 80          | -120          | 5/14/      | 2013      | 5/14/2013     |
| Reactive sulfide   |                    | 0.18           | mg/L             | (                | 0.2   | 90.0  | 80          | )-12 <b>0</b> | 5/3/2      | 2013      | 5/3/2013      |
| Lab Control Sam    | nple Duplicate     |                |                  |                  |       |       |             |               |            |           |               |
| Parameter          |                    | LCSD<br>Result | Units            | LCSD             | %Rec  | %R    | <b>DD</b> • | AR<br>%RPD    | Prep E     | leta /    | Analysis Date |
| Reactive sulfide   |                    | 0.16           | mg/L             | <b>Spike</b> 0.2 | 80.0  | 11    | •           | 0-20          | 5/3/2      |           | 5/3/2013      |
| Treactive surface  |                    | 0.10           | mg/L             | U.E              |       |       |             |               | 0,0,0      |           | 0.0.2010      |
| Matrix Spike       |                    |                |                  |                  |       |       |             |               |            |           |               |
| Sample Number      | Parameter          |                | Sample<br>Result | MS<br>Result     | Unit  |       | MS<br>Spike | %Rec          | AR<br>%Rec | Prep Date | Analysis Date |
| •                  | Reactive sulfide   |                | ND               | 17.93            | mg/L  | -     | 20          | 89.7          | 70-130     | 5/3/201   | •             |
|                    | Cyanide (reactive) |                | ND               | 0.493            | mg/l  |       | 0.5         | 98.6          | 80-120     | 5/14/2013 | 5/14/2013     |
| Matrix Spike Duj   | pilcate            |                |                  |                  |       |       |             |               |            |           |               |
| •                  |                    | MSD            |                  | MSD              |       |       |             | AR            | _          |           |               |
| Parameter          |                    | Result         | Units            | Spike            | %R    |       | %RPD        | ,,,,          |            | p Date    | Analysis Date |
| Cyanide (reactive) |                    | 0.481          | mg/L             | 0.5              | 96    | .2    | 2.5         | 0-25          | 5/1        | 4/2013    | 5/14/2013     |
| Method Blank       |                    |                |                  | = = -            |       |       |             |               |            |           | _             |
| Parameter          |                    |                | Re               | sult             | Ur    | ılts  |             | PQL           | P          | rep Date  | Analysis Date |
| Cyanide (reactive) |                    |                | N                | <b>I</b> D       | m     | g/L   |             | 0.1           | 5/1        | 14/2013   | 5/14/2013     |
| Reactive suffice   |                    |                | N                | <b>I</b> D       | m     | g/L   |             | 1             | 5          | /3/2013   | 5/3/2013      |

AR

Acceptable Range

ND

Not Detected

PQL

Practical Quantitation Limit Relative Percentage Difference

Comments:

Certifications held by Anatak Labs ID: EPA:D00013; AZ:0701; CO:ID00013; FL(NELAP):E87693; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C695 Certifications held by Anatak Labs WA: EPA:WA00169; ID:WA00169; WA:C586; MT:Cert0096

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fix (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

#### Login Report:

NM

Customer Name: HALL ENVIRONMENTAL ANALYSIS LAB

Order ID:

130430038

4901 HAWKINS NE SUITE D

**Order Date:** 

4/30/2013

**ALBUQUERQUE** 

87109

**Contact Name: ANDY FREEMAN** 

Project Name: 1304A43

Comment:

Sample #:

130430038-001 Customer Sample #:

1304A43-001E / INJECTION WELL

Recvid:

Collector:

Date Collected: 4/24/2013

Quantity:

Matrix: Water **Date Received:** 

4/30/2013 12:18:00 PM

Comment:

| Test             | Lab | Method    | Due Date  | Priority           |
|------------------|-----|-----------|-----------|--------------------|
| CYANIDE REACTIVE | М   | SW846 CH7 | 5/10/2013 | Normal (6-10 Days) |
| FLASHPOINT       | M   | EPA 1010  | 5/10/2013 | Normal (6-10 Days) |
| рH               | М   | EPA 150.1 | 5/10/2013 | Normal (6-10 Days) |
| SULFIDE REACTIVE | М   | SW846,CH7 | 5/10/2013 | Normal (6-10 Days) |

#### SAMPLE CONDITION RECORD

| Samples received in a cooler?                   | Yes |
|-------------------------------------------------|-----|
| Samples received intact?                        | Yes |
| What is the temperature inside the cooler?      | 2.7 |
| Samples received with a COC?                    | Yes |
| Samples received within holding time?           | Yes |
| Are all sample bottles properly preserved?      | Yes |
| Are VOC samples free of headspace?              | N/A |
| Is there a trip blank to accompany VOC samples? | N/A |
| Labels and chain agree?                         | Yes |

#### HALL ENVIRONMENTAL ANALYSIS LABORATORY

### CHAIN OF CUSTODY RECORD

| PAGE: | OF- |
|-------|-----|
| 1     | · 1 |
| 1 1   | ı   |

| 130430      | 038 HALL Last     | <sup>6</sup> 5/10/2013 |
|-------------|-------------------|------------------------|
| I ISI SWIEP | 4/24/2013 1st RCV | 4/30/2012              |
| 1304A43     |                   | W0012013               |

| SUB CC  | NTRATOR: Anato   | k Labs COMPANY:  | Anatek Labs, Inc. |                | PHONE:            | (208) 883-2839 | 7AX:      | (208) 882-9246 |
|---------|------------------|------------------|-------------------|----------------|-------------------|----------------|-----------|----------------|
| ADDRE   | ss: 1282 /       | Alturas Dr       |                   |                | ACCOUNT #:        |                | RMAÎL:    |                |
| CITY, 8 | TATE, ZIP: Mosci | ow, ID 83843     |                   |                |                   |                |           |                |
| пем     | SAMPLE           | CLIENT SAMPLE ID | 9OTTLE<br>TYPE    | MATRIX         | OLLECTION<br>DATE | D CONTAINERS   | ANALYTICA | AL COMMENTS    |
| 1       | 1304A43-001E     | Injection Well   | 500PLNAOI         | Aqueous 4/24/2 | 013 10:15:00 AM   | 2 RCI          | MWB       |                |

| Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you. |                 |         |                                                                                    |             |                                       |                   |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|------------------------------------------------------------------------------------|-------------|---------------------------------------|-------------------|----------|
| Referented By:                                                                                                                                                                  | Date: 4/25/2013 | Time:   | ANATEK LABS RECEIVING LIST RECEIVED INTACT LABELS & CHAINS AGREE                   | REPO        | RT TRANSMIT                           | TAL DESTRED:      | ·        |
| Relinquished By:  Relinquished By:                                                                                                                                              | Dute:           | 2:21 PM | NO HEADSPACE  ICE / ICE - PACKS PRESENT  CUSTODY SEALS PRESENT                     | extra cost) | [] PAX<br>POR LAB USE                 | CNLY              | ① ONLINE |
|                                                                                                                                                                                 | and D           | RUSH    | PRESERVATIVES: Zinc Acetate Na 6H                                                  | <del></del> | с                                     | Attempt to Cool ? |          |
|                                                                                                                                                                                 | <u> </u>        |         | NUMBER OF CONTAINERS: SHIPPED VIA: T  DATE & TIME: 4/30/73 12/18 INSPECTED BY: 8 T |             | · · · · · · · · · · · · · · · · · · · |                   |          |

# Total Cyanide by Semi-Automated Colorimetry Method: EPA 335.4\SM-4500-CN-E Distillation Bench Sheet

Weak Acid Dissociable Cyanide by SM 4500-CN-I (check WAD column)

Total Cyanide MS/MSD/LCS Soln: Free Cyanide MS/MSD/LCS Soln:

M918-03 Exp:4/16/14 M918-04 Exp:4/17/14 Method requirements: All QC +/- 10%

Equipment: Midi-vap

Instrument: ALPCHEM FIA 3000

Absorbance: 570nm

|    | mple ID                    | Matrix      | Preserved | Sample<br>Amount (mL)** | Initial<br>Multiplier* | Final<br>Multiplier | Spike Amount<br>(mL) | WAD?<br>(check if<br>yes) |
|----|----------------------------|-------------|-----------|-------------------------|------------------------|---------------------|----------------------|---------------------------|
| 1  | 130501028-1                | soil en     | Null      | 50mc                    | 257                    | 759                 |                      |                           |
| 2  |                            | ,           |           |                         |                        |                     | [ml                  |                           |
| 3  | -lmso                      |             |           |                         | ₹ <u> </u>             |                     | 1                    |                           |
| 4  | -W5                        |             |           |                         | ×                      | 14                  | 1                    |                           |
| 5  | 150                        |             |           |                         | 1                      | ¥_                  |                      | ,                         |
| 6  | 130422022-7                |             |           |                         | 70                     | 100                 |                      |                           |
| 7  | 130510075-1                | 14          |           |                         | 100                    | 109                 |                      |                           |
| 8  | 130508054-t                | 1 0000      |           |                         | l×_                    | !x                  |                      |                           |
| 9  | 130513012-6<br>130513012-2 | 4           |           |                         |                        |                     |                      |                           |
| 10 | 130513012-2                | WW          | ₹         | المحراج ا               | ¥                      | 4                   |                      |                           |
| 11 | 130430038-1                | reactive un | NABH      | 50ml                    | lx.                    | ŀΧ                  |                      | 100.000                   |
| 12 | -Ims                       |             | , ,       | ļi                      |                        | 1                   | line                 |                           |
| 13 | -lons1                     |             |           |                         |                        |                     | 1 1                  |                           |
| 14 | WS                         |             |           |                         |                        |                     | 1                    |                           |
| 15 | BL                         | +           |           |                         |                        |                     |                      |                           |
| 16 |                            | dw          |           |                         |                        |                     | tmC                  |                           |
| 17 | -6180                      |             |           |                         |                        |                     | +                    |                           |
| 18 | 30510074-1                 | ININ        |           |                         |                        |                     |                      |                           |
| 19 | Ims                        |             |           |                         |                        |                     | lone                 |                           |
| 20 | -limoco                    | 4           | 4         | 1                       | 4                      | 4                   | ,4                   |                           |

<sup>\*</sup> If soils this calculation is taken from cyanide extraction bench sheet.

<sup>\*\*</sup> If soils, mLs of extract used for distillation.

| Extraction Passantus                | Because # | Anabitlant Bassantas | Bassant #  |
|-------------------------------------|-----------|----------------------|------------|
| Extraction Reagents:                |           | Analytical Reagents: | Reagent #: |
| methyl red indicator                | A063-01   | Barbilluric Acid     | R038-13    |
| 18 N H <sub>2</sub> SO <sub>4</sub> | A065-02   | Sodium Phosphate     | R029-16    |
| sulfamic acid                       | R068-19   | Chloramine-t         | R048-09    |
| 0.025N NaOH                         | R014-16   | Pyridine             | R043-03    |
| 51% MgCl <sub>2</sub>               | A063-03   |                      |            |

Distillation Initials/Date Distilled: 5/14/13

Analyst Initials/Date Analyzed M/ 5/14/13



#### Calibration Standards Preparation Form for Methods SM4500CN-E and **EPA 335.4**

The following sample sequences have been analyzed using the standard information below on the FIA FS3000:

Cn- (Simple Cyanide) Calibration Stock Standard Number: M889-04

Cn-(Simple Cyanide) Calibration Stock Standard Concentration: 1000 ug/ mL Cn- (Simple Cyanide) Calibration Stock Standard Expiration Date: 10/31/2013

Cn- (Total Cyanide) Matrix Spiking Standard Number: M918-03

Cn- (Total Cyanide) Matrix Spiking Standard Concentration: 25 ug/ mL Cn- (Total Cyanide) Matrix Spiking Standard Expiration Date: 04/16/2014

Cn- (Simple Cyanide) Initial Calibration Verification Stock Standard Number: M898-01

Cn- (Simple Cyanide) Initial Calibration Verification Stock Standard Concentration: 1000 ug/ml Cn- (Simple Cyanide) Initial Calibration Verification Stock Standard Expiration Date: 12/26/2013

**Initial Calibration Dilution Template** 

| Desired Concentration<br>(ppb) | Stock Concentration (ppm) | uL Standard Added | Final Volume (mL) |
|--------------------------------|---------------------------|-------------------|-------------------|
| 1000                           | 1000                      | 100               | 100               |
| 800                            | 1000                      | 40                | 50                |
| 500 (CCV)                      | 1000                      | 50                | 100               |
| 50*                            | 1.0                       | 2500              | 50                |
| 10*                            | 1.0                       | 500               | 50                |

<sup>\* 50</sup> and 10 ppb calibration standard prepared using 1.0 ppm calibration standard.

Initial Calibration Verification Dilution Template (ICV)

| Antial Campiation Volumention District Available (10 1) |                           |                    |                   |  |  |  |  |  |
|---------------------------------------------------------|---------------------------|--------------------|-------------------|--|--|--|--|--|
| Desired Concentration<br>(ppb)                          | Stock Concentration (ppm) | ul. Standard Added | Final Volume (mL) |  |  |  |  |  |
| 250                                                     | 1600                      | 25                 | 100               |  |  |  |  |  |

Total Cyanide MS/MSD/LCS prepared by adding 1 mL of M918-03 to 50 mL sample. WAD Cyanide MS/MSD/LCS prepared by adding 1 mL of M918-04 to 50 mL sample.

Standard Prep Date: 4/30/13

Analysts Initials/Date: 5/14/17

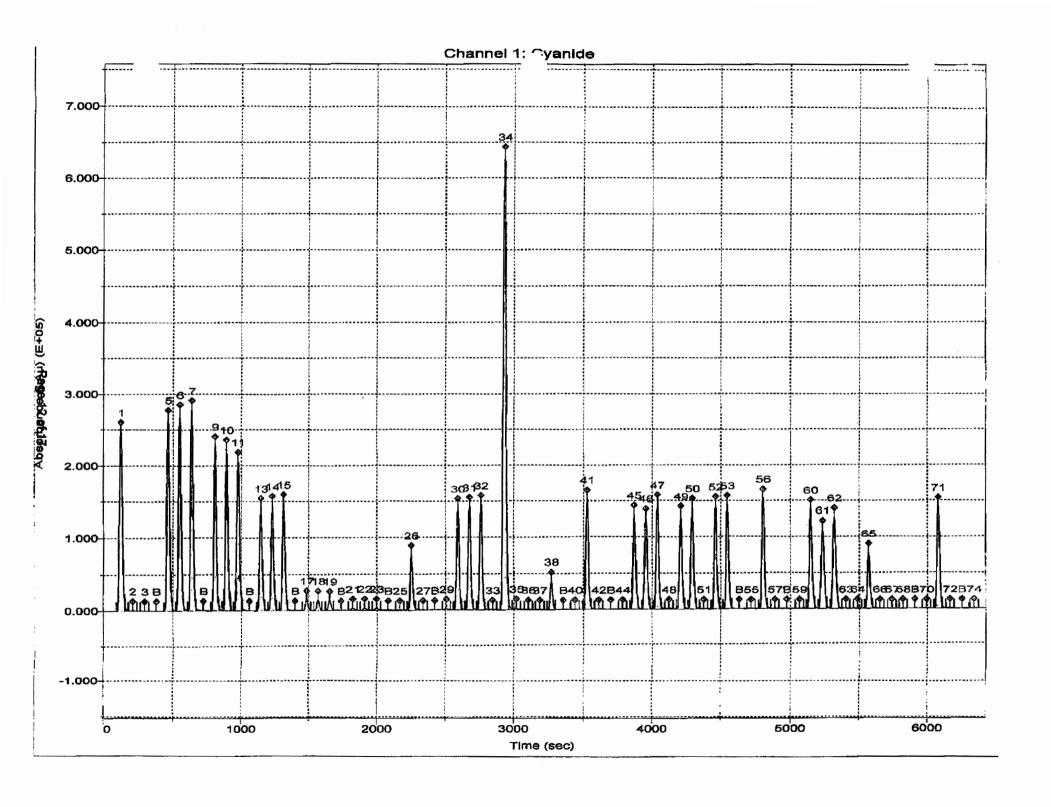
Pipettes: A04003282

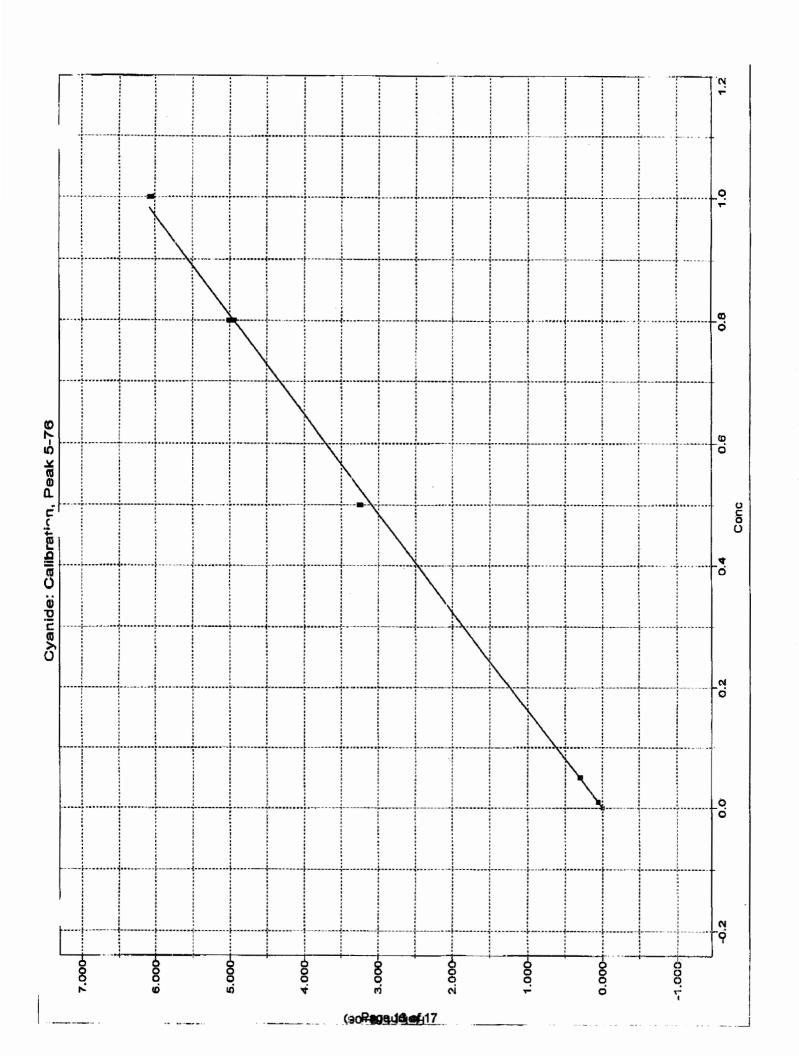
2751528/2752498

'eak table: Cyanide

5-1-117

'ile name: T:\DATA1\FLOW4\2013\EPA335.4\051413CM.RST Date: May 14, 2013 Operator: CRW


DW 5-15-13


|          |         |                           |            | VVV            |        |             |       |                      |             |
|----------|---------|---------------------------|------------|----------------|--------|-------------|-------|----------------------|-------------|
| ,(       | Cup     | Name                      | Type       | Dil Wt         | A      | Area        | Calc. | (ppm)                |             |
|          | 2       | Sync                      | SYNC       | 1              | 1      | 6038980     |       | 0.976643             |             |
| ,        | ō       | Carryover                 | CO         | i              |        | 18010       |       | 0.003511             |             |
| į        | ŏ       | Carryover                 | co         | 1              | 1      | 2575        |       | 0.003311             |             |
| 3        | ŏ       | Baseline                  | RB         | i              | i      | -1881       |       | 0.000296             |             |
| í        | 2       | Cal 1.00 ppm              | C          | i              | ī      | 6044285     |       | 0.977500             |             |
| ;        | 2       | Cal 1.00 ppm              | č          | ī              | 1      | 6066860     |       | 0.981149             |             |
| ,        | 2       | Cal 1.00 ppm              | Ç          | i              | 1      | 6074882     |       | 0.982445             |             |
| 3        | ō       | Baseline                  | RB         | ī              | 1      | -2392       |       | 0.000214             |             |
| )        | 3       | Cal 0.80 ppm              | Ç          | î              | ī      | 4942340     |       | 0.799399             |             |
| . 0      | 3       | Cal 0.80 ppm              | č          | ī              | ī      | 4946887     |       | 0.800135             |             |
| .1       | 3       | Cal 0.80 ppm              | C          | ī              | ī      | 5011107     |       | 0.810514             |             |
| 3        | 0       | Baseline                  | RB         | 1              | 1      | 429         |       | 0.000669             |             |
| .3       | 4       | Cal 0.50 ppm              | C          | 1              | 1      | 3235292     |       | 0.523500             |             |
| .4       | 4       | Cal 0.50 ppm              | C          | 1              | 1      | 3234827     |       | 0.523425             |             |
| .5       | 4       | Cal 0.50 ppm              | С          | 1              | 1      | 3256325     |       | 0.526900             |             |
| 3        | 0       | Baseline                  | RB         | 1              | 1      | -552        |       | 0.000511             |             |
| .7       | 5       | Cal 0.05 ppm              | C          | 1              | 1      | 300741      |       | 0.049207             |             |
| .8       | 5       | Cal 0.05 ppm              | C          | 1              | 1      | 299279      |       | 0.048971             |             |
| .9       | 5       | Cal 0.05 ppm              | С          | 1              | 1      | 304102      |       | 0.049750             |             |
| 3        | 0       | Baseline                  | RB         | 1              | 1      | -224        |       | 0.000564             |             |
| ?1       | 6       | Cal 0.01 ppm              | C          | 1              | 1      | 58197       |       | 0.010006             |             |
| 22       | 6       | Cal 0.01 ppm              | C          | 1              | 1      | 57781       |       | 0.009939             |             |
| 23       | 6       | Cal 0.01 ppm              | C          | 1              | 1      | 58574       |       | 0.010067             |             |
| 3        | О       | Baseline                  | RB         | 1              | 1      | -308        |       | 0.000550             |             |
| ?5       | 1       | Blank:                    | BLNK       | 1              | 1      | -1103       |       | 0.000422             |             |
| 26       | 7       | ICV 0.25 ppm              | CCA        | 1              | 1      | 1652560     |       | 0.267693             |             |
| 27       | 1       | Blank:                    | BLNK       | 1              | 1      | -290        |       | 0.000553             |             |
| 3        | 0       | Baseline                  | RB         | 1              | 1      | 897         |       | 0.000745             |             |
| 2:       | 8 ~     | 130501028-001             | Ü          | 259            | 1      | 38284       |       | 1.758032             |             |
| 30       | 9       | 130501028-001MS           |            | 259            | 1      | 3088314     |       | .29.433945           |             |
| 31       | 10      | 130501028-001MS           |            | 259            | 1      | 310250      | 5     | 130.028030           |             |
| 32       | 11      | 130501028-LCS             | U          | 1              | 1      | 3260699     |       | 0.527606             |             |
| 33       | 12      | 130501028-BL              | Ü          | 1              | 1      | 3377        |       | 0.001146_            | additional  |
| 34       |         | 130422022-007             | Ü          | 20             | 1      | 14952298    |       | 48.344933            | and invited |
| 35       |         | 130510075-001             | Ü          | 109            | 1      | 30035       |       | 0.594545             | WK,         |
| 36       | 15      | 130508054-006             | Ū          | 1              | 1      | 7690        |       | 0.001043             | below       |
| 37<br>38 | 16      | £ 130509042-006           | Ü          | 1              | 1      | 914         |       | 0.000748             | •           |
| 3        | 17<br>0 | 130513012-002<br>Baseline | Ü          | 1<br>1         | 1      | 824775      |       | 0.133903             |             |
| 10       | 1       | Blank                     | RB<br>BLNK | 1              | 1<br>1 | -79<br>-944 |       | 0.000587             |             |
| 11       | 4       | CCV 0.5 ppm               | CCV        | 1              | 1      | 3311329     |       | 0.000448             |             |
| 12       | 1       | Blank                     | BLNK       | i              | î      | -2419       |       | 0.535790<br>0.000209 |             |
| 3        | ō       | Read Baseline             | RB         | i              | ī      | -814        |       | 0.000209             |             |
| 14       | 18      | 130430038-001 L           |            | î              | ī      | 4148        |       | 0.001270             |             |
| 45       | 19      | 130430038-001MS           |            | ī              | ī      | 3043535     |       | 0.492508             |             |
| 46       | 20      | 130430038-001MS           |            | ~ <sub>1</sub> | 1      | 297131      | 5     | 0.480835             |             |
| 47       | 21      | 130430038-LCS             | ับ         | 1              | 1      | 3261260     |       | 0.527697             |             |
| 48       | 22      | 130430038-BL              | Ü          | ī '            | 1      | -1539       |       | 0.000351             |             |
| 49       | 23      | √130508054-006MS          |            | ī              | ī      | 3000574     |       | 0.485564             |             |
| 50       | 2.4     | √130508054-006MS          |            | _<br>1         | 1      | 319824      | 2     | 0.517512             |             |
| 51       |         | 4130510074-001 NA         |            | 1              | 1      | -7577       |       | -0.000625            |             |
| 52       | 26      | 130510074-001MS           | ับ         | 1              | 1      | 3073429     |       | 0.497339             |             |
| 53       | 27      | 130510074-001MS           | ט ס        | 1              | 1      | 304135      | 5     | 0.492155             |             |
| В        | 0       | Baseline                  | RB         | 1              | 1      | -1660       |       | 0.000332             |             |
| 55       | 1       | Blank                     | BLNK       | 1              | 1      | -5872       |       | -0.000349            |             |
| 56       | 4       | CCV 0.5 ppm               | CCV        | 1              | 1      | 3256631     |       | 0.526949             |             |
| 57       | 1       | Blank                     | BLNK       | 1              | 1      | -4282       |       | -0.000092            |             |
| ₿        | 0       | Read Baseline             | RB         | 1              | 1      | -899        |       | 0.000455             |             |
| 5!       | 28      | 130510079-001 F           | Ü          | 1.1            | 1      | -2333       |       | 0.000245             |             |
| 66       | 2.9     | 130510079-001MS           | U          | 1.1            | 1      | 3130370     |       | 0.557196             |             |
| 61       | 30      | 130510079-001MS           | ט ס        | 1.1            | 1      | 279248      | 2     | 0.497125             |             |
| 62       | 31      | 130510079-LCS             | Ü          | 1              | 1      | 3273632     |       | 0.529697             |             |
| 63       | 32      | 130510079-BL              | U          | 1              | 1      | -1264       |       | 0.000396             |             |
| 64       | 33      | 130513014-001             | U          | 1.1            | 1      | 1884        |       | 0.000995             |             |
| 65       | 34      | <b>∮</b> 130422022-007    | ט          | 200            | 1      | 1775712     |       | 57.519485            |             |
| 66       | 35      | R                         | U          | 1              | 1      | -1877       |       | 0.000297             |             |

| eak | Cup | Name          | Type | Dil | Wt | Area    | Calc. (ppm) |
|-----|-----|---------------|------|-----|----|---------|-------------|
|     |     |               |      |     |    |         |             |
| 7   | 36  | R             | U    | 1   | 1  | -236    | 0.000562    |
| 8   | 37  | R             | U    | 1   | 1  | -552    | 0.000511    |
|     | ٥   | Baseline      | RB   | 1   | 1  | -803    | 0.000470    |
| 1   | 1   | Blank         | BLNK | 1   | 1  | -2064   | 0.000266    |
| 1   | 4   | CCV 0.5 ppm   | CCV  | 1   | 1  | 3305444 | 0.534838    |
| 2   | 1   | Blank         | BLNK | 1   | 1  | -5046   | -0.000215   |
|     | 0   | Read Baseline | RB   | 1   | 1  | -257    | 0.000559    |
| 4   | 38  |               | U    | 1   | 1  | -2169   | 0.000250    |

| 226                        | Cun                      | Flagg    |
|----------------------------|--------------------------|----------|
| eak<br>                    | Cup                      | Flags    |
|                            | 2                        |          |
|                            | o o                      |          |
|                            | 0<br>2                   | BL       |
|                            | 2                        |          |
|                            | 0                        | BI,      |
| ^                          | 3                        |          |
| 0<br>1                     | 3                        |          |
|                            | 0                        | BL       |
| 3<br>4<br>5                | 4                        |          |
| 5                          | 4                        | DT       |
| 7                          | 5                        | BL       |
| 7<br>8<br>9                | 5                        |          |
|                            | 0                        | BL       |
| 2                          | 6                        |          |
| 2<br>3<br>5<br>6<br>7      | 000222033304440555066601 |          |
| 5                          | 0<br>1                   | BL       |
| 6                          | 7                        |          |
| 7                          | 1<br>0                   | BL       |
| 9                          | .8                       |          |
| 1                          | 9<br>10                  |          |
| 9<br>0<br>1<br>2<br>3<br>4 | 1.1                      |          |
| 4                          | 12<br>13                 | ні       |
| 5<br>6                     | 14<br>15                 | FL<br>FL |
| 7                          | 16                       | 211      |
| 8                          | 1.7<br>0                 | BI.      |
| 0                          | 1                        |          |
| 1<br>2                     | 4<br>1                   |          |
| i<br>4                     | 0<br>18                  | BL       |
| 5                          | 19                       |          |
| 6<br>7                     | 20<br>21                 |          |
| 8                          | 22                       |          |
| 9                          | 23<br>24                 |          |
| .1                         | 25                       | LO       |
| ₁2<br>₁3                   | 26<br>27                 |          |
| 3                          | 0                        | BL       |
| 5<br>6                     | 1<br>4                   | LO       |
| i7                         | 1                        | LO       |
| }                          | 0                        | BL       |
|                            |                          |          |

| 'eak       | Cup | Flags |
|------------|-----|-------|
| . – –      |     |       |
| i 9        | 28  |       |
| 50         | 29  |       |
| 51         | 30  |       |
| 32         | 31  |       |
| <b>3</b> 3 | 32  |       |
| 54         | 33  |       |
| 55         | 34  |       |
| 56         | 35  |       |
| \$7        | 36  |       |
| 58         | 37  |       |
| 3          | O   | BL    |
| 70         | 1   |       |
| 11         | 4   |       |
| 12         | 1   | LO    |
| 3          | 0   | BL    |
| 14         | 38  |       |





yantus. Calibracion, reak o-10

'ile name: T:\DATA1\FLOW4\2013\EPA335.4\051413CM.RST

hate: May 14, 2013

perator: CRW

|   | me  |      |     | Conc     | Area           |
|---|-----|------|-----|----------|----------------|
|   | Cal | 1.00 | ppm | 1.000000 | 6044285.000000 |
|   | Cal | 1.00 | ppm | 1.000000 | 6066860.000000 |
| - | Cal | 1.00 | ppm | 1.000000 | 6074881.500000 |
|   | Cal | 0.80 | ppm | 0.800000 | 4942339.500000 |
|   | Cal | 0.80 | ppm | 0.800000 | 4946887.000000 |
|   | Cal | 0.80 | ppm | 0.800000 | 5011107.000000 |
| - | Cal | 0.50 | ppm | 0.500000 | 3235291.750000 |
|   | Cal | 0.50 | ppm | 0.500000 | 3234827.000000 |
|   | Cal | 0.50 | ppm | 0.500000 | 3256325.250000 |
|   | Cal | 0.05 | ppm | 0.050000 | 300741.343750  |
|   | Cal | 0.05 | ppm | 0.050000 | 299278.562500  |
| - | Cal | 0.05 | ppm | 0.050000 | 304102.375000  |
|   | Cal | 0.01 | mqq | 0.010000 | 58197.007812   |
|   | Cal | 0.01 | ppm | 0.010000 | 57780.523438   |
|   | Cal | 0.01 | mqq | 0.010000 | 58574.269531   |

Calib Coef:

y=bx+a

a: (intercept) -3.7130e+03 b: 6.1872e+06

Corr Coef:

0.999387

Carryover:

0.298%

No Drift Peaks

# Flashpoint Analysis

# Sample Matrix - Soil (1), Sludge (2), Oil (3), Water (4), Other (5)

| Sample II   | Analyses Date    | Sample<br>Matrix | Analyst<br>Initials | Temp - °C | Temp - °F                                        |
|-------------|------------------|------------------|---------------------|-----------|--------------------------------------------------|
| 13030600H   | 0 3/8/2013       | Linuid/5         | WZ                  |           | 150°F                                            |
|             | 2-00] 3/14/13    | Liquid/5         | Mi                  | _         | <50° F                                           |
| 130322014   | 201 3/27/13      | 0:4/3            | Mu                  |           | 178 of                                           |
| 130322035-0 |                  | H20/4            | m                   |           | 72000 F                                          |
| -01         |                  |                  |                     |           |                                                  |
| 130327025-1 | 013/28/2013      | H201,4           | m                   |           | >200°F                                           |
| 130327026-0 |                  | <u> </u>         | <del></del>         |           | 7200°F                                           |
| 1303280404  |                  |                  | n/h                 |           | > 2000                                           |
| 130401026-  |                  | 150/4            | nin-                |           | >200°F                                           |
| 130915008   | 00 4/15/2013     | H20/4            | Win-                |           | 7206°P                                           |
|             | 002 4/23/13      | 420/4            | mu                  |           | 72000F                                           |
| 130126020   |                  | 420/4            | Jug w               |           | 7200°F                                           |
|             | 25/2/13          | 1. 1/2           | 20/4                |           | >200°F                                           |
| 130472038-0 | <u>9215/7/13</u> | higaid/5         | My                  |           | 150°E                                            |
| 00          |                  |                  |                     |           | ELLYD FLSOOF                                     |
| 900-        |                  | <del>  </del>    | <del></del>         |           | USTOF.                                           |
| -00         |                  |                  | <i> </i>            |           | 177°E                                            |
| 0           |                  | <del>  </del>    |                     |           | 53°F                                             |
| 130430045   |                  | Lianid/5         | inte                |           | >700 F                                           |
| 130/30038   |                  | 1120/4           | 1                   |           | >250°F                                           |
| 130510076   | 00 5/15/13       | liquid 15        | M                   |           | 147° F                                           |
|             |                  | /                |                     |           |                                                  |
|             |                  |                  |                     |           |                                                  |
|             |                  |                  |                     | ·         |                                                  |
|             |                  |                  |                     |           |                                                  |
|             |                  |                  |                     |           | <u> </u>                                         |
|             | <u> </u>         |                  |                     |           | <del>                                     </del> |
|             |                  | <u> </u>         | <u> </u>            |           |                                                  |

<sup>\*</sup> SAFETY GLASSES REQUIRED.

| Reagent              | Solution # | Expires | Method QC F              | Requirements:      |
|----------------------|------------|---------|--------------------------|--------------------|
| pH Buffer 4 (Red)    | M854-01    | Sep-13  | pH 7 within 0.1 pH units | LFB/Blank every 10 |
| pH Buffer 7 (Yellow) | M854-02    | Dec-13  | Slope 95-102%            | MS/MSD Every 20    |
| pH Buffer 10 (Blue)  | A055-04    | Jan-14  |                          | % Recovery 85-115% |
| 0.02N H2SO4 Titrant  | A055-03    | Nov-13  |                          |                    |

| Standard              | Solution #           | Conc.            | Expires              | Amount Spiked (mg/L) |
|-----------------------|----------------------|------------------|----------------------|----------------------|
| Matrix Spike Solution | M891-01              | 1N               | 11/1/2013            | 100 (0.189 mL)       |
| Contrib               | urette: CAT 10uL, sn | 600055 - pH Mete | r: Orion Model 420A, | sn 007858            |

|                                       |                      |      |             |              |       |                |                        | Titran   | t vol to p | H (mL)   |       | Aikalini  | ty (mg/L         | -}        |   |
|---------------------------------------|----------------------|------|-------------|--------------|-------|----------------|------------------------|----------|------------|----------|-------|-----------|------------------|-----------|---|
| Sample                                | Temp<br>(°C)         | рH   | pH 4<br>Cal | pH 10<br>Cal | Slope | pH 7<br>Buffer | Sample<br>Vol.<br>(mL) | A<br>8.3 | B<br>4.5   | C<br>4.2 | Total | Carbonate | BI-<br>carbonate | Hydroxide | % |
| 13050227-001                          | Z3.3                 | 6.56 | 4,51        | 10.00        | 10250 | 2.10           |                        |          |            |          |       |           |                  |           |   |
| ر<br>ند <i>-</i>                      | 24.4                 | 6.91 |             |              |       |                |                        |          |            |          |       |           |                  |           |   |
| -205                                  | 24.0%                | 8.14 |             |              |       |                |                        |          |            |          |       |           |                  |           |   |
| 1304300350001                         | 24.0°C<br>71.8<br>42 | 7.78 |             |              |       |                |                        |          |            |          |       |           |                  |           |   |
| 130502026-03                          | 240                  | 7.93 |             |              |       |                |                        |          |            |          |       |           |                  |           |   |
|                                       | <u> </u>             |      |             |              |       |                |                        |          |            |          |       |           |                  |           |   |
|                                       |                      |      |             | ·            |       |                |                        |          |            |          |       |           |                  |           |   |
|                                       |                      |      |             |              |       |                |                        |          |            |          |       |           |                  |           |   |
|                                       |                      |      |             |              |       |                |                        |          |            |          |       |           |                  |           |   |
|                                       |                      |      |             |              |       |                |                        |          |            |          |       |           |                  |           |   |
|                                       |                      |      |             |              |       |                |                        |          |            |          |       |           |                  |           |   |
|                                       |                      |      |             |              |       |                |                        |          |            |          |       |           |                  |           |   |
| * * * * * * * * * * * * * * * * * * * |                      |      |             |              |       | -              |                        |          |            |          |       |           |                  |           |   |
|                                       |                      |      |             |              |       |                |                        |          |            |          |       |           |                  |           |   |
|                                       |                      |      |             |              |       |                |                        |          |            |          |       |           |                  |           |   |

| Analysis Date: 5 - 6 - 20/3 | Analysis Date: 5-6-2013 |  | Analyst: _AST |  |
|-----------------------------|-------------------------|--|---------------|--|
|-----------------------------|-------------------------|--|---------------|--|

# Sulfide by SMI 4500-5" F

|                                  | Expires   |
|----------------------------------|-----------|
| Iodine 0.025 N (R069-16)         | Daily     |
| HCl 6N (R066-09)                 | Daily     |
| Starch Indicator 1%<br>(A057-04) | 1/11/2014 |
| Zinc Acetate (R069-15)           | 1/11/2018 |

### **Quality Control Intormation**

- 1. 1 blank per batch, must be < 20 ug/L.
- 2. 1 LFB per batch must be +/- 30%.
- 3. 50  $\mu L$  iodine reacts with 0.02 mg Sulfide Spike Standard Number:

|          | Sample                 | Sample<br>Volume | lodine<br>amount<br>(50 µL<br>incremen<br>ts) | Concentration<br>(mg/sample) | Concentration<br>(mg/L) | Spike<br>Amt | Date   | %<br>Recovery | Initials |
|----------|------------------------|------------------|-----------------------------------------------|------------------------------|-------------------------|--------------|--------|---------------|----------|
|          | 130502025-001 (四年19)   | 523 OO           | 100                                           | 0,54                         | 0.0745                  |              | 5/3/13 |               | AST      |
| Pa       | 130423044-001-(106.00) | 50m2             | 100                                           | 5.54                         | 88 - 14.5 = 15.6        |              | İ      |               |          |
| Page 1   | 130502017-001 ms 0.548 | 5 m4 (15 01)     | 350                                           | 0.14                         | 28<br>24 x 0546 = 15.34 |              |        |               |          |
| 17 of 17 | -005 m=0535            | 5m/ 19x10        | 250                                           | 0.10                         | 20<br>20 10.535 = 10.70 |              |        |               |          |
| 17       | . 005 mc 0.447         | 5mc. (10x 2)     | 1450                                          | ાં કે                        | 36<br>56=0.497:17.89    |              |        |               |          |
|          | 130450088-201          | 427.97 mc        | <b>8</b> 5 ⊃                                  | 0.34                         | 0.7113                  |              |        |               |          |
|          | 1305 0103 1001 ms 5.01 | Some             | 136                                           | Ø.0₽                         | 0.8 44.01 =4.004        |              |        |               |          |
|          | 033 -01 m= 5.04        | SOML             | 50                                            | ୍ ୭୪                         | 0.4 × 5.04 × 2.03       |              |        |               |          |
|          | 234-421 m: 4.936       | 50-6             | ספו                                           | 0 04                         | 08 2 483 = 3.54         |              |        |               |          |
|          | 03-5-33/ M= 4.98       | FonL             | 50                                            | <u> </u>                     | D4 4-1.685=199          |              |        |               |          |
|          | 535-23/ms I            | 50ml             | 450                                           | -                            | 36 24.99 = 17.93        | 2001         |        | 89.7%         |          |
|          | - 45B                  | 1000mL           | 450                                           | 0.14                         | 0.15                    | 200,4        |        | 90%           |          |
|          | -LFBD                  |                  | 400                                           | 014                          | عا: د                   | $\perp$      |        | 80%           |          |

Comments January 5/2/2013

### Hall Environmental Analysis Laboratory, Inc.

WO#: 1304A43

23-May-13

Client: Western Refining Southwest, Inc.

Project: Injection Well 2nd Qtr 4-24-13

Sample ID MB TestCode: EPA Method 300.0: Anions SampType: MBLK Client ID: PBW Batch ID: R10139 RunNo: 10139 SeqNo: 288955 Prep Date: Analysis Date: 4/25/2013 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual ND 0.50 Chloride Sulfate ND 0.50

Sample ID LCS-b TestCode: EPA Method 300.0: Anions SampType: LCS RunNo: 10139 Client ID: LCSW Batch ID: R10139 Prep Date: Analysis Date: 4/25/2013 SeqNo: 288967 Units: mg/L SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Result **PQL** LowLimit Analyte 90 110 4.7 0.50 5.000 93.4 Chloride Sulfate 9.5 0.50 10.00 0 95.2 90 110

Sample ID MB SampType: MBLK TestCode: EPA Method 300.0: Anions RunNo: 10139 Client ID: **PBW** Batch ID: R10139 SeqNo: 289009 Units: mg/L Prep Date: Analysis Date: 4/26/2013 %RPD **RPDLimit** Qual SPK value SPK Ref Val %REC HighLimit Analyte Result PQL LowLimit ND 0.50 Chloride ND Sulfate 0.50

Sample ID LCS TestCode: EPA Method 300.0: Anions SampType: LCS Client ID: LCSW Batch ID: R10139 RunNo: 10139 Analysis Date: 4/26/2013 Prep Date: SeqNo: 289010 Units: mg/L %RPD Result SPK value SPK Ref Val %REC LowLimit HighLimit **RPDLimit** Qual Analyte **PQL** 4.7 0.50 5.000 0 93.5 90 110 Chloride Sulfate 9.6 0.50 10.00 0 95.8 90 110

#### Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

Analyte detected below quantitation limits

P Sample pH greater than 2 for VOA and TOC only.

RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Page 6 of 17

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1304A43

23-May-13

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd Otr 4-24-13

| Project: Injection                                                                                                                                                     | Well 2nd (                                                         |                       |                                                        |                  |                                                                                 |                                                                                       |                                                                   |           |                                         |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------|--------------------------------------------------------|------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------|-----------------------------------------|------|
| Sample ID 5ml-rb                                                                                                                                                       | SampT                                                              | уре: <b>МЕ</b>        | BLK                                                    | Test             | Code: EF                                                                        | A Method                                                                              | 8260B: VOL                                                        | ATILES    |                                         |      |
| Client ID: PBW                                                                                                                                                         | Batch                                                              | ID: <b>R1</b>         | 0158                                                   | R                | unNo: 10                                                                        | 0158                                                                                  |                                                                   |           |                                         |      |
| Prep Date:                                                                                                                                                             | Analysis D                                                         | ate: 4/               | 26/2013                                                | s                | eqNo: 2                                                                         | 89475                                                                                 | Units: %RE                                                        | С         |                                         |      |
| Analyte                                                                                                                                                                | Result                                                             | PQL                   | SPK value                                              | SPK Ref Val      | %REC                                                                            | LowLimit                                                                              | HighLimit                                                         | %RPD      | RPDLimit                                | Qual |
| Surr: 1,2-Dichloroethane-d4                                                                                                                                            | 8.6                                                                |                       | 10.00                                                  |                  | 86.4                                                                            | 70                                                                                    | 130                                                               |           |                                         |      |
| Surr: 4-Bromofluorobenzene                                                                                                                                             | 8.6                                                                |                       | 10.00                                                  |                  | 85.8                                                                            | 69.5                                                                                  | 130                                                               |           |                                         |      |
| Surr: Dibromofluoromethane                                                                                                                                             | 8.6                                                                |                       | 10.00                                                  |                  | 86.0                                                                            | 70                                                                                    | 130                                                               |           |                                         |      |
| Surr: Toluene-d8                                                                                                                                                       | 8.6                                                                |                       | 10.00                                                  |                  | 85.7                                                                            | 70                                                                                    | 130                                                               |           | · · · · · · · · · · · · · · · · · · ·   |      |
| Sample ID 100ng Ics                                                                                                                                                    | SampT                                                              | ype: LC               | s                                                      | Test             | Code: El                                                                        | A Method                                                                              | 8260B: VOL                                                        | ATILES    |                                         |      |
| Client ID: LCSW                                                                                                                                                        | Batch                                                              | ID: <b>R1</b>         | 0158                                                   | R                | unNo: 1                                                                         | 0158                                                                                  |                                                                   |           |                                         |      |
| Prep Date:                                                                                                                                                             | Analysis D                                                         | ate: 4/               | 26/2013                                                | S                | eqNo: 2                                                                         | <b>8947</b> 7                                                                         | Units: %RE                                                        | С         |                                         |      |
| Analyte                                                                                                                                                                | Result                                                             | PQL                   | SPK value                                              | SPK Ref Val      | %REC                                                                            | LowLimit                                                                              | HighLimit                                                         | %RPD      | RPDLimit                                | Qual |
| Surr: 1,2-Dichloroethane-d4                                                                                                                                            | 8.4                                                                |                       | 10.00                                                  |                  | 83.5                                                                            | 70                                                                                    | 130                                                               |           |                                         |      |
| Surr: 4-Bromofluorobenzene                                                                                                                                             | 8.7                                                                |                       | 10.00                                                  |                  | 86.9                                                                            | 69.5                                                                                  | 130                                                               |           |                                         |      |
| Surr: Dibromofluoromethane                                                                                                                                             | 8.1                                                                |                       | 10.00                                                  |                  | 81.0                                                                            | 70                                                                                    | 130                                                               |           |                                         |      |
| Surr: Toluene-d8                                                                                                                                                       | 8.5                                                                |                       | 10.00                                                  |                  | 84.7                                                                            | 70                                                                                    | 130                                                               |           |                                         |      |
| Sample ID b2                                                                                                                                                           | SampT                                                              | ype: ME               | BLK                                                    | Test             | Code: El                                                                        | PA Method                                                                             | 8260B: VOL                                                        | ATILES    |                                         | ,    |
| Client ID: PBW                                                                                                                                                         | Batch                                                              | 1D: <b>R1</b>         | 0158                                                   | R                | RunNo: 1                                                                        | 0158                                                                                  |                                                                   |           |                                         |      |
| Prep Date:                                                                                                                                                             | Analysis D                                                         | ate: 4                | /27/2013                                               | S                | eqNo: 2                                                                         | 89501                                                                                 | Units: %RE                                                        | С         |                                         |      |
| Analyte                                                                                                                                                                | Result                                                             | PQL                   | SPK value                                              | SPK Ref Val      | %REC                                                                            | LowLimit                                                                              | HighLimit                                                         | %RPD      | RPDLimit                                | Qual |
| Surr: 1,2-Dichloroethane-d4                                                                                                                                            | 8.7                                                                |                       | 10.00                                                  |                  | 86.8                                                                            | 70                                                                                    | 130                                                               |           |                                         |      |
| Surr: 4-Bromofluorobenzene                                                                                                                                             | 8.3                                                                |                       | 10.00                                                  |                  | 83.3                                                                            | 69.5                                                                                  | 130                                                               |           |                                         |      |
| Surr: Dibromofluoromethane                                                                                                                                             | 8.6                                                                |                       | 10.00                                                  |                  | 86.1                                                                            | 70                                                                                    | 130                                                               |           |                                         |      |
| Surr: Toluene-d8                                                                                                                                                       | 8.7                                                                |                       |                                                        |                  |                                                                                 |                                                                                       |                                                                   |           |                                         |      |
|                                                                                                                                                                        |                                                                    |                       | 10.00                                                  |                  | 86.6                                                                            | 70                                                                                    | 130                                                               |           |                                         |      |
| Sample ID 100ng Ics2                                                                                                                                                   |                                                                    | ype: LC               |                                                        | Tes              |                                                                                 | ====                                                                                  | 130<br>8260B: VOL                                                 | ATILES    | *************************************** |      |
| Sample ID 100ng Ics2 Client ID: LCSW                                                                                                                                   | SampT                                                              | ype: LC               | :s                                                     |                  |                                                                                 | PA Method                                                                             |                                                                   | ATILES    |                                         |      |
|                                                                                                                                                                        | SampT                                                              | h ID: <b>R</b> 1      | CS<br>10158                                            | F                | tCode: E                                                                        | PA Method<br>0158                                                                     |                                                                   |           |                                         |      |
| Client ID: LCSW                                                                                                                                                        | SampT<br>Batch                                                     | h ID: <b>R</b> 1      | CS<br>10158<br>/27/2013                                | F                | tCode: El                                                                       | PA Method<br>0158                                                                     | 8260B: VOL                                                        |           | RPDLimit                                | Qual |
| Client ID: LCSW Prep Date:                                                                                                                                             | SampT<br>Batch<br>Analysis D                                       | n ID: R1              | CS<br>10158<br>/27/2013                                | F                | tCode: El<br>RunNo: 1<br>SeqNo: 2                                               | PA Method<br>0158<br>89503                                                            | 8260B: VOL                                                        | С         | RPDLimit                                | Qual |
| Client ID: LCSW Prep Date: Analyte                                                                                                                                     | SampT<br>Batcl<br>Analysis D<br>Result                             | n ID: R1              | CS<br>10158<br>/27/2013<br>SPK value                   | F                | tCode: El<br>RunNo: 1<br>SeqNo: 2<br>%REC                                       | PA Method<br>0158<br>89503<br>LowLimit                                                | 8260B: VOL  Units: %RE  HighLimit                                 | С         | RPDLimit                                | Qual |
| Client ID: LCSW Prep Date: Analyte Surr: 1,2-Dichloroethane-d4                                                                                                         | SampT<br>Batcl<br>Analysis D<br>Result<br>8.8                      | n ID: R1              | CS<br>10158<br>/27/2013<br>SPK value<br>10.00          | F                | RunNo: 1<br>SeqNo: 2<br>%REC<br>87.9                                            | PA Method<br>0158<br>89503<br>LowLimit                                                | 8260B: VOL Units: %RE HighLimit 130                               | С         | RPDLimit                                | Qual |
| Client ID: LCSW Prep Date: Analyte Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene                                                                              | SampT<br>Batcl<br>Analysis D<br>Result<br>8.8<br>8.3               | n ID: R1              | CS<br>10158<br>/27/2013<br>SPK value<br>10.00<br>10.00 | F                | RunNo: 1<br>SeqNo: 2<br>%REC<br>87.9<br>83.2                                    | PA Method<br>0158<br>89503<br>LowLimit<br>70<br>69.5                                  | 8260B: VOL  Units: %RE  HighLimit  130  130                       | С         | RPDLimit                                | Qual |
| Client ID: LCSW Prep Date: Analyte Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene Surr: Dibromofluoromethane                                                   | SampT<br>Batcl<br>Analysis D<br>Result<br>8.8<br>8.3<br>8.8<br>8.4 | n ID: R1              | SPK value 10.00 10.00 10.00 10.00                      | F<br>SPK Ref Val | RunNo: 1<br>SeqNo: 2<br>%REC<br>87.9<br>83.2<br>87.7<br>84.0                    | PA Method<br>0158<br>89503<br>LowLimit<br>70<br>69.5<br>70<br>70                      | 8260B: VOL  Units: %RE  HighLimit  130  130  130                  | C<br>%RPD | RPDLimit                                | Qual |
| Client ID: LCSW Prep Date: Analyte Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene Surr: Dibromofluoromethane Surr: Toluene-d8                                  | SampT Batch Analysis D Result 8.8 8.3 8.8 8.4                      | PQL                   | SPK value 10.00 10.00 10.00 10.00 BLK                  | SPK Ref Val      | RunNo: 1<br>SeqNo: 2<br>%REC<br>87.9<br>83.2<br>87.7<br>84.0                    | PA Method<br>0158<br>89503<br>LowLimit<br>70<br>69.5<br>70<br>70                      | 8260B: VOL  Units: %RE  HighLimit  130  130  130  130             | C<br>%RPD | RPDLimit                                | Qual |
| Client ID: LCSW Prep Date: Analyte Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene Surr: Dibromofluoromethane Surr: Toluene-d8  Sample ID 5ml-rb                | SampT Batch Analysis D Result 8.8 8.3 8.8 8.4                      | PQL  Type: Mih ID: R1 | SPK value 10.00 10.00 10.00 10.00 10.00 BLK            | SPK Ref Val  Tes | tCode: Et<br>RunNo: 1<br>SeqNo: 2<br>%REC<br>87.9<br>83.2<br>87.7<br>84.0       | PA Method<br>0158<br>89503<br>LowLimit<br>70<br>69.5<br>70<br>70<br>PA Method<br>0192 | 8260B: VOL  Units: %RE  HighLimit  130  130  130  130             | C<br>%RPD | RPDLimit                                | Qual |
| Client ID: LCSW Prep Date: Analyte Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene Surr: Dibromofluoromethane Surr: Toluene-d8  Sample ID 5ml-rb Client ID: PBW | SampT Batcl Analysis E Result 8.8 8.3 8.8 8.4 SampT Batcl          | PQL  Type: Mih ID: R1 | SPK value 10.00 10.00 10.00 10.00 10.00 10.00 10.00    | SPK Ref Val  Tes | tCode: Ei RunNo: 1 ReqNo: 2 %REC 87.9 83.2 87.7 84.0 tCode: E RunNo: 1 SeqNo: 2 | PA Method<br>0158<br>89503<br>LowLimit<br>70<br>69.5<br>70<br>70<br>PA Method<br>0192 | 8260B: VOL  Units: %RE  HighLimit  130  130  130  130  8260B: VOL | C<br>%RPD | RPDLimit<br>RPDLimit                    | Qual |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- Analyte detected below quantitation limits
- P Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

- Not Detected at the Reporting Limit
- RPD outside accepted recovery limits

Page 7 of 17

### Hall Environmental Analysis Laboratory, Inc.

WO#: 1304A43

23-May-13

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd Qtr 4-24-13

| Sample ID 5ml-rb               | SampT      | ype: <b>MBLK</b>  |         | Tes         | tCode: El | PA Method | 8260B: VOL  | ATILES |          |      |
|--------------------------------|------------|-------------------|---------|-------------|-----------|-----------|-------------|--------|----------|------|
| Client ID: PBW                 | Batch      | ID: <b>R10192</b> |         | F           | RunNo: 1  | 0192      |             |        |          |      |
| Prep Date:                     | Analysis D | ate: 4/29/20      | )13     | 5           | SeqNo: 2  | 90505     | Units: µg/L |        |          |      |
| Analyte                        | Result     | PQL SPH           | ( value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |
| Toluene                        | ND         | 1.0               |         |             |           |           |             |        |          |      |
| Ethylbenzene                   | ND         | 1.0               |         |             |           |           |             |        |          |      |
| Methyl tert-butyl ether (MTBE) | ND         | 1.0               |         |             |           |           |             |        |          |      |
| 1,2,4-Trimethylbenzene         | ND         | 1.0               |         |             |           |           |             |        |          |      |
| 1,3,5-Trimethylbenzene         | ND         | 1.0               |         |             |           |           |             |        |          |      |
| 1,2-Dichloroethane (EDC)       | ND         | 1.0               |         |             |           |           |             |        |          |      |
| 1,2-Dibromoethane (EDB)        | ND         | 1.0               |         |             |           |           |             |        |          |      |
| Naphthalene                    | ND         | 2.0               |         |             |           |           |             |        |          |      |
| 1-Methylnaphthalene            | ND         | 4.0               |         |             |           |           |             |        |          |      |
| 2-Methylnaphthalene            | ND         | 4.0               |         |             |           |           |             |        |          |      |
| Acetone                        | ND         | 10                |         |             |           |           |             |        |          |      |
| Bromobenzene                   | ND         | 1.0               |         |             |           |           |             |        |          |      |
| Bromodichloromethane           | ND         | 1.0               |         |             |           |           |             |        |          |      |
| Bromoform                      | ND         | 1.0               |         |             |           |           |             |        |          |      |
| Bromomethane                   | ND         | 3.0               |         |             |           |           |             |        |          |      |
| 2-Butanone                     | ND         | 10                |         |             |           |           |             |        |          |      |
| Carbon disulfide               | ND         | 10                |         |             |           |           |             |        |          |      |
| Carbon Tetrachloride           | ND         | 1.0               |         |             |           |           |             |        |          |      |
| Chlorobenzene                  | ND         | 1.0               |         |             |           |           |             |        |          |      |
| Chloroethane                   | ND         | 2.0               |         |             |           |           |             |        |          |      |
| Chloroform                     | ND         | 1.0               |         |             |           |           |             |        |          |      |
| Chloromethane                  | ND         | 3.0               |         |             |           |           |             |        |          |      |
| 2-Chlorotoluene                | ND         | 1.0               |         |             |           |           |             |        |          |      |
| 4-Chlorotoluene                | ND         | 1.0               |         |             |           |           |             |        |          |      |
| cis-1,2-DCE                    | ND         | 1.0               |         |             |           |           |             |        |          |      |
| cis-1,3-Dichloropropene        | ND         | 1.0               |         |             |           |           |             |        |          |      |
| 1,2-Dibromo-3-chloropropane    | ND         | 2.0               |         |             |           |           |             |        |          |      |
| Dibromochloromethane           | ND         | 1.0               |         |             |           |           |             |        |          |      |
| Dibromomethane                 | ND         | 1.0               |         |             |           |           |             |        |          |      |
| 1,2-Dichlorobenzene            | ND         | 1.0               |         |             |           |           |             |        |          |      |
| 1,3-Dichlorobenzene            | ND         | 1.0               |         |             |           |           |             |        |          |      |
| 1,4-Dichlorobenzene            | ND         | 1.0               |         |             |           |           |             |        |          |      |
| Dichlorodifluoromethane        | ND         | 1.0               |         |             |           |           |             |        |          |      |
| 1,1-Dichloroethane             | ND         | 1.0               |         |             |           |           |             |        |          |      |
| 1,1-Dichloroethene             | ND         | 1.0               |         |             |           |           |             |        |          |      |
| 1,2-Dichloropropane            | ND         | 1.0               |         |             |           |           |             |        |          |      |
| 1,3-Dichloropropane            | ND         | 1.0               |         |             |           |           |             |        |          |      |
| 2,2-Dichloropropane            | ND         | 2.0               |         |             |           |           |             |        |          |      |
| 1,1-Dichloropropene            | ND         | 1.0               |         |             |           |           |             |        |          |      |
| Hexachlorobutadiene            | ND         | 1.0               |         |             |           |           |             |        |          |      |
|                                | _          | _                 |         |             |           |           |             |        |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
   ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Page 8 of 17

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1304A43

23-May-13

Client:

Western Refining Southwest, Inc.

**Project:** 

Injection Well 2nd Qtr 4-24-13

| Sample ID 5ml-rb            | SampT      | ype: ME | ILK       | Tes         | tCode: El | A Method | 8260B: VOL  | ATILES |          |      |
|-----------------------------|------------|---------|-----------|-------------|-----------|----------|-------------|--------|----------|------|
| Client ID: PBW              | Batch      | ID: R1  | 0192      | F           | RunNo: 10 | 0192     |             |        |          |      |
| Prep Date:                  | Analysis D | ate: 4/ | 29/2013   | S           | SeqNo: 2  | 90505    | Units: µg/L |        |          |      |
| Analyte                     | Result     | PQL     | SPK value | SPK Ref Val | %REC      | LowLimit | HighLimit   | %RPD   | RPDLimit | Qual |
| 2-Hexanone                  | ND         | 10      |           |             |           |          |             |        |          |      |
| Isopropylbenzene            | ND         | 1.0     |           |             |           |          |             |        |          |      |
| 4-Isopropyltoluene          | ND         | 1.0     |           |             |           |          |             |        |          |      |
| 4-Methyl-2-pentanone        | ND         | 10      |           |             |           |          |             |        |          |      |
| Methylene Chloride          | ND         | 3.0     |           |             |           |          |             |        |          |      |
| n-Butylbenzene              | ND         | 3.0     |           |             |           |          |             |        |          |      |
| n-Propylbenzene             | ND         | 1.0     |           |             |           |          |             |        |          |      |
| sec-Butylbenzene            | ND         | 1.0     |           |             |           |          |             |        |          |      |
| Styrene                     | ND         | 1.0     |           |             |           |          |             |        |          |      |
| tert-Butylbenzene           | ND         | 1.0     |           |             |           |          |             |        |          |      |
| 1,1,1,2-Tetrachloroethane   | ND         | 1.0     |           |             |           |          |             |        |          |      |
| 1,1,2,2-Tetrachloroethane   | ND         | 2.0     |           |             |           |          |             |        |          |      |
| Tetrachloroethene (PCE)     | ND         | 1.0     |           |             |           |          |             |        |          |      |
| trans-1,2-DCE               | ND         | 1.0     |           |             |           |          |             |        |          |      |
| trans-1,3-Dichloropropene   | ND         | 1.0     |           |             |           |          |             |        |          |      |
| 1,2,3-Trichlorobenzene      | ND         | 1.0     |           |             |           |          |             |        |          |      |
| 1,2,4-Trichlorobenzene      | ND         | 1.0     |           |             |           |          |             |        |          |      |
| 1,1,1-Trichloroethane       | ND         | 1.0     |           |             |           |          |             |        |          |      |
| 1,1,2-Trichloroethane       | ND         | 1.0     |           |             |           |          |             |        |          |      |
| Trichloroethene (TCE)       | ND         | 1.0     |           |             |           |          |             |        |          |      |
| Trichlorofluoromethane      | ND         | 1.0     |           |             |           |          |             |        |          |      |
| 1,2,3-Trichloropropane      | ND         | 2.0     |           |             |           |          |             |        |          |      |
| Vinyl chloride              | ND         | 1.0     |           |             |           |          |             |        |          |      |
| Xylenes, Total              | ND         | 1.5     |           |             |           |          |             |        |          |      |
| Surr: 1,2-Dichloroethane-d4 | 8.5        |         | 10.00     |             | 85.0      | 70       | 130         |        |          |      |
| Surr: 4-Bromofluorobenzene  | 8.6        |         | 10.00     |             | 86.3      | 69.5     | 130         |        |          |      |
| Surr: Dibromofluoromethane  | 8.3        |         | 10.00     |             | 82.9      | 70       | 130         |        |          |      |
| Surr: Toluene-d8            | 8.3        | ·       | 10.00     |             | 83.2      | 70       | 130         |        |          |      |

| Sample ID 100ng Ics         | SampT      | ype: LC       | s         | Tes         | tCode: El | PA Method | 8260B: VOL  | ATILES |          |      |
|-----------------------------|------------|---------------|-----------|-------------|-----------|-----------|-------------|--------|----------|------|
| Client ID: LCSW             | Batch      | 1D: <b>R1</b> | 0192      | F           | RunNo: 1  | 0192      |             |        |          |      |
| Prep Date:                  | Analysis D | ate: 4/       | 29/2013   | S           | SeqNo: 2  | 90512     | Units: µg/L |        |          |      |
| Analyte                     | Result     | PQL           | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |
| Benzene                     | 20         | 1.0           | 20.00     | 0           | 102       | 70        | 130         |        |          |      |
| Toluene                     | 22         | 1.0           | 20.00     | 0           | 112       | 80        | 120         |        |          |      |
| Chlorobenzene               | 21         | 1.0           | 20.00     | 0           | 106       | 70        | 130         |        |          |      |
| 1,1-Dichloroethene          | 19         | 1.0           | 20.00     | 0           | 97.0      | 85.8      | 133         |        |          |      |
| Trichloroethene (TCE)       | 20         | 1.0           | 20.00     | 0           | 101       | 70        | 130         |        |          |      |
| Surr: 1,2-Dichloroethane-d4 | 8.7        |               | 10.00     |             | 87.2      | 70        | 130         |        |          |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH greater than 2 for VOA and TOC only.
- RLReporting Detection Limit

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η

Spike Recovery outside accepted recovery limits

- ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits

Page 9 of 17

### Hall Environmental Analysis Laboratory, Inc.

WO#: 1304A43

23-May-13

Client: Western Refining Southwest, Inc.

Project: Injection Well 2nd Qtr 4-24-13

| Sample ID 100ng Ics        | SampT      | ype: LC       | s         | Test        | Code: El | e: EPA Method 8260B: VOLATILES |             |      |          |      |
|----------------------------|------------|---------------|-----------|-------------|----------|--------------------------------|-------------|------|----------|------|
| Client ID: LCSW            | Batch      | ID: <b>R1</b> | 10192     | R           | tunNo: 1 | 0192                           |             |      |          |      |
| Prep Date:                 | Analysis D | ate: 4        | /29/2013  | S           | eqNo: 2  | 90512                          | Units: µg/L |      |          |      |
| Analyte                    | Result     | PQL           | SPK value | SPK Ref Val | %REC     | LowLimit                       | HighLimit   | %RPD | RPDLimit | Qual |
| Surr: 4-Bromofluorobenzene | 8.3        |               | 10.00     |             | 83.4     | 69.5                           | 130         |      |          |      |
| Surr: Dibromofluoromethane | 8.2        |               | 10.00     |             | 82.3     | 70                             | 130         |      |          |      |
| Surr: Toluene-d8           | 8.3        |               | 10.00     |             | 83.1     | 70                             | 130         |      |          |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 10 of 17

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1304A43

23-May-13

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd Qtr 4-24-13

| Sample ID mb-7235           | SampTy      | pe: MBLK        | Tes            | tCode: EPA Method    | 8270C: Semiv | olatiles |          |      |
|-----------------------------|-------------|-----------------|----------------|----------------------|--------------|----------|----------|------|
| Client ID: PBW              | Batch       | ID: <b>7235</b> | ı              | RunNo: 10279         |              |          |          |      |
| Prep Date: 5/1/2013         | Analysis Da | te: 5/2/2013    | :              | SeqNo: <b>293096</b> | Units: µg/L  |          |          |      |
| Analyte                     | Result      |                 | ue SPK Ref Val | %REC LowLimit        | HighLimit    | %RPD     | RPDLimit | Qual |
| Acenaphthene                | ND          | 10              |                |                      |              |          |          |      |
| Acenaphthylene              | ND          | 10              |                |                      |              |          |          |      |
| Aniline                     | ND          | 10              |                |                      |              |          |          |      |
| Anthracene                  | ND          | 10              |                |                      |              |          |          |      |
| Azobenzene                  | ND          | 10              |                |                      |              |          |          |      |
| Benz(a)anthracene           | ND          | 10              |                |                      |              |          |          |      |
| Benzo(a)pyrene              | ND          | 10              |                |                      |              |          |          |      |
| Benzo(b)fluoranthene        | ND          | 10              |                |                      |              |          |          |      |
| Benzo(g,h,i)perylene        | ND          | 10              |                |                      |              |          |          |      |
| Benzo(k)fluoranthene        | ND          | 10              |                |                      |              |          |          |      |
| Benzoic acid                | ND          | 20              |                |                      |              |          |          |      |
| Benzyl alcohol              | ND          | 10              |                |                      |              |          |          |      |
| Bis(2-chloroethoxy)methane  | ND          | 10              |                |                      |              |          |          |      |
| Bis(2-chloroethyl)ether     | ND          | 10              |                |                      |              |          |          |      |
| Bis(2-chloroisopropyl)ether | ND          | 10              |                |                      |              |          |          |      |
| Bis(2-ethylhexyl)phthalate  | ND          | 10              |                |                      |              |          |          |      |
| 4-Bromophenyl phenyl ether  | ND          | 10              |                |                      |              |          |          |      |
| Butyl benzyl phthalate      | ND          | 10              |                |                      |              |          |          |      |
| Carbazole                   | ND          | 10              |                |                      |              |          |          |      |
| 4-Chloro-3-methylphenol     | ND          | 10              |                |                      |              |          |          |      |
| 4-Chloroaniline             | ND          | 10              |                |                      |              |          |          |      |
| 2-Chloronaphthalene         | ND          | 10              |                |                      |              |          |          |      |
| 2-Chlorophenol              | ND          | 10              |                |                      |              |          |          |      |
| 4-Chlorophenyl phenyl ether | ND          | 10              |                |                      |              |          |          |      |
| Chrysene                    | ND          | 10              |                |                      |              |          |          |      |
| Di-n-butyl phthalate        | ND          | 10              |                |                      |              |          |          |      |
| Di-n-octyl phthalate        | ND          | 10              |                |                      |              |          |          |      |
| Dibenz(a,h)anthracene       | ND          | 10              |                |                      |              |          |          |      |
| Dibenzofuran                | ND          | 10              |                |                      |              |          |          |      |
| 1,2-Dichlorobenzene         | ND          | 10              |                |                      |              |          |          |      |
| 1,3-Dichlorobenzene         | ND          | 10              |                |                      |              |          |          |      |
| 1,4-Dichlorobenzene         | ND          | 10              |                |                      |              |          |          |      |
| 3,3'-Dichlorobenzidine      | ND          | 10              |                |                      |              |          |          |      |
| Diethyl phthalate           | ND          | 10              |                |                      |              |          |          |      |
| Dimethyl phthalate          | ND          | 10              |                |                      |              |          |          |      |
| 2,4-Dichlorophenol          | ND          | 20              |                |                      |              |          |          |      |
| 2,4-Dimethylphenol          | ND          | 10              |                |                      |              |          |          |      |
| 4,6-Dinitro-2-methylphenol  | ND          | 20              |                |                      |              |          |          |      |
| 2,4-Dinitrophenol           | ND          | 20              |                |                      |              |          |          |      |
| 2,4-Dinitrotoluene          | ND          | 10              |                |                      |              |          |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 11 of 17

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1304A43 23-May-13

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd Qtr 4-24-13

| Sample ID mb-7235          | SampTy      | pe: MB          | LK        | Tes         | tCode: El | PA Method | 8270C: Semi | volatiles |          |      |
|----------------------------|-------------|-----------------|-----------|-------------|-----------|-----------|-------------|-----------|----------|------|
| Client ID: PBW             | Batch       | ID: <b>72</b> 3 | 35        | F           | RunNo: 1  | 0279      |             |           |          |      |
| Prep Date: 5/1/2013        | Analysis Da | ate: 5/2        | 2/2013    | S           | SeqNo: 2  | 93096     | Units: µg/L |           |          |      |
| Analyte                    | Result      | PQL             | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD      | RPDLimit | Qual |
| 2,6-Dinitrotoluene         | ND          | 10              |           |             |           |           |             |           |          |      |
| Fluoranthene               | ND          | 10              |           |             |           |           |             |           |          |      |
| Fluorene                   | ND          | 10              |           |             |           |           |             |           |          |      |
| Hexachlorobenzene          | ND          | 10              |           |             |           |           |             |           |          |      |
| Hexachlorobutadiene        | ND          | 10              |           |             |           |           |             |           |          |      |
| Hexachlorocyclopentadiene  | ND          | 10              |           |             |           |           |             |           |          |      |
| Hexachloroethane           | ND          | 10              |           |             |           |           |             |           |          |      |
| Indeno(1,2,3-cd)pyrene     | ND          | 10              |           |             |           |           |             |           |          |      |
| Isophorone                 | ND          | 10              |           |             |           |           |             |           |          |      |
| 1-Methylnaphthalene        | ND          | 10              |           |             |           |           |             |           |          |      |
| 2-Methylnaphthalene        | ND          | 10              |           |             |           |           |             |           |          |      |
| 2-Methylphenol             | ND          | 10              |           |             |           |           |             |           |          |      |
| 3+4-Methylphenol           | ND          | 10              |           |             |           |           |             |           |          |      |
| N-Nitrosodi-n-propylamine  | ND          | 10              |           |             |           |           |             |           |          |      |
| N-Nitrosodimethylamine     | ND          | 10              |           |             |           |           |             |           |          |      |
| N-Nitrosodiphenylamine     | ND          | 10              |           |             |           |           |             |           |          |      |
| Naphthalene                | ND          | 10              |           |             |           |           |             |           |          |      |
| 2-Nitroaniline             | ND          | 10              |           |             |           |           |             |           |          |      |
| 3-Nitroaniline             | ND          | 10              |           |             |           |           |             |           |          |      |
| 4-Nitroaniline             | ND          | 10              |           |             |           |           |             |           |          |      |
| Nitrobenzene               | ND          | 10              |           |             |           |           |             |           |          |      |
| 2-Nitrophenol              | ND          | 10              |           |             |           |           |             |           |          |      |
| 4-Nitrophenol              | ND          | 10              |           |             |           |           |             |           |          |      |
| Pentachlorophenol          | ND          | 20              |           |             |           |           |             |           |          |      |
| Phenanthrene               | ND          | 10              |           |             |           |           |             |           |          |      |
| Phenol                     | ND          | 10              |           |             |           |           |             |           |          |      |
| Pyrene                     | ND          | 10              |           |             |           |           |             |           |          |      |
| Pyridine                   | ND          | 10              |           |             |           |           |             |           |          |      |
| 1,2,4-Trichlorobenzene     | ND          | 10              |           |             |           |           |             |           |          |      |
| 2,4,5-Trichlorophenol      | ND          | 10              |           |             |           |           |             |           |          |      |
| 2,4,6-Trichlorophenol      | ND          | 10              |           |             |           |           |             |           |          |      |
| Surr: 2,4,6-Tribromophenol | 180         |                 | 200.0     |             | 90.7      | 41.5      | 117         |           |          |      |
| Surr: 2-Fluorobiphenyl     | 75          |                 | 100.0     |             | 75.5      | 29.1      | 112         |           |          |      |
| Surr: 2-Fluorophenol       | 130         |                 | 200.0     |             | 65.0      | 11.9      | 98.6        |           |          |      |
| Surr: 4-Terphenyl-d14      | 87          |                 | 100.0     |             | 86.6      | 46        | 111         |           |          |      |
| Surr: Nitrobenzene-d5      | 77          |                 | 100.0     |             | 77.3      | 34.9      | 112         |           |          |      |
| Surr: Phenol-d5            | 95          |                 | 200.0     |             | 47.6      | 17.5      | 88.3        |           |          |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit RL

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н

Spike Recovery outside accepted recovery limits

- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 12 of 17

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1304A43

23-May-13

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd Qtr 4-24-13

| Sample ID Ics-7235         | SampT      | ype: LC  | S         | Tes         | tCode: El | PA Method | 8270C: Semi | volatiles |          |      |
|----------------------------|------------|----------|-----------|-------------|-----------|-----------|-------------|-----------|----------|------|
| Client ID: LCSW            | Batch      | n ID: 72 | 35        | F           | RunNo: 1  | 0279      |             |           |          |      |
| Prep Date: 5/1/2013        | Analysis D | Date: 5/ | 2/2013    | S           | SeqNo: 2  | 93097     | Units: µg/L |           |          |      |
| Analyte                    | Result     | PQL      | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD      | RPDLimit | Qual |
| Acenaphthene               | 67         | 10       | 100.0     | 0           | 67.1      | 53.3      | 92.5        |           |          |      |
| 4-Chloro-3-methylphenol    | 160        | 10       | 200.0     | 0           | 78.2      | 55.9      | 93.9        |           |          |      |
| 2-Chlorophenol             | 140        | 10       | 200.0     | 0           | 71.9      | 51.1      | 85.8        |           |          |      |
| 1,4-Dichlorobenzene        | 63         | 10       | 100.0     | 0           | 63.5      | 41.5      | 86.7        |           |          |      |
| 2,4-Dinitrotoluene         | 79         | 10       | 100.0     | 0           | 78.6      | 57.5      | 102         |           |          |      |
| N-Nitrosodi-n-propylamine  | 76         | 10       | 100.0     | 0           | 75.8      | 52.1      | 99.7        |           |          |      |
| 4-Nitrophenol              | 78         | 10       | 200.0     | 0           | 39.2      | 27.2      | 53          |           |          |      |
| Pentachlorophenol          | 110        | 20       | 200.0     | 0           | 55.9      | 33.7      | 77.7        |           |          |      |
| Phenol                     | 83         | 10       | 200.0     | 0           | 41.3      | 23.3      | 66.3        |           |          |      |
| Pyrene                     | 79         | 10       | 100.0     | 0           | 78.8      | 57        | 88.7        |           |          |      |
| 1,2,4-Trichlorobenzene     | 67         | 10       | 100.0     | 0           | 67.3      | 46.7      | 87.8        |           |          |      |
| Surr: 2,4,6-Tribromophenol | 200        |          | 200.0     |             | 102       | 41.5      | 117         |           |          |      |
| Surr: 2-Fluorobiphenyl     | 78         |          | 100.0     |             | 77.8      | 29.1      | 112         |           |          |      |
| Surr: 2-Fluorophenol       | 120        |          | 200.0     |             | 62.1      | 11.9      | 98.6        |           |          |      |
| Surr: 4-Terphenyl-d14      | 93         |          | 100.0     |             | 93.0      | 46        | 111         |           |          |      |
| Surr: Nitrobenzene-d5      | 81         |          | 100.0     |             | 80.7      | 34.9      | 112         |           |          |      |
| Surr: Phenol-d5            | 96         |          | 200.0     |             | 48.0      | 17.5      | 88.3        |           |          |      |

| Sample ID Icsd-7235        | SampType: LCSD TestCode: EPA Method 8270C: Semivolatiles |                 |           |             |           |          |             |      |          |      |  |
|----------------------------|----------------------------------------------------------|-----------------|-----------|-------------|-----------|----------|-------------|------|----------|------|--|
| Client ID: LCSS02          | Batch                                                    | ID: <b>72</b> 3 | 35        | F           | RunNo: 10 | 0279     |             |      |          |      |  |
| Prep Date: 5/1/2013        | Analysis D                                               | ate: 5/2        | 2/2013    | S           | SeqNo: 2  | 93098    | Units: µg/L |      |          |      |  |
| Analyte                    | Result                                                   | PQL             | SPK value | SPK Ref Val | %REC      | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |  |
| Acenaphthene               | 70                                                       | 10              | 100.0     | 0           | 70.4      | 53.3     | 92.5        | 4.80 | 25       |      |  |
| 4-Chloro-3-methylphenol    | 150                                                      | 10              | 200.0     | 0           | 75.8      | 55.9     | 93.9        | 3.03 | 32.7     |      |  |
| 2-Chloropheno!             | 130                                                      | 10              | 200.0     | 0           | 66.8      | 51.1     | 85.8        | 7.44 | 20       |      |  |
| 1,4-Dichlorobenzene        | 62                                                       | 10              | 100.0     | 0           | 62.3      | 41.5     | 86.7        | 1.94 | 20       |      |  |
| 2,4-Dinitrotoluene         | 81                                                       | 10              | 100.0     | 0           | 80.9      | 57.5     | 102         | 2.93 | 29.9     |      |  |
| N-Nitrosodi-n-propylamine  | 70                                                       | 10              | 100.0     | 0           | 70.4      | 52.1     | 99.7        | 7.42 | 23.1     |      |  |
| 4-Nitrophenol              | 85                                                       | 10              | 200.0     | 0           | 42.6      | 27.2     | 53          | 8.12 | 40.5     |      |  |
| Pentachlorophenol          | 110                                                      | 20              | 200.0     | 0           | 56.6      | 33.7     | 77.7        | 1.24 | 37.3     |      |  |
| Phenol                     | 78                                                       | 10              | 200.0     | 0           | 39.0      | 23.3     | 66.3        | 5.90 | 20       |      |  |
| Pyrene                     | 75                                                       | 10              | 100.0     | 0           | 75.4      | 57       | 88.7        | 4.33 | 26.5     |      |  |
| 1,2,4-Trichlorobenzene     | 69                                                       | 10              | 100.0     | 0           | 69.2      | 46.7     | 87.8        | 2.73 | 27.2     |      |  |
| Surr: 2,4,6-Tribromophenol | 180                                                      |                 | 200.0     |             | 92.3      | 41.5     | 117         | 0    | 0        |      |  |
| Surr: 2-Fluorobiphenyl     | 82                                                       |                 | 100.0     |             | 81.7      | 29.1     | 112         | 0    | 0        |      |  |
| Surr: 2-Fluorophenol       | 110                                                      |                 | 200.0     |             | 56.1      | 11.9     | 98.6        | 0    | 0        |      |  |
| Surr: 4-Terphenyl-d14      | 88                                                       |                 | 100.0     |             | 87.6      | 46       | 111         | 0    | 0        |      |  |
| Surr: Nitrobenzene-d5      | 80                                                       |                 | 100.0     |             | 79.5      | 34.9     | 112         | 0    | 0        |      |  |
| Surr: Phenol-d5            | 90                                                       |                 | 200.0     |             | 45.0      | 17.5     | 88.3        | 0    | 0        |      |  |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 13 of 17

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1304A43

23-May-13

Client: Western Refining Southwest, Inc.

Project: Injection Well 2nd Qtr 4-24-13

Sample ID MB-7179 SampType: MBLK TestCode: EPA Method 7470: Mercury

Client ID: PBW Batch ID: 7179 RunNo: 10168

Prep Date: 4/26/2013 Analysis Date: 4/26/2013 SeqNo: 289731 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020

Sample ID LCS-7179 SampType: LCS TestCode: EPA Method 7470: Mercury

Client ID: LCSW Batch ID: 7179 RunNo: 10168

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0051 0.00020 0.005000 0 101 80 120

Sample ID 1304A43-001DMS SampType: ms TestCode: EPA Method 7470: Mercury

Client ID: Injection Well Batch ID: 7179 RunNo: 10168

Prep Date: 4/26/2013 Analysis Date: 4/26/2013 SeqNo: 289742 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0054 0.0010 0.005000 0 108 75 125

Sample ID 1304A43-001DMSD SampType: msd TestCode: EPA Method 7470: Mercury

Client ID: Injection Well Batch ID: 7179 RunNo: 10168

Prep Date: 4/26/2013 Analysis Date: 4/26/2013 SeqNo: 289743 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0055 0.0010 0.005000 0 109 75 125 0.900 20

#### Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2 for VOA and TOC only.

RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Page 14 of 17

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1304A43

23-May-13

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd Qtr 4-24-13

| Project:          | Injecti   | on Well 2nd | Qtr 4-24          | ŀ-13<br>  |             |                 |                 |               |            |          |      |
|-------------------|-----------|-------------|-------------------|-----------|-------------|-----------------|-----------------|---------------|------------|----------|------|
| Sample ID         | MB-7191   | SampT       | ype: MB           | LK        | Tes         | tCode: E        | PA 6010B:       | Total Recover | rable Meta | ils      |      |
| Client ID:        | PBW       | Batch       | 1D: <b>71</b> 9   | 91        | F           | RunNo:          | 10315           |               |            |          |      |
| Prep Date:        | 4/29/2013 | Analysis D  | ate: 5/3          | 3/2013    | 8           | SeqNo: 2        | 2938 <b>9</b> 6 | Units: mg/L   |            |          |      |
| Analyte           |           | Result      | PQL               | SPK value | SPK Ref Val | %REC            | LowLimit        | HighLimit     | %RPD       | RPDLimit | Qual |
| rsenic            |           | ND          | 0.020             |           |             |                 |                 |               |            |          |      |
| Barium            |           | ND          | 0.020             |           |             |                 |                 |               |            |          |      |
| Cadmium           |           | ND          | 0.0020            |           |             |                 |                 |               |            |          |      |
| Chromium          |           | ND          | 0.0060            |           |             |                 |                 |               |            |          |      |
| .ead              |           | ND          | 0.0050            |           |             |                 |                 |               |            |          |      |
| Selenium          |           | ND          | 0.050             |           |             |                 |                 |               |            |          |      |
| Silver            |           | ND          | 0.0050            |           |             |                 |                 |               |            |          |      |
| Sample ID         | LCS-7191  | SampT       | ype: LC           | s         | Tes         | tCode: E        | PA 6010B:       | Total Recove  | rable Meta | als      |      |
| Client ID:        | LCSW      | Batch       | 1D: <b>71</b> 9   | 91        | F           | RunNo:          | 10315           |               |            |          |      |
| Prep Date:        | 4/29/2013 | Analysis D  | ate: 5/3          | 3/2013    | 5           | SeqNo:          | 293897          | Units: mg/L   |            |          |      |
| Analyte           |           | Result      | PQL               | SPK value | SPK Ref Val | %REC            | LowLimit        | HighLimit     | %RPD       | RPDLimit | Qual |
| Arsenic           |           | 0.50        | 0.020             | 0.5000    | 0           | 99.2            | 80              | 120           |            |          |      |
| Barium            |           | 0.46        | 0.020             | 0.5000    | 0           | 92.3            | 80              | 120           |            |          |      |
| Cadmium           |           | 0.47        | 0.0020            | 0.5000    | 0           | 93.3            | 80              | 120           |            |          |      |
| Chromium          |           | 0.46        | 0.0060            | 0.5000    | 0           | 91.5            | 80              | 120           |            |          |      |
| .ead              |           | 0.46        | 0.0050            | 0.5000    | 0           | 92.9            | 80              | 120           |            |          |      |
| Selenium          |           | 0.46        | 0.050             | 0.5000    | 0           | 91.3            | 80              | 120           |            |          |      |
| Silver            |           | 0.10        | 0.0050            | 0.1000    | 0           | 99.5            | 80              | 120           |            |          |      |
| Sample ID         | MB-7191   | SampT       | уре: МЕ           | BLK       | Tes         | tCode: I        | PA 6010B:       | Total Recove  | rable Meta | als      |      |
| Client ID:        | PBW       | Batch       | n ID: <b>71</b> 9 | 91        | F           | Run <b>N</b> o: | 10423           |               |            |          |      |
| Prep Date:        | 4/29/2013 | Analysis D  | ate: 5/           | 6/2013    | 5           | SeqNo:          | 294880          | Units: mg/L   |            |          |      |
| Analyte           |           | Result      | PQL               | SPK value | SPK Ref Val | %REC            | LowLimit        | HighLimit     | %RPD       | RPDLimit | Qual |
| Calcium           |           | ND          | 1.0               |           |             |                 |                 |               |            |          |      |
| <i>M</i> agnesium |           | ND          | 1.0               |           |             |                 |                 |               |            |          |      |
| Potassium         |           | ND          | 1.0               |           |             |                 |                 |               |            |          |      |
| Sodium            |           | ND          | 1.0               |           |             |                 |                 |               |            |          |      |
| Sample ID         | LCS-7191  | SampT       | ype: LC           | S         | Tes         | tCode: I        | EPA 6010B:      | Total Recove  | rable Met  | als      |      |
| Client ID:        | LCSW      | Batch       | h ID: <b>71</b>   | 91        | F           | RunNo:          | 10423           |               |            |          |      |
| Prep Date:        | 4/29/2013 | Analysis D  | Date: 5/          | 6/2013    | 5           | SeqNo:          | 294881          | Units: mg/L   |            |          |      |
| Analyte           |           | Result      | PQL               |           | SPK Ref Val | %REC            |                 | HighLimit     | %RPD       | RPDLimit | Qual |
| Calcium           |           | 49          | 1.0               | 50.00     | 0           | 97.2            |                 | 120           |            |          |      |
| Magnesium         |           | 49          | 1.0               | 50.00     | 0           | 98.1            |                 | 120           |            |          |      |
| otassium          |           | 48          | 1.0               | 50.00     | 0           | 95.3            |                 | 120           |            |          |      |
| Sodium            |           | 49          | 1.0               | 50.00     | 0           | 97.4            |                 | 120           |            |          |      |

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Page 15 of 17
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1304A43

23-May-13

|                                    | Western Refining Southwest, Inc.<br>Injection Well 2nd Qtr 4-24-13 |                                                 |                   |                 |
|------------------------------------|--------------------------------------------------------------------|-------------------------------------------------|-------------------|-----------------|
| Sample ID mb-1<br>Client ID: PBW   | SampType: mblk Batch ID: R10197                                    | TestCode: <b>SM2320B: A</b> RunNo: <b>10197</b> | lkalinity         |                 |
| Prep Date:                         | Analysis Date: 4/29/2013                                           | SeqNo: 290702                                   | Units: mg/L CaCO3 |                 |
| Analyte Total Alkalinity (as CaCO3 |                                                                    | SPK Ref Val %REC LowLimit                       | HighLimit %RPD    | RPDLimit Qual   |
| Sample ID Ics-1                    | SampType: Ics                                                      | TestCode: SM2320B: A                            | lkalinity         |                 |
| Client ID: LCSW                    | Batch ID: R10197                                                   | RunNo: 10197                                    |                   |                 |
| Prep Date:                         | Analysis Date: 4/29/2013                                           | SeqNo: 290703                                   | Units: mg/L CaCO3 |                 |
| Analyte                            | Result PQL SPK value                                               | SPK Ref Val %REC LowLimit                       | HighLimit %RPD    | RPDLimit Qual   |
| Total Alkalinity (as CaCO3         | 8) 80 20 80.00                                                     | 0 99.6 90                                       | 110               |                 |
| Sample ID mb-2                     | SampType: mblk                                                     | TestCode: SM2320B: A                            | lkalinity         |                 |
| Client ID: PBW                     | Batch ID: R10197                                                   | RunNo: 10197                                    | -                 |                 |
| Prep Date:                         | Analysis Date: 4/29/2013                                           | SeqNo: 290720                                   | Units: mg/L CaCO3 |                 |
| Analyte                            | Result PQL SPK value                                               | SPK Ref Val %REC LowLimit                       | HighLimit %RPD    | RPDLimit Qual   |
| Total Alkalinity (as CaCO3         |                                                                    | 7,110                                           | 7                 |                 |
| Sample ID Ics-2                    | SampType: Ics                                                      | TestCode: SM2320B: A                            | lkalinity         |                 |
| Client ID: LCSW                    | Batch ID: <b>R10197</b>                                            | RunNo: 10197                                    |                   |                 |
| Prep Date:                         | Analysis Date: 4/29/2013                                           | SeqNo: 290721                                   | Units: mg/L CaCO3 |                 |
| Analyte                            | •                                                                  | SPK Ref Val %REC LowLimit                       | HighLimit %RPD    | RPDLimit Qual   |
| Total Alkalinity (as CaCO          |                                                                    |                                                 | 110               | Krbbillili Quai |
|                                    |                                                                    | T                                               |                   |                 |
| Sample ID mb-3                     | SampType: mblk                                                     | TestCode: SM2320B: A                            | ikalinity         |                 |
| Client ID: PBW                     | Batch ID: R10197                                                   | RunNo: 10197                                    | 11-11-1 11 0.000  |                 |
| Prep Date:                         | Analysis Date: 4/30/2013                                           | SeqNo: <b>290732</b>                            | Units: mg/L CaCO3 |                 |
| Analyte Total Alkalinity (as CaCO  |                                                                    | SPK Ref Val %REC LowLimit                       | HighLimit %RPD    | RPDLimit Qual   |
| Sample ID Ics-3                    | SampType: Ics                                                      | TestCode: SM2320B: A                            | lkalinity         |                 |
| Client ID: LCSW                    | Batch ID: <b>R10197</b>                                            | RunNo: 10197                                    |                   |                 |
| Prep Date:                         | Analysis Date: 4/30/2013                                           | SeqNo: 290733                                   | Units: mg/L CaCO3 |                 |

#### Qualifiers:

Analyte

Total Alkalinity (as CaCO3)

\* Value exceeds Maximum Contaminant Level.

Result

80

PQL

20

SPK value SPK Ref Val

80.00

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2 for VOA and TOC only.

RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

LowLimit

HighLimit

110

%RPD

**RPDLimit** 

Qual

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

%REC

100

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Page 16 of 17

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1304A43

23-May-13

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd Qtr 4-24-13

Sample ID MB-7222

SampType: MBLK

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 7222

RunNo: 10240

Prep Date: 4/30/2013

Analysis Date: 5/1/2013

SeqNo: 292008

Units: mg/L

Analyte

Result

**PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD

**RPDLimit** 

Qual

Total Dissolved Solids

Client ID: LCSW Prep Date: 4/30/2013

Sample ID LCS-7222

ND

20.0

SampType: LCS Batch ID: 7222 TestCode: SM2540C MOD: Total Dissolved Solids RunNo: 10240

SeqNo: 292009

Units: mg/L

**RPDLimit** 

Qual

Analyte

Result PQL

1040

SPK value SFK Ref Val %REC LowLimit

104

HighLimit

%RPD

Total Dissolved Solids

20.0

Analysis Date: 5/1/2013

1000

0

120

Qualifiers:

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Analyte detected below quantitation limits

P Sample pH greater than 2 for VOA and TOC only.

Reporting Detection Limit

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Page 17 of 17



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-410;

Website: www.hallenvironmental.com

### Sample Log-In Check List

Western Refining Southw Work Order Number: 1304A43 RcptNo: 1 Client Name: Received by/date: Logged By: Lindsay Mangin 4/25/2013 9:10:00 AM Completed By: Lindsay Mangin 4/25/2013 2:05:25 PM Reviewed By: Chain of Custody Yes 🗌 No 🗆 Not Present 1. Custody seals intact on sample bottles? No 🗆 Yes 🗹 Not Present 2. Is Chain of Custody complete? 3. How was the sample delivered? UPS <u>Log In</u> No 🗆 NA 🗆 Yes 🗹 4. Was an attempt made to cool the samples? 5. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗹 No 🗆 NA 🗆 No 🗌 6. Sample(s) in proper container(s)? Yes 🔽 No 🗆 7. Sufficient sample volume for indicated test(s)? Yes 🗸 No 🗆 Yes 🔽 8. Are samples (except VOA and ONG) properly preserved? No 🗹 NA 🗆 Yes 🗌 9. Was preservative added to bottles? No VOA Vials Yes 🗸 No 🗀 10.VOA vials have zero headspace? Yes No 🗹 11. Were any sample containers received broken? # of preserved bottles checked/ for pH: No 🗌 Yes 🗹 12. Does paperwork match bottle labels? (Note discrepancies on chain of custody) unless noted) No 🗆 Yes 🗹 13. Are matrices correctly identified on Chain of Custody? No 🗌 Yes 🔽 14, is it clear what analyses were requested? 15. Were all holding times able to be met? Yes 🔽 No 🗆 Checked by: (If no, notify customer for authorization.) Special Handling (if applicable) Yes 🗌 No  $\square$ NA 🗹 16. Was client notified of all discrepancies with this order? Person Notified: Date: By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Cooler No Temp C Condition Seal Intact Seal No Seal Date Signed By 1.5 Good Yes

| C                                       | hain-              | of-Cu        | stody Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Turn-Around           | Time:                                |                 |                      |              |               |         |         |                           |                             | 11/1                                                                               | D/                                         | <b>`</b>        | ME          | NT        | . A I         |                             |
|-----------------------------------------|--------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------|-----------------|----------------------|--------------|---------------|---------|---------|---------------------------|-----------------------------|------------------------------------------------------------------------------------|--------------------------------------------|-----------------|-------------|-----------|---------------|-----------------------------|
|                                         |                    |              | Refinery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Standard              | □ Rush                               |                 |                      | <u> </u>     |               |         |         |                           |                             |                                                                                    |                                            |                 |             | ATC       |               |                             |
|                                         |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Name          | ion We                               | 24-13           |                      |              |               | -       |         |                           |                             |                                                                                    | <br>ental.                                 |                 |             |           |               | -                           |
| Mailing                                 | Address            | #50          | CR 4990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Thier                 | Tinal Well                           | ار عمل          | OTP                  |              | 4901          | Hawk    |         |                           |                             |                                                                                    |                                            |                 | 7109        |           |               |                             |
| 73/0                                    | 24.6               | 110          | UM 874/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Project #:            | 1010 WC                              | <u></u>         | 712                  |              |               | 505-3   |         |                           |                             | •                                                                                  | -                                          | 5-410           |             |           |               |                             |
| Phone:                                  | #: 50              | 5-6          | 32-41.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                     |                                      |                 |                      |              |               |         |         |                           | nalys                       | sis Re                                                                             | eque                                       | st              |             |           |               |                             |
| email o                                 |                    |              | <i></i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Project Mana          | iger:                                |                 |                      | (            | <u>ફ</u> ો ટૂ |         | цP      |                           | $\sqrt{}$                   | (7)                                                                                |                                            |                 |             |           | T             |                             |
| QA/QC I                                 | Package:           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                      |                 |                      | 3021         | as only)      | 2       |         | (S)                       | a K                         | , S.                                                                               | 8                                          |                 | 1           | -         |               |                             |
| ☐ Stan                                  | dard               |              | Level 4 (Full Validation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                      |                 |                      | 3,s (        | )<br>E        | P       | Brck    | SIM                       | A SE                        | Z   Z                                                                              | וצ                                         |                 | کنیز        |           | $\mathcal{E}$ |                             |
| Accredi                                 |                    | . □ Otho     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sampler: M            | ATT 4 Bo                             |                 |                      | TMB's (8021) | <u> </u>      |         |         | PAH's (8310 or 8270 SIMS) | RCRA 8 Metals Ca, My, Nh, K | Anioris (F,Cl,NO <sub>3</sub> ,NO <sub>2</sub> ,PO <sub>4</sub> ,SO <sub>4</sub> ) | 8081 Pesticides / 8082 Pubs<br>82608 (VOA) |                 | Corrosivity |           | 化             | 2                           |
| □ EDD                                   |                    | □ Othe       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | al Yreiste (1997)<br>Delegane (1997) | ELEVE X         | erandata an          | +<br>Ш       | BE + T        |         |         | or 8                      | Jale                        | တို့ ၂                                                                             | Ses (                                      | 8270 (Semi-VOA) | _1          | - احم     | ¥,            | Afide S<br>Bubbles (Y or N) |
| <u> </u>                                | (19 <del>00)</del> |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                      |                 |                      | MTB          | MTB<br>SB (   |         |         | 310                       | Met                         | <u> </u>                                                                           |                                            | Ę               | 뷬           | <u>X</u>  | 8             | es (                        |
| Date                                    | Time               | Matrix       | Sample Request ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Container             | Preservative                         | igresit         | A NE PER             | BTEX + MTBE  | X + MTE       |         |         | 8) s,                     | A 8                         | ) SE                                                                               | 8260R (VOA)                                | (Se             | 1 de        | Penelivit | 式             | 걸릴                          |
|                                         |                    |              | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Type and #            | Туре                                 | 12:12           | 140                  | 3TE          | 띪             |         |         | ¥I                        |                             |                                                                                    | 2   2                                      | 3270            | र्व         | 38        | La P          | <b>%</b> ₹                  |
| 4-24-13                                 | 10:15              | 1120         | INJection Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-VOA                 | HC/                                  | - (             | 001                  |              |               | 1       | -       |                           | _                           | 7                                                                                  | X                                          | '               |             |           | 7             |                             |
| 1                                       |                    |              | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                     | ander                                | 1               | 001                  |              |               |         |         |                           |                             |                                                                                    |                                            | X               |             |           |               |                             |
| $\top$                                  |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-500ml               |                                      |                 | 9                    |              | Ţ             |         |         |                           | Ţ                           | Ţ                                                                                  |                                            |                 | X           |           | $\Box$        |                             |
|                                         |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-500ml               |                                      |                 | -001                 |              |               | T       |         |                           | $\neg$                      |                                                                                    |                                            |                 |             | •         | X             |                             |
|                                         |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-250ml               | H2504                                |                 | ( 00                 |              |               |         | ×       |                           |                             | $\top$                                                                             |                                            |                 |             | T         |               |                             |
|                                         |                    | 17           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-500 ml              | HNOZ                                 |                 | -001                 |              |               |         |         |                           | X                           |                                                                                    |                                            |                 | П           |           |               |                             |
|                                         |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-500m                |                                      |                 | - 001                |              |               |         |         |                           |                             |                                                                                    |                                            |                 | П           | X         |               |                             |
|                                         | 4                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ι.                    | Z ACETA                              |                 | -001                 |              |               |         |         |                           |                             |                                                                                    |                                            |                 |             |           |               | $X \square$                 |
| 1                                       | ı                  | ١.           | TEIPBEAUX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -/                    |                                      |                 | _007_                | _            |               |         |         |                           |                             | 1                                                                                  |                                            | X               |             |           |               |                             |
| *************************************** |                    |              | Had                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25/13                 |                                      |                 |                      |              |               |         |         |                           |                             |                                                                                    |                                            |                 |             |           |               |                             |
|                                         |                    |              | ( ) ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                                      |                 |                      |              |               |         |         |                           |                             |                                                                                    |                                            |                 |             |           |               |                             |
|                                         |                    |              | <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                      |                 |                      |              |               | T       |         |                           |                             |                                                                                    |                                            |                 |             |           |               |                             |
| Date:                                   | Time:              | Relinquishe  | ed by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Received by:          | -4:                                  | Date            | Time                 | Rema         | arks:         |         |         |                           |                             |                                                                                    |                                            |                 |             |           |               |                             |
| 1-27-13<br>Date:                        | 3:00               | Vobe         | Kraken =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Received by:          | $\Rightarrow 04/6$                   | 95 <u>  1</u> 3 | 0910                 |              |               |         |         |                           |                             |                                                                                    |                                            |                 |             |           |               | İ                           |
| Date:                                   | Time:              | Relinquish   | ea by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reserved by:          | 6                                    | /Date           | i ime                |              |               |         |         |                           |                             |                                                                                    |                                            |                 |             |           |               |                             |
|                                         |                    | 1            | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                       |                                      |                 |                      |              |               |         |         |                           |                             |                                                                                    |                                            |                 |             |           |               |                             |
| If                                      | necessary,         | samples subt | nitted to Hall Environmental may be subc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | contracted to other a | ccredited laboratorie                | ss. This serve  | es as notice of this | possibil     | ity. Any      | sub-cor | ntracte | d data v                  | Milibe c                    | learly n                                                                           | otated                                     | on the a        | nalytic     | al report | Ł             |                             |



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

January 29, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: Injection Well 7-22-13 OrderNo.: 1307A17

#### Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 2 sample(s) on 7/23/2013 for the analyses presented in the following report.

This report is a revised report and it replaces the original report issued August 09, 2013.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <a href="www.hallenvironmental.com">www.hallenvironmental.com</a> or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

andid

4901 Hawkins NE

Albuquerque, NM 87109



Hall Environmental Analysis Laboratory 45'01 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com **Case Narrative** 

WO#:

1307A17

Date:

1/29/2014

CLIENT:

Western Refining Southwest, Inc.

Project:

Injection Well 7-22-13

Analytical Notes Regarding Selenium:

Selenium is being reported with an "E" flag to indicate that the result is estimated. The selenium result is <0.05mg/L, however the opening QC was outside of the normal accepted limits.

Lab Order 1307A17

Date Reported: 1/29/2014

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 7-22-13

Lab ID: 1307A17-001 Client Sample ID: Injection Well

**Collection Date:** 7/22/2013 2:00:00 PM Received Date: 7/23/2013 9:00:00 AM

| Analyses                      | Result | RL     | Qual | Units | DF  | Date Analyzed         | Batch  |
|-------------------------------|--------|--------|------|-------|-----|-----------------------|--------|
| EPA METHOD 300.0: ANIONS      |        |        |      |       |     | Analyst               | : JRR  |
| Chloride                      | 840    | 50     |      | mg/L  | 100 | 7/24/2013 4:29:19 PM  | R12176 |
| Sulfate                       | 39     | 5.0    |      | mg/L  | 10  | 7/24/2013 4:16:55 PM  | R12176 |
| EPA METHOD 200.7: METALS      |        |        |      |       |     | Analyst               | : ELS  |
| Arsenic                       | ND     | 0.020  |      | mg/L  | 1   | 8/1/2013 5:51:32 PM   | 8646   |
| Barium                        | 0.27   | 0.0020 |      | mg/L  | 1   | 8/1/2013 5:51:32 PM   | 8646   |
| Cadmium                       | ND     | 0.0020 |      | mg/L  | 1   | 8/1/2013 5:51:32 PM   | 8646   |
| Calcium                       | 100    | 10     |      | mg/L  | 10  | 8/1/2013 5:53:49 PM   | 8646   |
| Chromium                      | ND     | 0.0060 |      | mg/L  | 1   | 8/1/2013 5:51:32 PM   | 8646   |
| Lead                          | 0.0063 | 0.0050 |      | mg/L  | 1   | 8/1/2013 5:51:32 PM   | 8646   |
| Magnesium                     | 26     | 1.0    |      | mg/L  | 1   | 8/1/2013 5:51:32 PM   | 8646   |
| Potassium                     | 10     | 1.0    |      | mg/L  | 1   | 8/1/2013 5:51:32 PM   | 8646   |
| Selenium                      | ND     | 0.050  | Ε    | mg/L  | 1   | 8/1/2013 5:51:32 PM   | 8646   |
| Silver                        | ND     | 0.050  |      | mg/L  | 10  | 8/1/2013 5:53:49 PM   | 8646   |
| Sodium                        | 350    | 10     |      | mg/L  | 10  | 8/1/2013 5:53:49 PM   | 8646   |
| EPA METHOD 8270C: SEMIVOLATIL | .ES    |        |      |       |     | Analyst               | : DAM  |
| Acenaphthene                  | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| Acenaphthylene                | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| Aniline                       | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| Anthracene '                  | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| Azobenzene                    | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| Benz(a)anthracene             | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| Benzo(a)pyrene                | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| Benzo(b)fluoranthene          | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| Benzo(g,h,i)perylene          | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| Benzo(k)fluoranthene          | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| Benzoic acid                  | ND     | 100    |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| Benzyl alcohol                | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| Bis(2-chloroethoxy)methane    | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| Bis(2-chloroethyl)ether       | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| Bis(2-chloroisopropyl)ether   | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| Bis(2-ethylhexyl)phthalate    | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| 4-Bromophenyl phenyl ether    | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| Butyl benzyl phthalate        | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| Carbazole                     | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| 4-Chloro-3-methylphenol       | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| 4-Chloroaniline               | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| 2-Chloronaphthalene           | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |
| 2-Chlorophenol                | ND     | 50     |      | μg/L  | 1   | 7/24/2013 12:05:54 PM | 8534   |

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit 0
- RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Not Detected at the Reporting Limit Page 2 of 21 Sample pH greater than 2 for VOA and TOC only. P
- Reporting Detection Limit

#### Lab Order 1307A17

Date Reported: 1/29/2014

### Hall Environmental Analysis Laboratory, Inc.

**CLIENT:** Western Refining Southwest, Inc.

Project: Injection Well 7-22-13

Lab ID: 1307A17-001

Client Sample ID: Injection Well

Collection Date: 7/22/2013 2:00:00 PM

Received Date: 7/23/2013 9:00:00 AM

| Analyses                    | Result | RL Qu | al Units | DF Date Analyzed     | Batch           |
|-----------------------------|--------|-------|----------|----------------------|-----------------|
| EPA METHOD 8270C: SEMIVOLA  | TILES  | ,     |          | Anal                 | yst: <b>DAM</b> |
| 4-Chlorophenyl phenyl ether | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| Chrysene                    | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 |                 |
| Di-n-butyl phthalate        | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| Di-n-octyl phthalate        | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| Dibenz(a,h)anlhracene       | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| Dibenzofuran                | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| 1,2-Dichlorobenzene         | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| 1,3-Dichlorobenzene         | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| 1,4-Dichlorobenzene         | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| 3,3'-Dichlorobenzidine      | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| Diethyl phthalate           | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| Dimethyl phthalate          | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| 2,4-Dichlorophenol          | ND     | 100   | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| 2,4-Dimethylphenol          | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| 4,6-Dinitro-2-methylphenol  | ND     | 100   | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| 2,4-Dinitrophenol           | ND     | 100   | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| 2,4-Dinitrotoluene          | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| 2,6-Dinitrotoluene          | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| Fluoranthene                | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| Fluorene                    | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| Hexachloroberizene          | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| Hexachlorobutadiene         | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| Hexachlorocyclopentadiene   | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| Hexachloroethane            | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| Indeno(1,2,3-cd)pyrene      | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| Isophorone                  | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| 1-Methylnaphthalene         | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| 2-Methylnaphthalene         | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| 2-Methylphenol              | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| 3+4-Methylphenol            | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| N-Nitrosodi-n-propylamine   | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| N-Nitrosodimethylamine      | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| N-Nitrosodiphenylamine      | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| Naphthalene                 | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| 2-Nitroaniline              | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| 3-Nitroaniline              | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| 4-Nitroaniline              | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| Nitrobenzene                | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |
| 2-Nitrophenol               | ND     | 50    | μg/L     | 1 7/24/2013 12:05:54 | PM 8534         |

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page
  - P Sample pH greater than 2 for VOA and TOC only.
  - RL Reporting Detection Limit

### Lab Order 1307A17

Date Reported: 1/29/2014

#### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 7-22-13

1307A17-001 Lab ID:

Client Sample ID: Injection Well

Collection Date: 7/22/2013 2:00:00 PM Received Date: 7/23/2013 9:00:00 AM

| Analyses                       | Result | RL        | Qual U | Units | DF | Date Analyzed         | Batch  |
|--------------------------------|--------|-----------|--------|-------|----|-----------------------|--------|
| EPA METHOD 8270C: SEMIVOLATILI | ES     |           |        |       |    | Analyst               | DAM    |
| 4-Nitrophenol                  | ND     | 50        | )      | μg/L  | 1  | 7/24/2013 12:05:54 PM | 8534   |
| Pentachlorophenol              | ND     | 100       | )      | μg/L  | 1  | 7/24/2013 12:05:54 PM | 8534   |
| Phenanthrene                   | ND     | 50        | 1      | μg/L  | 1  | 7/24/2013 12:05:54 PM | 8534   |
| Phenol                         | ND     | 50        | ١      | μg/L  | 1  | 7/24/2013 12:05:54 PM | 8534   |
| Pyrene                         | ND     | 50        | )      | μg/L  | 1  | 7/24/2013 12:05:54 PM | 8534   |
| Pyridine                       | ND     | 50        | •      | μg/L  | 1  | 7/24/2013 12:05:54 PM | 8534   |
| 1,2,4-Trichlorobenzene         | ND     | 50        | ı      | μg/L  | 1  | 7/24/2013 12:05:54 PM | 8534   |
| 2,4,5-Trichlorophenol          | ND     | 50        | ı      | μg/L  | 1  | 7/24/2013 12:05:54 PM | 8534   |
| 2,4,6-Trichlorophenol          | ND     | 50        | 1      | μg/L  | 1  | 7/24/2013 12:05:54 PM | 8534   |
| Surr: 2,4,6-Tribromophenol     | 104    | 41.5-117  |        | %REC  | 1  | 7/24/2013 12:05:54 PM | 8534   |
| Surr: 2-Fluorobiphenyl         | 75.3   | 29.1-112  |        | %REC  | 1  | 7/24/2013 12:05:54 PM | 8534   |
| Surr: 2-Fluorophenol           | 73.0   | 11.9-98.6 |        | %REC  | 1  | 7/24/2013 12:05:54 PM | 8534   |
| Surr: 4-Terphenyl-d14          | 88.6   | 46-111    |        | %REC  | 1  | 7/24/2013 12:05:54 PM | 8534   |
| Surr: Nitrobenzene-d5          | 91.8   | 34.9-112  |        | %REC  | 1  | 7/24/2013 12:05:54 PM | 8534   |
| Surr: Phenol-d5                | 60.9   | 17.5-88.3 |        | %REC  | 1  | 7/24/2013 12:05:54 PM | 8534   |
| EPA METHOD 8260B: VOLATILES    |        |           |        |       |    | Analyst:              | cws    |
| Benzene                        | ND     | 1.0       | )      | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| Toluene                        | ND     | 1.0       | 1      | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| Ethylbenzene                   | ND     | 1.0       | ı      | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0       | ı      | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| 1,2,4-Trimethylbenzene         | ND     | 1.0       |        | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| 1,3,5-Trimethylbenzene         | ND     | 1.0       |        | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0       | i      | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0       |        | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| Naphthalene                    | ND     | 2.0       |        | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| 1-Methylnaphthalene            | ND     | 4.0       |        | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| 2-Methylnaphthalene            | ND     | 4.0       |        | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| Acetone                        | 78     | 10        |        | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| Bromobenzene                   | ND     | 1.0       |        | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| Bromodichloromethane           | ND     | 1.0       |        | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| Bromoform                      | ND     | 1.0       |        | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| Bromomethane                   | ND     | 3.0       |        | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| 2-Butanone                     | ND     | 10        |        | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| Carbon disulfide               | ND     | 10        |        | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| Carbon Tetrachloride           | ND     | 1.0       |        | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| Chlorobenzene                  | ND     | 1.0       |        | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| Chloroethane                   | ND     | 2.0       |        | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| Chloroform                     | ND     | 1.0       |        | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |
| Chioromethane                  | ND     | 3.0       |        | μg/L  | 1  | 7/23/2013 6:57:35 PM  | R12139 |

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit
- RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Not Detected at the Reporting Limit Page 4 of 21 Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

### Lab Order 1307A17

Date Reported: 1/29/2014

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 7-22-13

Lab ID: 1307A17-001

Client Sample ID: Injection Well

Collection Date: 7/22/2013 2:00:00 PM

Received Date: 7/23/2013 9:00:00 AM

| Analyses                    | Result | RL Qu | al Units      | DF | Date Analyzed        | Batch  |
|-----------------------------|--------|-------|---------------|----|----------------------|--------|
| EPA METHOD 8260B: VOLATILES |        |       |               |    | Analyst              | cws    |
| 2-Chlorotoluene             | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| 4-Chlorotoluene             | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| cis-1,2-DCE                 | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| cis-1,3-Dichloropropene     | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| 1,2-Dibromo-3-chloropropane | ND     | 2.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| Dibromochloromethane        | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| Dibromomethane              | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| 1,2-Dichlorobenzene         | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| 1,3-Dichlorobenzene         | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| 1,4-Dichlorobenzene         | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| Dichlorodifluoromethane     | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| 1,1-Dichloroethane          | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| 1,1-Dichloroethene          | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| 1,2-Dichloropropane         | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| 1,3-Dichloropropane         | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| 2,2-Dichloropropane         | ND     | 2.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| 1,1-Dichloropropene         | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| Hexachlorobutadiene         | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| 2-Hexanone                  | ND     | 10    | μ <b>g</b> /L | 1  | 7/23/2013 6:57:35 PM | R12139 |
| Isopropylbenzene            | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| 4-isopropyltoluene          | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| 4-Methyl-2-pentanone        | ND     | 10    | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| Methylene Chloride          | ND     | 3.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| n-Butylbenzene              | ND     | 3.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| n-Propylbenzene             | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| sec-Butylbenzene            | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| Styrene                     | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| tert-Butylbenzene           | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| 1,1,2,2-Tetrachioroethane   | ND     | 2.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| Tetrachloroethene (PCE)     | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| trans-1,2-DCE               | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| trans-1,3-Dichloropropene   | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| 1,2,3-Trichlorobenzene      | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| 1,2,4-Trichlorobenzene      | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| 1,1,1-Trichloroethane       | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| 1,1,2-Trichloroethane       | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| Trichloroethene (TCE)       | ND     | 1.0   | µg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |
| Trichlorofluoromethane      | ND     | 1.0   | μg/L          | 1  | 7/23/2013 6:57:35 PM | R12139 |

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Lab Order 1307A17

Date Reported: 1/29/2014

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

Project:

Injection Well 7-22-13

Collection Date: 7/22/2013 2:00:00 PM

Lab ID:

1307A17-001

Matrix: AQUEOUS

Received Date: 7/23/2013 9:00:00 AM

| Analyses                        | Result | RL (   | Qual | Units      | DF | Date Analyzed        | Batch  |
|---------------------------------|--------|--------|------|------------|----|----------------------|--------|
| EPA METHOD 8260B: VOLATILES     |        |        |      |            |    | Analyst              | : CWS  |
| 1,2,3-Trichloropropane          | ND     | 2.0    |      | μg/L       | 1  | 7/23/2013 6:57:35 PM | R12139 |
| Vinyl chloride                  | ND     | 1.0    |      | μg/L       | 1  | 7/23/2013 6:57:35 PM | R12139 |
| Xylenes, Total                  | ND     | 1.5    |      | μg/L       | 1  | 7/23/2013 6:57:35 PM | R12139 |
| Surr: 1,2-Dichloroethane-d4     | 101    | 70-130 |      | %REC       | 1  | 7/23/2013 6:57:35 PM | R12139 |
| Surr: 4-Bromofluorobenzene      | 92.9   | 70-130 |      | %REC       | 1  | 7/23/2013 6:57:35 PM | R12139 |
| Surr: Dibromofluoromethane      | 104    | 70-130 |      | %REC       | 1  | 7/23/2013 6:57:35 PM | R12139 |
| Surr: Toluene-d8                | 99.2   | 70-130 |      | %REC       | 1  | 7/23/2013 6:57:35 PM | R12139 |
| SM2510B: SPECIFIC CONDUCTANCE   |        |        |      |            |    | Analyst              | : JML  |
| Conductivity                    | 3400   | 0.010  |      | µmhos/cm   | 1  | 7/23/2013 4:28:20 PM | R12146 |
| SM4500-H+B: PH                  |        |        |      |            |    | Analyst              | : JML  |
| рН                              | 7.41   | 1.68   | Н    | pH units   | 1  | 7/23/2013 4:28:20 PM | R12146 |
| SM2320B: ALKALINITY             |        |        |      |            |    | Analyst              | : JML  |
| Bicarbonate (As CaCO3)          | 340    | 20     |      | mg/L CaCO3 | 1  | 7/23/2013 4:28:20 PM | R12146 |
| Carbonate (As CaCO3)            | ND     | 2.0    |      | mg/L CaCO3 | 1  | 7/23/2013 4:28:20 PM | R12146 |
| Total Alkalinity (as CaCO3)     | 340    | 20     |      | mg/L CaCO3 | 1  | 7/23/2013 4:28:20 PM | R12146 |
| SM2540C MOD: TOTAL DISSOLVED SC | LIDS   |        |      |            |    | Analyst              | : KS   |
| Total Dissolved Solids          | 2140   | 40.0   | *    | mg/L       | 1  | 7/25/2013 3:06:00 PM | 8535   |

#### Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
  - Not Detected at the Reporting Limit Page 6 of 21 Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

#### Lab Order 1307A17

Date Reported: 1/29/2014

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: TRIP BLANK

Injection Well 7-22-13 Project:

**Collection Date:** 

1307A17-002 Lab ID:

Matrix: TRIP BLANK

Received Date: 7/23/2013 9:00:00 AM

| Analyses                       | Result | RL Qu | al Units | DF | Date Analyzed        | Batch  |
|--------------------------------|--------|-------|----------|----|----------------------|--------|
| EPA METHOD 8260B: VOLATILES    |        |       |          |    | Analyst              | cws    |
| Benzene                        | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| Toluene                        | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| Ethylbenzene                   | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| 1,2,4-Trimethylbenzene         | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| 1,3,5-Trimethylbenzene         | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| Naphthalene                    | ND     | 2.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| 1-Methylnaphthalene            | ND     | 4.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| 2-Methylnaphthalene            | ND     | 4.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| Acetone                        | ND     | 10    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| Bromobenzene                   | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| Bromodichloromethane           | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| Bromoform                      | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| Bromomethane                   | ND     | 3.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| 2-Butanone                     | ND     | 10    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| Carbon disulfide               | ND     | 10    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| Carbon Tetrachloride           | N:D    | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| Chlorobenzene                  | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| Chloroethane                   | ND     | 2.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| Chloroform                     | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| Chloromethane                  | ND     | 3.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| 2-Chlorotoluene                | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| 4-Chlorotoluene                | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| cis-1,2-DCE                    | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| cis-1,3-Dichloropropene        | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| 1,2-Dibromo-3-chloropropane    | ND     | 2.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| Dibromochloromethane           | ND     | 1.0   | µg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| Dibromomethane                 | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| 1,2-Dichlorobenzene            | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| 1,3-Dichlorobenzene            | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| 1,4-Dichlorobenzene            | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| Dichlorodifluoromethane        | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| 1,1-Dichloroethane             | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| 1,1-Dichloroethene             | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| 1,2-Dichloropropane            | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| 1,3-Dichloropropane            | ND     | 1.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |
| 2,2-Dichloropropane            | ND     | 2.0   | μg/L     | 1  | 7/23/2013 7:55:05 PM | R1213  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Not Detected at the Reporting Limit Page 7 of 21 Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit

Lab Order 1307A17

Date Reported: 1/29/2014

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: TRIP BLANK

Project: In

Injection Well 7-22-13

**Collection Date:** 

Lab ID: 1307A17-002

Matrix: TRIP BLANK

Received Date: 7/23/2013 9:00:00 AM

| Analyses                    | Result | RL Qu  | al Units | DF | Date Analyzed        | Batch  |
|-----------------------------|--------|--------|----------|----|----------------------|--------|
| EPA METHOD 8260B: VOLATILES |        |        |          |    | Analyst              | cws    |
| 1,1-Dichloropropene         | ND     | 1.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| Hexachlorobutadiene         | ND     | 1.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| 2-Hexanone                  | ND     | 10     | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| Isopropylbenzene            | ND     | 1.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| 4-Isopropyltoluene          | ND     | 1.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| 4-Methyl-2-pentanone        | ND     | 10     | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| Methylene Chloride          | ND     | 3.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| n-Butylbenzene              | ND     | 3.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| n-Propylbenzene             | ND     | 1.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| sec-Butylbenzene            | ND     | 1.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| Styrene                     | ND     | 1.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| tert-Butylbenzene           | ND     | 1.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| Tetrachloroethene (PCE)     | ND     | 1.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| trans-1,2-DCE               | ND     | 1.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| trans-1,3-Dichloropropene   | ND     | 1.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| 1,2,3-Trichlorobenzene      | ND     | 1.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| 1,2,4-Trichlorobenzene      | ND     | 1.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| 1,1,1-Trichloroethane       | ND     | 1.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| 1,1,2-Trichloroethane       | ND     | 1.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| Trichloroethene (TCE)       | ND     | 1.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| Trichlorofluoromethane      | ND     | 1.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| 1,2,3-Trichloropropane      | ND     | 2.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| Vinyl chloride              | ND     | 1.0    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| Xylenes, Total              | ND     | 1.5    | μg/L     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| Surr: 1,2-Dichloroethane-d4 | 98.3   | 70-130 | %REC     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| Surr: 4-Bromofluorobenzene  | 102    | 70-130 | %REC     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| Surr: Dibromofluoromethane  | 102    | 70-130 | %REC     | 1  | 7/23/2013 7:55:05 PM | R12139 |
| Surr: Toluene-d8            | 101    | 70-130 | %REC     | 1  | 7/23/2013 7:55:05 PM | R12139 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
  - P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

# Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (203) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

130724030

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

**Project Name:** 

1307A17

Attn:

ANDY FREEMAN

### Analytical Results Report

Sample Number

130724030-001

Sampling Date

Date/Time Received 7/24/2013 11:22 AM

Client Sample ID

1307A17-001E / INJECTION WELL

Matrix

**VVater** 

Sampling Time 2:00 PM

7/22/2013

Comments

| Parameter          | Result | Units    | PQL  | Analysis Date | Analyst | Method    | Qualifier |
|--------------------|--------|----------|------|---------------|---------|-----------|-----------|
| Cyanide (reactive) | ND     | mg/L     | 0.01 | 8/6/2013      | CRW     | SW846 CH7 |           |
| Flashpoint         | >200   | °F       |      | 8/5/2013      | KFG     | EPA 1010  |           |
| рН                 | 6.74   | ph Units |      | 7/29/2013     | AJT     | EPA 150.1 |           |
| Reactive sulfide   | ND     | mg/kg    | 1    | 7/29/2013     | AJT     | SW846 CH7 |           |

**Authorized Signature** 

John Coddington, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND

**Not Detected** 

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

### all Environmental Analysis Laboratory, Inc.

WO#: 1

1307A17 29-Jan-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-22-13

| Sample ID MB-8646    | Samp     | Туре: МЕ  | BLK       | Tes         | tCode: E | PA Method | 200.7: Metals |      |          |      |
|----------------------|----------|-----------|-----------|-------------|----------|-----------|---------------|------|----------|------|
| Client ID: PBW       | Bato     | ch ID: 86 | 46        | F           | RunNo: 1 | 2318      |               |      |          |      |
| Prep Date: 7/31/2013 | Analysis | Date: 7/  | 31/2013   | 8           | SeqNo: 3 | 50274     | Units: mg/L   |      |          |      |
| Analyte              | Result   | PQL       | SPK value | SPK Ref Val | %REC     | LowLimit  | HighLimit     | %RPD | RPDLimit | Qual |
| Barium               | ND       | 0.0020    |           |             |          |           |               |      |          |      |
| Cadmium              | ND       | 0.0020    |           |             |          |           |               |      |          |      |
| Calcium              | ND       | 1.0       |           |             |          |           |               |      |          |      |
| Chromium             | ND       | 0.0060    |           |             |          |           |               |      |          |      |
| Lead                 | ND       | 0.0050    |           |             |          |           |               |      |          |      |
| Magnesium            | ND       | 1.0       |           |             |          |           |               |      |          |      |
| Potassium            | ND       | 1.0       |           |             |          |           |               |      |          |      |
| Silver               | ND       | 0.0050    |           |             |          |           |               |      |          |      |
| Sodium               | ND       | 1.0       |           |             |          |           |               |      |          |      |

| Sample ID LCS-8646   | Samp     | Type: LC        | pe: LCS TestCode: EPA Method 200.7: Metals |             |          |          |             |      |          |      |
|----------------------|----------|-----------------|--------------------------------------------|-------------|----------|----------|-------------|------|----------|------|
| Client ID: LCSW      | Bato     | h ID: 86        | 46                                         | F           | RunNo: 1 | 2318     |             |      |          |      |
| Prep Date: 7/31/2013 | Analysis | Date: <b>7/</b> | /31/2013                                   | S           | SeqNo: 3 | 50275    | Units: mg/L |      |          |      |
| Analyte              | Result   | PQL             | SPK value                                  | SPK Ref Val | %REC     | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Barium               | 0.49     | 0.0020          | 0.5000                                     | 0           | 97.4     | 85       | 115         |      |          |      |
| ^admium              | 0.47     | 0.0020          | 0.5000                                     | 0           | 93.5     | 85       | 115         |      |          |      |
| laium                | 51       | 1.0             | 50.00                                      | 0           | 101      | 85       | 115         |      |          |      |
| Chromium             | 0.49     | 0.0060          | 0.5000                                     | 0           | 98.1     | 85       | 115         |      |          |      |
| Lead                 | 0.47     | 0.0050          | 0.5000                                     | 0           | 94.6     | 85       | 115         |      |          |      |
| Magnesium            | 52       | 1.0             | 50.00                                      | 0           | 104      | 85       | 115         |      |          |      |
| Potassium            | 51       | 1.0             | 50.00                                      | 0           | 101      | 85       | 115         |      |          |      |
| Silver               | 0.49     | 0.0050          | 0.5000                                     | 0           | 97.5     | 85       | 115         |      |          |      |
| Sodium               | 51       | 1.0             | 50.00                                      | 0           | 103      | 85       | 115         |      |          |      |

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Page 9 of 21
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1307A17

29-Jan-14

Client:

Western Refining Southwest, Inc.

| Project:     |     | Injection Well 7 | -22-13   |       |          |             |          |           |               |      |          |      |
|--------------|-----|------------------|----------|-------|----------|-------------|----------|-----------|---------------|------|----------|------|
| Sample ID N  | ИВ  | Sar              | mpType:  | MBLK  | (        | Tes         | tCode: E | PA Method | 300.0: Anions | )    |          |      |
| Client ID: P | PBW | В                | atch ID: | R1217 | 76       | i           | RunNo: 1 | 2176      |               |      |          |      |
| Prep Date:   |     | Analys           | is Date: | 7/24/ | 2013     | ;           | SeqNo: 3 | 46320     | Units: mg/L   |      |          |      |
| Analyte      |     | Resu             | lt PC    | QL SI | PK value | SPK Ref Val | %REC     | LowLimit  | HighLimit     | %RPD | RPDLimit | Qual |
| Chloride     |     | Ni               | D 0.     | .50   |          |             |          |           |               |      |          |      |
| Sulfate      |     | NI               | D 0.     | .50   |          |             |          |           |               |      |          |      |
| Sample ID L  | .cs | Sar              | прТуре:  | LCS   |          | Tes         | tCode: E | PA Method | 300.0: Anions | ;    |          |      |
| Client ID: L | csw | В                | atch ID: | R1217 | 76       | I           | RunNo: 1 | 2176      |               |      |          |      |
| Prep Date:   |     | Analys           | is Date: | 7/24/ | 2013     | ;           | SeqNo: 3 | 46321     | Units: mg/L   |      |          |      |
| Analyte      |     | Resu             | lt PC    | QL SI | PK value | SPK Ref Val | %REC     | LowLimit  | HighLimit     | %RPD | RPDLimit | Qual |
| Chloride     |     | 4.               | 7 0      | .50   | 5.000    | 0           | 93.4     | 90        | 110           |      |          |      |
| Sulfate      |     | 9.               | 9 0      | .50   | 10.00    | 0           | 99.4     | 90        | 110           |      |          |      |
| Sample ID N  | ив  | Sar              | mpType:  | MBLK  | (        | Tes         | tCode: E | PA Method | 300.0: Anions | •    |          |      |
| Client ID: P | PBW | В                | atch ID: | R1217 | 76       | ı           | RunNo: 1 | 2176      |               |      |          |      |
| Prep Date:   |     | Analys           | is Date: | 7/24/ | 2013     | ;           | SeqNo: 3 | 46374     | Units: mg/L   |      |          |      |
| Analyte      |     | Resu             | lt PC    | QL SI | PK value | SPK Ref Val | %REC     | LowLimit  | HighLimit     | %RPD | RPDLimit | Qual |
| Chloride     |     | N                | D 0.     | .50   |          |             |          |           |               |      |          |      |
| Sulfate      |     | N                | D 0      | .50   |          |             |          |           |               |      |          |      |
| Sample ID L  | cs  | Sar              | mpType:  | LCS   |          | Tes         | tCode: E | PA Method | 300.0: Anions | 3    |          |      |
| Client ID: L | csw | В                | atch ID: | R1217 | 76       | i           | RunNo: 1 | 2176      |               |      |          |      |
| Prep Date:   |     | Analys           | is Date: | 7/24/ | 2013     | ;           | SeqNo: 3 | 346375    | Units: mg/L   |      |          |      |
| Analyte      |     | Resu             | lt PC    | QL SI | PK value | SPK Ref Val | %REC     | LowLimit  | HighLimit     | %RPD | RPDLimit | Qual |
| Chloride     |     | 4.               | 6 0      | .50   | 5.000    | 0           | 91.1     | 90        | 110           |      |          |      |
| Sulfate      |     | 9.               | 5 0      | .50   | 10.00    | 0           | 95.0     | 90        | 110           |      |          |      |

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Page 10 of 21
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

### all Environmental Analysis Laboratory, Inc.

WO#: 1307A17

29-Jan-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-22-13

| Sample ID 5ml rb               | SampT      | ype: Mi       | BLK       | Tes         | tCode: El | PA Method | 8260B: VOL  | ATILES |          |      |
|--------------------------------|------------|---------------|-----------|-------------|-----------|-----------|-------------|--------|----------|------|
| Client ID: PBW                 | Batch      | ID: <b>R1</b> | 2139      | F           | RunNo: 1  | 2139      |             |        |          |      |
| Prep Date:                     | Analysis D | ate: 7        | 23/2013   | \$          | SeqNo: 3  | 45231     | Units: µg/L |        |          |      |
| Analyte                        | Result     | PQL           | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |
| Benzene                        | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Toluene                        | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Ethylbenzene                   | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Methyl tert-butyl ether (MTBE) | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,2,4-Trimethylbenzene         | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,3,5-Trimethylbenzene         | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,2-Dichloroethane (EDC)       | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,2-Dibromoethane (EDB)        | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Naphthalene                    | ND         | 2.0           |           |             |           |           |             |        |          |      |
| 1-Methylnaphthalene            | ND         | 4.0           |           |             |           |           |             |        |          |      |
| 2-Methylnaphthalene            | ND         | 4.0           |           |             |           |           |             |        |          |      |
| Acetone                        | ND         | 10            |           |             |           |           |             |        |          |      |
| Bromobenzene                   | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Bromodichloromethane           | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Bromoform                      | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Bromomethane                   | ND         | 3.0           |           |             |           |           |             |        |          |      |
| Sutanone                       | ND         | 10            |           |             |           |           |             |        |          |      |
| arbon disulfide                | ND         | 10            |           |             |           |           |             |        |          |      |
| Carbon Tetrachloride           | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Chlorobenzene                  | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Chloroethane                   | ND         | 2.0           |           |             |           |           |             |        |          |      |
| Chloroform                     | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Chloromethane                  | ND         | 3.0           |           |             |           |           |             |        |          |      |
| 2-Chlorotoluene                | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 4-Chlorotoluene                | ND         | 1.0           |           |             |           |           |             |        |          |      |
| cis-1,2-DCE                    | ND         | 1.0           |           |             |           |           |             |        |          |      |
| cis-1,3-Dichloropropene        | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,2-Dibromo-3-chloropropane    | ND         | 2.0           |           |             |           |           |             |        |          |      |
| Dibromochloromethane           | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Dibromomethane                 | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,2-Dichlorobenzene            | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,3-Dichlorobenzene            | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,4-Dichlorobenzene            | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Dichlorodifluoromethane        | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,1-Dichloroethane             | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,1-Dichloroethene             | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,2-Dichloropropane            | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,3-Dichloropropane            | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 2,2-Dichloropropane            | ND         | 2.0           |           |             |           |           |             |        |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 11 of 21

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1307A17

29-Jan-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-22-13

| Sample ID 5ml rb            | SampT      | ype: ME       | BLK       | Tes         | tCode: El | 'A Method | 8260B: VOL  | ATILES |          | 1,41 |
|-----------------------------|------------|---------------|-----------|-------------|-----------|-----------|-------------|--------|----------|------|
| Client ID: PBW              | Batch      | ID: <b>R1</b> | 2139      | F           | RunNo: 1  | 2:139     |             |        |          |      |
| Prep Date:                  | Analysis D | ate: 7/       | 23/2013   | 8           | SeqNo: 3  | 45231     | Units: µg/L |        |          |      |
| Analyte                     | Result     | PQL           | SPK value | SPK Ref Val | %REC      | L.owLimit | HighLimit   | %RPD   | RPDLimit | Qual |
| 1,1-Dichloropropene         | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Hexachlorobutadiene         | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 2-Hexanone                  | ND         | 10            |           |             |           |           |             |        |          |      |
| Isopropylbenzene            | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 4-Isopropyltoluene          | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 4-Methyl-2-pentanone        | ND         | 10            |           |             |           |           |             |        |          |      |
| Methylene Chloride          | ND         | 3.0           |           |             |           |           |             |        |          |      |
| n-Butylbenzene              | ND         | 3.0           |           |             |           |           |             |        |          |      |
| n-Propylbenzene             | ND         | 1.0           |           |             |           |           |             |        |          |      |
| sec-Butylbenzene            | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Styrene                     | ND         | 1.0           |           |             |           |           |             |        |          |      |
| tert-Butylbenzene           | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,1,1,2-Tetrachloroethane   | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,1,2,2-Tetrachloroethane   | ND         | 2.0           |           |             |           |           |             |        |          |      |
| Tetrachloroethene (PCE)     | ND         | 1.0           |           |             |           |           |             |        |          |      |
| trans-1,2-DCE               | ND         | 1.0           |           |             |           |           |             |        |          |      |
| trans-1,3-Dichloropropene   | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,2,3-Trichlorobenzene      | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,2,4-Trichlorobenzene      | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,1,1-Trichloroethane       | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,1,2-Trichloroethane       | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Trichloroethene (TCE)       | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Trichlorofluoromethane      | ND         | 1.0           |           |             |           |           |             |        |          |      |
| 1,2,3-Trichloropropane      | ND         | 2.0           |           |             |           |           |             |        |          |      |
| Vinyl chloride              | ND         | 1.0           |           |             |           |           |             |        |          |      |
| Xylenes, Total              | ND         | 1.5           |           |             |           |           |             |        |          |      |
| Surr: 1,2-Dichloroethane-d4 | 9.7        |               | 10.00     |             | 97.0      | 70        | 130         |        |          |      |
| Surr: 4-Bromofluorobenzene  | 10         |               | 10.00     |             | 104       | 70        | 130         |        |          |      |
| Surr: Dibromofluoromethane  | 10         |               | 10.00     |             | 102       | 70        | 130         |        |          |      |
| Surr: Toluene-d8            | 10         |               | 10.00     |             | 99.9      | 70        | 130         |        |          |      |

| Sample ID 100ng Ics | SampT      | SampType: LCS TestCod |           |             |          | EF'A Method 8260B: VOLATILES |             |      |          |      |  |  |  |
|---------------------|------------|-----------------------|-----------|-------------|----------|------------------------------|-------------|------|----------|------|--|--|--|
| Client ID: LCSW     | Batch      | 1D: <b>R1</b>         | 2139      | F           | RunNo: 1 | 2139                         |             | ,    |          |      |  |  |  |
| Prep Date:          | Analysis D | ate: 7/               | 23/2013   | S           | SeqNo: 3 | 4-5233                       | Units: µg/L |      |          |      |  |  |  |
| Analyte             | Result     | PQL                   | SPK value | SPK Ref Val | %REC     | LowLimit                     | HighLimit   | %RPD | RPDLimit | Qual |  |  |  |
| Benzene             | 20         | 1.0                   | 20.00     | 0           | 101      | 70                           | 130         |      |          |      |  |  |  |
| Toluene             | 20         | 1.0                   | 20.00     | 0           | 101      | 80                           | 120         |      |          |      |  |  |  |
| Chlorobenzene       | 19         | 1.0                   | 20.00     | 0           | 96.1     | 70                           | 130         |      |          |      |  |  |  |

#### Qualifiers:

- \* Value exceeds Maximurn Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 12 of 21

- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

### 'all Environmental Analysis Laboratory, Inc.

WO#: **1307A17 29-Jan-14** 

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-22-13

| Sample ID 100ng Ics         | SampT      | ype: LC         | s         | Tes         | tCode: El | PA Method | 8260B: VOL  | ATILES |          |      |
|-----------------------------|------------|-----------------|-----------|-------------|-----------|-----------|-------------|--------|----------|------|
| Client ID: LCSW             | Batch      | n ID: <b>R1</b> | 2139      | F           | RunNo: 1  | 2139      |             |        |          |      |
| Prep Date:                  | Analysis D | )ate: 7/        | 23/2013   | 8           | SeqNo: 3  | 45233     | Units: µg/L |        |          |      |
| Analyte                     | Result     | PQL             | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |
| 1,1-Dichloroethene          | 23         | 1.0             | 20.00     | 0           | 116       | 85.8      | 133         |        |          |      |
| Trichloroethene (TCE)       | 19         | 1.0             | 20.00     | 0           | 96.5      | 70        | 130         |        |          |      |
| Surr: 1,2-Dichloroethane-d4 | 9.7        |                 | 10.00     |             | 97.4      | 70        | 130         |        |          |      |
| Surr: 4-Bromofluorobenzene  | 9.8        |                 | 10.00     |             | 98.4      | 70        | 130         |        |          |      |
| Surr: Dibromofluoromethane  | 9.8        |                 | 10.00     |             | 97.6      | 70        | 130         |        |          |      |
| Surr: Toluene-d8            | 10         |                 | 10.00     |             | 100       | 70        | 130         |        |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 13 of 21

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1307A17

29-Jan-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-22-13

| Sample ID mb-8534           | SampTy      | pe: MBLK        | Tes               | tCode: EPA Metho     | d 8270C: Semi | volatiles |          |      |
|-----------------------------|-------------|-----------------|-------------------|----------------------|---------------|-----------|----------|------|
| Client ID: PBW              | Batch       | ID: <b>8534</b> | F                 | RunNo: 12174         |               |           |          |      |
| Prep Date: 7/24/2013        | Analysis Da | ite: 7/24/201   | 3                 | SeqNo: <b>346299</b> | Units: µg/L   |           |          |      |
| Analyte                     | Result      | PQL SPK         | value SPK Ref Val | %REC LowLimi         | t HighLimit   | %RPD      | RPDLimit | Qual |
| Acenaphthene                | ND          | 10              |                   |                      |               |           |          |      |
| Acenaphthylene              | ND          | 10              |                   |                      |               |           |          |      |
| Aniline                     | ND          | 10              |                   |                      |               |           |          |      |
| Anthracene                  | ND          | 10              |                   |                      |               |           |          |      |
| Azobenzene                  | ND          | 10              |                   |                      |               |           |          |      |
| Benz(a)anthracene           | ND          | 10              |                   |                      |               |           |          |      |
| Benzo(a)pyrene              | ND          | 10              |                   |                      |               |           |          |      |
| Benzo(b)fluoranthene        | ND          | 10              |                   |                      |               |           |          |      |
| Benzo(g,h,i)perylene        | ND          | 10              |                   |                      |               |           |          |      |
| Benzo(k)fluoranthene        | ND          | 10              |                   |                      |               |           |          |      |
| Benzoic acid                | ND          | 20              |                   |                      |               |           |          |      |
| Benzyl alcohol              | ND          | 10              |                   |                      |               |           |          |      |
| Bis(2-chloroethoxy)methane  | ND          | 10              |                   |                      |               |           |          |      |
| Bis(2-chloroethyl)ether     | ND          | 10              |                   |                      |               |           |          |      |
| Bis(2-chloroisopropyl)ether | ND          | 10              |                   |                      |               |           |          |      |
| Bis(2-ethylhexyl)phthalate  | ND          | 10              |                   |                      |               |           |          |      |
| 4-Bromophenyl phenyl ether  | ND          | 10              |                   |                      |               |           |          |      |
| Butyl benzyl phthalate      | ND          | 10              |                   |                      |               |           |          |      |
| Carbazole                   | ND          | 10              |                   |                      |               |           |          |      |
| 4-Chloro-3-methylphenol     | ND          | 10              |                   |                      |               |           |          |      |
| 4-Chloroaniline             | ND          | 10              |                   |                      |               |           |          |      |
| 2-Chloronaphthalene         | ND          | 10              |                   |                      |               |           |          |      |
| 2-Chlorophenol              | ND          | 10              |                   |                      |               |           |          |      |
| 4-Chlorophenyl phenyl ether | ND          | 10              |                   |                      |               |           |          |      |
| Chrysene                    | ND          | 10              |                   |                      |               |           |          |      |
| Di-n-butyl phthalate        | ND          | 10              |                   |                      |               |           |          |      |
| Di-n-octyl phthalate        | ND          | 10              |                   |                      |               |           |          |      |
| Dibenz(a,h)anthracene       | ND          | 10              |                   |                      |               |           |          |      |
| Dibenzofuran                | ND          | 10              |                   |                      |               |           |          |      |
| 1,2-Dichlorobenzene         | ND          | 10              |                   |                      |               |           |          |      |
| 1,3-Dichlorobenzene         | ND          | 10              |                   |                      |               |           |          |      |
| 1,4-Dichlorobenzene         | ND          | 10              |                   |                      |               |           |          |      |
| 3,3'-Dichlorobenzidine      | ND          | 10              |                   |                      |               |           |          |      |
| Diethyl phthalate           | ND          | 10              |                   |                      |               |           |          |      |
| Dimethyl phthalate          | ND          | 10              |                   |                      |               |           |          |      |
| 2,4-Dichlorophenol          | ND          | 20              |                   |                      |               |           |          |      |
| 2,4-Dimethylphenol          | ND          | 10              |                   |                      |               |           |          |      |
| 4,6-Dinitro-2-methylphenol  | ND          | 20              |                   |                      |               |           |          |      |
| 2,4-Dinitrophenol           | ND          | 20              |                   |                      |               |           |          |      |
| -,                          |             |                 |                   |                      |               |           |          |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 14 of 21

### Iall Environmental Analysis Laboratory, Inc.

WO#: **1307A17 29-Jan-14** 

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-22-13

| Sample ID mb-8534          | SampType      | e: MBLK        | TestC      | ode: EPA Metho  | d 8270C: Semivol | atiles             |
|----------------------------|---------------|----------------|------------|-----------------|------------------|--------------------|
| Client ID: PBW             | Batch ID      | ): <b>8534</b> | Ru         | nNo: 12174      |                  |                    |
| Prep Date: 7/24/2013       | Analysis Date |                |            | gNo: 346299     | Units: µg/L      |                    |
| Analyte                    | •             |                |            | %REC LowLimit   |                  | %RPD RPDLimit Qual |
| 2,4-Dinitrotoluene         | ND .          | 10             | O. IV. IV. | 20112           | , vigite         |                    |
| 2,6-Dinitrotoluene         | ND            | 10             |            |                 |                  |                    |
| Fluoranthene               | ND            | 10             |            |                 |                  |                    |
| Fluorene                   | ND            | 10             |            |                 |                  |                    |
| Hexachlorobenzene          | ND            | 10             |            |                 |                  |                    |
| Hexachlorobutadiene        | ND            | 10             |            |                 |                  |                    |
| Hexachlorocyclopentadiene  | ND            | 10             |            |                 |                  |                    |
| Hexachloroethane           | ND            | 10             |            |                 |                  |                    |
| Indeno(1,2,3-cd)pyrene     | ND            | 10             |            |                 |                  |                    |
| Isophorone                 | ND            | 10             |            |                 |                  |                    |
| 1-Methylnaphthalene        | ND            | 10             |            |                 |                  |                    |
| 2-Methylnaphthalene        | ND            | 10             |            |                 |                  |                    |
| 2-Methylphenol             | ND            | 10             |            |                 |                  |                    |
| 3+4-Methylphenol           | ND            | 10             |            |                 |                  |                    |
| N-Nitrosodi-n-propylamine  | ND            | 10             |            |                 |                  |                    |
| N-Nitrosodimethylamine     | ND            | 10             |            |                 |                  |                    |
| '-Nitrosodiphenylamine     | ND            | 10             |            |                 |                  |                    |
| aphthalene                 | ND            | 10             |            |                 |                  |                    |
| 2-Nitroaniline             | ND            | 10             |            |                 |                  |                    |
| 3-Nitroaniline             | ND            | 10             |            |                 |                  |                    |
| 4-Nitroaniline             | ND            | 10             |            |                 |                  |                    |
| Nitrobenzene               | ND            | 10             |            |                 |                  |                    |
| 2-Nitrophenol              | ND            | 10             |            |                 |                  |                    |
| 4-Nitrophenol              | ND            | 10             |            |                 |                  |                    |
| Pentachlorophenol          | ND            | 20             |            |                 |                  |                    |
| Phenanthrene               | ND            | 10             |            |                 |                  |                    |
| Phenol                     | ND            | 10             |            |                 |                  |                    |
| Pyrene                     | ND            | 10             |            |                 |                  |                    |
| Pyridine                   | ND            | 10             |            |                 |                  |                    |
| 1,2,4-Trichlorobenzene     | ND            | 10             |            |                 |                  |                    |
| 2,4,5-Trichlorophenol      | ND            | 10             |            |                 |                  |                    |
| 2,4,6-Trichlorophenol      | ND            | 10             |            |                 |                  |                    |
| Surr: 2,4,6-Tribromophenol | 170           | 200.0          |            | 83.0 41.5       | 117              |                    |
| Surr: 2-Fluorobiphenyl     | 76            | 100.0          |            | 76.2 29.1       |                  |                    |
| Surr: 2-Fluorophenol       | 130           | 200.0          |            | 65.7 11.9       |                  |                    |
| Surr: 4-Terphenyl-d14      | 79            | 100.0          |            | 78.8 <b>4</b> 6 |                  |                    |
| Surr: Nitrobenzene-d5      | 81            | 100.0          |            | 81.4 34.9       |                  |                    |
| Surr: Phenol-d5            | 100           | 200.0          |            | 50.9 17.5       | 88.3             |                    |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 15 of 21

### Hall Environmental Analysis Laboratory, Inc.

WO#:

1307A17

29-Jan-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-22-13

| Sample ID Ics-8534         | TestCode: EPA Method 8270C: Semivolatiles |     |           |               |      |          |             |      |          |      |
|----------------------------|-------------------------------------------|-----|-----------|---------------|------|----------|-------------|------|----------|------|
| Client ID: LCSW            | Batch ID: 8534                            |     |           | RunNo: 12174  |      |          |             |      |          |      |
| Prep Date: 7/24/2013       | Analysis Date: 7/24/2013                  |     |           | SeqNo: 346300 |      |          | Units: µg/L |      |          |      |
| Analyte                    | Result                                    | PQL | SPK value | SPK Ref Val   | %REC | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Acenaphthene               | 90                                        | 10  | 100.0     | 0             | 90.3 | 53.3     | 92.5        |      |          |      |
| 4-Chloro-3-methylphenol    | 190                                       | 10  | 200.0     | 0             | 93.9 | 55.9     | 93.9        |      |          | S    |
| 2-Chlorophenol             | 200                                       | 10  | 200.0     | 0             | 102  | 51.1     | 85.8        |      |          | s    |
| 1,4-Dichlorobenzene        | 89                                        | 10  | 100.0     | 0             | 88.6 | 41.5     | 86.7        |      |          | S    |
| 2,4-Dinitrotoluene         | 92                                        | 10  | 100.0     | 0             | 92.4 | 57.5     | 102         |      |          |      |
| N-Nitrosodi-n-propylamine  | 120                                       | 10  | 100.0     | 0             | 124  | 52.1     | 99.7        |      |          | S    |
| 4-Nitrophenol              | 91                                        | 10  | 200.0     | 0             | 45.6 | 27.2     | 53          |      |          |      |
| Pentachiorophenol          | 120                                       | 20  | 200.0     | 0             | 61.9 | 33.7     | 77.7        |      |          |      |
| Phenol                     | 130                                       | 10  | 200.0     | 0             | 66.2 | 23.3     | 66.3        |      |          |      |
| Pyrene                     | 120                                       | 10  | 100.0     | 0             | 118  | 57       | 88.7        |      |          | S    |
| 1,2,4-Trichlorobenzene     | 89                                        | 10  | 100.0     | 0             | 89.4 | 46.7     | 87.8        |      |          | S    |
| Surr: 2,4,6-Tribromophenol | 220                                       |     | 200.0     |               | 112  | 41.5     | 117         |      |          |      |
| Surr: 2-Fluorobiphenyl     | 76                                        |     | 100.0     |               | 76.1 | 29.1     | 112         |      |          |      |
| Surr: 2-Fluorophenol       | 160                                       |     | 200.0     |               | 82.3 | 11.9     | 98.6        |      |          |      |
| Surr: 4-Terphenyl-d14      | 130                                       |     | 100.0     |               | 126  | 46       | 111         |      |          | S    |
| Surr: Nitrobenzene-d5      | 94                                        |     | 100.0     |               | 94.5 | 34.9     | 112         |      |          |      |
| Surr: Phenol-d5            | 150                                       |     | 200.0     |               | 74.1 | 17.5     | 88.3        |      |          |      |

| Sample ID Icsd-8534        | SampType: LCSD  Batch ID: 8534  Analysis Date: 7/24/2013 |     |           | TestCode: EPA Method 8270C: Semivolatiles |      |          |             |      |          |      |
|----------------------------|----------------------------------------------------------|-----|-----------|-------------------------------------------|------|----------|-------------|------|----------|------|
| Client ID: LCSS02          |                                                          |     |           | RunNo: 1:2174                             |      |          |             |      |          |      |
| Prep Date: 7/24/2013       |                                                          |     |           | SeqNo: <b>346301</b>                      |      |          | Units: µg/L |      |          |      |
| Analyte                    | Result                                                   | PQL | SPK value | SPK Ref Val                               | %REC | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Acenaphthene               | 83                                                       | 10  | 100.0     | 0                                         | 83.2 | 53.3     | 92.5        | 8.09 | 25       |      |
| 4-Chloro-3-methylphenol    | 190                                                      | 10  | 200.0     | 0                                         | 95.6 | 55.9     | 93.9        | 1.79 | 32.7     | S    |
| 2-Chlorophenol             | 170                                                      | 10  | 200.0     | 0                                         | 84.1 | 51.1     | 85.8        | 19.5 | 20       |      |
| 1,4-Dichlorobenzene        | 82                                                       | 10  | 100.0     | 0                                         | 81.5 | 41.5     | 86.7        | 8.28 | 20       |      |
| 2,4-Dinitrotoluene         | 86                                                       | 10  | 100.0     | 0                                         | 86.5 | 57.5     | 102         | 6.62 | 29.9     |      |
| N-Nitrosodi-n-propylamine  | 100                                                      | 10  | 100.0     | 0                                         | 102  | 52.1     | 99.7        | 19.5 | 23.1     | S    |
| 4-Nitrophenol              | 84                                                       | 10  | 200.0     | 0                                         | 42.2 | 27.2     | 53          | 7.95 | 40.5     |      |
| Pentachlorophenol          | 110                                                      | 20  | 200.0     | 0                                         | 55.5 | 33.7     | 77.7        | 10.9 | 37.3     |      |
| Phenol                     | 110                                                      | 10  | 200.0     | 0                                         | 54.6 | 23.3     | 66.3        | 19.2 | 20       |      |
| Pyrene                     | 90                                                       | 10  | 100.0     | 0                                         | 89.8 | 57       | 88.7        | 27.1 | 26.5     | RS   |
| 1,2,4-Trichlorobenzene     | 87                                                       | 10  | 100.0     | 0                                         | 86.8 | 46.7     | 87.8        | 3.02 | 27.2     |      |
| Surr: 2,4,6-Tribromophenol | 200                                                      |     | 200.0     |                                           | 98.7 | 41.5     | 117         | 0    | 0        |      |
| Surr: 2-Fluorobiphenyl     | 80                                                       |     | 100.0     |                                           | 80.3 | 29.1     | 112         | 0    | 0        |      |
| Surr: 2-Fluorophenol       | 140                                                      |     | 200.0     |                                           | 72.3 | 11.9     | 98.6        | 0    | 0        |      |
| Surr: 4-Terphenyl-d14      | 100                                                      |     | 100.0     |                                           | 104  | 46       | 111         | 0    | 0        |      |
| Surr: Nitrobenzene-d5      | 88                                                       |     | 100.0     |                                           | 88.4 | 34.9     | 112         | 0    | 0        |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
  - Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 16 of 21

### all Environmental Analysis Laboratory, Inc.

WO#: 1307A17 29-Jan-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-22-13

Sample ID Icsd-8534

SampType: LCSD

TestCode: EPA Method 8270C: Semivolatiles

Client ID: LCSS02

Batch ID: 8534

RunNo: 12174

Prep Date: 7/24/2013

Analysis Date: 7/24/2013

SeqNo: 346301

Units: µg/L

Analyte

PQL SPK value SPK Ref Val %REC LowLimit

HighLimit

17.5

%RPD **RPDLimit** 

Qual

88.3

Surr: Phenol-d5

130

200.0

62.9

Qualifiers:

Value exceeds Maximum Contaminant Level.

Value above quantitation range

J Analyte detected below quantitation limits

RSD is greater than RSDlimit 0

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Η

Not Detected at the Reporting Limit ND

Sample pH greater than 2 for VOA and TOC only. P

Reporting Detection Limit RL

Page 17 of 21

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1307A17

29-Jan-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-22-13

Sample ID 1307a17-001c dup

SampType: dup

TestCode: SM2510B: Specific Conductance

Client ID: Injection Well

Batch ID: R12146

RunNo: 12146

Prep Date:

Analysis Date: 7/23/2013

SeqNo: 345610

Units: umhos/cm

Analyte

PQL

SPK value SPK Ref Val %REC LowLimit HighLimit %RPD

**RPDLimit** 

Qual

Conductivity

3400 0.010 1.05

20

Qualifiers:

Value exceeds Maximum Contaminant Level.

Value above quantitation range E

Analyte detected below quantitation limits

0 RSD is greater than RSDlimit

RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

ND Not Detected at the Reporting Limit

Sample pH greater than 2 for VOA and TOC only.

Reporting Detection Limit

Page 18 of 21

# all Environmental Analysis Laboratory, Inc.

WO#: 1307A17

29-Jan-14

Client: Western Refining Southwest, Inc.

**Project:** Injection Well 7-22-13

Sample ID 1307a17-001c dup SampType: dup TestCode: SM4500-H+B: pH

Client ID: Injection Well Batch ID: R12146 RunNo: 12146

Prep Date: Analysis Date: 7/23/2013 SeqNo: 345619 Units: pH units

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

pΗ

7.41 1.68

Qualifiers:

\* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH greater than 2 for VOA and TOC only.

RL Reporting Detection Limit

Page 19 of 21

# Hall Environmental Analysis Laboratory, Inc.

WO#:

1307A17

29-Jan-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-22-13

Sample ID mb-1

SampType: mblk

TestCode: SM2320B: Alkalinity

Client ID: PBW

Batch ID: R12146 Analysis Date: 7/23/2013 RunNo: 12146

SeqNo: 345597

Units: mg/L CaCO3

Prep Date: Analyte

Result

**PQL** SPK value SPK Ref Val %REC HighLimit

%RPD **RPDLimit** 

Qual

Total Alkalinity (as CaCO3)

ND 20

Sample ID Ics-1

SampType: Ics

TestCode: SM2320B: Alkalinity

Client ID: LCSW

Batch ID: R12146

PQL

RunNo: 12146

LowLimit

Prep Date:

Analysis Date: 7/23/2013

SeqNo: 345598

Units: mg/L CaCO3

Analyte

SPK value SPK Ref Val %REC LowLimit

%RPD

**RPDLimit** 

Qual

Total Alkalinity (as CaCO3)

Result 80

80.00

0

101

HighLimit 110

#### Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

RSD is greater than RSD limit 0

RPD outside accepted recovery limits R

Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded H

Sample pH greater than 2 for VOA and TOC only.

ND Not Detected at the Reporting Limit Page 20 of 21

Reporting Detection Limit

# 'all Environmental Analysis Laboratory, Inc.

WO#: 1307A17

29-Jan-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-22-13

Sample ID MB-8535

SampType: MBLK

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW

Batch ID: 8535

RunNo: 12190

Prep Date: 7/24/2013

Analysis Date: 7/25/2013

SeqNo: 346731

Units: mg/L

HighLimit

%RPD

**RPDLimit** Qual

Analyte Total Dissolved Solids

Analyte

Result **PQL** ND 20.0

Sample ID LCS-8535 Client ID: LCSW

SampType: LCS Batch ID: 8535 TestCode: SM2540C MOD: Total Dissolved Solids

RunNo: 12190

Prep Date: 7/24/2013

Analysis Date: 7/25/2013

SeqNo: 346732

Units: mg/L

%RPD **RPDLimit** Quai

**PQL** 20.0

SPK value SPK Ref Val

%REC 101

HighLimit

SPK value SPK Ref Val %REC LowLimit

**Total Dissolved Solids** 

1010

1000

120

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit 0
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit
- Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit

Page 21 of 21



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NiA 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

# Sample Log-In Check List

| Client Name:                                                  | Western Refining Southw                                     | Work Order Number                                                               | er: 1307A17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    | RcptNo:                           |                   |
|---------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------|-------------------|
| Received by/da<br>Logged By:<br>Completed By:<br>Reviewed By: | Ashley Gallegos Ashley Gallegos                             | 07/23/2013 9:00:00 AI<br>7/23/2013 11:56:16 /<br>07/27/13                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                                  |                                   |                   |
| Chain of Cus                                                  | <u>stody</u>                                                |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                   |                   |
| 1. Custody se                                                 | als intact on sample bottles?                               |                                                                                 | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No i                               | Not Present                       |                   |
| 2. Is Chain of                                                | Custody complete?                                           |                                                                                 | Yes 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No                                 | Not Present                       |                   |
| 3. How was th                                                 | e sample delivered?                                         |                                                                                 | <u>UPS</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                                   |                   |
| <u>Log In</u>                                                 |                                                             |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                   |                   |
| 4. Was an att                                                 | empt made to cool the sample                                | s?                                                                              | Yes ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No :                               | NA                                |                   |
| 5. Were all sa                                                | mples received at a temperato                               | ure of >0°C to 6.0°C                                                            | Yes 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No i i                             | NA                                |                   |
| 6. Sample(s)                                                  | in proper container(s)?                                     |                                                                                 | Yes 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No '                               |                                   |                   |
| 7. Sufficient s                                               | ample volume for indicated tes                              | st(s)?                                                                          | Yes 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No !                               |                                   |                   |
| 8. Are sample                                                 | s (except VOA and ONG) proj                                 | perly preserved?                                                                | Yes 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No : !                             |                                   |                   |
| 9. Was preser                                                 | rvative added to bottles?                                   |                                                                                 | Yes ! i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No 🗸                               | NA                                |                   |
| 10.VOA vials h                                                | nave zero headspace?                                        |                                                                                 | Yes 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No !!                              | No VOA Vials                      |                   |
| 11. Were any                                                  | sample containers received br                               | oken?                                                                           | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No 🗸                               | # of preserved<br>bottles checked | 2.2               |
|                                                               | rwork match bottle labels?<br>epancies on chain of custody) |                                                                                 | Yes ♥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No :                               | for pH:                           | >12 unless noted) |
| 13. Are matrice                                               | s correctly identified on Chain                             | of Custody?                                                                     | Yes 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No !                               | Adjusted?                         | ~ VW              |
| 14. Is it clear w                                             | hat analyses were requested?                                |                                                                                 | Yes 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No                                 |                                   | (0)               |
|                                                               | Iding times able to be met? y customer for authorization.)  |                                                                                 | Yes 'V':                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No ! !                             | Checked by:                       | AR                |
| Special Hand                                                  | dling (if applicable)                                       |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                   |                   |
| 16. Was client                                                | notified of all discrepancies wi                            | th this order?                                                                  | Yes i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No !                               | NA 🗸                              |                   |
| Perso                                                         | on Notified:                                                | Date                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                   |                   |
| By W                                                          | /hom:                                                       | Via:                                                                            | eMail :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Phone Fax                          | in Person                         |                   |
| Rega                                                          | rding:                                                      |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and a second control of the second |                                   |                   |
| Clien                                                         | t Instructions:                                             | gyr y mangir i frankliker og forski fikan <u>den fik</u> iskeine i franklikerie | de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de |                                    |                                   |                   |
| 17. Additional                                                | rernarks:                                                   |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                   |                   |
| 18. Cooler Inf<br>Cooler I                                    | No Temp °C Condition                                        | Seal Intact   Seal No  <br>Not Present                                          | Seal Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Signed By                          |                                   |                   |

| С              | hain-                                            | of-Cu                   | stody Record                             | Turn-Around           | Time:                 |                                 | ]            |                  |                             |           |                |               |                            |        | <b>.</b>               |             |                 | 4=        | <b></b> | 1           |                  |
|----------------|--------------------------------------------------|-------------------------|------------------------------------------|-----------------------|-----------------------|---------------------------------|--------------|------------------|-----------------------------|-----------|----------------|---------------|----------------------------|--------|------------------------|-------------|-----------------|-----------|---------|-------------|------------------|
| Client:        | Veste.                                           | IN R                    | fivery                                   | ∫<br>★ Standard       | □ Rush                |                                 |              |                  |                             | _         |                | LL<br>AL      |                            |        |                        |             | _               |           |         |             |                  |
|                | اعادد                                            | 176                     | 7                                        | Project Name          |                       |                                 | ┧ 🏻          |                  |                             |           |                |               |                            |        |                        |             |                 |           |         | JR          |                  |
| Mailing        | Address                                          | 4                       | CR 4990                                  | Tilias                | * L.E.                | 11 12-00-12                     |              | 40               |                             |           |                | v.hali<br>    |                            |        |                        |             |                 | • • • • • |         |             |                  |
| <del></del>    |                                                  | 4-50                    | CK 4990                                  | Project #:            | lion we               | 11 7-22-13                      | ┪            |                  |                             |           |                | 1E -          |                            | -      | -                      |             |                 |           |         |             |                  |
| Black          | of ele                                           | U, NM                   | 874/3                                    | -                     |                       |                                 | _            | Te               | el. 50                      | 05-34     | 5-39           |               |                            | ax :   |                        |             |                 | 7         |         |             |                  |
|                |                                                  | 5-63                    | 2-4/35                                   | D                     |                       |                                 | -            |                  | 6                           |           | 7              |               | 77                         | sis    | Keq                    | uest        |                 |           |         |             |                  |
| email or       |                                                  |                         |                                          | Project Mana          | iger:                 |                                 | 12           | only             | ARC<br>ARC                  | 2         | ्र             |               | 4                          | Ş      | S                      |             | 1               | 13        | -       | J           |                  |
| QA/QC I        | Package:                                         | _                       | evel 4 (Full Validation)                 |                       |                       |                                 | 8            | 3as              | 0                           | 0         | 곘              | MS)           | শ্ব                        | ,o     | PCB's                  |             |                 | 200       |         |             |                  |
| Accredi        |                                                  |                         | ever 4 (Full Validation)                 | Sampler: M            | ATT + Bot             |                                 | TMB's (8021) | ) H              | DR                          |           |                | S O           | ٤]                         | 02/    | 82                     |             |                 | ٤         | Ī       | 团           |                  |
| □ NEL          |                                                  | □ Othe                  | r                                        | lenges                | AIV T DOL             | )<br>tentri November (1987)     | ] =          | + TPH (Gas only) | TPH 8015B (GRO / DRO / MRO) | 70) (Hear |                | or 8270 SIMS) | RCRA 8 Metals Ca. My Na, K | 3.Z    | 8081 Pesticides / 8082 |             | a               | Corresiv  | 7       | <u>,</u> ;‡ | Bubbles (Y or N) |
| □ EDD          | (Type)                                           |                         |                                          | Sample Refri          | galeidiseins          |                                 | 띪            | 삤                | (GR                         | H         |                | ō             | tals                       | 8      | sep                    |             | 8270 (Semi-VOA) | 占         | 坦       | 2           | J'S              |
|                |                                                  |                         |                                          |                       |                       | A Section 1                     | MTBE         | + MTBE           | 5B                          |           |                | (8310         | ğ                          | D, T   | stici                  | Š           | Ë               | 4         | (3      | 씻           |                  |
| Date           | Time                                             | Matrix                  | Sample Request ID                        | Container Type and #  | Preservative          | ER MILEAL NO                    | #            | +<br>×           | 88                          | 4         |                | ) s (         | 8 8                        | ) SU   | g.                     | 8260B (VOA) | S) (S           | ĪĠ        | Leath 1 | 可           | 纤                |
|                |                                                  |                         | ·                                        | 1 ype and #           | Туре                  | Layland Top William             | BTEX         | BTEX             | 핕                           |           |                | PAH's (       | 낊                          | Anio   | 808                    | 826         | 827(            | 2         | R       | 17          | ₹Ñ               |
| 7-22-13        | 2:00                                             | Hao                     | Injection Well                           | 3-VOA                 | HCI                   | -001                            |              |                  |                             |           |                |               |                            |        |                        | X           |                 |           |         |             |                  |
| ì              | 1                                                | 1                       | ,                                        | 1-Liter               | Amber                 |                                 |              |                  |                             |           |                |               |                            |        |                        |             | X               |           |         |             |                  |
|                |                                                  |                         |                                          | 1-500ml               |                       |                                 | T            |                  |                             |           |                |               |                            |        |                        |             |                 | X         |         | $\Box$      |                  |
| _              |                                                  |                         |                                          | 1-500m                |                       |                                 |              |                  |                             | X         | ,              |               | $\neg$                     |        |                        |             |                 |           |         | X           |                  |
| -              | <del>                                     </del> |                         |                                          |                       | H2504                 |                                 | 1-           |                  |                             |           | ヹ              |               | 一                          | _      |                        |             |                 |           | $\Box$  | -           |                  |
| -              |                                                  | -                       |                                          | 1-Em 1                | HN03                  |                                 | +            |                  |                             |           | <del>/</del> ` |               | X                          |        |                        |             |                 |           |         |             |                  |
|                |                                                  |                         |                                          |                       | NaOH                  |                                 | +            | 1                | H                           | $\Box$    |                |               |                            | $\neg$ |                        |             |                 |           | X       |             |                  |
| <del>-1-</del> | <del>                                     </del> |                         |                                          |                       | Zn ACeTA              | -                               | +            | $\vdash$         | Ė                           |           |                |               |                            |        |                        |             |                 | $\Box$    | $\Box$  |             | X                |
|                | <del>                                     </del> |                         | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \    | 1-200.00              | CA ALEIN              |                                 | <del> </del> | 1                |                             | Н         |                |               |                            |        |                        |             |                 |           |         |             |                  |
|                |                                                  |                         |                                          |                       |                       |                                 | +-           | -                | _                           |           |                |               | $\dashv$                   | $\neg$ |                        |             |                 | $\vdash$  |         |             |                  |
|                |                                                  |                         |                                          |                       |                       |                                 | +            | -                | $\vdash$                    | $\vdash$  |                |               | $\dashv$                   |        |                        |             |                 |           |         | 一           | -1               |
|                |                                                  |                         |                                          |                       |                       |                                 | +            | $\vdash$         | -                           | $\vdash$  | _              |               |                            |        |                        |             | -               | $\vdash$  |         |             | $\vdash$         |
| Date:          | Time:                                            | R <del>elinqu</del> ish | ed by:                                   | Received by:          | /                     | Date Time                       | Rei          | l<br>mark        | s:                          |           |                | L1            | 1                          | 1      |                        |             | <u> </u>        |           |         |             |                  |
| 7-22-13        | 3:20                                             | 11 1                    | feet Knakon                              | A A                   |                       | 1/2/2 PC/A                      | X            |                  |                             |           |                |               |                            |        |                        |             |                 |           |         |             |                  |
| Date:          | Time:                                            | Relinquish              | ed by:                                   | Received by:          |                       | Date Time                       | 1            |                  |                             |           |                |               |                            |        |                        |             |                 |           |         |             |                  |
|                |                                                  |                         |                                          |                       |                       |                                 |              |                  |                             |           |                |               |                            |        |                        |             |                 |           |         |             |                  |
|                | f necessary,                                     | samples subr            | mitted to Hall Environmental may be sub- | contracted to other a | ccredited laboratorie | s. This serves as notice of the | is poss      | ibility.         | Any s                       | ub-con    | racte          | d data v      | will be                    | clear  | y nota                 | ted or      | the a           | ınalytic  | al repo | ort.        |                  |



Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109
TEL: 505-345-3975 FAX: 505-345-4107
Website: www.hallenvironmental.com

December 06, 2013

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: Injection Well 11-7-13 OrderNo.: 1311335

## Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 11/8/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <a href="www.hallenvironmental.com">www.hallenvironmental.com</a> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1311335

Date Reported: 12/6/2013

# Hall Environmental Analysis Laboratory, Inc.

**CLIENT:** Western Refining Southwest, Inc.

Project: Injection Well 11-7-13

**Lab ID:** 1311335-001

Client Sample ID: Inj. Well

Collection Date: 11/7/2013 8:00:00 AM

Received Date: 11/8/2013 10:00:00 AM

| EPA METHOD 30.0: ANIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analyses                      | Result | RL      | Qual Units | DF  | Date Analyzed         | Batch  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------|---------|------------|-----|-----------------------|--------|
| Sulfate   23   5.0   mg/L   10   11/9/2013 2:54:05 AM   R14683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EPA METHOD 300.0: ANIONS      |        |         |            |     | Analyst               | JRR    |
| Marcury   ND   0.00020   mg/L   1   11/18/2013 4:58:29 PM   10368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chloride                      | 1300   | 50      | mg/L       | 100 | 11/9/2013 3:06:30 AM  | R14683 |
| Mercury   ND   0.00020   mg/L   1   11/18/2013 4:58:29 PM   10368   EPA 6010B: TOTAL RECOVERABLE METALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sulfate                       | 23     | 5.0     | mg/L       | 10  | 11/9/2013 2:54:05 AM  | R14683 |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EPA METHOD 7470: MERCURY      |        |         |            |     | Analyst               | JML    |
| Arsenic ND 0.020 mg/L 1 11/12/2013 5:28:52 PM 10290 Cadmium 0.34 0.020 mg/L 1 11/12/2013 5:28:52 PM 10290 Cadmium ND 0.0020 mg/L 1 11/12/2013 5:28:52 PM 10290 Chromium 190 5.0 mg/L 5 11/12/2013 5:28:52 PM 10290 Chromium 0.014 0.0060 mg/L 1 11/12/2013 5:28:52 PM 10290 Chromium 0.014 0.0060 mg/L 1 11/12/2013 5:28:52 PM 10290 Lead ND 0.0050 mg/L 1 11/12/2013 5:28:52 PM 10290 Magnesium 51 1.0 mg/L 1 11/12/2013 5:28:52 PM 10290 Magnesium 21 1.0 mg/L 1 11/12/2013 5:28:52 PM 10290 Selenium ND 0.050 mg/L 1 11/12/2013 5:28:52 PM 10290 Selenium ND 0.050 mg/L 1 11/12/2013 5:28:52 PM 10290 Sodium 670 50 mg/L 1 11/12/2013 5:28:52 PM 10290 Sodium 670 50 mg/L 1 11/12/2013 5:28:52 PM 10290 Sodium 670 50 mg/L 1 11/12/2013 5:28:52 PM 10290 Sodium 670 50 mg/L 1 11/12/2013 5:24:52 PM 10290 Sodium 670 50 mg/L 1 11/12/2013 5:24:52 PM 10290 Sodium 670 50 mg/L 1 11/12/2013 5:24:52 PM 10290 Sodium 670 50 mg/L 1 11/12/2013 5:24:54 PM 10290 Sodium 670 50 mg/L 1 11/12/2013 5:24:54 PM 10290 Sodium 670 50 mg/L 1 11/12/2013 5:22:45 PM 10311 Analine ND 50 mg/L 1 11/12/2013 5:22:45 PM 10311 Analine ND 50 mg/L 1 11/12/2013 2:22:45 PM 10311 Analine ND 50 mg/L 1 11/12/2013 2:22:45 PM 10311 Analine ND 50 mg/L 1 11/12/2013 2:22:45 PM 10311 Analine ND 50 mg/L 1 11/12/2013 2:22:45 PM 10311 Benz(a)anthracene ND 50 mg/L 1 11/12/2013 2:22:45 PM 10311 Benz(a)anthracene ND 50 mg/L 1 11/12/2013 2:22:45 PM 10311 Benz(a)anthracene ND 50 mg/L 1 11/12/2013 2:22:45 PM 10311 Benz(a)pyrene ND 50 mg/L 1 11/12/2013 2:22:45 PM 10311 Benz(a)myrene ND 50 mg/L 1 11/12/2013 2:22:45 PM 10311 Benz(a)myrene ND 50 mg/L 1 11/12/2013 2:22:45 PM 10311 Benz(a)myrene ND 50 mg/L 1 11/12/2013 2:22:45 PM 10311 Benz(a)myrene ND 50 mg/L 1 11/12/2013 2:22:45 PM 10311 Benz(a)myrene ND 50 mg/L 1 11/12/2013 2:22:45 PM 10311 Benz(a)myrene ND 50 mg/L 1 11/12/2013 2:22:45 PM 10311 Benz(a)myrene ND 50 mg/L 1 11/12/2013 2:22:45 PM 10311 Benz(a)myrene ND 50 mg/L 1 11/12/2013 2:22:45 PM 10311 Benz(a)myrene ND 50 mg/L 1 11/12/2013 2:22:45 PM 10311 Benz(a)myrene ND 50 mg/L 1 11/12/2013 2:22:45 PM | Mercury                       | ND     | 0.00020 | mg/L       | 1   | 11/18/2013 4:58:29 PM | 10368  |
| Barlum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EPA 6010B: TOTAL RECOVERABLE  | METALS |         |            |     | Analyst               | JLF    |
| Cadmium         ND         0.0020         mg/L         1         11/12/2013 5:28:52 PM         10290           Calcium         190         5.0         mg/L         5         11/12/2013 5:28:52 PM         10290           Chromium         0.014         0.0060         mg/L         1         11/12/2013 5:28:52 PM         10290           Lead         ND         0.0050         mg/L         1         11/12/2013 5:28:52 PM         10290           Magnesium         51         1.0         mg/L         1         11/12/2013 5:28:52 PM         10290           Selenium         D         0.050         mg/L         1         11/12/2013 5:28:52 PM         10290           Selenium         ND         0.050         mg/L         1         11/12/2013 5:28:52 PM         10290           Selenium         ND         0.050         mg/L         1         11/12/2013 5:28:52 PM         10290           Sodium         670         0.050         mg/L         1         11/12/2013 5:28:52 PM         10290           EPA METHOD 8270C: SEMIVOLATILES          0.050         mg/L         1         11/12/2013 2:22:45 PM         10290           Acenaphthene         ND         50         µg/L         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Arsenic                       | ND     | 0.020   | mg/L       | 1   | 11/12/2013 5:28:52 PM | 10290  |
| Calcium         190         5.0         mg/L         5         11/12/2013 5:31:33 PM         10290           Chromium         0.014         0.0060         mg/L         1         11/12/2013 5:28:52 PM         10290           Lead         ND         0.0050         mg/L         1         11/12/2013 5:28:52 PM         10290           Magnesium         51         1.0         mg/L         1         11/12/2013 5:28:52 PM         10290           Selenium         ND         0.050         mg/L         1         11/12/2013 5:28:52 PM         10290           Silver         ND         0.050         mg/L         1         11/12/2013 5:28:52 PM         10290           Solium         670         50         mg/L         1         11/12/2013 5:28:52 PM         10290           Solium         670         50         mg/L         1         11/12/2013 5:28:52 PM         10290           Solium         670         50         mg/L         1         11/12/2013 5:28:52 PM         10290           Solium         670         50         mg/L         1         11/14/2013 2:22:45 PM         10290           Solium         670         50         mg/L         1         11/14/2013 2:22:45 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Barium                        | 0.34   | 0.020   | -          | 1   | 11/12/2013 5:28:52 PM | 10290  |
| Chromium         0.014         0.0060         mg/L         1         11/12/2013 5:28:52 PM         10290           Lead         ND         0.0050         mg/L         1         11/12/2013 5:28:52 PM         10290           Magnesium         51         1.0         mg/L         1         11/12/2013 5:28:52 PM         10290           Selenium         ND         0.050         mg/L         1         11/12/2013 5:28:52 PM         10290           Silver         ND         0.050         mg/L         1         11/12/2013 5:28:52 PM         10290           Sodium         ND         0.050         mg/L         1         11/12/2013 5:28:52 PM         10290           Sodium         ND         0.050         mg/L         1         11/12/2013 5:28:52 PM         10290           Sodium         ND         0.050         mg/L         1         11/12/2013 5:28:52 PM         10290           EPA METHOD 8270C: SEMIVOLATILES         X         X         ND         50         mg/L         1         11/14/2013 5:22:245 PM         10311           Accanaphthrene         ND         50         µg/L         1         11/14/2013 2:22:45 PM         10311           Annilse         ND         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cadmium                       | ND     | 0.0020  | mg/L       | 1   | 11/12/2013 5:28:52 PM | 10290  |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Calcium                       | 190    | 5.0     | mg/L       | 5   | 11/12/2013 5:31:33 PM | 10290  |
| Magnesium         51         1.0         mg/L         1         11/12/2013 5:28:52 PM         10290           Potassium         21         1.0         mg/L         1         11/12/2013 5:28:52 PM         10290           Selenium         ND         0.050         mg/L         1         11/12/2013 5:28:52 PM         10290           Silver         ND         0.0050         mg/L         1         11/12/2013 5:28:52 PM         10290           Sodium         670         50         mg/L         50         11/12/2013 5:28:52 PM         10290           EPA METHOD 8270C: SEMIVOLATILES         *** *** *** *** *** *** *** *** *** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chromium                      | 0.014  | 0.0060  | mg/L       | 1   | 11/12/2013 5:28:52 PM | 10290  |
| Polassium         21         1.0         mg/L         1         11/12/2013 5:28:52 PM         10290           Selenium         ND         0.050         mg/L         1         11/12/2013 5:28:52 PM         10290           Silver         ND         0.0050         mg/L         1         11/12/2013 5:28:52 PM         10290           Sodium         670         50         mg/L         1         11/12/2013 5:28:52 PM         10290           EPA METHOD 8270C: SEMIVOLATILES         Anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo anilogo                                                                                                                                                                                                                                                                                                                                                                                          | Lead                          | ND     | 0.0050  | mg/L       | 1   | 11/12/2013 5:28:52 PM | 10290  |
| Potassium         21         1.0         mg/L         1         11/12/2013 5:28:52 PM         10290           Selenium         ND         0.050         mg/L         1         11/12/2013 5:28:52 PM         10290           Silver         ND         0.0050         mg/L         1         11/12/2013 5:28:52 PM         10290           Sodium         670         50         mg/L         1         11/12/2013 5:28:52 PM         10290           EPA METHOD 8270C: SEMIVOLATILES         The part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the                                                                                                                                                                                                                                                                                                                                                                  | Magnesium                     | 51     | 1.0     | mg/L       | 1   | 11/12/2013 5:28:52 PM | 10290  |
| Silver         ND         0.0050         mg/L         1         11/12/2013 5:28:52 PM         10290           Sodium         670         50         mg/L         50         11/12/2013 5:28:52 PM         10290           EPA METHOD 8270C: SEMIVOLATILES         Analyst: JDC           Acenaphthene         ND         50         µg/L         1         11/14/2013 2:22:45 PM         10311           Acenaphthylene         ND         50         µg/L         1         11/14/2013 2:22:45 PM         10311           Acenaphthylene         ND         50         µg/L         1         11/14/2013 2:22:45 PM         10311           Acenaphthylene         ND         50         µg/L         1         11/14/2013 2:22:45 PM         10311           Acenaphthylene         ND         50         µg/L         1         11/14/2013 2:22:45 PM         10311           Acenaphthylene         ND         50         µg/L         1         11/14/2013 2:22:45 PM         10311           Acenaphthylene         ND         50         µg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(a)pyrene         ND         50         µg/L         1         11/14/2013 2:22:45 PM         103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                      | 21     | 1.0     | mg/L       | 1   | 11/12/2013 5:28:52 PM | 10290  |
| Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   Sodium   S   | Selenium                      | ND     | 0.050   | mg/L       | 1   | 11/12/2013 5:28:52 PM | 10290  |
| EPA METHOD 8270C: SEMIVOLATILES         Analyst: JDC           Acenaphthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Acenaphthylene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Anline         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Anthracene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Azobenzene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(a)anthracene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(a)pyrene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(b)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(c), h.i)perylene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(c), h.i)perylene         ND         50         μg/L         1         11/14/2013 2:22:45 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Silver                        | ND     | 0.0050  | mg/L       | 1   | 11/12/2013 5:28:52 PM | 10290  |
| Acenaphthene         ND         50         µg/L         1         11/14/2013 2:22:45 PM         10311           Acenaphthylene         ND         50         µg/L         1         11/14/2013 2:22:45 PM         10311           Aniline         ND         50         µg/L         1         11/14/2013 2:22:45 PM         10311           Anthracene         ND         50         µg/L         1         11/14/2013 2:22:45 PM         10311           Azobenzene         ND         50         µg/L         1         11/14/2013 2:22:45 PM         10311           Benz(a)anthracene         ND         50         µg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(a)pyrene         ND         50         µg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(a)pyrene         ND         50         µg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(a)pyrene         ND         50         µg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(b)fluoranthene         ND         50         µg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(k)fluoranthene         ND         50         µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sodium                        | 670    | 50      | mg/L       | 50  | 11/12/2013 5:44:14 PM | 10290  |
| Acenaphthylene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Aniline         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Anthracene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Azobenzene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(a)anthracene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(a)pyrene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(b)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(k)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(k)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(k)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(k)fluoranthene         ND         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EPA METHOD 8270C: SEMIVOLATIL | LES    |         |            |     | Analyst               | JDC    |
| Acenaphthylene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Aniline         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Anthracene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Azobenzene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benz(a)anthracene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(a)pyrene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(b)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(k)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(k)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(k)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(k)fluoranthene         ND         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Acenaphthene                  | ND     | 50      | μg/L       | 1   | 11/14/2013 2:22:45 PM | 10311  |
| Aniline ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 Anthracene ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 Azobenzene ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 Benz(a)anthracene ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 Benzo(a)pyrene ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 Benzo(b)filuoranthene ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 Benzo(g,h,i)perylene ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 Benzo(k)filuoranthene ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 Benzo(k)filuoranthene ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 Benzo(c acid ND 200 µg/L 1 11/14/2013 2:22:45 PM 10311 Benzyl alcohol ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 Bis(2-chloroethoxy)methane ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 Bis(2-chloroethoxy)methane ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 Bis(2-chloroethoxy)methane ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 Bis(2-chloroethyl)ether ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 Bis(2-chloroethyl)ether ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 Bis(2-ethylhexyl)phthalate ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 Bis(2-ethylhexyl)phthalate ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 Butyl benzyl phthalate ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 Butyl benzyl phthalate ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 Carbazole ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 Carbazole ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                             | ND     | 50      | μg/L       | 1   | 11/14/2013 2:22:45 PM | 10311  |
| Anthracene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Azobenzene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benz(a)anthracene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(a)pyrene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(b)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(g,h,i)perylene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(k)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(k)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(k)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(k)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(k)fluoranthene         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | ND     | 50      |            | 1   | 11/14/2013 2:22:45 PM | 10311  |
| Azobenzene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benz(a)anthra cene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(a)pyrene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(b)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(k)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzoic acid         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzoic acid         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzoic acid         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzoic acid         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzoic acid         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bisic 2-chloroethoxy)methane         ND         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Anthracene                    | ND     | 50      |            | 1   | 11/14/2013 2:22:45 PM | 10311  |
| Benzo(a)pyrene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(b)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(g,h,i)perylene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(k)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzoic acid         ND         200         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzyl alcohol         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroethoxy)methane         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroethoxy)methane         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroethyl)ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroisopropyl)ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           4-Bromophenyl pheny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Azobenzene                    | ND     | 50      | μg/L       | 1   | 11/14/2013 2:22:45 PM | 10311  |
| Benzo(a)pyrene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(b)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(g,h,i)perylene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(k)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzoic acid         ND         200         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzyl alcohol         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroethoxy)methane         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroethyl)ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroisopropyl)ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-ethylhexyl)phthalate         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           4-Bromophenyl pheny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benz(a)anthracene             | ND     | 50      | μg/L       | 1   | 11/14/2013 2:22:45 PM | 10311  |
| Benzo(b)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(g,h,i)perylene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzo(k)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzoic acid         ND         200         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzyl alcohol         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroethoxy)methane         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroethyl)ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroisopropyl)ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-ethylhexyl)phthalate         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           4-Bromophenyl phenyl ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Butyl b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . ,                           | ND     | 50      | μg/L       | 1   | 11/14/2013 2:22:45 PM | 10311  |
| Benzo(k)fluoranthene         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzoic acid         ND         200         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzyl alcohol         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroethoxy)methane         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroethyl)ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroisopropyl)ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-ethylhexyl)phthalate         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           4-Bromophenyl phenyl ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Butyl benzyl phthalate         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Carbazole         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           4-Chloro-3-methy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzo(b)fluoranthene          | ND     | 50      |            | 1   | 11/14/2013 2:22:45 PM | 10311  |
| Benzoic acid         ND         200         μg/L         1         11/14/2013 2:22:45 PM         10311           Benzyl alcohol         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroethoxy)methane         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroethyl)ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroisopropyl)ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-ethylhexyl)phthalate         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           4-Bromophenyl phenyl ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Butyl benzyl phthalate         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Carbazole         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           4-Chloro-3-methylphenol         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Benzo(g,h,i)perylene          | ND     | 50      | μg/L       | 1   | 11/14/2013 2:22:45 PM | 10311  |
| Benzyl alcohol         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroethoxy)methane         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroethyl)ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroisopropyl)ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-ethylhexyl)phthalate         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           4-Bromophenyl phenyl ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Butyl benzyl phthalate         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Carbazole         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           4-Chloro-3-methylphenol         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzo(k)fluoranthene          | ND     | 50      | μg/L       | 1   | 11/14/2013 2:22:45 PM | 10311  |
| Bis(2-chloroethoxy)methane         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroethyl)ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroisopropyl)ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-ethylhexyl)phthalate         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           4-Bromophenyl phenyl ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Butyl benzyl phthalate         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Carbazole         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           4-Chloro-3-methylphenol         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Benzoic acid                  | ND     | 200     | μg/L       | 1   | 11/14/2013 2:22:45 PM | 10311  |
| Bis(2-chloroethyl)ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-chloroisopropyl)ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-ethylhexyl)phthalate         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           4-Bromophenyl phenyl ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Butyl benzyl phthalate         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Carbazole         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           4-Chloro-3-methylphenol         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzyl alcohol                | ND     | 50      | μg/L       | 1   | 11/14/2013 2:22:45 PM | 10311  |
| Bis(2-chloroisopropyl)ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Bis(2-ethylhexyl)phthalate         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           4-Bromophenyl phenyl ether         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Butyl benzyl phthalate         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           Carbazole         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311           4-Chloro-3-methylphenol         ND         50         μg/L         1         11/14/2013 2:22:45 PM         10311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bis(2-chloroethoxy)methane    | ND     | 50      | μg/L       | 1   | 11/14/2013 2:22:45 PM | 10311  |
| Bis(2-ethylhexyl)phthalate       ND       50       μg/L       1       11/14/2013 2:22:45 PM       10311         4-Bromophenyl phenyl ether       ND       50       μg/L       1       11/14/2013 2:22:45 PM       10311         Butyl benzyl phthalate       ND       50       μg/L       1       11/14/2013 2:22:45 PM       10311         Carbazole       ND       50       μg/L       1       11/14/2013 2:22:45 PM       10311         4-Chloro-3-methylphenol       ND       50       μg/L       1       11/14/2013 2:22:45 PM       10311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bis(2-chloroethyl)ether       | ND     | 50      | μg/L       | 1   | 11/14/2013 2:22:45 PM | 10311  |
| 4-Bromophenyl phenyl ether ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311 Butyl benzyl phthalate ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311 Carbazole ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311 4-Chloro-3-methylphenol ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bis(2-chloroisopropyl)ether   | ND     | 50      | μg/L       | 1   | 11/14/2013 2:22:45 PM | 10311  |
| Butyl benzyl phthalate       ND       50       μg/L       1       11/14/2013 2:22:45 PM       10311         Carbazole       ND       50       μg/L       1       11/14/2013 2:22:45 PM       10311         4-Chloro-3-methylphenol       ND       50       μg/L       1       11/14/2013 2:22:45 PM       10311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bis(2-ethylhexyl)phthalate    | ND     | 50      | μg/L       | 1   | 11/14/2013 2:22:45 PM | 10311  |
| Carbazole ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311 4-Chloro-3-methylphenol ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4-Bromophenyl phenyl ether    | ND     | 50      | μg/L       | 1   | 11/14/2013 2:22:45 PM | 10311  |
| 4-Chloro-3-methylphenol ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | ND     | 50      | μg/L       | 1   | 11/14/2013 2:22:45 PM | 10311  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Carbazole                     | ND     | 50      | μg/L       | 1   | 11/14/2013 2:22:45 PM | 10311  |
| 4-Chloroaniline ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4-Chloro-3-methylphenol       | ND     | 50      | μg/L       | 1   | 11/14/2013 2:22:45 PM | 10311  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-Chloroaniline               | ND     | 50      | μg/L       | 1   | 11/14/2013 2:22:45 PM | 10311  |

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 14

- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Lab Order 1311335

Date Reported: 12/6/2013

## Hall Environmental Analysis Laboratory, Inc.

**CLIENT:** Western Refining Southwest, Inc. Client Sample ID: Inj. Well

Injection Well 11-7-13 Collection Date: 11/7/2013 8:00:00 AM Project: Lab ID: 1311335-001 Matrix: AQUEOUS Received Date: 11/8/2013 10:00:00 AM

Result **RL** Qual Units DF Date Analyzed Batch Analyses **EPA METHOD 8270C: SEMIVOLATILES** Analyst: JDC 11/14/2013 2:22:45 PM 10311 μg/L 2-Chloronaphthalene ND 50 1 ND 50 μg/L 11/14/2013 2:22:45 PM 10311 2-Chlorophenol ND 50 11/14/2013 2:22:45 PM 10311 4-Chlorophenyl phenyl ether μg/L 1 Chrysene ND 50 μg/L 11/14/2013 2:22:45 PM 10311 Di-n-butyl phthalate ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311 Di-n-octyl phthalate ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 μg/L Dibenz(a,h)anthracene ND 50 1 11/14/2013 2:22:45 PM 10311 ND Dibenzofuran 50 μg/L 1 11/14/2013 2:22:45 PM 10311 1,2-Dichlorobenzene ND 50 μg/L 1 11/14/2013 2:22:45 PM 50 ND μg/L 1 11/14/2013 2:22:45 PM 10311 1,3-Dichlorobenzene ND 50 11/14/2013 2:22:45 PM 10311 1,4-Dichlorobenzene μg/L 1 ND 50 μg/L 3,3'-Dichlorobenzidine 1 11/14/2013 2:22:45 PM 10311 Diethyl phthalate ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311 Dimethyl phthalate ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311 ND 100 2,4-Dichlorophenol μg/L 1 11/14/2013 2:22:45 PM 10311 2.4-Dimethylphenol ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311 ND 100 μg/L 1 11/14/2013 2:22:45 PM 10311 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol ND 100 μg/L 1 11/14/2013 2:22:45 PM ND 50 μg/L 1 2,4-Dinitrotoluene 11/14/2013 2:22:45 PM 10311 2,6-Dinitrotoluene ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311 ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311 Fluoranthene ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 Fluorene Hexachlorobenzene ND 50 µg/L 1 11/14/2013 2:22:45 PM 10311 ND 50 Hexachlorobutadiene μg/L 1 11/14/2013 2:22:45 PM 10311 50 Hexachlorocyclopentadiene ND μg/L 11/14/2013 2:22:45 PM 10311 ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311 Hexachloroethane ND 50 1 11/14/2013 2:22:45 PM 10311 Indeno(1,2,3-cd)pyrene μg/L ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311 Isophorone 1-Methylnaphthalene ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311 2-Methylnaphthalene ND 50 µa/L 1 11/14/2013 2:22:45 PM 10311 11/14/2013 2:22:45 PM 10311 2-Methylphenol ND 50 μg/L 1 3+4-Methylphenol ND 50 μg/L 11/14/2013 2:22:45 PM 10311 ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311 N-Nitrosodi-n-propylamine N-Nitrosodimethylamine ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311 50 N-Nitrosodiphenylamine ND μg/L 1 11/14/2013 2:22:45 PM 10311 50 ND 1 11/14/2013 2:22:45 PM 10311 Naphthalene μg/L 2-Nitroaniline ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311 ND 50 1 3-Nitroaniline μg/L 11/14/2013 2:22:45 PM 10311

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

50

µg/L

ND

#### Qualifiers:

4-Nitroaniline

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- Ţ Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank R
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
  - Page 2 of 14 Sample pH greater than 2 for VOA and TOC only.

11/14/2013 2:22:45 PM 10311

Reporting Detection Limit

#### Lab Order 1311335

Received Date: 11/8/2013 10:00:00 AM

Date Reported: 12/6/2013

#### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

1311335-001

Lab ID:

Client Sample ID: Inj. Well

Collection Date: 11/7/2013 8:00:00 AM Injection Well 11-7-13 Project: Matrix: AQUEOUS

RL Qual Units Batch Analyses Result DF Date Analyzed **EPA METHOD 8270C: SEMIVOLATILES** Analyst: JDC 11/14/2013 2:22:45 PM 10311 Nitrobenzene ND 50 μg/L ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311 2-Nitrophenol ND 50 4-Nitrophenol μg/L 1 11/14/2013 2:22:45 PM 10311 Pentachlorophenol ND 100 μg/L 11/14/2013 2:22:45 PM 10311 ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311 Phenanthrene Phenol ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311 ND 50 μg/L 1 11/14/2013 2:22:45 PM 10311 Pyrene ND Pyridine 50 μg/L 1 11/14/2013 2:22:45 PM 10311 1,2,4-Trichlorobenzene ND 50 μg/L 11/14/2013 2:22:45 PM 10311 ND 50 11/14/2013 2:22:45 PM 10311 μg/L 2,4,5-Trichlorophenol ND 50 11/14/2013 2:22:45 PM 10311 2.4.6-Trichlorophenol μg/L %REC 56 8 22.7-98 1 11/14/2013 2:22:45 PM 10311 Surr: 2-Fluorophenol 45 3 23.4-74.9 %REC 11/14/2013 2:22:45 PM 10311 Surr: Phenol-d5 23.3-111 %REC 11/14/2013 2:22:45 PM 10311 Surr: 2,4,6-Tribromophenol 83.0 Surr: Nitrobenzene-d5 72.4 36.8-111 %REC 11/14/2013 2:22:45 PM 10311 75.7 38.3-110 %REC 11/14/2013 2:22:45 PM 10311 Surr: 2-Fluorobiphenyl 52.1-116 %REC 11/14/2013 2:22:45 PM 10311 Surr: 4-Terphenyl-d14 75.6 **EPA METHOD 8260B: VOLATILES** Analyst: cadg Benzene ND 1.0 μg/L 11/12/2013 3:55:06 PM R14754 Toluene ND 1.0 μg/L 11/12/2013 3:55:06 PM R14754 ND 1.0 μg/L 1 11/12/2013 3:55:06 PM R14754 Ethylbenzene ND 1.0 μg/L 11/12/2013 3:55:06 PM R14754 Methyl tert-butyl ether (MTBE) 1.0 11/12/2013 3:55:06 PM R14754 1.0 µg/L 1 1,2,4-Trimethylbenzene 1.3.5-Trimethylbenzene ND 1.0 μg/L 1 11/12/2013 3:55:06 PM R14754 ND 1.0 μg/L 11/12/2013 3:55:06 PM R14754 1,2-Dichloroethane (EDC) ND 1,2-Dibromoethane (EDB) 1.0 μg/L 1 11/12/2013 3:55:06 PM R14754 Naphthalene ND 2.0 μg/L 11/12/2013 3:55:06 PM R14754 1-Methylnaphthalene ND 4.0 μg/L 1 11/12/2013 3:55:06 PM R14754 2-Methylnaphthalene ND 4.0 μg/L 1 11/12/2013 3:55:06 PM R14754 34 10 μg/L 11/12/2013 3:55:06 PM R14754 Acetone ND 1.0 μg/L 1 11/12/2013 3:55:06 PM R14754 Bromobenzene Bromodichloromethane ND 1.0 µg/L 1 11/12/2013 3:55:06 PM R14754 ND 1.0 μg/L 11/12/2013 3:55:06 PM R14754 **Bromoform** ND 3.0 μg/L 1 11/12/2013 3:55:06 PM R14754 Bromomethane 10 2-Butanone ND μg/L 1 11/12/2013 3:55:06 PM R14754 ND 10 Carbon disulfide μg/L 1 11/12/2013 3:55:06 PM R14754

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

1.0

1.0

2.0

μg/L

μg/L

μg/L

ND

ND

ND

#### Qualifiers:

Carbon Tetrachloride

Chlorobenzene

Chloroethane

- Value exceeds Maximum Contaminant Level.
- E. Value above quantitation range
- Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R. RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank

1

1

- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- Page 3 of 14 P Sample pH greater than 2 for VOA and TOC only.

11/12/2013 3:55:06 PM R14754

11/12/2013 3:55:06 PM R14754

11/12/2013 3:55:06 PM R14754

Reporting Detection Limit

Lab Order 1311335

Date Reported: 12/6/2013

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Inj. Well

Project: Injection Well 11-7-13

**Collection Date:** 11/7/2013 8:00:00 AM

Lab ID: 1311335-001

Matrix: AQUEOUS

Received Date: 11/8/2013 10:00:00 AM

| nalyses                     | Result | RL Qu | al Units | DF | Date Analyzed        | Batch    |
|-----------------------------|--------|-------|----------|----|----------------------|----------|
| EPA METHOD 8260B: VOLATILES |        |       |          |    | Analy                | st: cadg |
| Chloroform                  | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 P | M R147   |
| Chloromethane               | ND     | 3.0   | μg/L     | 1  | 11/12/2013 3:55:06 P | M R147   |
| 2-Chlorotoluene             | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 P | M R147   |
| 4-Chlorotoluene             | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 P | M R147   |
| cis-1,2-DCE                 | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 P | M R147   |
| cis-1,3-Dichloropropene     | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 P | M R147   |
| 1,2-Dibromo-3-chloropropane | ND     | 2.0   | μg/L     | 1  | 11/12/2013 3:55:06 P | M R147   |
| Dibromochloromethane        | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 P | M R147   |
| Dibromomethane              | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 P | M R147   |
| 1,2-Dichlorobenzene         | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 P | M R147   |
| 1,3-Dichlorobenzene         | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 P | M R147   |
| 1,4-Dichlorobenzene         | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 P | M R147   |
| Dichlorodifluoromethane     | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 P | M R147   |
| 1,1-Dichloroethane          | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 P | M R147   |
| 1,1-Dichloroethene          | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 P | M R147   |
| 1,2-Dichloropropane         | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 P | M R147   |
| 1,3-Dichloropropane         | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 P | M R147   |
| 2,2-Dichloropropane         | ND     | 2.0   | μg/L     | 1  | 11/12/2013 3:55:06 P | M R14    |
| 1,1-Dichloropropene         | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 P | M R14    |
| Hexachlorobutadiene         | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 F | M R14    |
| 2-Hexanone                  | ND     | 10    | μg/L     | 1  | 11/12/2013 3:55:06 F | M R14    |
| Isopropylbenzene            | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 F | M R14    |
| 4-Isopropyltoluene          | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 F | M R14    |
| 4-Methyl-2-pentanone        | ND     | 10    | μg/L     | 1  | 11/12/2013 3:55:06 F | M R14    |
| Methylene Chloride          | ND     | 3.0   | µg/L     | 1  | 11/12/2013 3:55:06 F | M R14    |
| n-Butylbenzene              | ND     | 3.0   | μg/L     | 1  | 11/12/2013 3:55:06 F | M R14    |
| n-Propylbenzene             | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 F | M R14    |
| sec-Butylbenzene            | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 F | M R14    |
| Styrene                     | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 F | M R14    |
| tert-Butylbenzene           | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 F | M R14    |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 F | M R14    |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0   | μg/L     | 1  | 11/12/2013 3:55:06 F | M R14    |
| Tetrachloroethene (PCE)     | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 F | M R14    |
| trans-1,2-DCE               | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 F | M R14    |
| trans-1,3-Dichloropropene   | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 F | M R14    |
| 1,2,3-Trichlorobenzene      | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 F | M R14    |
| 1,2,4-Trichlorobenzene      | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 F | M R14    |
| 1,1,1-Trichloroethane       | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 F | M R14    |
| 1,1,2-Trichloroethane       | ND     | 1.0   | μg/L     | 1  | 11/12/2013 3:55:06 F | M R14    |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 4 of
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

## Lab Order 1311335

Date Reported: 12/6/2013

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

**Project:** Injection Well 11-7-13

1311335-001

Lab ID:

Client Sample ID: Inj. Well

**Collection Date:** 11/7/2013 8:00:00 AM

Received Date: 11/8/2013 10:00:00 AM

| Analyses                     | Result | RL C   | Qual Units | DF | Date Analyzed         | Batch    |
|------------------------------|--------|--------|------------|----|-----------------------|----------|
| EPA METHOD 8260B: VOLATILES  |        |        |            |    | Analys                | t: cadg  |
| Trichloroethene (TCE)        | ND     | 1.0    | μg/L       | 1  | 11/12/2013 3:55:06 PM | 1 R14754 |
| Trichlorofluoromethane       | ND     | 1.0    | μg/L       | 1  | 11/12/2013 3:55:06 PM | 1 R14754 |
| 1,2,3-Trichloropropane       | ND     | 2.0    | μg/L       | 1  | 11/12/2013 3:55:06 PM | 1 R14754 |
| Vinyl chloride               | ND     | 1.0    | μg/L       | 1  | 11/12/2013 3:55:06 PM | 1 R14754 |
| Xylenes, Total               | ND     | 1.5    | μg/L       | 1  | 11/12/2013 3:55:06 PM | 1 R14754 |
| Surr: 1,2-Dichloroethane-d4  | 102    | 70-130 | %REC       | 1  | 11/12/2013 3:55:06 PN | 1 R14754 |
| Surr: 4-Bromofluorobenzene   | 92.3   | 70-130 | %REC       | 1  | 11/12/2013 3:55:06 PM | 1 R14754 |
| Surr: Dibromofluoromethane   | 103    | 70-130 | %REC       | 1  | 11/12/2013 3:55:06 PM | 1 R14754 |
| Surr: Toluene-d8             | 95.7   | 70-130 | %REC       | 1  | 11/12/2013 3:55:06 PN | 1 R14754 |
| SM2510B: SPECIFIC CONDUCTANO | CE     |        |            |    | Analys                | t: JML   |
| Conductivity                 | 4400   | 0.010  | µmhos/cm   | 1  | 11/8/2013 9:27:49 PM  | R14690   |
| SM4500-H+B: PH               |        |        |            |    | Analys                | t: JML   |
| рН                           | 7.42   | 1.68   | H pH units | 1  | 11/8/2013 9:27:49 PM  | R14690   |
| SM2320B: ALKALINITY          |        |        |            |    | Analys                | t: JML   |
| Bicarbonate (As CaCO3)       | 430    | 20     | mg/L CaCO3 | 1  | 11/8/2013 9:27:49 PM  | R14690   |
| Carbonate (As CaCO3)         | ND     | 2.0    | mg/L CaCO3 | 1  | 11/8/2013 9:27:49 PM  | R14690   |
| Total Alkalinity (as CaCO3)  | 430    | 20     | mg/L CaCO3 | 1  | 11/8/2013 9:27:49 PM  | R14690   |
| SM2540C MOD: TOTAL DISSOLVED | SOLIDS |        |            |    | Analys                | t: JML   |
| Total Dissolved Solids       | 2940   | 200    | * mg/L     | 1  | 11/12/2013 4:13:00 PM | 1 10275  |

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

#### **CASE NARRATIVE**

#### **December 4, 2013**

Lab Name: Anatek Labs, Inc. 1282 Alturas Drive, Moscow, ID 83843 www.anateklabs.com FL NELAP E87893, NV ID13-2004-31, WA DOE C126, OR ELAP ID200001, MT 0028, ID, CO, NM

Project Tracking No.: 1311335 Anatek Batch: 131112008

Project Summary: One (1) water sample was received on 11/12/2013 for RCI analysis. The sample was received

with appropriate chain of custody at 2.9C.

Client Sample ID 1311335-001E / Inj Well Anatek Sample ID 131112008-001

Method/Prep Method

SW846Ch7/EPA 1010/EPA 150.1

#### QA/QC Checks

| Parameters                          | Yes / No | Exceptions / Deviations |
|-------------------------------------|----------|-------------------------|
| Sample Holding Time Valid?          | Υ        | NA                      |
| Surrogate Recoveries Valid?         | NA       | NA                      |
| QC Sample(s) Recoveries Valid?      | N        | See Note                |
| Method Blank(s) Valid?              | Υ        | NA                      |
| Tune(s) Valid?                      | NA       | NA                      |
| Internal Standard Responses Valid?  | NA       | NA                      |
| Initial Calibration Curve(s) Valid? | Y        | NA .                    |
| Continuing Calibration(s) Valid?    | Y        | NA                      |
| Comments:                           | Y        | NA                      |

#### 1. Holding Time Requirements

No problems encountered.

#### 2. GC/MS Tune Requirements

N/A

#### 3. Calibration Requirements

No problems encountered.

#### 4. Surrogate Recovery Requirements

N/A.

#### 5. QC Sample (LCS/MS/MSD) Recovery Requirements

MS/MSD for reactive CN failed slightly low. LCS recovery was acceptable and MS/MSD RPD were acceptable. Potential matrix affect.

#### 6. Method Blank Requirements

No problems encountered.

| 7. Internal | <b>Standard</b> | (s) Res | ponse Rec | ulrements |
|-------------|-----------------|---------|-----------|-----------|
|-------------|-----------------|---------|-----------|-----------|

N/A.

#### 8. Comments

No problems encountered.

I certify that this data package is in compliance with the terms and conditions of the contract. Release of the data contained in this data package has been authorized by the Laboratory Manager or his designee.

Approved by

Nolw. Call

# Anatek Labs, Inc.

1282 Alturas Drive • Moscow, †D 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@aneteklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@aneteklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

131112008

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109 Project Name:

1311335

Attn:

ANDY FREEMAN

## **Analytical Results Report**

Sample Number

131112008-001

Water

Sampling Date

11/7/2013

Date/Time Received 11/12/2013 10:16 AM

Client Sample ID

1311335-001E / INJ. WELL

Sampling Time 8:00 AM

Sample Location

Metrix Comments

| Parameter          | Resuit | Units    | PQL | Analysis Date | Analyst | Method    | Qualifier |
|--------------------|--------|----------|-----|---------------|---------|-----------|-----------|
| Cyanide (reactive) | ND     | mg/L     | 1   | 11/18/2013    | CRW     | SW846 CH7 | M2        |
| Flashpoint         | >200   | °F       |     | 11/14/2013    | KFG     | EPA 1010  |           |
| pΗ                 | 6.98   | ph Units |     | 11/13/2013    | KFG     | EPA 150.1 |           |
| Reactive suffide   | 2.32   | mg/L     | 1   | 11/19/2013    | AJT     | SW846 CH7 |           |

Authorized Signature

John Coddington, Lab Manager

M2

Matrix spike recovery was low; the associated blank spike recovery was acceptable. Potential matrix effect EPA's Maximum Contaminant Level

MCL ND

Not Detected

PQL

Practicel Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

# Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (503) 838-3999 • Fax (503) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

131112008

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109 Project Name:

1311335

Attn:

ANDY FREEMAN

Analytical Results Report
Quality Control Data

| Lab Control Sample                |                                          |                  |               |       |      |                     |            |            |                         | ····                                  |
|-----------------------------------|------------------------------------------|------------------|---------------|-------|------|---------------------|------------|------------|-------------------------|---------------------------------------|
| Parameter                         | LCS Resul                                | t Units          | s LCS         | Spike | %Rec | AR                  | %Rec       | Prep       | Date                    | Analysis Date                         |
| Reactive sulfide                  | 0.16                                     | mg/L             | _ (           | 0.2   | 80.0 | 70                  | -130       | 11/19      | /2013                   | 11/19/2013                            |
| Cyanide (reactive)                | 0.491                                    | mg/l             |               | 0.5   | 98.2 | 80                  | -120       | 11/15      | /2013                   | 11/18/2013                            |
| Lab Control Sample Duplicate      |                                          |                  |               |       |      |                     |            |            |                         |                                       |
| Parameter                         | LCSD<br>Result                           | Units            | LCSD<br>Spike | %Rec  | %RP  | n .                 | AR<br>&RPD | Prep [     | <b>See </b>             | Analysis Date                         |
| Reactive sulfide                  | 0.18                                     | mg/L             | 0.2           | 9().0 | 11.8 |                     | 0-25       | 11/19/     |                         | 11/19/2013                            |
| Matrix Spike                      |                                          |                  | <del></del>   |       |      |                     |            |            |                         |                                       |
| Sample Number Parameter           |                                          | Sample<br>Result | M8<br>Result  | Unit  |      | MS                  | %Rec       | AR<br>%Rec | Bross Date              | Amelania Dat                          |
| 131113057-003A Reactive sulfide   |                                          | ND               | 0.18          | mg/l  |      | <b>3pike</b><br>0.2 | 90.0       | 70-130     | Prep Date<br>11/19/2013 | •                                     |
| 131112008-001 Cylanide (reactive) |                                          | ND               | 0.345         | mg/1  |      | 0.5                 | 69.0       |            | 11/15/2013              |                                       |
| Matrix Spike Duplicate            |                                          |                  |               |       |      |                     |            |            |                         |                                       |
| •                                 | MSD                                      |                  | MSD           |       | _    |                     | AR         | _          |                         |                                       |
| Parameter Country                 | Result                                   | Units            | Spike         |       |      | 6RPD                | %RPD       |            | p Date                  | Analysis Date                         |
| Cyanide (reactive)                | 0.385                                    | mg/L             | 0.5           | 77    | .0   | 11.0                | 0-25       | 11/        | 15/2013                 | 11/18/2013                            |
| Method Blank                      | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |                  |               |       |      |                     |            |            |                         | · · · · · · · · · · · · · · · · · · · |
| Parameter                         |                                          | Re               | sult          | Ur    | ilts |                     | PQL        | P          | rep Date                | Analysis Date                         |
| Cyanide (reactive)                |                                          |                  | ND            | m     | g/L  |                     | 1          | 11/        | 15/2013                 | 11/18/2013                            |
| Reactive sulfide                  |                                          | ı                | ND            | m     | g/L  |                     | 1          | 11/        | 19/2013                 | 11/19/2013                            |

AR

Acceptable Range

ND

Not Detected

PQL

Practical Quantitation Limit

RPD

Relative Percentage Difference

#### Comments:

Certifications held by Anatek Labe ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0026; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labe WA: EPA:WA00189; ID:WA00189; WA:C586; MT:Cert0095

# Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklebs.com

# **Login Report**

Customer Name: HALL ENVIRONMENTAL ANALYSIS LAB

Order ID:

131112008

4901 HAWKINS NE SUITE D

Order Date:

11/12/2013

**ALBUQUERQUE** 

NM 87109

**Contact Name: ANDY FREEMAN** 

Project Name: 1311335

Comment:

131112008-001 Customer Sample #: Sample #: 1311335-001E / INJ. WELL

Recv'd:

 $\mathbf{V}$ 

Collector:

Matrix:

Date Collected: 11/7/2013

Quantity:

Water

Date Received: 11/12/2013 10:16:00 AM

Comment:

| Test             | Lab | Method    | Due Date   | Priority          |
|------------------|-----|-----------|------------|-------------------|
| CYANIDE REACTIVE | M   | SW846 CH7 | 11/22/2013 | Normal (~10 Days) |
| FLASHPOINT       | M   | EPA 1010  | 11/22/2013 | Normal (~10 Days) |
| ρΗ               | М   | EPA 150.1 | 11/22/2013 | Normal (~10 Days) |
| SULFIDE REACTIVE | M   | SW846 CH7 | 11/22/2013 | Normal (~10 Days) |

#### **SAMPLE CONDITION RECORD**

| Samples received in a cooler?                   | Yes |
|-------------------------------------------------|-----|
| Samples received intact?                        | Yes |
| What is the temperature inside the cooler?      | 2.9 |
| Samples received with a COC?                    | Yes |
| Samples received within holding time?           | Yes |
| Are all sample bottles properly preserved?      | Yes |
| Are VOC samples free of headspace?              | N/A |
| Is there a trip blank to accompany VOC samples? | N/A |
| Labels and chain agree?                         | Yes |

# CHAIN OF CUSTODY RECORD

| PAGE: | 1 | GF: 1 |
|-------|---|-------|

131112 008 HALL Last 11/22/2013
1st SAMP 11/7/2013 1st RCVD 11/12/2013
1311335

| \$UB C  | ONTRATOR:   | natek  | Labs COMPA       | Y: Anatek | Labs, Inc.     |         | PEIONE:              |              | (208) 883-2839 | PAX:      | (208) 882-9246 |
|---------|-------------|--------|------------------|-----------|----------------|---------|----------------------|--------------|----------------|-----------|----------------|
| ADDRE   | 388:        | 282 Al | turas Dr         |           |                |         | ACCOUNT #:           |              |                | EMAR.     |                |
| CITY, S | STATE, ZIP: | loscow | , ID 83843       |           |                |         |                      |              |                |           |                |
| ІТЕМ    | SAM         | 1.B    | CLIENT SAMPLE ID |           | BOTTLE<br>TYPE | MATRIX  | COLLECTION<br>DATE   | # CONTAINERS |                | ANALYTICA | AL COMMENTS    |
| 1       | 1311335     | 001E 1 | rj. Well         |           | various        | Aqueous | 11/7/2013 8:00:00 AM | 3            | RCI LEVEL 4    |           |                |

MUB5

| SPECIAL INSTRUCTIONS / COMMENTS:                                                                                                                                                |                                                                                                                       |                                      |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|--|
| Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lah@hallenvironmental com. Please return all coolers and blue ice. Thank you. |                                                                                                                       |                                      |  |  |  |  |  |
| Relinquished By:  Date: 11/8/2015 Time: 2:19 PM  Relinquished By:  Date: Time: 7:100 PM                                                                                         | ANATEK LABS RECEIVING LIST RECEIVED INTACT TEMP: 2.7 °C LABELS & CHAINS AGREE NO HEADSPACE LICE / ICE - PACKS PRESENT | REPORT TRANSMITTAL DESIRED:          |  |  |  |  |  |
| Relinquished By: Date: Time:                                                                                                                                                    | CUSTODY SEALS PRESENT  PRESERVATIVES: No. H. Zinc Ac. e.                                                              | FOR LAB USE ONLY C Attempt to Cool 7 |  |  |  |  |  |
| TAT: Standard [] RUSH                                                                                                                                                           | NUMBER OF CONTAINERS: 3 SHIPPED VIA: F                                                                                |                                      |  |  |  |  |  |

## Total Cyanide by Semi-Automated Colorimetry Method: EPA 335.4\SM-4500-CN-E Distillation Bench Sheet

Weak Acid Dissociable Cyanide by SM 4500-CN-I (check WAD column)

'otal Cyanide MS/MSD/LCS Soln:

M955-04 Exp:11/1/2014

Method requirements: All QC +/- 10%

iree Cyanide MS/MSD/LCS Soln:

M934-06 Exp:7/30/2014
M962-ON cap:11/15/14

Equipment: Midi-vap

Instrument: ALPCHEM FIA 3000

Absorbance: 570nm

|    | Sample ID                   | Matrix     | Preserved | Sample<br>Amount (mL)** | Initial<br>Multiplier* | Final<br>Multiplier | Spike Amount<br>(mL) | WAD?<br>(check if<br>yes) |
|----|-----------------------------|------------|-----------|-------------------------|------------------------|---------------------|----------------------|---------------------------|
| 1  | 131030034-1                 | readiresti | NaOH      | Soul                    | 16.6                   | 16.6                |                      |                           |
| 2  | Ims                         |            |           |                         |                        |                     | Inc                  |                           |
| 3  | -Imso                       |            |           |                         | 4                      | 1                   |                      |                           |
| 4  | ws                          |            |           |                         | X                      | 1×                  | 4                    |                           |
| 5  | -130                        |            |           |                         | 4                      | +                   |                      |                           |
| 6  | 131113037-1                 |            |           |                         | 25.2                   | 15.2                |                      |                           |
| 7  | 311(2004-1                  | 4          |           |                         | 76.9                   | 76.9                |                      |                           |
| 8  | 131112008-1                 | reative in |           |                         | IX                     | X                   |                      |                           |
| 9  | Ims                         |            |           |                         |                        |                     | Int                  |                           |
| 10 | Mags                        | <b>*</b>   |           | 4                       | 4                      |                     | 1                    |                           |
| 11 |                             |            |           |                         |                        |                     |                      |                           |
| 12 |                             | ·          |           |                         |                        |                     |                      |                           |
| 13 |                             |            |           |                         |                        |                     |                      |                           |
| 14 |                             |            |           |                         |                        |                     |                      |                           |
| 15 |                             |            |           |                         |                        |                     |                      |                           |
| 16 |                             |            |           |                         |                        |                     |                      |                           |
| 17 |                             |            |           |                         |                        |                     |                      |                           |
| 18 |                             |            |           |                         |                        |                     |                      |                           |
| 19 |                             |            |           |                         |                        |                     |                      |                           |
| 20 | I If goile this coloulation |            |           |                         |                        | L                   |                      |                           |

<sup>\*</sup> If soils this calculation is taken from cyanide extraction bench sheet.

<sup>\*\*</sup> If soils, mLs of extract used for distillation.

| Extraction Reagents<br>methyl red indicator | : Reagent#:<br>A072-06 | Analytical Reagents:<br>Barbituric Acid | Reagent#:<br>R038-13 |
|---------------------------------------------|------------------------|-----------------------------------------|----------------------|
| 18 N H <sub>2</sub> SO <sub>4</sub>         | A074-06                | Sodium Phosphate                        | R029-16              |
| sulfamic acid                               | R068-19                | Chloramine-t                            | R083-15              |
| 0.025N NaOH                                 | R014-16                | Pyridine                                | R079-22              |
| 51% MgCl <sub>2</sub>                       | A075-01                |                                         |                      |

Distillation Initials/Date Distilled: WW 11/15/13

Analyst Initials/Date Analyzed: 1/18/13



# Calibration Standards Preparation Form for Methods SM4500CN-E and EPA 335.4

The following sample sequences have been analyzed using the standard information below on the FIA FS3000:

Cn- (Simple Cyanide) Calibration Stock Standard Number: M898-01

Cn- (Simple Cyanide) Calibration Stock Standard Concentration: 1000 ug/ mL Cn- (Simple Cyanide) Calibration Stock Standard Expiration Date: 12/26/2013

Cn- (Total Cyanide) Matrix Spiking Standard Number: M955-04

Cn- (Total Cyanide) Matrix Spiking Standard Concentration: 25 ug/mL Cn- (Total Cyanide) Matrix Spiking Standard Expiration Date: 11/01/2014

Cn- (Simple Cyanide) Initial Calibration Verification Stock Standard Number: M949-04

Cn- (Simple Cyanide) Initial Calibration Verification Stock Standard Concentration: 1000 ug/ml Cn- (Simple Cyanide) Initial Calibration Verification Stock Standard Expiration Date: 08/06/2014

Initial Calibration Dilution Template

| Desired Concentration (ppb) | Stock Concentration (ppm) | ul. Standard Added | Final Volume (mL) |
|-----------------------------|---------------------------|--------------------|-------------------|
| 1000                        | 1,000                     | 100                | 100               |
| 800                         | 1000                      | 40                 | 50                |
| 500 (CCV)                   | 1000                      | 50                 | 100               |
| 50*                         | 1.0                       | 2500               | 50                |
| 10*                         | 1.0                       | 500                | 50                |

<sup>\* 50</sup> and 10 ppls calibration standard prepared using 1.0 ppm calibration standard.

Initial Calibration Verification Dilution Template (ICV)

| Desired Concentration (ppb) | Stock Concentration (ppm) | ul. Standard Added | Final Volume (mL) |
|-----------------------------|---------------------------|--------------------|-------------------|
| 250                         | 1000                      | 25                 | 100               |

Total Cyanide MS/MSD/LCS prepared by adding 1 mL of M955-04 to 50 mL sample. WAD Cyanide MS/MSD/LCS prepared by adding 1 mL of M934-06 to 50 mL sample.

Analysts Initials/Date: MW 11/18/13

Pipettes: A04003282

2751528/2752498

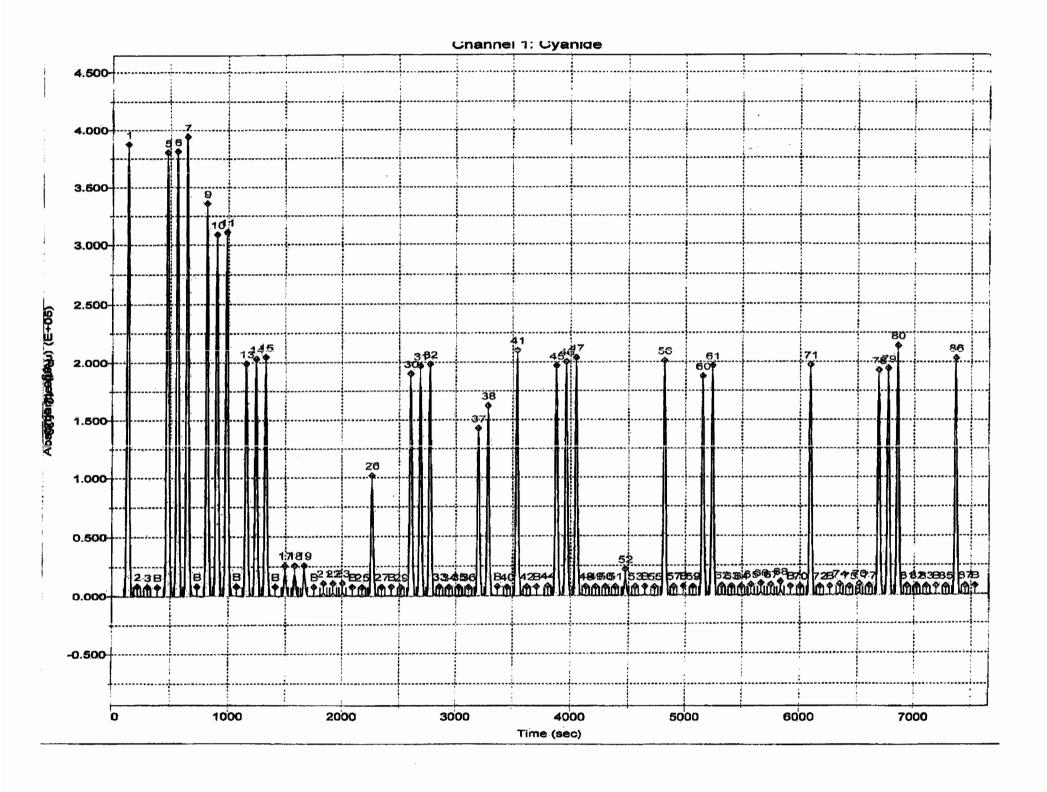
11 10 1/

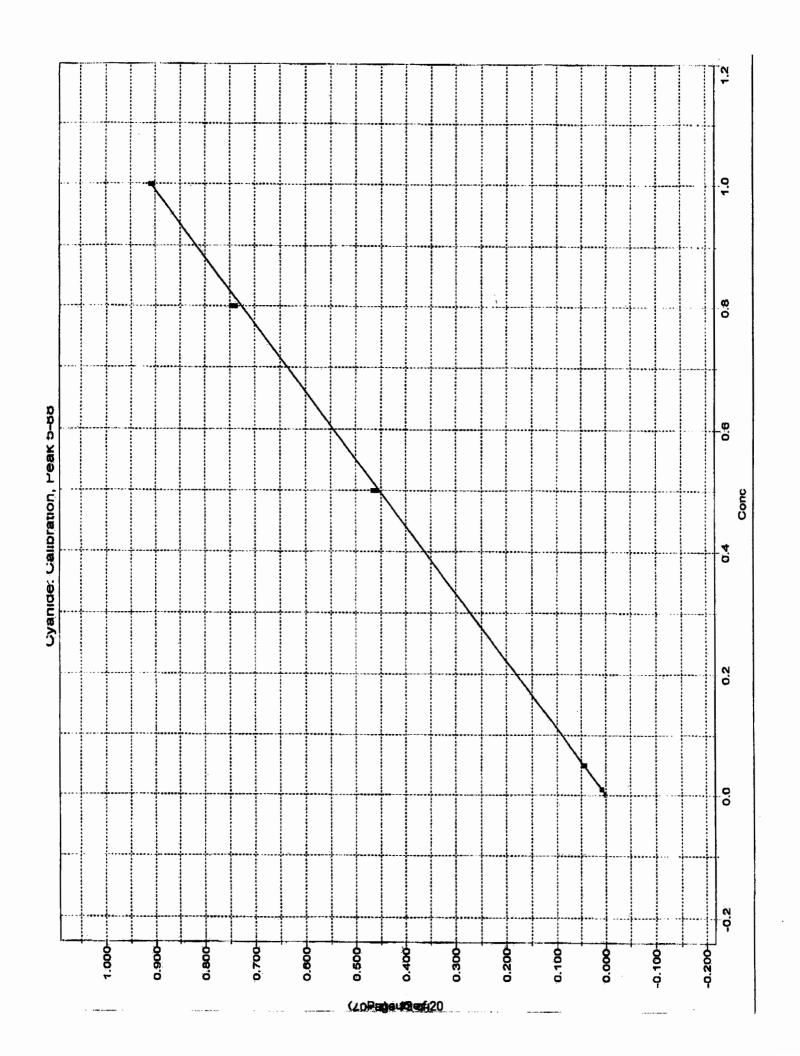
ile name: T:\DATA1\FLOW4\2013\EPA335.4\111813CM.RST

ste: November 18, 2013 perator: CRW

-----

MM 11-22-13


13/118 FRACNR


| J⊕ L   | acor.    | CKW                                 | Oliv        | (( 00 .) |        |                |       |                      |
|--------|----------|-------------------------------------|-------------|----------|--------|----------------|-------|----------------------|
| sak    | Cup      | Name                                | Type Dil    | Wt       | A      | rea            | Calc. | (ppm)                |
|        | 2        | Sync                                | SYNC        | 1        | 1      | 8809582        |       | 0.969915             |
|        | 0        | Carryover '                         | CO          | ī        | 1      | 27838          |       | 0.004500             |
|        | 0        | Carryover                           | CO          | 1        | 1.     | 4519           |       | 0.001936             |
|        | 0        | Baseline                            | RB          | 1        | 1      | 424            |       | 0.001486             |
|        | 2        | Cal 1.00 ppm                        | С           | 1        | 1.     | 9041663        |       | 0.995429             |
|        | 2        | Cal 1.00 ppm                        | С           | 1        | 1      | 9082788        |       | 0.999950             |
|        | 2        | Cal 1.00 ppm                        | Ç           | 1        | 1      | 9049468        |       | 0.996287             |
|        | 0        | Baseline                            | RB          | 1        | 1      | 891            |       | 0.001538             |
| _      | 3        | Cal 0.80 ppm                        | С           | 1        | 1      | 7390174        |       | 0.813874             |
| 3      | 3        | Cal 0.80 ppm                        | С           | 1        | 1      | 7411172        |       | 0.816182             |
| 1      | 3        | Cal 0.80 ppm                        | C           | 1        | 1      | 7462134        |       | 0.821784             |
| •      | 0        | Baseline                            | RB          | 1        | 1      | 1633           |       | 0.001619             |
| 3<br>4 | 4        | Cal 0.50 ppm                        | C           | 1        | 1      | 4580863        |       | 0.505034             |
| 5      | 4        | Cal 0.50 ppm                        | c           | 1        | 1      | 4652897        |       | 0.512953             |
| 3      | Ō        | Cal 0.50 ppm<br>Baseline            | C<br>RB     | 1        | 1      | 4608064        |       | 0.508024             |
| 7      | 5        | Cal 0.05 ppm                        | C           | 1<br>1   | 1<br>1 | 367            |       | 0.001480             |
| 8      | 5        | Cal 0.05 ppm                        | C           | 1        | ĺ      | 434773         |       | 0.049236             |
| 9      | 5        | Cal 0.05 ppm                        | č           | 1        | î      | 431407         |       | 0.048729<br>0.048866 |
| -      | Ö        | Baseline                            | RB          | 1        | ī      | 2587           |       | 0.001724             |
| 1      | 6        | Cal 0.01 ppm                        | c           | i        | i      | 81992          |       | 0.010453             |
| 2      | 6        | Cal 0.01 ppm                        | č           | î        | ī      | 80201          |       | 0.010453             |
| 3      | 6        | Cal 0.01 ppm                        | Č           | î        | ī      | 83388          |       | 0.010607             |
| _      | Ō        | Baseline                            | RB          | ī        | ī      | 4257           |       | 0.001908             |
| 5      | 1        | Blank                               | BLNK        | ī        | ī      | -5017          |       | 0.000888             |
| 6      | 7        | ICV 0.25 ppm                        | CCV         | ī        | ĩ      | 2281102        |       | 0.252211             |
| 7      | 1.       | Blank                               | BLNK        | ī        | ī      | -5495          |       | 0.000836             |
|        | 0        | Baseline                            | RB          | ī        | ī      | 1610           |       | 0.001617             |
| 9      | 8        | -131030034-001 R                    |             | 26.6     | 1      | -10428         | 3     | 0.007799             |
| 0      | 9        | 131030034-001MS                     | Ū           | 26.6     | 1      | 4474163        |       | 13.121881            |
| 1      | 10       | 131030034-001MS                     |             | 26.6     | 1      | 451403         | 2     | 13.238467            |
| 2      | 11       | 131030034-LCS                       | Ų           | 1        | 1      | 4451327        |       | 0.490793             |
| 3      | 12       | b 131030034-BL                      | ប           | 1        | 1      | -9475          |       | 0.000398             |
| 4      | 13       | 131113037-001                       | บ           | 25.2     | 1      | -13107         |       | -0.000031            |
| 5      | 1.4      | 131112004-001                       | Ų           | 26.9     | 1      | -15878         |       | -0.008228            |
| 6      | 15       | 131112008-001 R                     |             | _1       | 1      | -1879          | 4     | -0.000626            |
| 7      | 16       | 131112008-001MS                     |             | 1_       | 1      | 3125892        | _     | 0.345083             |
| 8      | 17       | 131112008-001MS                     |             | .1       | 1      | 3486792        | 2     | 0.384758             |
| 0      | 0        | Baseline                            | RB          | 1        | 1      | 2581           |       | 0.001723             |
| 1      | 1<br>4   | Blank                               | BLNK        | 1        | 1      | -12540         |       | 0.000061             |
| 2      | 1        | CCV 0.5 ppm<br>Blank                | CCV<br>Bink | 1        | 1      | 4584808        |       | 0.505467             |
| ~      | ō        | Read Baseline                       | RB          | 1<br>1   | 1<br>1 | -11130<br>2821 |       | 0.000216             |
| 4      | 18       | -131113061-001 S                    |             | 31.2     | 1      | 2018           |       | 0.001750<br>0.051840 |
| 5      | 19       | 131113061-001MS                     |             | 31.2     | 1      | 4418416        |       | 15.199870            |
| 6      | 20       | 131113061-001MS                     |             | 31.2     | 1      | 440536         | 6     | 15.155108            |
| 6<br>7 | 21       | 131113061-LCS                       | ับ          | 1        | ٦, _   | 4432130        | _     | 0.488683             |
| 8      | 22       | 131113061-BL                        | Ū           | ī        | 1      | -4365          |       | 0.000960             |
| 9      | 23       | • 131113061-002                     | U           | 31.3     | 1      | 4063           |       | 0.059041             |
| 0      | 24       | 4 131113061-003                     | Ù           | 29.2     | 1      | 3261           |       | 0.052506             |
| 1      | 25       | 131113061-004                       | Ū           | 29.8     | 1      | -1440          |       | 0.038182             |
| 2      | 26       | 131107032-001                       | ្ត          | 28.3     | 1      | 351001         |       | 1.132756             |
| 3      | 27       | • 131115038-001 FV                  |             | 100      | 1      | 857            |       | 0.153390             |
|        | 0        | Baseline                            | RB          | 1        | 1      | 1741           |       | 0.001631             |
| 5      | 1        | Blank                               | BLNK        | 1        | 1      | -57.95         |       | 0.000803             |
| 6<br>7 | 4        | CCV 0.5 ppm                         | CCV         | 1        | 1      | 4516450        |       | 0.497953             |
| ./     | 1        | Blank                               | BĻNK        | 1        | 1      | -8287          |       | 0.000529             |
| •      | 0        | Read Baseline                       | RB          | 1        | 1      | 2906           | _     | 0.001759             |
| 9<br>0 | 28       | +131108025-001 W                    |             | . 1      | . 1    | -294           | ю     | 0.001116             |
| 1      | 29<br>30 | 131108025-001MS<br>4131108025-001MS |             | 1.       | 1      | 4309850        | _     | 0.475240             |
| 2      | 31       | 131108025-001MS                     | ָט<br>ט     | 1<br>1   | 1      | 439546         | Ď.    | 0.484652             |
| .3     | 32       | 131108025-002                       | Ü           | 1        | 1      | 13070<br>4141  |       | 0.002877             |
| 4      | 3.3      | 131108025-004                       | Ü           | i        | 1      | -957           |       | 0.001895<br>0.001334 |
| 5      | 34       | 131107069-003                       | Ü           | i        | ī      | 34835          |       | 0.001334             |
| 6      | 3.5      | : 131107069-004                     | บ           | i        | ī      | 67639          |       | 0.005269             |
| _      |          | — - <del></del>                     | -           | D 0 -400 | -      | 0.000          |       | Q.000073             |

| ıak | Cup  | Name            | Type | Dil W | t   | Area    | Calc. | (ppm)    |
|-----|------|-----------------|------|-------|-----|---------|-------|----------|
|     |      |                 |      |       |     |         |       |          |
| ı   | 36   | 131107069-005   | U    | 1.    | 1   | 33117   |       | 0.005080 |
| i   | 37   | 131107069-006   | U    | 1.    | 1   | 91502   |       | 0.011499 |
|     | 0    | Baseline        | RB   | 1     | 1   | 1355    |       | 0.001589 |
| )   | 1    | Blank           | BLNK | 1     | 1   | -5984   |       | 0.000782 |
|     | 4    | CCV 0.5 ppm     | CCV  | 1     | 1   | 4427972 |       | 0.488226 |
| !   | i    | Blank           | BLNK | 1     | 1   | -8501   |       | 0.000505 |
|     | 0    | Read Baseline   | RB   | 1     | 1   | 368     |       | 0.001480 |
| !   | 38 , | 5PPB            | U    | 1     | 1   | 37008   |       | 0.005508 |
| ,   | 39   | 131107069-001   | ប    | 1     | 1   | -2636   |       | 0.001150 |
| j   | 40 : | 131107069-002   | U    | 1.    | ĺ   | 44471   |       | 0.006329 |
| •   | 41 - | 131107066-006 F | U    | 1.1   | 1   | 9284    |       | 0.002706 |
| ;   | 42   | 131107066-006MS | U    | 1.1   | 1   | 4432416 | •     | 0.537586 |
| ,   | 43   | 131107066-006MS | Ü    | 1.1   | 1   | 4393686 | 5     | 0.532902 |
| }   | 44   | 131107066-LCS   | Ū    | 1.1   | 1   | 4819286 |       | 0.584369 |
|     | 45 d | 131107066-BL    | U    | 1.1   | 1   | -3057   |       | 0.001214 |
| :   | 46   | Ŕ               | Ü    | 1     | 1.  | 3734    |       | 0.001850 |
| ţ   | 47   | R               | ប    | 1     | . 1 | 1624    |       | 0.001618 |
|     | 0    | Baseline        | RB   | 1     | · 1 | 1053    |       | 0.001555 |
| •   | 1    | Blank           | BLNK | 1.    | 1   | -5131   |       | 0.000876 |
| j   | 4    | CCV 0.5 ppm     | CCV  | 1     | 1   | 4552797 |       | 0.501948 |
| •   | 1    | Blank           | BLNK | 1     | 1   | -6153   |       | 0.000763 |
|     | 0    | Read Baseline   | RB   | 1     | 1   | 1874    |       | 0.001646 |

| :ak      | Cup                                       | Flags |
|----------|-------------------------------------------|-------|
|          |                                           |       |
|          | 2                                         |       |
|          | O.                                        |       |
|          | Ó                                         |       |
|          | 0                                         | BI.   |
|          | 2                                         |       |
|          | 2                                         |       |
|          | 2                                         |       |
|          | 0                                         | BL    |
|          | 3                                         |       |
| )        | 3                                         |       |
|          | จั                                        |       |
|          | 0<br>0<br>0<br>2<br>2<br>2<br>0<br>3<br>3 | BL    |
| j.       | 4                                         | 92    |
|          | 4                                         |       |
| :        | 4                                         |       |
| ,        | 4                                         |       |
|          | 0                                         | BL    |
| '        | 5                                         |       |
| 1        | 5                                         |       |
| <b>)</b> | 5                                         |       |
|          | 0                                         | BL    |
|          | 6                                         |       |
| ;        | 6                                         | OL    |
| 3        | 6                                         |       |
|          | 0                                         | BL    |
| •        | 1                                         |       |
| j        | 7                                         |       |
| ,        | ı                                         |       |
|          | 0                                         | BL    |
| ł        | 8                                         |       |
| )        | g                                         |       |
|          | 10                                        |       |
| ·,       | 11                                        |       |
| ;        | 12                                        |       |
| i        | 13                                        | ro    |
| ;        | 1.3                                       | LO    |
| ;        |                                           | FO    |
|          | 15                                        | FO    |
| !        | 16                                        |       |
| 3        | 17                                        |       |
|          | Õ                                         | BI,   |
| )        | 1                                         |       |
| L        | 4                                         |       |
| ;        |                                           |       |
|          | O <sub>0</sub>                            | BL    |
| ŧ        | 18                                        |       |
|          |                                           |       |

| eak                                            | Cup      | Flags |
|------------------------------------------------|----------|-------|
| <del></del>                                    |          |       |
| 5                                              | 19       |       |
| 6                                              | 20       |       |
| 6<br>7<br>9<br>0<br>1<br>2<br>3                | 21       |       |
| Ð                                              | 22       |       |
| 9                                              | 23       |       |
| 0                                              | 24       |       |
| 1                                              | 25       |       |
| 2                                              | 26       |       |
| 3                                              | 27       | T. T  |
| E                                              | 0<br>1   | BL    |
| 5<br>6<br>7                                    | 4        |       |
| 7                                              | i        |       |
| •                                              | ō        | BL    |
| 9                                              | 28       | 234.1 |
| ō                                              | 29       |       |
| 1                                              | 30       |       |
| 9<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 31       |       |
| 3                                              | 32       |       |
| 4                                              | 33       |       |
| 5                                              | 34       |       |
| 6                                              | 35       |       |
| 7                                              | 36       |       |
| 8                                              | 37       |       |
|                                                | 0        | BL    |
| 0<br>1<br>2                                    | 1        |       |
| 1                                              | 4        |       |
| 2.                                             | 1        |       |
|                                                | 0        | BL .  |
| 4                                              | 38<br>39 |       |
| 5                                              | 40       |       |
| 7                                              | 41       |       |
| Ŕ                                              | 42       |       |
| 9                                              | 43       |       |
| ó                                              | 44       |       |
| 1                                              | 45       |       |
| 2                                              | 46       |       |
| 5<br>6<br>7<br>8<br>9<br>0<br>1<br>2<br>3      | 47       |       |
| ·                                              | Ö        | BL    |
| 5                                              | 1        | _     |
| 5<br>6<br>7                                    | 4        |       |
| 7                                              | 1        |       |
|                                                | 0        | ВL    |





ile name: T:\DATA1\FLOW4\2013\EPA335.4\111813CM.RST

ate: November 18, 2013

perator: CRW

| Name                                                                                                                             |                                                                    | Conc                                                                                                                 | Area                                                                                                                                                                                                                          |  |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Cal 1.00<br>Cal 1.00<br>Cal 1.00<br>Cal 0.80<br>Cal 0.80<br>Cal 0.50<br>Cal 0.50<br>Cal 0.50<br>Cal 0.05<br>Cal 0.05<br>Cal 0.05 | ppm<br>ppm<br>ppm<br>ppm<br>ppm<br>ppm<br>ppm<br>ppm<br>ppm<br>ppm | 1.000000<br>1.000000<br>1.000000<br>0.800000<br>0.800000<br>0.500000<br>0.500000<br>0.500000<br>0.050000<br>0.050000 | 9041663.00000<br>9082788.00000<br>9049468.00000<br>7390174.00000<br>7411172.500000<br>7462133.500000<br>4580863.000000<br>4652897.000000<br>4608064.500000<br>434773.187500<br>430157.875000<br>431407.125000<br>81992.390625 |  |
| Cal 0.01<br>Cal 0.01                                                                                                             | ppm<br>ppm                                                         | 0.010000<br>0.010000                                                                                                 | 80201.210938<br>83387.726562                                                                                                                                                                                                  |  |

Calib Coef:

y=bx+a

a: (intercept) -1.3095e+04 b: 9.0963e+06

Corr Coef:

0.999823

Carryover:

0.316%

No Drift Peaks

| Pag | ze # | ŧ |  |
|-----|------|---|--|
|     |      |   |  |

# Flashpoint Analysis

# Sample Matrix - Soil (1), Sludge (2), Oil (3), Water (4), Other (5)

| Sample ID     | Analyses<br>Date | Sample<br>Matrix | Analyst<br>Initials                   | Temp - °C                               | Temp - °F |
|---------------|------------------|------------------|---------------------------------------|-----------------------------------------|-----------|
|               |                  |                  | . 12                                  | <u> </u>                                |           |
| 3/01/060-001  | 0/16/17          | H20/4            | W                                     |                                         | 72000F    |
| 300 7009-001  | 10/17/13         | H20/4            | nn                                    |                                         | 7200°₽    |
| 1310091041001 |                  | Laud/5           | 1                                     |                                         | 102°F     |
| 301 1098-00!  |                  | H2Q/4            |                                       |                                         | 79000F    |
| 31015067-001  |                  | 4                | 4                                     |                                         | 7200°F    |
| 3/023032-09   | 11/03/13         | H20/4            | MIL                                   |                                         | >200 F    |
| ~002          | T                |                  |                                       |                                         | >200°F    |
| -003          |                  |                  |                                       |                                         | >200°F    |
| ייסטיי        |                  |                  |                                       |                                         | >2000 F   |
| 131029071-00  |                  |                  |                                       |                                         | 7200 E    |
| 131107012-001 | 11/14/2013       | H20/4            | 294                                   |                                         | > 200° 1° |
| 31112003-007  |                  | Limid 5          |                                       |                                         | 72000=    |
| 311/2008001   |                  | 11-0/4           |                                       |                                         | 720004    |
| 131120016-201 | 12/03/2013       |                  | Www                                   |                                         | 123°F     |
| -002          | 1                | L                |                                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 18207     |
| 13417028-001  | 12/04/2013       | 3:13/3           | M                                     |                                         | >2006F    |
| -002          |                  | 1 1              |                                       |                                         | >200°F    |
| -003          |                  |                  | 1 1                                   |                                         | 721000    |
| -004          |                  |                  | 1 .                                   |                                         | 7200°F    |
| -005          |                  |                  |                                       |                                         | 7260F     |
| -006          |                  | 1.5              | 7.00                                  |                                         | 720007    |
| 31176056-002  |                  | Water 4          | · · · ·   · · · · · · · · · · · · · · |                                         | 1200€F    |
| 131126078-001 |                  | * ***            |                                       |                                         | >200°F    |
| 13/127038-001 |                  |                  |                                       |                                         | >200=     |
| - 602         | L                |                  | 丁 上                                   |                                         | 72000F    |
|               |                  |                  |                                       |                                         |           |
|               |                  |                  |                                       |                                         |           |
|               |                  |                  |                                       |                                         |           |
|               |                  |                  |                                       |                                         |           |

<sup>\*</sup> SAFETY GLASSES REQUIRED.

| Reagent                                     | Solution #         | Expires          | Method QC                | Requirements:                         |
|---------------------------------------------|--------------------|------------------|--------------------------|---------------------------------------|
| pH Buffer 4 (Red)                           | M854-01            | Sep-13           | pH 7 within 0.1 pH units | LFB/Blank every 10                    |
| pH Buffer 7 (Yellow)<br>pH Buffer 10 (Blue) | M854-02<br>A055-04 | Dec-13<br>Jan-14 | Slope 95-102%            | MS/MSD Every 20<br>% Recovery 85-115% |
| 0.02N H2SO4 Titrant                         | A055-03            | Nov-13           |                          | A Necotely CO-110 N                   |

| Standard              | Solution #           | Conc.            | Expires              | Amount Spiked (mg/L) |
|-----------------------|----------------------|------------------|----------------------|----------------------|
| Matrix Spike Solution | M891-01              | 1N               | 11/1/2013            | 100 (0.189 mL)       |
| Contrib               | urette: CAT 10uL, sn | 600055 - pH Mete | r: Orion Model 420A, | sn 007858            |

|               |              |      |             |              |       |                |                        | Titrar   | it vol to p | H (mL)   |       | Alkalin   | ity (mg/l        | <b>_)</b> |   |
|---------------|--------------|------|-------------|--------------|-------|----------------|------------------------|----------|-------------|----------|-------|-----------|------------------|-----------|---|
| Sample        | Temp<br>(°C) | рH   | pH 4<br>Cal | pH 10<br>Cal | Slope | pH 7<br>Buffer | Sample<br>Vol.<br>(mL) | A<br>8.3 | B<br>4.5    | C<br>4.2 | Total | Carbonate | Bi-<br>carbonate | Hydroxide | % |
| 3060604/6-001 | 14.7         |      |             | 10.07        | 1009  | 7:09           |                        |          |             |          |       |           |                  |           |   |
| 31112003-002  |              | 7.4  | 54.00       | 10.00        | 101,1 | 7,01           |                        |          |             |          |       |           |                  |           |   |
| 31112003~002  | 20,1         | 5.82 |             |              |       | 7.0            | 25mL                   |          |             |          |       |           |                  |           |   |
| 31112008-001  | 15,3         | 6,98 |             |              |       |                |                        |          |             |          |       |           |                  |           |   |
| 31112003-001  | 15,2         | 8.71 |             |              |       |                | +                      |          |             |          |       |           |                  |           |   |
| 31112004-001  | 219          | 894  |             |              |       |                | 5g 1 425m              | _        |             |          |       |           |                  |           |   |
| 31113 737-001 | 21/          | 8,89 | -           | 1            | 1     |                | 55 in 25m              |          |             |          |       |           |                  |           |   |
| -1            |              |      |             |              |       |                |                        |          |             |          |       |           |                  |           |   |
|               |              |      |             |              |       |                |                        |          |             |          |       |           |                  |           |   |
|               |              |      |             |              |       |                |                        |          |             |          |       |           |                  |           |   |
|               |              |      |             |              |       |                |                        |          |             |          |       |           |                  |           |   |
|               |              |      |             |              |       |                |                        |          |             |          |       |           |                  |           |   |
|               |              |      |             |              |       |                |                        |          |             |          |       |           |                  |           |   |
|               |              |      |             |              |       |                |                        |          |             |          |       |           |                  |           |   |
|               |              |      |             |              |       |                |                        |          |             |          |       |           |                  |           |   |

Analysis Date: 6-10-13 11/13/2013

Analyst: AST

Me

# Title: Sulfide by SM 4500 S2F

| Reagent             | ID      | Expires   |
|---------------------|---------|-----------|
| Iodine 0.025N       | R069-16 | Daily     |
| HCI 6N              | R066-09 | Daily     |
| Starch Indicator 1% | A068-10 | 7/18/2014 |
| Zinc Acetate        | R069-15 | 1/11/2018 |
| Sulfide Spiking Std | M931-04 | 5/30/2016 |

#### **Quality Control Information**

- 1. 1 Blank per batch, must be ≤0.02 mg/L
- 2. 1 LFB per batch, must be ±30% recovery
- 3. 50 uL iodine reacts with 0.02 mg sulfide

| Sample          | Sample<br>Volume (mL) | lodine<br>Amount (50<br>uL<br>increments) | Conc.<br>(mg/sample) | Conc.<br>(mg/L) | PQL (mg/L) | Multiplier (soils) | Spike Amt (uL) | %Rec |
|-----------------|-----------------------|-------------------------------------------|----------------------|-----------------|------------|--------------------|----------------|------|
| BLANK           | 1000                  | 50                                        | 0.02                 | 0.020           | 0.10       |                    |                |      |
| IMB.            | 1000                  | 400                                       | 0.16                 | 0.160           | 0.10       |                    | 200            | 80 % |
| LFBD            | 1000                  | 450                                       | 0.18                 | 0.180           | 0.10       |                    | 200            | のって  |
| ICV (LLQ)       | 1000                  | 250                                       | 0.10                 | 0.100           | 0.10       |                    | 100            | 1002 |
| 131112004-001   | 50                    | 50                                        | 0.02                 | 10.760          | 53.80      | 26.9               |                |      |
| 131112004-001MS | 50                    | 450                                       | 0.18                 | 96.840          | 53.80      | 26.9               | 200            | 80 Z |
| 131113037-001   | 50                    | 50                                        | 0.02                 | 10.080          | 50.40      | 25.2               |                |      |
| 131112008-001   | 464.64                | 2700                                      | 1.08                 | 2.324           | 0.22       |                    |                |      |
| 131113057-003   | 193.46                | 50                                        | 0.02                 | 0.103           | 0.52       |                    |                |      |
| 131113057-003MS | 193.46                | 500                                       | 0.20                 | 1.034           | 0.52       |                    | 200            | 90%  |
| 131115044-001   | 478.02                | 50                                        | 0.02                 | 0.042           | 0.21       |                    |                |      |
| 131115045-001   | 463.66                | 50                                        | 0.02                 | 0.043           | 0.22       |                    |                |      |
| 131115047-001   | 495.11                | 50                                        | 0.02                 | 0.040           | 0.20       |                    |                |      |
| 131115038-001   | 1                     | 150                                       | 0.06                 | 60.000          | 100.00     |                    |                |      |
| 131115051-001   | 25                    | 400                                       | 0.16                 | 6.400           | 4.00       |                    |                |      |

Analyst Initials: 45T Date: 11-19-13 Comments: MS 15 PTS 4
N\\Banch Sheds\Sulfide SM4500-S2F345

Middle Companies (Sur Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Comp

Page 17 of 20

Title: Sulfide by SM 4500 S2F

| Reagent             | ID      | Expires   |
|---------------------|---------|-----------|
| lodine 0.025N       | R069-16 | Daily     |
| HCI 6N              | R066-09 | Daily     |
| Starch Indicator 1% | A068-10 | 7/18/2014 |
| Zinc Acetate        | R069-15 | 1/11/2018 |
| Sulfide Spiking Std | M931-04 | 5/30/2016 |

# Quality Control Information

- 1. 1 Blank per batch, must be ≤0.02 mg/L
- 2. I LFB per batch, must be ±30% recovery
  3. 50 uL iodine reacts with 0.02 mg sulfide

| Sample                     | Sample<br>Volume (mla) | lodine<br>Amount (50<br>ül.<br>Increments) | Conc.<br>(mg/sample) | Conc.<br>(mg/L) | PQL (mg/L) | Multiplier (solls) | Spike Amt (uL) | %Rec |         |
|----------------------------|------------------------|--------------------------------------------|----------------------|-----------------|------------|--------------------|----------------|------|---------|
| 131115052-001              | 25                     | 750                                        | 0.30                 | 12.000          | 4.00       |                    | _              |      |         |
| 131115053-001              | 500.2                  | 2200                                       | 0.88                 | 1.759           | 0.20       |                    |                |      |         |
| 131119009-001              | 263.18                 | 50                                         | 0.02                 | 0.076           | 0.38       | •                  |                |      |         |
| 131119009-002              | 243.68                 | 50                                         | 0.02                 | 0.082           | 0.41       |                    |                |      |         |
| 131119009-003              | 266.01                 | 50                                         | 0.02                 | 0.075           | 0.38       |                    |                |      |         |
| 131119009-004              | 249.74                 | 50                                         | 0.02                 | 0.080           | 0.40       | •                  |                |      |         |
| 131119010-001              | 50                     | 50                                         | 0.02                 | 0,400           | 2.00       |                    |                |      | · Sayle |
| 131119032-001              | 50                     | 600                                        | 0.24                 | 4.800           | 2.00       |                    |                |      | Cakedak |
| 1311150 <del>35</del> -001 | 5                      | 1300                                       | 0.52                 | 104.000         | 20.00      |                    |                |      | 40 x 11 |
|                            |                        |                                            |                      |                 |            | ,                  |                |      |         |
|                            |                        |                                            |                      | ·               |            |                    |                | :    |         |
|                            |                        |                                            |                      |                 |            |                    |                |      |         |
|                            |                        |                                            |                      |                 |            |                    |                | ·    |         |
|                            |                        |                                            |                      |                 |            |                    |                |      |         |

Page 18 of 20 .5<sup>2</sup>

Analyst Initials: AST

Date: 11-19-13

Comments:

N:\Bench Sheets\Sulfide SM4500-S2F,xls

# Title: Sulfide by SM 4500 S2F

| امد                                          | 15 PTSA<br>N'ABEND STREET SUITED SM4500-SZF. 25 | Comments: MS                                |               |                             | Date: 11-19-13       |                                           | 4                     | Analyst Initials:   |
|----------------------------------------------|-------------------------------------------------|---------------------------------------------|---------------|-----------------------------|----------------------|-------------------------------------------|-----------------------|---------------------|
|                                              |                                                 | ,                                           | 4.0           | 6.4                         | 0.16                 | 400                                       | 25mL                  | 1511KX)-1           |
|                                              |                                                 |                                             | 100           | <del>مان ھ</del><br>00      | e.06                 | 150                                       | - M.C                 | 131118038-1         |
|                                              |                                                 |                                             | 202           | 0.04039                     | 0.07                 | Sp                                        | 11 50%                | 131115047-1         |
|                                              |                                                 |                                             | 0.216         | F/2F0.0                     | 0.02                 | So                                        | 463.66                | 13116048-1          |
| -                                            |                                                 |                                             | 0.209         | 0-04/644<br>761/20-0        | 20.0                 | 30                                        | 20,814                | 13111E044-1         |
| <u>                                     </u> | 7W002                                           |                                             | -             | 1.034                       | 0.20<br>0.16         | 500                                       | H                     | 57-3M6              |
|                                              |                                                 |                                             | 0.516         | 0,1034                      | 0.02                 | Şī<br>V                                   | 193.46                | 131115067-3         |
|                                              | ,                                               |                                             | 0.215         | 2.32                        | 1.08                 | 2400                                      | 464.64                | 134/2003-(          |
|                                              |                                                 | 25.7                                        | 17.6          | 1.42 × 01 1 252             | 20.02                | 50                                        | Some                  | 13 11/3037-1        |
|                                              | 14002                                           | H                                           | 7             | 24.2                        | 1                    | 450                                       | 1                     | 9~1~S               |
|                                              |                                                 | 26.9                                        | y<br>S)       | 2.69                        | 450 0 25°C           | 50                                        | SOmc                  | 13111204-1          |
| F                                            | 180 /                                           |                                             | -             | 0.10                        | 0.10                 | 250                                       | -                     | שבע (גוש)           |
|                                              | <br> -\                                         |                                             |               | 0. Ā                        | ر. ا <del>د</del>    | 4.20                                      |                       | 4837                |
| ı                                            | 200                                             |                                             |               | 0.0%                        | 0,16                 | Geh .                                     |                       | 837                 |
| <u> </u>                                     |                                                 |                                             | ø.1           | 20.62                       | 0.07                 | 50                                        | 1 soome               | BLANK               |
| Ē                                            | Spike Amt (ul.)                                 | Multiplier (soils)                          | POL (mg/L)    | Conc.<br>(mg/L)             | Conc.<br>(mg/sample) | lodine<br>Amount (50<br>uL<br>Increments) | Sample<br>Volume (mL) | Sample              |
|                                              |                                                 | -03                                         | : M898-03     | Shamber d #                 | ICV (                | 5/30/2016                                 | M931-04               | Sulfide Spiking Std |
|                                              |                                                 |                                             |               |                             |                      | 1/11/2018                                 | R069-15               | Zine Acetate        |
|                                              |                                                 | 3, 50 uL iodine reacts with 0.02 mg sulfide | e reacts with | 3. 50 uL iodini             |                      | 7/18/2014                                 | A068-10               | Starch Indicator 1% |
|                                              |                                                 | 2. 1 LFB per batch, must be ±30% recovery   | atch, must b  | 2. I LFB per b              |                      | Daily                                     | R066-09               | HCI ON              |
|                                              |                                                 | I. I Blank ner batch, must be ≤0.02 mg/L    | batch must    | I. I Blank ner              |                      | Daily                                     | R069-16               | Iodine 0.025N       |
|                                              |                                                 | 3                                           | al Tafarmafia | Quality Control Information |                      | Fraires                                   | 3                     | Respent             |

ij

# Title: Sulfide by SM 4500 S2F

| Reagent             | ID      | Expires   |
|---------------------|---------|-----------|
| lodine 0.025N       | R069-16 | Daily     |
| HCI 6N              | R066-09 | Daily     |
| Starch Indicator 1% | A068-10 | 7/18/2014 |
| Zinc Acetate        | R069-15 | 1/11/2018 |
| Sulfide Spiking Std | M931-04 | 5/30/2016 |

# **Quality Control Information**

- 1 Blank per batch, must be ≤0.02 mg/L
   1 LFB per batch, must be ±30% recovery
- 3. 50 uL iodine reacts with 0.02 mg sulfide

| Sample      | Sample<br>Volume (mL) | lodine<br>Amount (50<br>uL<br>increments) | Conc.<br>(mg/sample) | Conc.<br>(mg/L) | PQL (mg/L) | Multiplier (soils) | Spike Amt (ul.) | %Rec |
|-------------|-----------------------|-------------------------------------------|----------------------|-----------------|------------|--------------------|-----------------|------|
| 131115052-1 | 25 mL                 | 150                                       | <b>∂</b> .30         | 12              | 41.0       |                    |                 |      |
| 131115053-) | 500.Z                 | 33200                                     | ව පිළි               | 1,759           | Ð. 199     |                    |                 |      |
| 13114004-1  | 243.18<br>244.74      | 50                                        | 5.07                 | 0.07599         | D. 379     |                    |                 |      |
| ٩٠٢         | 243.68                | £50                                       | 0.02                 | 0.05207         | ರ.410      |                    |                 |      |
| 9.3         | 26.01                 | 60                                        | 50.0                 | 0.07579         | 0.375      | •                  |                 |      |
| 9.4         | 249. 74               | 60                                        | 0.02                 | 8008.e.e        | ୭.୯୦୦      |                    |                 |      |
| 131119010-1 | 50ml                  | 50                                        | 20.0                 |                 |            |                    |                 |      |
| 13n19032-1  | 50mL                  | وه م                                      | D. Z4                |                 |            |                    |                 |      |
| 131115038-1 | 5m4                   | 1300                                      | 0,57                 | 104             | 70         |                    |                 |      |
| ·           |                       |                                           |                      |                 |            |                    |                 |      |
|             |                       |                                           |                      |                 |            |                    |                 |      |
|             |                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,   |                      |                 | •          |                    |                 |      |
|             |                       |                                           |                      |                 |            |                    |                 |      |
|             |                       |                                           |                      |                 |            |                    |                 |      |
|             |                       | Ì                                         |                      |                 |            |                    |                 |      |

| nályst initials: AST | Date: 11-19-13 | Comments: |
|----------------------|----------------|-----------|
|----------------------|----------------|-----------|

## Hall Environmental Analysis Laboratory, Inc.

WO#:

1311335

06-Dec-13

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 11-7-13

Sample ID MB Client ID: PBW Prep Date:

SampType: MBLK Batch ID: R14683

Analysis Date: 11/8/2013

TestCode: EPA Method 300.0: Anions RunNo: 14683

SeqNo: 422656

Units: mg/L

HighLimit

**RPDLimit** %RPD

Qual

Analyte Chloride Sulfate

SPK value SPK Ref Val %REC LowLimit Result **PQL** ND 0.50 ND 0.50

Sample ID MB Client ID: PBW SampType: MBLK Batch ID: R14683

Analysis Date: 11/8/2013

TestCode: EPA Method 300.0: Anions

RunNo: 14683 SeqNo: 422710

Units: mg/L

Analyte Chloride

Prep Date:

0.50

SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD

**RPDLimit** Qual

Sulfate

ND ND

0.50

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

Analyte detected below quantitation limits J

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Sample pH greater than 2 for VOA and TOC only.

Reporting Detection Limit RL

Page 6 of 14

# Hall Environmental Analysis Laboratory, Inc.

WO#: 1311335

06-Dec-13

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 11-7-13

| Sample ID 5mL rb               | SampType: <b>MBLK</b>     |     |                      | TestCode: EPA Method 8260B: VOLATILES |      |             |           |      |          |      |
|--------------------------------|---------------------------|-----|----------------------|---------------------------------------|------|-------------|-----------|------|----------|------|
| Client ID: PBW                 | Batch ID: R14754          |     |                      | RunNo: 14754                          |      |             |           |      |          |      |
| Prep Date:                     | Analysis Date: 11/12/2013 |     | SeqNo: <b>424550</b> |                                       |      | Units: µg/L |           |      |          |      |
| Analyte                        | Result                    | PQL | SPK value            | SPK Ref Val                           | %REC | LowLimit    | HighLimit | %RPD | RPDLimit | Qual |
| Benzene                        | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| Toluene                        | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| Ethylbenzene                   | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| Methyl tert-butyl ether (MTBE) | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| 1,2,4-Trimethylbenzene         | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| 1,3,5-Trimethylbenzene         | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| 1,2-Dichloroethane (EDC)       | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| 1,2-Dibromoethane (EDB)        | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| Naphthalene                    | ND                        | 2.0 |                      |                                       |      |             |           |      |          |      |
| 1-Methylnaphthalene            | ND                        | 4.0 |                      |                                       |      |             |           |      |          |      |
| 2-Methylnaphthalene            | ND                        | 4.0 |                      |                                       |      |             |           |      |          |      |
| Acetone                        | ND                        | 10  |                      |                                       |      |             |           |      |          |      |
| Bromobenzene                   | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| Bromodichloromethane           | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| Bromoform                      | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| Bromomethane                   | ND                        | 3.0 |                      |                                       |      |             |           |      |          |      |
| 2-Butanone                     | ND                        | 10  |                      |                                       |      |             |           |      |          |      |
| Carbon disulfide               | ND                        | 10  |                      |                                       |      |             |           |      |          |      |
| Carbon Tetrachloride           | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| Chlorobenzene                  | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| Chloroethane                   | ND                        | 2.0 |                      |                                       |      |             |           |      |          |      |
| Chloroform                     | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| Chloromethane                  | ND                        | 3.0 |                      |                                       |      |             |           |      |          |      |
| 2-Chlorotoluene                | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| 4-Chlorotoluene                | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| cis-1,2-DCE                    | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| cis-1,3-Dichloropropene        | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| 1,2-Dibromo-3-chloropropane    | ND                        | 2.0 |                      |                                       |      |             |           |      |          |      |
| Dibromochloromethane           | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| Dibromomethane                 | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| 1,2-Dichlorobenzene            | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| 1,3-Dichlorobenzene            | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| 1,4-Dichlorobenzene            | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| Dichlorodifluoromethane        | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| 1,1-Dichloroethane             | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| 1,1-Dichloroethene             | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| 1,2-Dichloropropane            | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| 1,3-Dichloropropane            | ND                        | 1.0 |                      |                                       |      |             |           |      |          |      |
| 2,2-Dichloropropane            | ND                        | 2.0 |                      |                                       |      |             |           |      |          |      |
| z,z-Didiliolopiopalie          | NU                        | 2.0 |                      |                                       |      |             |           |      |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 7 of 14

# Hall Environmental Analysis Laboratory, Inc.

WO#: 1311335 06-Dec-13

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 11-7-13

| Sample ID 5mL rb            | SampType: MBLK            |     |               | TestCode: EPA Method 8260B: VOLATILES |      |             |           |      |          |      |
|-----------------------------|---------------------------|-----|---------------|---------------------------------------|------|-------------|-----------|------|----------|------|
| Client ID: PBW              | Batch ID: R14754          |     |               | RunNo: 14754                          |      |             |           |      |          |      |
| Prep Date:                  | Analysis Date: 11/12/2013 |     | SeqNo: 424550 |                                       |      | Units: µg/L |           |      |          |      |
| Analyte                     | Result                    | PQL | SPK value     | SPK Ref Val                           | %REC | LowLimit    | HighLimit | %RPD | RPDLimit | Qual |
| 1,1-Dichloropropene         | ND                        | 1.0 |               |                                       |      |             |           |      |          |      |
| Hexachlorobutadiene         | ND                        | 1.0 |               |                                       |      |             |           |      |          |      |
| 2-Hexanone                  | ND                        | 10  |               |                                       |      |             |           |      |          |      |
| Isopropylbenzene            | ND                        | 1.0 |               |                                       |      |             |           |      |          |      |
| 4-isopropyltoluene          | ND                        | 1.0 |               |                                       |      |             |           |      |          |      |
| 4-Methyl-2-pentanone        | ND                        | 10  |               |                                       |      |             |           |      |          |      |
| Methylene Chloride          | ND                        | 3.0 |               |                                       |      |             |           |      |          |      |
| n-Butylbenzene              | ND                        | 3.0 |               |                                       |      |             |           |      |          |      |
| n-Propylbenzeпе             | ND                        | 1.0 |               |                                       |      |             |           |      |          |      |
| sec-Butylbenzene            | ND                        | 1.0 |               |                                       |      |             |           |      |          |      |
| Styrene                     | ND                        | 1.0 |               |                                       |      |             |           |      |          |      |
| tert-Butylbenzene           | ND                        | 1.0 |               |                                       |      |             |           |      |          |      |
| 1,1,1,2-Tetrachloroethane   | ND                        | 1.0 |               |                                       |      |             |           |      |          |      |
| 1,1,2,2-Tetrachloroethane   | ND                        | 2.0 |               |                                       |      |             |           |      |          |      |
| Tetrachloroethene (PCE)     | ND                        | 1.0 |               |                                       |      |             |           |      |          |      |
| trans-1,2-DCE               | ND                        | 1.0 |               |                                       |      |             |           |      |          |      |
| trans-1,3-Dichloropropene   | ND                        | 1.0 |               |                                       |      |             |           |      |          |      |
| 1,2,3-Trichlorobenzene      | ND                        | 1.0 |               |                                       |      |             |           |      |          |      |
| 1,2,4-Trichlorobenzene      | ND                        | 1.0 |               |                                       |      |             |           |      |          |      |
| 1,1,1-Trichloroethane       | ND                        | 1.0 |               |                                       |      |             |           |      |          |      |
| 1,1,2-Trichloroethane       | ND                        | 1.0 |               |                                       |      |             |           |      |          |      |
| Trichloroethene (TCE)       | ND                        | 1.0 |               |                                       |      |             |           |      |          |      |
| Trichlorofluoromethane      | ND                        | 1.0 |               |                                       |      |             |           |      |          |      |
| 1,2,3-Trichloropropane      | ND                        | 2.0 |               |                                       |      |             |           |      |          |      |
| Vinyl chloride              | ND                        | 1.0 |               |                                       |      |             |           |      |          |      |
| Xylenes, Total              | ND                        | 1.5 |               |                                       |      |             |           |      |          |      |
| Surr: 1,2-Dichloroethane-d4 | 10                        |     | 10.00         |                                       | 102  | 70          | 130       |      |          |      |
| Surr: 4-Bromofluorobenzene  | 10                        |     | 10.00         |                                       | 104  | 70          | 130       |      |          |      |
| Surr: Dibromofluoromethane  | 9.9                       |     | 10.00         |                                       | 99.0 | 70          | 130       |      |          |      |
| Surr: Toluene-d8            | 9.6                       |     | 10.00         |                                       | 95.9 | 70          | 130       |      |          |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 8 of 14

# Hall Environmental Analysis Laboratory, Inc.

WO#: 1311335

06-Dec-13

Client: Western Refining Southwest, Inc.

Project: Injection Well 11-7-13

| Sample ID mb-10311          | SampType: MBLK            |        |             | TestCode: EPA Method 8270C: Semivolatiles |      |          |             |      |          |      |
|-----------------------------|---------------------------|--------|-------------|-------------------------------------------|------|----------|-------------|------|----------|------|
| Client ID: PBW              | Batch ID: 10311           |        |             | RunNo: 14823                              |      |          |             |      |          |      |
| Prep Date: 11/13/2013       | Analysis Date: 11/14/2013 |        | 2013        | SeqNo: 427181                             |      |          | Units: µg/L |      |          |      |
| Analyte                     | Result                    | PQL SP | K value SPK | Ref Val                                   | %REC | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Acenaphthene                | ND                        | 10     |             |                                           |      |          |             | -    |          |      |
| Acenaphthylene              | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Aniline                     | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Anthracene                  | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Azobenzene                  | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Benz(a)anthracene           | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Benzo(a)pyrene              | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Benzo(b)fluoranthene        | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Benzo(g,h,i)perylene        | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Benzo(k)fluoranthene        | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Benzoic acid                | ND                        | 40     |             |                                           |      |          |             |      |          |      |
| Benzyl alcohol              | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Bis(2-chloroethoxy)methane  | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Bis(2-chloroethyl)ether     | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Bis(2-chloroisopropyl)ether | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Bis(2-ethylhexyl)phthalate  | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| 4-Bromophenyl phenyl ether  | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Butyl benzyl phthalate      | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Carbazole                   | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| 4-Chloro-3-methylphenol     | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| 4-Chloroaniline             | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| 2-Chloronaphthalene         | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| 2-Chlorophenol              | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| 4-Chlorophenyl phenyl ether | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Chrysene                    | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Di-n-butyl phthalate        | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Di-n-octyl phthalate        | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Dibenz(a,h)anthracene       | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Dibenzofuran                | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| 1,2-Dichlorobenzene         | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| 1,3-Dichlorobenzene         | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| 1.4-Dichlorobenzene         | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| 3,3'-Dichlorobenzidine      | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Diethyl phthalate           | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| Dimethyl phthalate          | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| 2,4-Dichlorophenol          | ND                        | 20     |             |                                           |      |          |             |      |          |      |
| 2,4-Dimethylphenol          | ND                        | 10     |             |                                           |      |          |             |      |          |      |
| 4,6-Dinitro-2-methylphenol  | ND                        | 20     |             |                                           |      |          |             |      |          |      |
|                             | ND                        | 20     |             |                                           |      |          |             |      |          |      |
| 2,4-Dinitrophenol           | ND                        | 20     |             |                                           |      |          |             |      |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 9 of 14

## Hall Environmental Analysis Laboratory, Inc.

WO#: 1311335

06-Dec-13

Client:

Western Refining Southwest, Inc.

**Project:** 

Injection Well 11-7-13

| Sample ID mb-10311         | SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles |                 |                  |          |             |              |      |
|----------------------------|----------------------------------------------------------|-----------------|------------------|----------|-------------|--------------|------|
| Client ID: PBW             | Batch                                                    | ID: 10311       | RunNo: 1         | 4823     |             |              |      |
| Prep Date: 11/13/2013      | Analysis Da                                              | ate: 11/14/2013 | SeqNo: 4         | 27181    | Units: µg/L |              |      |
| Analyte                    | Result                                                   | PQL SPK value   | SPK Ref Val %REC | LowLimit | HighLimit % | RPD RPDLimit | Qual |
| 2,4-Dinitrotoluene         | ND                                                       | 10              |                  |          |             |              |      |
| 2,6-Dinitrotoluene         | ND                                                       | 10              |                  |          |             |              |      |
| Fluoranthene               | ND                                                       | 10              |                  |          |             |              |      |
| Fluorene                   | ND                                                       | 10              |                  |          |             |              |      |
| Hexachlorobenzene          | ND                                                       | 10              |                  |          |             |              |      |
| Hexachlorobutadiene        | ND                                                       | 10              |                  |          |             |              |      |
| Hexachlorocyclopentadiene  | ND                                                       | 10              |                  |          |             |              |      |
| Hexachioroethane           | ND                                                       | 10              |                  |          |             |              |      |
| Indeno(1,2,3-cd)pyrene     | ND                                                       | 10              |                  |          |             |              |      |
| Isophorone                 | ND                                                       | 10              |                  |          |             |              |      |
| 1-Methylnaphthalene        | ND                                                       | 10              |                  |          |             |              |      |
| 2-Methylnaphthalene        | ND                                                       | 10              |                  |          |             |              |      |
| 2-Methylphenol             | ND                                                       | 10              |                  |          |             |              |      |
| 3+4-Methylphenol           | ND                                                       | 10              |                  |          |             |              |      |
| N-Nitrosodi-n-propylamine  | ND                                                       | 10              |                  |          |             |              |      |
| N-Nitrosodimethylamine     | ND                                                       | 10              |                  |          |             |              |      |
| N-Nitrosodiphenylamine     | ND                                                       | 10              |                  |          |             |              |      |
| Naphthalene                | ND                                                       | 10              |                  |          |             |              |      |
| 2-Nitroaniline             | ND                                                       | 10              |                  |          |             |              |      |
| 3-Nitroaniline             | ND                                                       | 10              |                  |          |             |              |      |
| 4-Nitroaniline             | ND                                                       | 10              |                  |          |             |              |      |
| Nitrobenzene               | ND                                                       | 10              |                  |          |             |              |      |
| 2-Nitrophenol              | ND                                                       | 10              |                  |          |             |              |      |
| 4-Nitrophenol              | ND                                                       | 10              |                  |          |             |              |      |
| Pentachlorophenol          | ND                                                       | 20              |                  |          |             |              |      |
| Phenanthrene               | ND                                                       | 10              |                  |          |             |              |      |
| Phenol                     | ND                                                       | 10              |                  |          |             |              |      |
| Pyrene                     | ND                                                       | 10              |                  |          |             |              |      |
| Pyridine                   | ND                                                       | 10              |                  |          |             |              |      |
| 1,2,4-Trichlorobenzene     | ND                                                       | 10              |                  |          |             |              |      |
| 2,4,5-Trichlorophenol      | ND                                                       | 10              |                  |          |             |              |      |
| 2,4,6-Trichlorophenol      | ND                                                       | 10              |                  |          |             |              |      |
| Surr: 2-Fluorophenol       | 100                                                      | 200.0           | 51.9             | 22.7     | 98          |              |      |
| Surr: Phenol-d5            | 80                                                       | 200.0           | 40.2             | 23.4     | 74.9        |              |      |
| Surr: 2,4,6-Tribromophenol | 140                                                      | 200.0           | 70.2             | 23.3     | 111         |              |      |
| Surr: Nitrobenzene-d5      | 65                                                       | 100.0           | 65.0             | 36.8     | 111         |              |      |
| Surr: 2-Fluorobiphenyl     | 59                                                       | 100.0           | 58.9             | 38.3     | 110         |              |      |
| Surr: 4-Terphenyl-d14      | 72                                                       | 100.0           | 71.7             | 52.1     | 116         |              |      |

### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 10 of 14

## Hall Environmental Analysis Laboratory, Inc.

WO#: 1311335

06-Dec-13

Client: Western Refining Southwest, Inc.

**Project:** Injection Well 11-7-13

Sample ID MB-10368 SampType: MBLK TestCode: EPA Method 7470: Mercury

Client ID: PBW Batch ID: 10368 RunNo: 14874

Prep Date: 11/17/2013 Analysis Date: 11/18/2013 SeqNo: 428799 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020

#### Qualifiers:

\* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH greater than 2 for VOA and TOC only.

RL Reporting Detection Limit

Page 11 of 14

## Hall Environmental Analysis Laboratory, Inc.

WO#:

1311335 *06-Dec-13* 

Client:

Western Refining Southwest, Inc.

**Project:** 

Injection Well 11-7-13

| Sample ID MB-10290<br>Client ID: PBW | •        | Type: ME |           | TestCode: <b>EPA 6010B: T</b><br>RunNo: <b>14747</b> |         |          | Total Recove | rable Meta | als      |      |
|--------------------------------------|----------|----------|-----------|------------------------------------------------------|---------|----------|--------------|------------|----------|------|
| Prep Date: 11/12/2013                | Analysis | Date: 11 | 1/12/2013 | s                                                    | eqNo: 4 | 24481    | Units: mg/L  |            |          |      |
| Analyte                              | Result   | PQL      | SPK value | SPK Ref Val                                          | %REC    | LowLimit | HighLimit    | %RPD       | RPDLimit | Qual |
| Arsenic                              | ND       | 0.020    |           |                                                      |         |          |              |            |          |      |
| Barium                               | ND       | 0.020    |           |                                                      |         |          |              |            |          |      |
| Cadmium                              | ND       | 0.0020   |           |                                                      |         |          |              |            |          |      |
| Calcium                              | ND       | 1.0      |           |                                                      |         |          |              |            |          |      |
| Chromium                             | ND       | 0.0060   |           |                                                      |         |          |              |            |          |      |
| Lead                                 | ND       | 0.0050   |           |                                                      |         |          |              |            |          |      |
| Magnesium                            | ND       | 1.0      |           |                                                      |         |          |              |            |          |      |
| Potassium                            | ND       | 1.0      |           |                                                      |         |          |              |            |          |      |
| Selenium                             | ND       | 0.050    |           |                                                      |         |          |              |            |          |      |
| Silver                               | ND       | 0.0050   |           |                                                      |         |          |              |            |          |      |
| Sodium                               | ND       | 1.0      |           |                                                      |         |          |              |            |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 12 of 14

## Hall Environmental Analysis Laboratory, Inc.

WO#:

1311335

06-Dec-13

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 11-7-13

Sample ID mb-1

SampType: mblk

TestCode: SIM2320B: Alkalinity

LowLimit

Client ID:

Prep Date:

**PBW** 

Batch ID: R14690

RunNo: 14690

%REC

Analysis Date: 11/8/2013

SPK value SPK Ref Val

SeqNo: 422856

Units: mg/L CaCO3

HighLimit

%RPD

**RPDLimit** Qual

Analyte Total Alkalinity (as CaCO3) Result ND **PQL** 20

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- RSD is greater than RSDlimit O
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit

Page 13 of 14

## Hall Environmental Analysis Laboratory, Inc.

WO#: 1311335

06-Dec-13

**Client:** 

Western Refining Southwest, Inc.

**Project:** 

Injection Well 11-7-13

Sample ID MB-10275 Client ID:

Analyte

**PBW** 

SampType: MBLK Batch ID: 10275

**PQL** 

TestCode: SM2540C MOD: Total Dissolved Solids

RunNo: 14748

Prep Date: 11/11/2013

Analysis Date: 11/12/2013 Result

SeqNo: 424374

SPK value SPK Ref Val %REC LowLimit

Units: mg/L HighLimit

%RPD **RPDLimit**  Qual

Total Dissolved Solids

ND

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit RL

Page 14 of 14



Hall Environmental Analysis Laboratory 4901 Hawkins NE

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

# Albuquerque, NM 97105 Sample Log-In Check List

| Client Name: Western Refining Southw Work Order Number                                 | r. 1311335                              |                                    | RcptNo:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                 |
|----------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Received by/date:                                                                      |                                         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Logged By: Ashley Gallegos 11/8/2013 10:00:00 A                                        | JM                                      | A                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Completed By: Aşhley Gallegos 11/8/2013 2:15:08 PM                                     | A                                       | <del>*</del>                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Reviewed By: M.C. 11/08/13                                                             |                                         | . 0                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Chain of Custody                                                                       |                                         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 1. Custody seals intact on sample bottles?                                             | Yes                                     | No 🗀                               | Not Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
| 2. Is Chain of Custody complete?                                                       | Yes 🗹                                   | No 🗆                               | Not Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
| 3. How was the sample delivered?                                                       | Courier                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| <u>Log In</u>                                                                          |                                         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 4. Was an attempt made to cool the samples?                                            | Yes 🗹                                   | No 🗆                               | na 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| 5. Were all samples received at a temperature of >0° C to 6.0°C                        | Yes 🗹                                   | No 🗆                               | NA 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| 6. Sample(s) in proper container(s)?                                                   | Yes 🗹                                   | No 🗆                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 7. Sufficient sample volume for indicated test(s)?                                     | Yes 🗹                                   | No 🗌                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 8. Are samples (except VOA and ONG) properly preserved?                                | Yes 🗹                                   | No 🗆                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 9. Was preservative added to bottles?                                                  | Yes 🔲                                   | No 🗹                               | NA 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| 10.VOA vials have zero headspace?                                                      | Yes 🗹                                   | No 🗆                               | No VOA Vials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| 11. Were any sample containers received broken?                                        | Yes                                     | No 🗹                               | # of processed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
|                                                                                        |                                         |                                    | # of preserved<br>bottles checked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.                |
| 12.Does paperwork match bottle labels? (Note discrepancies on chain of custody)        | Yes 🗹                                   | No 📙                               | for pH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >12 unless noted) |
| 13. Are matrices correctly identified on Chain of Custody?                             | Yes 🗹                                   | No 🗆                               | Adjusted 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - Wi              |
| 14. Is it clear what analyses were requested?                                          | Yes 🗹                                   | No 🗆                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \ \               |
| 15. Were all holding times able to be met? (If no, notify customer for authorization.) | Yes 🗹                                   | No 🗔                               | Checked by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -d/               |
| (                                                                                      |                                         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Special Handling (if applicable)                                                       |                                         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 16. Was client notified of all discrepancies with this order?                          | Yes 🔲                                   | No 🗆                               | NA 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| Person Notified: Date:                                                                 |                                         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| By Whom: Via:                                                                          | eMail []                                | Phone 🗍 Fax                        | ☐ In Person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
| Regarding:                                                                             | 1 1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | Salara Barangan Salarah Salarah da | and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o |                   |
| Client Instructions:                                                                   | 94. 31                                  |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 17. Additional remarks:                                                                |                                         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 18. Cooler Information                                                                 |                                         | ent to very                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Cooler No Temp °C Condition Seal Intact Seal No 1 1.0 Good Yes                         | Seal Date                               | Signed By                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 1.5 556                                                                                | L                                       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |

| Chain-of-Custody Record                                 |                  |            | Turn-Around                                      | Time:                   |                                         |               |                   |                                                                               |                              | 44                        |          | EN          | VII                 | 20                     |             | 4E              | MT           | - 4 1         |        |                      |
|---------------------------------------------------------|------------------|------------|--------------------------------------------------|-------------------------|-----------------------------------------|---------------|-------------------|-------------------------------------------------------------------------------|------------------------------|---------------------------|----------|-------------|---------------------|------------------------|-------------|-----------------|--------------|---------------|--------|----------------------|
| Client: Western Refining                                |                  |            | Standard                                         | □ Rush                  |                                         |               | -                 |                                                                               |                              |                           |          |             | IS L                |                        |             |                 |              | _             |        |                      |
| •                                                       |                  |            |                                                  | Project Name            | Project Name: www.hallenvironmental.com |               |                   |                                                                               |                              |                           |          |             |                     |                        |             |                 |              |               |        |                      |
| Mailing                                                 | Address          | #50        | CR 4990                                          | Diec                    | Tion W                                  | rell 11       | -7-13             |                                                                               | 4901                         | Haw                       | kins     | NE -        | Albud               | <b>juer</b> qu         | e, N        | M 87            | 109          |               |        |                      |
| Bl                                                      | אינטיני          | Field      | NM874/3                                          | Project #:              |                                         | •             |                   | 4901 Hawkins NE - Albuquerque, NM 87109<br>Tel. 505-345-3975 Fax 505-345-4107 |                              |                           |          |             |                     |                        |             |                 |              |               |        |                      |
| Phone :                                                 | #. 50            | 5-6        | 32-4135                                          |                         |                                         |               |                   | Analysis Request                                                              |                              |                           |          |             |                     |                        |             |                 |              |               |        |                      |
| email o                                                 | r Fax#:          |            |                                                  | Project Mana            | ger:                                    |               |                   | =                                                                             | <u> </u>                     | 2   6                     | 1 2      | 1           | Y S                 | 3 _                    |             |                 |              | 工             | ٠      |                      |
| QA/QC F                                                 | Package:<br>dard |            | Level 4 (Full Validation)                        |                         |                                         |               |                   | TMB's (8021)                                                                  | (Gas o                       | S C                       | 及        | 8270 SIMS)  | AN SAN              | 2 5                    |             |                 |              | Correctly     | Ü      |                      |
| Accredi                                                 |                  |            |                                                  | Sampler: M              | 11 4 0                                  | 66            |                   | IMB.                                                                          | 된                            | 5 4                       | 1        | 2           | <b>₹</b> }          | 808                    |             |                 |              | यस            | 型      | 2                    |
| □ NEL                                                   |                  | □ Othe     | er                                               | On ice                  |                                         | 第四月1          | 307               | $\pm$                                                                         | $\pm 18$                     |                           |          | o           | 2 S                 | § 8                    |             | 8               | Ä            | U             | 4      | اِيَّ ا              |
| □ EDD                                                   | (Type)_          |            |                                                  | Sample                  |                                         | 494           |                   | MTBE                                                                          |                              |                           |          | [일          | 8 Metals            | Š                      | 8           | [<br>-          | 굺            | Ĕ             | Q.     | 7 S                  |
| Date                                                    | Time             | Matrix     | Sample Request ID                                | Container<br>Type and # | Preservative<br>Type                    |               |                   | BTEX + M                                                                      | BTEX + MTBE + TPH (Gas only) | The Solid (GRO) DRO/ MIKO |          | PAH's (8310 | RCRA 8 Metals C. N. | 8081 Pesticides / 8082 | 8260B (VOA) | 8270 (Semi-VOA) | Spitz        | eacTil        | e et s | Air Bubbles (Y or N) |
| 11-7-13                                                 | 8:00             | Hao        | Inj. Well                                        | 5-VOA                   | HCI                                     |               | 001               | <u> </u>                                                                      | <u> </u>                     | 7                         |          | -           | 2 4                 | ( <u> </u>             | 8           | 80              | -            | <u> 44-3</u>  | Ш      | `\                   |
| 1.713                                                   | 0.5              | 1          | 1                                                | ł                       |                                         |               | 001               |                                                                               | +                            | +                         | $\vdash$ |             |                     | +                      |             | X               | $\dashv$     | +             | +      | +                    |
|                                                         |                  |            | <del>                                     </del> | 1-liter                 | amber                                   |               | · · · · · · · · · |                                                                               | +                            | 17                        | ╁        | $\vdash$    | +                   | +                      |             |                 | <del>,</del> | $\mathcal{H}$ | ┽      |                      |
|                                                         |                  |            |                                                  | 1-500m                  |                                         |               |                   |                                                                               | +                            | 12                        | +        | $\vdash$    | -                   | -                      | -           |                 | X            | <del>'</del>  | _      |                      |
|                                                         |                  |            |                                                  | 1-500ml                 |                                         |               |                   |                                                                               | _                            | ×                         | -1       |             | -                   |                        |             |                 | _            |               | $\chi$ |                      |
|                                                         |                  |            |                                                  | 1-250ml                 | Hasoy                                   |               |                   |                                                                               | $\perp$                      |                           | X        |             | $\perp$             |                        |             |                 |              | $\perp$       |        |                      |
|                                                         |                  |            |                                                  | 1-500~                  | HNOZ                                    |               |                   |                                                                               | $\perp$                      |                           | -        |             | $\mathbf{X}$        |                        |             |                 |              |               |        |                      |
|                                                         |                  |            |                                                  | 1-500ml                 | NaOH                                    |               |                   |                                                                               |                              |                           |          |             |                     |                        |             |                 |              | X             |        |                      |
|                                                         |                  | }          | \                                                | 1-500ml                 | ZN Aceta                                | <u>e</u>      |                   |                                                                               |                              | $\perp$                   |          |             |                     |                        |             |                 |              |               | 2      |                      |
|                                                         |                  |            |                                                  |                         |                                         |               |                   |                                                                               |                              |                           |          |             |                     |                        |             |                 |              |               |        |                      |
|                                                         |                  |            |                                                  |                         |                                         |               |                   |                                                                               |                              |                           |          |             |                     |                        |             |                 |              |               |        |                      |
|                                                         |                  |            |                                                  |                         |                                         |               |                   |                                                                               |                              |                           |          |             |                     |                        |             |                 |              |               |        |                      |
|                                                         |                  |            |                                                  |                         |                                         |               |                   |                                                                               |                              |                           |          |             |                     |                        |             |                 | П            |               | T      |                      |
| Date: Time: Relinquished by: 11-7-13 1510 Robert Krakow |                  |            | Received by:  Wistra                             | haete                   | Date 11/-1/3                            | 1510          | Rema              | arks:                                                                         | -                            | -                         | •        | •           | •                   |                        |             |                 |              |               | -      |                      |
| Date:                                                   | Time:            | Relinquish | ed by:                                           | Received by:            | 1                                       | Date (108/13) | Time              |                                                                               |                              |                           |          |             |                     |                        |             |                 |              |               |        |                      |
| 16[9]                                                   | necessary,       | amples sub | mitted to Hall Environmental may be subc         | ontracted to other ac   | credited laboratorie                    |               | as notice of this | posalbili                                                                     | ty. Any                      | sub-co                    | ntracte  | d data w    | ill be cle          | arty nota              | ited on     | the an          | alvtical     | l report      |        |                      |

# **APPENDIX C**



# **Hall Environmental Analysis Laboratory**

# **QUALITY ASSURANCE PLAN**

Effective Date: July 29th, 2013

**Revision 9.7** 

www.hallenvironmental.com

Control Number: 00000144

Approved By:

Andy Freeman

**Laboratory Manager** 

Approved By:

Carolyn Swanson

7/25/8013

Date

Quality Assurance/Quality Control Officer

Approved By:

John Caldwell

Date

Semi-Volatiles Technical Director

Approved By:

Rene Aguilera

Date

**Volatiles Technical Director** 

Approved By:

lan Cameron

Date

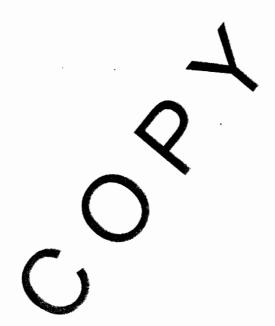
**Inorganics Technical Director** 

Approved By:

Chandler Hardison

Date

Microbiology Technical Director


# **Table of Contents**

| Section | Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>Page</u> |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.0     | Title Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           |
| 2.0     | Table of Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3           |
| 3.0     | Introduction Purpose of Document Objectives Policies                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6           |
| 4.0     | Organization and Responsibility Company Certifications Personnel     Laboratory Director     Laboratory Manager/ Lead Technical Director     Quality Assurance Officer     Business/Project Manager     Section Managers/Technical Directors     Health and Safety/Chemical Hygiene Officer     Analyst I-III     Laboratory Technician     Sample Control Manager     Sample Custodians     Delegations in the Absence of Key Personnal     Personnel Qualifications and Training Organizational Chart | 9           |
| 5.0     | Receipt and Handling of Samples Reviewing Requests, Tenders and Contracts Sampling Procedures Containers Preservation Sample Custody Chain of Custody Receiving Samples Logging in Samples and Storage Disposal of Samples                                                                                                                                                                                                                                                                              | 21          |
| 6.0     | Analytical Procedures List of Procedures Used Criteria for Standard Operating Procedures                                                                                                                                                                                                                                                                                                                                                                                                                | 25          |

Page 3 of 57 Quality Assurance Plan 9.7 Effective July 29th, 2013

| 7.0  | Calibration Thermometers Refrigerators/Freezers  | 30 |
|------|--------------------------------------------------|----|
|      | Ovens                                            |    |
|      | Analytical/Table Top Balances                    |    |
|      | Instrument Calibration                           |    |
|      | pH Meter                                         |    |
|      | Other Analytical Instrumentation and Equipment   |    |
|      | Standards                                        |    |
|      | Reagents                                         |    |
| 8.0  | Maintenance                                      | 34 |
| 9.0  | Data Integrity                                   | 35 |
| 10.0 | Quality Control                                  | 36 |
|      | Internal Quality Control Checks                  |    |
|      | Precision, Accuracy, Detection Limit             | 4  |
|      | Quality Control Parameter Calculations Mean      | 1  |
|      | Standard Deviation                               |    |
|      | Percent Recovery (%R)                            |    |
|      | Confidence Intervals                             | •  |
|      | Relative Percent Difference (RPD)                |    |
|      | Uncertainty Measurements                         |    |
|      | Calibration Calculations                         |    |
|      | Concentration Calculations                       |    |
| 11.0 | Data Reduction, Validation, and Reporting        | 49 |
|      | Data Reduction                                   |    |
|      | Validation                                       |    |
|      | Reports and Records                              |    |
| 12.0 | Corrective Action                                | 51 |
| 13.0 | Quality Assurance Audits, Reports and Complaints | 53 |
|      | Internal/External Systems' Audits                |    |
|      | Management Reviews                               |    |
|      | Complaints                                       |    |
|      | Internal and External Reports                    |    |
| 14.0 | References                                       | 56 |

This Page was intentionally left blank.



Page 5 of 57 Quality Assurance Plan 9.7 Effective July 29th, 2013

#### 3.0 Introduction

## **Purpose of Document**

The purpose of this Quality Assurance Plan is to formally document the quality assurance policies and procedures of Hall Environmental Analysis Laboratory, Inc. (HEAL), for the benefit of its employees, clients, and accrediting organizations. HEAL continually implements all aspects of this plan as an essential and integral part of laboratory operations in order to ensure that high quality data is produced in an efficient and effective manner.

## **Objectives**

The objective of HEAL is to achieve and maintain excellence in environmental testing. This is accomplished by developing, incorporating and documenting the procedures and policies specified by each of our accrediting authorities and outlined in this plan. These activities are carried out by a laboratory staff that is analytically competent, well-qualified, and highly trained. An experienced management team, knowledgeable in their area of expertise, monitors them. Finally, a comprehensive quality assurance program governs laboratory practices and ensures that the analytical results are valid, defensible, reproducible, reconstructable and of the highest quality.

HEAL establishes and thoroughly documents its activities to ensure that all data generated and processed will be scientifically valid and of known and documented quality. Routine laboratory activities are detailed in method project standard operating procedures (SOP). All data reported meets the applicable requirements for the specific method or methods that are referenced, ORELAP, TCEQ, EPA, client specific requirements and/or State Bureaus. In the event that these requirements are ever in contention with each other, it is HEAL's policy to always follow the most prudent requirement available. For specific method requirements refer to HEAL's Standard Operating Procedures (SOP's), EPA methods, Standard Methods 20<sup>th</sup> edition, ASTM methods or state specific methods.

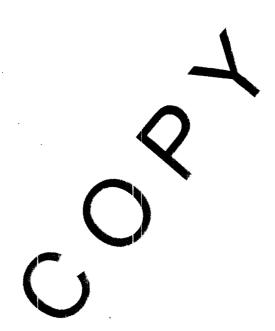
HEAL management ensures that this document is correct in terms of required accuracy and data reproducibility, and that the procedures contain proper quality control measures. HEAL management additionally ensures that all equipment is reliable, well-maintained and appropriately calibrated. The procedures and practices of the laboratory are geared towards not only strictly following our regulatory requirements but also allowing the flexibility to conform to client specific specifications. Meticulous records are maintained for all samples and their respective analyses so that results are well-documented and defensible in a court of law.

The HEAL Quality Assurance/Quality Control Officer (QA/QCO) and upper management are responsible for supervising and administering this quality assurance program, and ensuring each individual is responsible for its proper implementation. All HEAL

management remains committed to the encouragement of excellence in analytical testing and will continue to provide the necessary resources and environment conducive to its achievement.

#### **Policies**

Understanding that quality cannot be mandated, it is the policy of this laboratory to provide an environment that encourages all staff members to take pride in the quality of their work. In addition to furnishing proper equipment and supplies, HEAL stresses the importance of continued training and professional development. Further, HEAL recognizes the time required for data interpretation. Therefore, no analyst should feel pressure to sacrifice data quality for data quantity. Each staff member must perform with the highest level of integrity and professional competence, always being alert to problems that could compromise the quality of their technical work.


Management and senior personnel supervise analysts closely in all operations. Under no circumstance is the willful act or fraudulent manipulation of analytical data condoned. Such acts must be reported immediately to HEAL management. Reported acts will be assessed on an individual basis and resulting actions could result in dismissal. The laboratory staff is encouraged to speak with lab managers or senior management if they feel that there are any undo commercial, financial, or other pressures, which might adversely affect the quality of their work; or in the event that they dispect that data quality has been compromised in any way. HEAL's Quality Assurance/Quality Control Officer is available if any analyst and/or manager wishes to anonymously report any suspected or known breaches in data integrity.

Understanding the importance of meeting customer requirements in addition to the requirements set forth in statutory and requirements, HEAL shall periodically seek feedback from customers and evaluate the feedback in order to initiate improvements.

All proprietary rights and client information at HEAL (including national security concerns) are considered confidential. No information will be given out without the express verbal or written permission of the client. All reports generated will be held in the strictest of confidence.

HEAL shall continually improve the effectiveness of its management system through the use of the policies and procedures outlined in this Quality Assurance Plan. Quality control results, internal and external audit findings, management reviews, new and continual training and corrective and preventive actions are continually evaluated to identify possible improvements and to ensure that appropriate communication processes are taking place regarding the effectiveness of the management system. HEAL shall ensure that the integrity of the quality system is maintained when changes to the system are planned and implemented.

This is a controlled document. Each copy is assigned a unique tracking number and when released to a client or accrediting agency the QA/QCO keeps the tracking number on file. This document is reviewed on an annual basis to ensure that it is valid and representative of current practices at HEAL.



## 4.0 Organization and Responsibility

## Company

HEAL is accredited in accordance with the 2009 TNI standard (see NELAC accredited analysis list in the QA Department or on the company website), through ORELAP and TCEQ and by the Arizona Department of Health Services. Additionally, HEAL is qualified as defined under the State of New Mexico Water Quality Control Commission regulations and the New Mexico State Drinking Water Bureau. HEAL is a locally owned small business that was established in 1991. HEAL is a full service environmental analysis laboratory with analytical capabilities that include both organic and inorganic methodologies and has performed analyses of soil, water, and air as well as various other matrices for many sites in the region. HEAL's client base includes local, state and federal agencies, private consultants, commercial industries as well as individual homeowners. HEAL has performed as a subcontractor to the state of New Mexico and to the New Mexico Department of Transportation. HEAL has been acclaimed by its customers as producing quality results and as being adaptive to client-specific needs.

The laboratory is divided into an organic section, an inorganic section and a microbiology section. Each section has a designated manager/technical director. The technical directors report directly to the laboratory manager, who oversees all operations.

#### Certifications

ORELAP - NELAC Oregon Primary accrediting authority.

TCEQ - NELAC Texas Secondary accrediting authority.

The Arizona Department of Health Services

The New Mexico Drinking Water Bureau

See our website at <u>www.hallenvironmental.com</u> or the QA Office for copies of current licenses and licensed parameters,

In the event of a certification being revoked or suspended, HEAL will notify, in writing, those clients that require the affected certification.

## Personnel

HEAL management ensures the competence of all who operate equipment, perform environmental tests, evaluate results, and sign test reports. Personnel performing specific tasks shall be qualified on the basis of appropriate education, training, experience and /or demonstrated skills.

HEAL ensures that all personnel are aware of the relevance and importance of their activities and how each employee contributes to the achievement of the objectives defined throughout this document.

All personnel shall be responsible for complying with HEAL's quality assurance/quality control requirements that pertain to their technical function. Each technical staff member must have a combination of experience and education to adequately demonstrate specific knowledge of their particular function and a general knowledge of laboratory operations, test methods, quality assurance/quality control procedures, and records management.

All employees' training certificates and diplomas are kept on file with demonstrations of capability for each method they perform. An Organizational Chart can be found at the end of this section and a personnel list is available in the current Controlled Document Logbook.

## **Laboratory Director**

The Laboratory Director is responsible for overall technical direction and business leadership of HEAL. The Laboratory Manager, the Project Manager and Quality Assurance/Quality Control Officer report directly to the Laboratory Director. Someone with a minimum of 7 years of directly elated experience and a bachelor's degree in a scientific or engineering discipline should fill this position.

## Laboratory Manager/Lead Technical Director

The Laboratory Manager stall exercise day—to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results. The Laboratory Manager shall be experienced in the fields of accreditation for which the laboratory is approved or seeking accreditation. The Laboratory Manager shall certify that personnel with appropriate educational and/or technical background perform all tests for which HEAL is accredited. Such certification shall be documented.

The Laboratory Manager shall monitor standards of performance in quality control and quality assurance and monitor the validity of the analyses performed and data generated at HEAL to assure reliable data.

The Laboratory Manager is responsible for the daily operations of the laboratory. The Laboratory Manager is the lead technical director of the laboratory and, in conjunction

with the section technical directors, is responsible for coordinating activities within the laboratory with the overall goal of efficiently producing high quality data within a reasonable time frame.

In events where employee scheduling or current workload is such that new work cannot be incorporated, without missing hold times, the Laboratory Manager has authority to modify employee scheduling, re-schedule projects or, when appropriate, allocate the work to approved subcontracting laboratories.

Additionally, the laboratory manager reviews and approves new analytical procedures and methods, and performs a final review of most analytical results. The Laboratory Manager provides technical support to both customers and HEAL staff.

The Laboratory Manager also observes the performance of supervisors to ensure that good laboratory practices and proper techniques are being taught and utilized, and to assist in overall quality control implementation and strategic planning for the future of the company. Other duties include assisting in establishing laboratory policies that lead to the fulfillment of requirements for various certification programs, assuring that all Quality Assurance and Quality Control documents are reviewed and approved, and assisting in conducting Quality Assurance Audits.

The laboratory manager addresses questions or complaints that cannot be answered by the section managers.

The Laboratory Manager shall have a bachelor a degree in a chemical, environmental, biological sciences, physical sciences or engineering field, and at least five years of experience in the environmental analysis of representative inorganic and organic analytes for which the laboratory seek, or maintains accreditation.

## Quality Assurance Quality Control Officer

The Quality Assurance/Quality Control Officer (QA/QCO) serves as the focal point for QA/QC and shall be responsible for the oversight and/or review of quality control data. The QA/QCO functions independently from laboratory operations and shall be empowered to halt unsatisfactory work and/or prevent the reporting of results generated from an out-of-control measurement system. The QA/QCO shall objectively evaluate data and perform assessments without any outside/managerial influence. The QA/QCO shall have direct access to the highest level of management at which decisions are made on laboratory policy and/or resources. The QA/QCO shall notify laboratory management of deficiencies in the quality system in periodic, independent reports.

The QA/QCO shall have general knowledge of the analytical test methods for which data review is performed and have documented training and/or experience in QA/QC procedures and in the laboratory's quality system. The QA/QCO will have a

minimum of a BS in a scientific or related field and a minimum of three years of related experience.

The QA/QCO shall schedule and conduct internal audits as per the Internal Audit SOP at least annually, monitor and trend Corrective Action Reports as per the Data Validation SOP, periodically review control charts for out of control conditions, and initiate any appropriate corrective actions.

The QA/QCO shall oversee the analysis of proficiency testing in accordance with our standards and monitor any corrective actions issued as a result of this testing.

The QA/QCO reviews all standard operating procedures and statements of work in order to assure their accuracy and compliance to method and regulatory requirements.

The QA/QCO shall be responsible for maintaining and updating this quality manual.

## **Project Managers**

The role of the project manager is to act as a liaison between HEAL and our clients. The Project Manager updates clients on the status of projects in-house, prepares quotations for new work, and is responsible for HEAL's marketing effort.

All new work is assessed by the Project Manager and reviewed with the other managers so as to not exceed the laboratory's capacity. In events where employee scheduling or current workload is such that new work cannot be incorporated without missing hold times, the Project Manager has authority to re-schedule projects.

It is also the duty of the project manager to work with the Laboratory Manager and QA/QCO to insure that before new work is undertaken, the resources required and accreditations requested are available to meet the client's specific needs.

Additionally, the Project Manager can initiate the review of the need for new analytical procedures and methods, and perform a final review of some analytical results. The Project Manager provides technical support to customers. Someone with a minimum of 2 years of directly related experience and a bachelor's degree in a scientific or engineering discipline should fill this position.

#### Technical Directors

Technical Directors are full-time members of the staff at HEAL who exercise day-to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results for their department within HEAL. A Technical Director's duties shall include, but not be limited to, monitoring standards of performance in quality

control and quality assurance, monitoring the validity of the analyses performed and the data generated in their sections to ensure reliable data, overseeing training and supervising departmental staff, scheduling incoming work for their sections, and monitoring laboratory personnel to ensure that proper procedures and techniques are being utilized. They supervise and implement new Quality Control procedures as directed by the QA/QCO, update and maintain quality control records including, but not limited to, training forms, IDOCs, ADOCPs, and MDLs, and evaluate laboratory personnel in their Quality Control activities. In addition, technical directors are responsible for upholding the spirit and intent of HEAL's data integrity procedures.

As Technical Directors of their associated section, they review analytical data to acknowledge that data meets all criteria set forth for good Quality Assurance practices. Someone with a minimum of 2 years of experience in the environmental analysis of representative analytes for which HEAL seeks or maintains accreditation and a bachelor's degree in a scientific or related discipline should fill this position.

The education requirements for a Technical Director may be waived at the discretion of HEAL's accrediting agencies.

## **Section Supervisors**

Section Supervisors are full time members of stantat HEAL who exercise day-to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results for their department within IEAL. Section Supervisors report directly to their technical director. A Section Supervisor's duties shall include, but not be limited to, monitoring standards of performance in quality control and quality assurance, monitoring the validity of the analyses performed and the data generated in their sections to ensure reliable data, overseeing training and supervising departmental staff, scheduling incoming work for their sections, and monitoring laboratory personnel to ensure that proper procedures and techniques are being utilized. They supervise and implement new Quality control procedures as directed by the QA/QCO, update and maintain quality control records including, but not limited to, training forms, IDOCs, ADOCPs, and MDLs, and evaluate laboratory personnel in their Quality Control activities. In addition, Section Supervisors are responsible for upholding the spirit and intent of HEAL's data integrity procedures. Section Supervisors update their Technical Director on the status and needs of their departments and submit all Quality Control documents to their technical director for their review, approval and signature.

As section supervisors, they review analytical data to acknowledge that data meets all criteria set forth for good Quality Assurance practices. Someone with a minimum of 2 years of experience in the environmental analysis of representative analytes for which HEAL seeks or maintains accreditation and a bachelor's degree, or equivalent experience in a scientific or related discipline should fill this position.

## Health and Safety / Chemical Hygiene Officer

Refer to the most recent version of the Health and Safety and Chemical Hygiene Plans for the roles, responsibilities, and basic requirements of the Health and Safety Officer (H&SO) and the Chemical Hygiene Officer (CHO). These jobs can be executed by the same employee.

## Analyst I, If and III

Analysts are responsible for the analysis of various sample matrices including, but not limited to, solid, aqueous, and air, as well as the generation of high quality data in accordance with the HEAL SOPs and QA/QC guidelines in a reasonable time as prescribed by standard turnaround schedules or as directed by the Section Manager or Laboratory Manager.

Analysts are responsible for making sure all data generated is entered in the database in the correct manner and the raw data is reviewed, signed and delivered to the appropriate peer for review. An analyst reports daily to the section manager and will inform them as to material needs of the section specifically pertaining to the analyses performed by the analyst. Additional duties may include reparation of samples for analysis, maintenance of lab instruments or equipment, and cleaning and providing technical assistance to lower level laboratory state.

The senior analyst in the section may be as to perform supervisory duties as related to operational aspects of the section. The malyst may perform all duties of a lab technician.

The position of Analyst is a full or part time fourly position and is divided into three levels. Analyst I, II, and III. All employed hired into an Analyst position at HEAL must begin as an Analyst I and regardless of their education and experience. Analyst I must have a minimum of an AA in a related field or equivalent experience (equivalent experience means years of related experience can be substituted for the education requirement). An Analyst I is responsible for analysis, instrument operation, including calibration and data reduction. Analyst II must have a minimum of an AA in a related field or equivalent experience and must have documented and demonstrated aptitude to perform all functions of an Analyst II. An Analyst II is responsible for the full analysis of their test methods, routine instrument maintenance, purchase of consumables as dictated by their Technical Director, advanced data reduction, and basic data review. Analyst II may also assist Analyst III in method development and, as dictated by their Technical Director, may be responsible for the review and/or revision of their method specific SOPs. Analyst III must have Bachelors degree or equivalent experience and must have documented and demonstrated aptitude to perform all functions of an Analyst III. An Analyst III is responsible for all tasks completed by an Analyst I and II as well as advanced data review, non-routine instrument maintenance, assisting their technical director in basic supervisory duties and method development.

## Laboratory Technician

A laboratory technician is responsible for providing support to analysts in the organics, inorganics and disposal departments. Laboratory Technicians can assist analysts in basic sample preparation, general laboratory maintenance, glassware washing, chemical inventories, sample disposal and sample kit preparation. This position can be filled by someone without the education and experience necessary to obtain a position as an analyst.

## Sample Control Manager

The sample control manager is responsible for receiving samples and reviewing the sample login information after it has been entered into the computer. The sample control manager also checks the samples against the chap-of-custody for any sample and/or labeling discrepancies prior to distribution.

The sample control manager is responsible for sending out samples to the sub-contractors along with the review and shipping if field sampling bottle kits. The sample control manager acts as a liaison between the laboratory and field sampling crew to ensure that the appropriate analytical text is assigned. If a discrepancy is noted, the sample control manager or sample custodian will contact the customer to resolve any questions or problems. The sample control manager is an integral part of the customer service team.

This position should be filled by someone with a high school diploma and a minimum of 2 years of related experience and can also be filled by a senior manager.

#### Sample Custodians

Sample Custodians work directly under the Sample Control Manager. They are responsible for sample intake into the laboratory and into the LiMS. Sample Custodians take orders from our clients and prepare appropriate bottle kits to meet the clients' needs. Sample Custodians work directly with the clients in properly labeling and identifying samples as well as properly filling out legal COCs. When necessary, Sample Custodians contact clients to resolve any questions or problems associated with their samples. Sample Custodians are responsible for distributing samples throughout the laboratory and are responsible for notifying analysts of special circumstances such as short holding times or improper sample preservation upon receipt.

## Sample Disposal Custodian

The sample disposal custodian is responsible for characterizing and disposing of samples in accordance to the most recent version of the sample disposal SOP. The sample disposal custodian collects waste from the laboratory and transports it to the disposal warehouse for storage and eventual disposal. The sample disposal custodian is responsible for maintaining the disposal warehouse and following the requirements for documentation, integrity, chemical hygiene and health and safety as set forth in the various HEAL administrative SOPs. The sample disposal custodian is responsible for overseeing any laboratory technicians employed at the disposal warehouse.

This position should be filled by someone with a high school diploma and a minimum of 1 year of related experience.

## Bookkeeper

The Bookkeeper is responsible for the preparation of qualterly financials and quarterly payroll reports. The bookkeeper monitors payables, receivables, deposits, pays all bills and maintains an inventory of administrative supplies. The Bookkeeper completes final data package assembly and oversees the consignment of final reports. The Bookkeeper assists in the project management of drinking water compliance samples for NMED and NMEFC and any other tasks as assigned by the Laboratory Manager. This position should be filled by someone with a degree in accounting or a minimum of a high school diploma and at least 4 years of directly related experience.

#### Administrative Assistant

The Administrative Assistant is responsible for aiding administrative staff in tasks that include but are not limited to: the processing and consignment of final reports, and the generation of client specific spreadsheets. This position should be filled by someone with a minimum of a high school diploma.

#### IT Specialist

The IT Specialist is responsible for the induction and maintenance of all hard and software technology not maintained through a service agreement. The IT Specialist follows the requirements of this document, all regulatory documents and the EPAs Good Automated Laboratory Practices. This position should be filled by someone with a degree in a computer related field, or at least two years of directly related experience.

## Delegations in the Absence of Key Personnel

Planned absences shall be preceded by notification to the Laboratory Manager. The appropriate staff members shall be informed of the absence. In the case of unplanned absences, the superior shall either assume the responsibilities and duties or delegate the responsibilities and duties to another appropriately qualified employee.

In the event that the Laboratory Manager is absent for a period of time exceeding fifteen consecutive calendar days, another full-time staff member meeting the basic qualifications and competent to temporarily perform this function will be designated. If this absence exceeds thirty-five consecutive calendar days, HEAL will notify ORELAP in writing of the absence and the pertinent qualifications of the temporary laboratory manager.

## **Laboratory Personnel Qualification and Training**

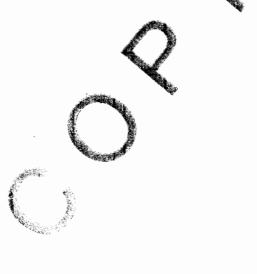
All personnel joining HEAL shall undergo orientation and training. During this period the new personnel shall be introduced to the organization and their responsibilities, as well as the policies and procedures of the company. They shall also undergo on-the-job training and shall work with trained staff. They will be shown required tasks and be observed while performing them.

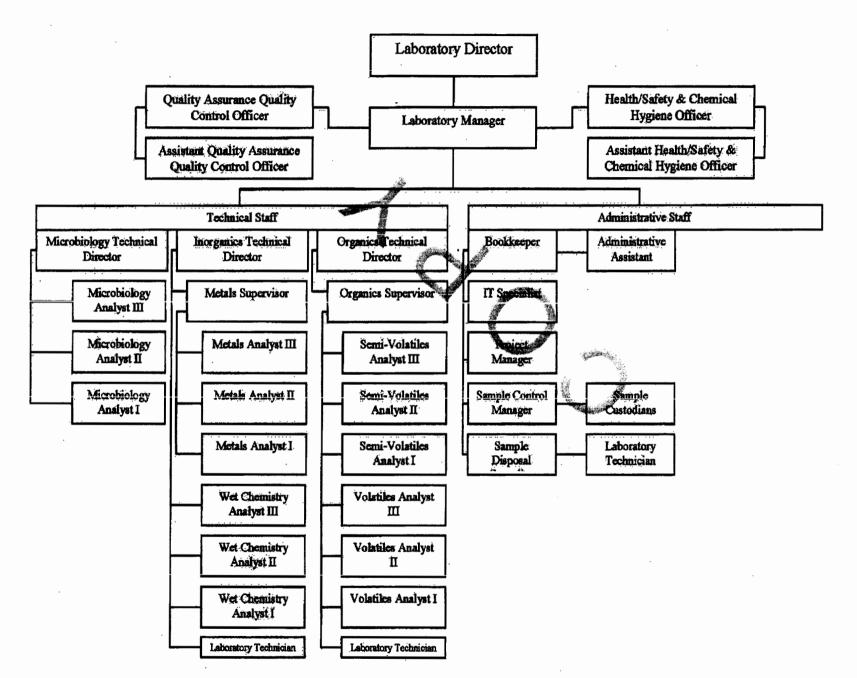
When utilizing staff undergoing training, appropriate supervision shall be dictated and overseen by the appropriate section technical director. Prior to analyzing client samples, a new employee, or an employee to a procedure, must meet the following basic requirements. The SOP and Method(s) for the analysis must be read and signed by the employee indicating that they read, understand, and intend to comply with the requirements of the documents. The employee must undergo documented training. Training is conducted by a senior analyst familiar with the procedure and overseen by the section Technical Director. This training is documented by any means degrated appropriate by the trainer and section Technical Director, and kept on file in the employees file located in the QA/QCO's office. The employee must perform a successful initial Demonstration of Proficiency (IDOC). See the current Document Control Logicok for the training documents and checklists utilized at HEAL to ensure that all of these requirements are met. Once all of the above requirements are met it is incumbent upon the section Technical Director to determine at which point the employee can begin to perform the test unsupervised. Certification to Complete Work Unsupervised (see the current Document Control Logbook) is then filled out by the employee and technical director.

IDOCs are required for all new analysts and methods prior to sample analysis. IDOCs are also required any time there is a change in the instrument, analyte list or method. If more than twelve months have passed since an analyst performed an IDOC and they have not performed the method and/or have not met the continuing DOC requirements, the analyst must perform an IDOC prior to resuming the test.

All IDOCs shall be documented through the use of the certification form which can be found in the current Document Control Logbook. IDOCs are performed by analyzing four Laboratory Control Spikes (LCSs). Using the results of the LCSs the mean recovery is calculated in the appropriate reporting units and the standard deviations of the population sample (n-1) (in the same units) as well as the relative percent difference for each parameter of interest. When it is not possible or pertinent to determine mean and standard deviations HEAL assesses performance against establish and documented criteria dictated in the method SOP. The mean and standard deviation are compared to the corresponding acceptance criteria for precision and accuracy in the test method (if applicable) or in laboratory-generated acceptance criteria. In the event that the HEAL SOP or test method(s) fail to establish the pass/fail criteria the default limits of +/- 20% for calculated recovery and <20% relative percent difference based on the standard deviation will be utilized. If all parameters meet the acceptance criteria, the IDOC is successfully completed. If any one of the parameters do not meet the acceptance criteria, the performance is unacceptable for that parameter and the analyst must either locate and correct the source of the problem and repeat the test for all parameters of interest or repeat the test for all parameters that failed to meet criteria. Repeat failure, however, confirms a general problem with the measurement system. If this occurs the source of the problem must be identified and the test repeated for all parameters of interest.

New employees that do not have prior analysis experience will not be allowed to perform analysis until they have demonstrated attention to detail with minimal errors in the assigned tasks. To ensure a sustained level of quality performance among staff members, continuing demonstration of capability shall be performed at least once a year. These are as an Annual Documentation of Capability shall be performed at least once a


At least once per year an ADOCP must be completed. This is achieved by the acceptable performance of a blind tample (typically by using a PT sample, but can be a single blind (to the analyst) sample; by performing another IDOC, or by summarizing the data of four consecutive laboratory control samples with acceptable levels of precision and accuracy (these limits are those currently listed in the LIMS for an LCS using the indicated test method(s).) ADOCPs are documented using a standard form and are kept on the in each analyst's employee folder.


Each new employee shall be provided with data integrity training as a formal part of their new employee orientation. Each new employee will sign an ethics and data integrity agreement to ensure that they understand that data quality is our main objective. Every HEAL employee recognizes that although turn around time is important, quality is put above any pressure to complete the task expediently. Analysts are not compensated for passing QC parameters nor are incentives given for the quantity of work produced. Data Integrity and Ethics training are performed on an annual basis in order to remind all employees of HEAL's policy on data quality. Employees are required to understand that any infractions of the laboratory data integrity procedures will result in a detailed investigation that could lead to very serious

consequences including immediate termination, debarment, or civil/criminal prosecution.

Training for each member of HEAL's technical staff is further established and maintained through documentation that each employee has read, understood, and is using the latest version of this Quality Assurance Manual. Training courses or workshops on specific equipment, analytical techniques, or laboratory procedures are documented through attendance sheets, certificates of attendance, training forms, or quizzes. This training documentation is located in analyst specific employee folders in the QA/QCO Office. On the front of all methods, SOPs, and procedures for HEAL, there is a signoff sheet that is signed by all pertinent employees, indicating that they have read, understand, and agree to perform the most recent version of the document.

The effectiveness of training will be evaluated during routine data review, annual employee reviews, and internal and external audits. Repetitive errors, complaints and audit findings serve as indicators that training has been ineffective. When training is deemed to have been ineffective a brief review of the training process will be completed and a re-training conducted as soon as possible.





Page 20 of 57 Quality Assurance Plan 9.7 Effective July 29th, 2013

## 5.0 Receipt and Handling of Samples

## **Reviewing Requests, Tenders and Contracts**

All contracts and written requests by clients are closely reviewed to ensure that the client's data quality objectives can be met to their specifications. This review includes making sure that HEAL has the resources necessary to perform the tests to the clients specifications.

When HEAL is unable to meet the clients specifications their samples will be subcontracted to an approved laboratory capable of meeting the client's data quality objectives.

## Sampling

#### **Procedures**

HEAL does not provide field sampling for any projects. Sample kits are prepared and provided for clients upon request. The sample kits contain the appropriate sampling containers (with a preservative when necessary), lately, blue ice (The use of "blue ice" by anyone except HEAL personnel is discouraged because it generally doe not maintain the appropriate temperature of the sample. If blue ice is used, it should be completely frozen at the time of use, the sample should be chilled before packing, and special notice taken at sample receipt to be certain the guired temperature has been maintained.), a cooler, chain-of-custody forms, plastic bags, bubble wrap, and any special sampling instructions. Sample kits are reviewed prior to chipment for accuracy and completeness.

#### Containers

Containers which are sent out for sampling are purchased by HEAL from a commercial source. Glass containers are certified "EPA Cleaned" QA level 1. Plastic containers are certified clean when required. These containers are received with a Certificate of Analysis verifying that the containers have been cleaned according to the EPA wash procedure. Containers are used once and discarded. If the samples are collected and stored in inappropriate containers the laboratory may not be able to accurately quantify the amount of the desired components. In this case, re-sampling may be required.

### **Preservation**

If sampling for analyte(s) requires preservation, the sample custodians fortify the containers prior to shipment to the field, or provide the preservative for the sampler to add in the field. The required preservative is introduced into the vials in uniform amounts and done so rapidly to minimize the risk of contamination. Vials that contain a

preservative are labeled appropriately. If the samples are stored with inappropriate preservatives, the laboratory may not be able to accurately quantify the amount of the desired components. In this case re-sampling may be required.

Refer to the current Login SOP and/or the current price book for detailed sample receipt and handling procedures, appropriate preservation and holding time requirements.

## Sample Custody

## Chain-of-Custody Form

A Chain-of-Custody (COC) form is used to provide a record of sample chronology from the field to receipt at the laboratory. HEAL's COC contains the client's name, address, phone and fax numbers, the project name and number, the project manager's name, and the field sampler's name. It also identifies the date and time of sample collection, sample matrix, field sample ID number, number/volume of sample containers, sample temperature upon receipt, and any sample preservative information.

There is also a space to record the HEAL ID number assigned to samples after they are received. Next to the sample information is a space for the dient to indicate the desired analyses to be performed. There is a section for the client to indicate the data package level as well as any accreditation requirements. Finally, there is a section to track the actual custody of the samples. The custody section contains lines for signatures, dates and tirnes when samples are relinquished and received. The COC form also includes a space to record special sample related instructions, sampling anomalies, time constraints, and any sample disposal considerations.

It is paramount that all COCs arrive at HEAL complete and accurate so that the samples can be processed and allocated for testing in a timely and efficient manner. A sample chain-of-custody form can be found in the current Document Control Logbook or on line at <a href="https://www.hallenvironmental.com">www.hallenvironmental.com</a>.

Should a specific project or client require the use of an internal COC, advanced notification and approval must be obtained. The use of internal COCs are not part of our standard operating procedure.

### **Receiving Samples**

Samples are received by authorized HEAL personnel. Upon arrival, the COC is compared to the respective samples. After the samples and COC have been determined to be complete and accurate, the sampler signs over the COC. The HEAL staff member in turn signs the chain-of-custody, also noting the current date, time, and sample temperature. This relinquishes custody of the samples from the sampler and delegates sample custody to HEAL. The first (white) copy of the COC form is filed in the appropriate sample folder. The second (yellow) copy of the COC form is filed in the

COC file in the sample control manager's office. The third (pink) copy of the COC form is given to the person who has relinquished custody of the samples.

## Logging in Samples and Storage

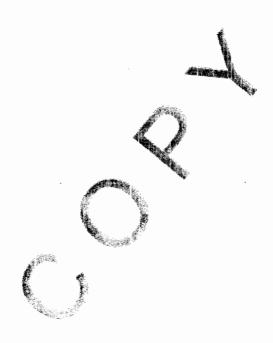
Standard Operating Procedures have been established for the receiving and tracking of all samples (refer to the current HEAL Login SOP). These procedures ensure that samples are received and properly logged into the laboratory and that all associated documentation, including chain of custody forms, is complete and consistent with the samples received. Each sample set is given a unique HEAL tracking ID number. Individual sample locations within a defined sample set are given a unique sample ID suffix-number. Labels with the HEAL numbers, and tests requested, are generated and placed on their respective containers. The pH of preserved, non-volatile samples is checked and noted if out of compliance. Due to the nature of the samples, the pHs of volatiles samples are checked after analysis. Samples are reviewed prior to being distributed for analysis.

All samples received that are requested for compliance, whether on the COC or by contract, will be identified as compliance samples in the LIMS so as to properly notify the analytical staff that they are to be analyzed in accordance with the test method(s) as well as the compliance requirements.

Samples are distributed for analysis based upon the requested tests. In the event that sample volume is limited and different departments at HEAL are required to share the sample, volatile work takes precedence and will always be analyzed first before the sample is sent to any other department for analysis.

Care will be taken to store samples is lated from laboratory contaminants, standards and highly contaminated samples.

All samples that require thermal preservation shall be acceptably stored at a temperature range just above freezing to 6 °C unless specified at another range by the SOP and Method.


Each project (sample set) is entered into the Laboratory Information Management System (LIMS) with a unique ID that will be identified on every container. The ID tag includes the Lab ID, Client ID, date and time of collection, and the analysis/analyses to be performed. The LIMS continually updates throughout the lab. Therefore, at any time, an analyst or manager may inquire about a project and/or samples status. For more information about the login procedures, refer to the Sample Login SOP.

## **Disposal of Samples**

Samples are held at HEAL for a minimum of thirty days and then transferred to the HEAL warehouse for disposal. Analytical results are used to characterize their respective sample contamination level(s) so that the proper disposal can be performed. These wastes will be disposed of according to their hazard as well as their type and level of contamination. Refer to the Hall Environmental Analysis Laboratory Chemical Hygiene Plan and current Sample Disposal SOP for details regarding waste disposal.

Waste drums are provided by an outside agency. These drums are removed by the outside agency and disposed of in a proper manner.

The wastes that are determined to be non-hazardous are disposed of as non-hazardous waste in accordance with the Chemical Hygiene Plan and Sample Disposal SOP.



## 6.0 Analytical Procedures

All analytical methods used at HEAL incorporate necessary and sufficient Quality Assurance and Quality Control practices. A Standard Operating Procedure (SOP) is used to provide the necessary criteria to yield acceptable results. These procedures are reviewed at least annually and revised as necessary and are attached as a pdf file in the Laboratory Information Management System (LIMS) for easy access by each analyst. The sample is often consumed or altered during the analytical process. Therefore, it is important that each step in the analytical process be correctly followed in order to yield valid data.

When unforeseen problems arise, the analyst, technical director, and, when necessary, laboratory manager meet to discuss the factors involved. The analytical requirements are evaluated and a suitable corrective action or resolution is established. The client is notified in the case narrative with the final report or before, if the validity of their result is in question.

#### List of Procedures Used

Typically, the procedures used by HEAL are EPA approved methodologies or 20<sup>th</sup> edition Standard Methods. However, proprietary methods for client specific samples are sometimes used. On occasion, multiple methods or multiple method revisions are used, in this event the SOP is written to include the requirements of all referenced methods. The following tables list EPA and Standard Methods Methods methods with their corresponding analytes and/or instrument classification.

## Methods Utilized at HEAL

Drinking Water(DW) Non-Potable Water (NPW) Solids (S)

| Methodology | Matrix | Title of Method                                                    |  |  |
|-------------|--------|--------------------------------------------------------------------|--|--|
| 180.1       | DW     | "Turbidity (Nephelometric)"                                        |  |  |
|             | NPW    |                                                                    |  |  |
| 200.2       | DW     | "Sample Preparation Procedure For Spectrochemical                  |  |  |
|             | NPW    | Determination of Total Recoverable Elements"                       |  |  |
| 200 7       | DW     | "Determination of Metals and Trace Elements in Water and           |  |  |
| 200.7       | NPW    | Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry" |  |  |
| 200.8       | DW     | "Determination of Trace Elements in Waters and Wastes by           |  |  |
| 200.0       | NPW    | Inductively Coupled Plasma-Mass Spectrometry."                     |  |  |
| 245.1       | DW     | "Marouny (Manual Cold Vanor Tachnique)"                            |  |  |
|             | NPW    | "Mercury (Manual Cold Vapor Technique)"                            |  |  |

| 300.0   | DW<br>NPW<br>S | "Determination of Inorganic Anions by Ion Chromatography"                                                                                                          |
|---------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 413.2   | NPW<br>S       | "Oil and Grease"                                                                                                                                                   |
| 418.1   | NPW<br>S       | "Petroleum Hydrocarbons (Spectrophotometric, Infrared)"                                                                                                            |
| 504.1   | DW             | "EDB, DBCP and 123TCP in Water by Microextraction and Gas Chromatography"                                                                                          |
| 524.2   | DW             | "Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry"                                                     |
| 552.3   | DW             | "Determination of Haloacetic Acids and Dalapon in Drinking Water by Ion-Exchange Liquid-Solid Extraction and Gas Chromatography with an Electron Capture Detector" |
| 624     | NPW            | Appendix A to Part 136 Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater Method 624-Purgeables"                                         |
| 1311    | s              | "Toxicity Characteristic Leaching Proceedire"                                                                                                                      |
| 1311ZHE | S              | "Toxicity Characteristic Leaching Procedure"                                                                                                                       |
| 1664A   | NPW            | "N-Hexane Extractable Material HEM; Oil and Grease) and Silica Gel Treated N-Hexana Extractable Material) by Extraction and Gravimetry"                            |
| 3005A   | NPW            | "Acid Digestion of Water, for Total Recoverable or Dissolved Metals for Analysis by FLAA or ICP Spectroscopy"                                                      |
| 3010A   | NPW            | "Acid Digestion of Agueous Samples and Extracts for Total Metals for Analysis by TLAA or ICP Spectroscopy"                                                         |
| 3050B   | S              | "Acid Digestion of Sediment, Sludge, and Soils"                                                                                                                    |
| 3510C   | DW<br>NPW      | "Separatory Funnel Liquid-Liquid Extraction"                                                                                                                       |
| 3540    | S              | "Soxhlet Extraction"                                                                                                                                               |
| 3545    | s              | "Pressurized Fluid Extraction(PFE)"                                                                                                                                |
| 3665    | NPW<br>S       | "Sulfuric Acid/Permanganate Cleanup"                                                                                                                               |
| 5030B   | NPW            | "Purge-and-Trap for Aqueous Samples"                                                                                                                               |
| 5035    | s              | "Closed-System Purge-and-Trap and Extraction for Volatile Organics in Soil and Waste Samples"                                                                      |
| 6010B   | NPW<br>S       | "Inductively Coupled Plasma-Atomic Emission Spectrometry"                                                                                                          |
| 7470A   | NPW            | "Mercury in Liquid Waste (Manual Cold-Vapor Technique)"                                                                                                            |
|         | ····           |                                                                                                                                                                    |

| 7471A            | s         | "Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)"                                                         |
|------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------|
| 8021B            | NPW<br>S  | "Aromatic and Halogenated Volatiles By Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors" |
| 0045D            | NPW       | "Nonhalogenated Volatile Organics by Gas Chromatography"                                                                    |
| 8015D            | s         | (Gasoline Range and Diesel Range Organics)                                                                                  |
| 8081A            | NPW<br>S  | "Organochlorine Pesticides by Gas Chromatography"                                                                           |
| 8082             | NPW<br>S  | "Polychlorinated Biphenyls (PCBs) by Gas Chromatography"                                                                    |
| 8260B            | NPW<br>S  | "Volatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS)"                                               |
| 8270C            | NPW<br>S  | "Semivolatile Organic Compounds by Gas Chromatography/<br>Mass Spectrometry (GC/MS)"                                        |
| 8310             | NPW<br>S  | "Polynuclear Aromatic Hydrocarbons"                                                                                         |
| 9060             | NPW       | "Total Organic Carbon"                                                                                                      |
| 9067             | NPW<br>S  | "Phenolics (Spectrophotometric, MBTH With Distillation)"                                                                    |
| 9095A            | S         | "Paint Filter Liquids Test"                                                                                                 |
| H-8167           | DW<br>NPW | "Method 8167 Chlorine, Total                                                                                                |
| Walkley/Black    | S         | FOC/TOC WB                                                                                                                  |
| SM2320 B         | DW<br>NPW | "Alkalinity"                                                                                                                |
| SM2340B          | NPW       | "2340 Hayaness"                                                                                                             |
| SM2510B          | DW<br>NPW | "2510 Conductivity"                                                                                                         |
| SM2540 B         | NPW       | "Total Solids Dried at 103-105° C"                                                                                          |
| SM2540 C         | DW<br>NPW | "Total Dissolved Solids Dried at 180° C"                                                                                    |
| SM2540 D         | NPW       | "Total Suspended Solids Dried at 103-105° C"                                                                                |
| SM4500-H+B       | DW<br>NPW | "pH Value"                                                                                                                  |
| SM4500-NH3<br>C  | NPW<br>S  | "4500-NH3" Ammonia                                                                                                          |
| SM4500-Norg<br>C | NPW<br>S  | "4500-Norg" Total Kjeldahl Nitrogen (TKN)                                                                                   |

| SM5210 B | NPW       | "5210 B. 5-day BOD Test"                    |
|----------|-----------|---------------------------------------------|
| SM5310 B | DW        | "5310" Total Organic Carbon (TOC)           |
| SM9223B  | NPW<br>DW | "9223 Enzyme Substrate Coliform Test"       |
| 8000B    | NPW<br>S  | "Determinative Chromatographic Separations" |
| 8000C    | NPW<br>S  | "Determinative Chromatographic Separations" |

## Criteria for Standard Operating Procedures

HEAL has Standard Operating Procedures (SOPs) for each of the test methods listed above. These SOPs are based upon the listed methods and detail the specific procedure and equipment utilized as well as the quality requirements necessary to prove the integrity of the data. SOPs are reviewed or revised every twelve months or sooner if necessary. The review/revision is documented in the Master SOP Logbook filed in the QA/QC Office. All SOPs are available in the LIMS under the Documents and SOPs menu.

Hand written corrections or alterations to SOPs are not permitted. In the event that a correction is needed and a revision is not immediately possible, a corrective action report will be generated documenting the correction or alteration, signed by the section Technical Director and the QA/QC Officer and will be scanned into the current SOP and will document the change until a new revision is possible.

Controlled documents such as calibration summary forms, analysis bench sheets, etc. are tracked as appendices in SOPs, through the Controlled Document Logbook with copies available through the LIMS or through the MOAL so bound logbooks.

Each HEAL test method SOP shall include or reference the following topics where applicable:

Identification of the test method:

Applicable matrix or matrices;

Limits of detection and quantitation;

Scope and application, including parameters to be analyzed;

Surnmary of the test method:

Definitions:

Interferences:

Safety:

Equipment and supplies;

Reagents and standards:

Sample collection, preservation, shipment and storage;

Quality control parameters:

Page 28 of 57 Quality Assurance Plan 9.7 Effective July 29th, 2013 Calibration and standardization;

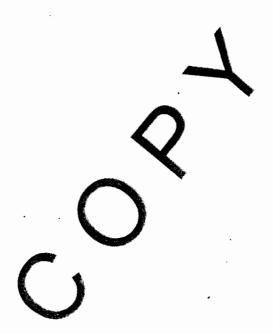
Procedure:

Data analysis and calculations;

Method performance;

Pollution prevention;

Data assessment and acceptance criteria for quality control measures;


Corrective actions for out-of-control data;

Contingencies for handling out-of-control or unacceptable data;

Waste management;

References; and

Any tables, diagrams, flowcharts and validation data.



#### 7.0 Calibration

All equipment and instrumentation used at HEAL are operated, maintained and calibrated according to manufacturers' guidelines, as well as criteria set forth in applicable analytical methodology. Personnel who have been properly trained in their procedures perform the operation and calibration. Brief descriptions of the calibration processes for our major laboratory equipment and instruments are found below.

#### **Thermometers**

The thermometers in the laboratory are used to measure the temperatures of the refrigerators, freezers, ovens, water baths, incubators, hot blocks, ambient laboratory conditions, TCLP Extractions, digestion blocks, and samples at the time of log-in. All NIST traceable thermometers are either removed from use upon their documented expiration date or they are checked annually with a NIST-certified thermometer and a correction factor is noted on each thermometer log. See the most current Login SOP for detailed procedures on this calibration procedure.

Data Loggers are used to record refrigerator temperatures. These data loggers are calibrated quarterly with NIST-certified thermometers.

The NIST thermometer should be recalibrated at least every five years or whenever the thermometer has been exposed to temperature extremes.

#### Refrigerators/Freezers

Each laboratory refrigerator or freezer contains a mermometer capable of measuring to a minimum precision of 0.1°C. The thermometers are kept with the bulb immersed in liquid. Each day of use, the temperatures of the refrigerators are recorded to insure that the refrigerators are within the required designated range. Samples are stored separately from the standards to reduce the risk of contamination.

See the current Catastrophic Failure SOP for the procedure regarding how to handle failed refrigerators or freezers.

#### **Ovens**

The ovens contain thermometers graduated by 1° C. The ovens are calibrated quarterly against NIST thermometers and checked each day of use as required and in whatever way is dictated by or appropriate for the method in use.

# **Analytical and Table Top Balances**

The table top balances are capable of weighing to a minimum precision of 0.01 grams. The analytical balances are capable of weighing to a minimum precision of 0.0001 grams. Records are kept of daily calibration checks for the balances in use. Working weights are used in these checks. The balances are annually certified by an outside source and the certifications are on file with the QA/QCO.

Balances, unless otherwise indicated by method specific SOPs, will be checked each day of use with at least two weights that will bracket the working range of the balance for the day. Daily balance checks will be done using working weights that are calibrated annually against Class S weights. Class S weights are calibrated by an external provider as required. The Class S weights are used once a year, or more frequently if required, to assign values to the Working Weights. During the daily balance checks, the working weights are compared to their assigned values and must pass in order to validate the calibration of the balance. The assigned values, as well as the taily checks, for the working weights are recorded in the balance logbook for each balance.

#### Instrument Calibration

An instrument calibration is the relationship between the known concentrations of a set of calibration standards introduced into an analytical instrument and the measured response they produce. Calibration curve standards are a prepared series of aliquots at various known concentration levels from a primary source reference standard. Specific mathematical types of calibration techniques are outlined in SW-846 8000B and/or 8000C. The entire initial calibration must be performed prior to sample analyses.

The lowest standard in the calibration curve must be at or below the required reporting limit.

Refer to the current SOP to determine the minimum requirement for calibration points.

Most compounds tend to be linear and a linear approach should be favored when linearity is suggested by the calibration data. Non-linear calibration should be considered only when a linear approach cannot be applied. It is not acceptable to use an alternate calibration procedure when a compound fails to perform in the usual manner. When this occurs, it is indicative of instrument issues or operator error.

If a non-linear calibration curve fit is employed, a minimum of six calibration levels must be used for second-order (quadratic) curves.

When more than 5 levels of standards are analyzed in anticipation of using second-order calibration curves, all calibration points MUST be used regardless of the calibration option

employed. The highest or lowest calibration point may be excluded for the purpose of narrowing the calibration range and meeting the requirements for a specific calibration option. Otherwise, unjustified exclusion of calibration data is expressly forbidden.

Analytical methods vary in QC acceptance criteria. HEAL follows the method specific guidelines for QC acceptance. The specific acceptance criteria are outlined in the analytical methods and their corresponding SOPs.

#### pH Meter

The pH meter measures to a precision of 0.01 pH units. The pH calibration logbook contains the calibration before each use, or each day of use, if used more than once per day. It is calibrated using a minimum of 3 certified buffers. Also available with the pH meter is a magnetic stirrer with a temperature sensor. See the current pH SOP (SM4500 H+ B) for specific details regarding calibration of the pH probe.

# Other Analytical Instrumentation and Equipment

The conductivity probe is calibrated as needed and checked daily when in use.

Eppendorf (or equivalent brands) pipettes are checked an avimetrically prior to use.

#### **Standards**

All of the source reference standards used are ontered from a reliable commercial vendor. A Certificate of Analysis (CoA), which verifies the duality of the standard, accompanies the standards from the vendor. The Certificates of Analysis are dated and stored on file by the Technical Directors or their designee. These standards are traceable to the National Institute of Standards (NIST). When salts are purchased and used as standards the certificate of purity must be obtained from the vendor and filed with the CoAs.

All standard solutions, calibration curve preparations, and all other quality control solutions are labeled in a manner that can be traced back to the original source reference standard. All source reference standards are entered into the LIMS with an appropriate description of the standard. Dilutions of the source reference standard (or any mixes of the source standards) are fully tracked in the LIMS. Standards are labeled with the date opened for use and with an expiration date.

As part of the quality assurance procedures at HEAL, analysts strictly adhere to manufacturer recommendations for storage times/expiration dates and policies of analytical standards and quality control solutions.

#### Reagents

HEAL ensures that the reagents used are of acceptable quality for their intended purpose. This is accomplished by ordering high quality reagents and adhering to good laboratory practices so as to minimize contamination or chemical degradation. All reagents must meet any specifications noted in the analytical method. Refer to the current Purchase of Consumables SOP for details on how this is accomplished and documented.

Upon receipt, all reagents are assigned a separate ID number, and logged into the LIMS. All reagents shall be labeled with the date received into the laboratory and again with the date opened for use. Recommended shelf life, as defined by the manufacturer, shall be documented and controlled. Dilutions or solutions prepared shall be clearly labeled, dated, and initialed. These solutions are traceable back to their primary reagents and do not extend beyond the expiration date listed for the primary reagent.

All gases used with an instrument shall meet specifications of the manufacturer. All safety requirements that relate to maximum and/or minimum allowed pressure, fitting types, and leak test frequency, shall be followed. When a new tank of gas is placed in use, it shall be checked for leaks and the date put in use will be written in the instrument maintenance logbook.

HEAL continuously monitors the quality of the reagent water and provides the necessary indicators for maintenance of the purification systems in order to assure that the quality of laboratory reagent water meets established criteria or all analytical methods. The majority of HEAL methods utilize medium quality deionized magent water maintained at a resistivity greater than  $1M\Omega$  in accordance with SM1080.

Reagent blank samples are also analyzed to ensure that no contamination is present at detectable levels. The frequency of reagent blank analysis is typically the same as calibration verification samples. Refrigerator storage blanks are stored in the volatiles refrigerator for a period of one week and analyzed and replaced once a week.

#### 8.0 Maintenance

Maintenance logbooks are kept for each major instrument and all support equipment in order to document all repair and maintenance. In the front of the logbook, the following information is included:

Unique Name of the Item or Equipment
Manufacturer
Type of Instrument
Model Number
Serial Number
Date Received and Date Placed into Service
Location of Instrument
Condition of Instrument Upon Receipt

For routine maintenance, the following information shall be included in the log:

Maintenance Date
Maintenance Description
Maintenance Performed by Initials

A manufacturer service agreement (or equivalent) covers most major instrumentation to assure prompt and reliable response to maintenant needs beyond HEAL instrument operator capabilities.

Refer to the current Maintenance and Troubleshooting SOP for each section in the laboratory for further information.

# 9.0 Data integrity

For HEAL's policy on ethics and data integrity, see section 3.0 of this document. Upon being hired, and annually thereafter, all employees at HEAL undergo documented data integrity training. All new employees sign an Ethics and Data Integrity Agreement, documenting their understanding of the high standards of integrity required at HEAL and outlining their responsibilities in regards to ethics and data integrity. See the current Document Control Logbook for a copy of this agreement.

In instances of ethical concern, analysts are required to report the known or suspected concern to their Technical Director, the Laboratory Manager, or the QA/QCO. This will be done in a confidential and receptive environment, allowing all employees to privately discuss ethical issues or report items of ethical concern.

Once reported and documented, the ethical concern will be immediately elevated to the Laboratory Manager and the need for an investigation, analyst remediation, or termination will be determined on a case-by-case basis.

All reported instances of ethical concern will be thoroughly documented and handled in a manner sufficient to rectify any breaches in data integrity with the emphasis on preventing similar incidences from happening in the future.



# 10.0 Quality Control

# **Internal Quality Control Checks**

HEAL utilizes various internal quality control checks, including duplicates, matrix spikes, matrix spike duplicates, method blanks, laboratory control spikes, laboratory control spike duplicates, surrogates, internal standards, calibration standards, quality control charts, proficiency tests and calculated measurement uncertainty.

Refer to the current method SOP to determine the frequency and requirements of all quality controls. In the event that the frequency of analysis is not indicated in the method specific SOP, duplicate samples, laboratory control spikes (LCS), Method Blanks (MB), and matrix spikes and matrix spike duplicates (MS/MSD) are analyzed for every batch of twenty samples.

When sample volume is limited on a test that requires an MS/MSD an LCSD shall be analyzed to demonstrate precision and accuracy and when possible a sample duplicate will be analyzed.

Duplicates are identical tests repeated for the same sample of matrix spike in order to determine the precision of the test method. A Relative Percent Difference (RPD) is calculated as a measure of this precision. Unless indicated in the SOP, the default acceptance limit is </= 20%.

Matrix Spikes and Matrix Spike Duplicates are spiked samples (MS/MSD) that are evaluated with a known added quantity of a target compound. This is to help determine the accuracy of the analyses and to determine the matrix effects on analyte recovery. A percent recovery is calculated to assess the quality of the accuracy. In the event that the acceptance criteria is not outlined in the SOP, a default limits of 70 430% will be utilized. When an MSD is employed an RPD is calculated and when not indicated in the SOP shall be acceptable at

When appropriate for the method, is Method Blank should be analyzed with each batch of samples processed to assess contamination levels in the laboratory. MBs consist of all the reagents measured and treated as they are with samples, except without the samples. This enables the laboratory to ensure clean reagents and procedures. Guidelines should be in place for accepting or rejecting data based on the level of contamination in the blank. In the event that these guidelines are not dictated by the SOP or in client specific work plans, the MB should be less than the MDL reported for the analyte being reported.

A Laboratory Control Spike and Laboratory Control Spike Duplicate (LCS/LCSD) are reagent blanks, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. It is generally used to establish intra-laboratory or analyst-specific precision and bias or to assess the performance of all or a portion of the measurement system. Guidelines are outlined in each

SOP for the frequency and pass fail requirements for LCS and LCSDs. These limits can be set utilizing control charts as discussed below.

Surrogates are utilized when dictated by method and are substances with properties that mimic the analytes of interest. The surrogate is an analyte that is unlikely to be found in environmental samples. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for surrogates.

Internal Standards are utilized when dictated by the method and are known amounts of standard added to a test portion of a sample as a reference for evaluating and controlling the precision and bias of the applied analytical method. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for Internal Standards.

Proficiency Test (PT) Samples are samples provided by an unbiased third party. They are typically analyzed twice a year, between five and seven months apart, or at any other interval as defined in the method SOP. They contain a pre-determined concentration of the target compound, which is unknown to HEAL. HEAL's management and all analysts shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance untilia, sequence of analytical steps, number of replicates and other procedures as used when analyzing routine samples. PT results are reported as normal samples, within the working range of the associated calibration curve. In the event an analyte concentration is less than the PQL, the result shall be reported as less than the PQL.

With regards to analyzing PT Samples HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seek accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall not attempt to obtain the assigned value of any PT sample from the PT Provider.

Upon receiving a Not Acceptable PT result for any analyte, a root cause analysis is conducted and the cause of the failure determined and corrected. As defined by TNI, two out of the past three PTs must be acceptable to maintain accreditation for any given analyte. If this requirement is not met, a successful history will be reestablished by the analysis of an additional PT sample. For accredited tests, the PT provider will be notified, when the PT is for corrective action purposes. The analysis dates of successive PT samples for the same TNI accredited analyte shall be at least fifteen days apart.

Calibration standards are standards run to calibrate. Once the calibration is established the same standards can be analyzed as Continuing Calibration Verifications (CCV), used to confirm the consistency of the instrumentation. Calibration standards can be utilized at the beginning and end of each batch, or more frequently as required. Typically Continuing

Calibration Blanks (CCB) are run in conjunction with CCVs. Refer to the current method SOP for frequency and pass/fail requirements of CCVs and CCBs.

Control Limits are limits of acceptable ranges of the values of quality control checks. The control limits approximate a 99% confidence interval around the mean recovery. Any matrix spike, surrogate, or LCS results outside of the control limits require further evaluation and assessment. This should begin with the comparison of the results from the samples or matrix spike with the LCS results. If the recoveries of the analytes in the LCS are outside of the control limits, then the problem may lie with the application of the extraction, with cleanup procedures, or with the chromatographic procedure. Once the problem has been identified and addressed, corrective action may include reanalysis of samples or reextraction followed by reanalysis. When the LCS results are within the control limits, the issue may be related to the sample matrix or to the use of an inappropriate extraction. cleanup, and/or determinative method for the matrix. If the results are to be used for regulatory compliance monitoring, then steps must be taken to demonstrate that the analytes of concern can be determined in the sample matrix at the levels of interest. Data generated with laboratory control samples that fall outside of the established control limits are judged to be generated during an "out-of-control" situation. These data are considered suspect and shall be repeated or reported with qualifiers.

Control limits are to be updated only by Technical Directors, action Supervisors or the Quality Assurance Officer. Control limits should be established and updated according to the requirements of the method being utilized. When the method does not specify, and control limits are to be generated or updated for test the following guidelines shall be utilized.

Limits should typically be generated utilizing the most recent 20-40 data values. In order to obtain an even distribution across multiple instruments and to include more than a single day's worth of data, surrogate limits should be generated using around 100 data values. The data values used shall not reuse values that there included in the previous Control Limit update. The data values shall also be reviewed by the LIMS for any Grubbs Outliers, and if identified, the outliers must be removed prior to generating new limits. The results used to update control limits should meet all other QC criteria associated with the determinative method. For example, MS/MSD resoveries from a GC/MS procedure should be generated from samples analyzed after a valid tune and a valid initial calibration that includes all analytes of interest. Additionally, no analyte should be reported when it is beyond the working range of the calibration currently in use. MS/MSD and surrogate limits should be generated using the same set of extraction, cleanup, and analysis procedures.

All generated limits should be evaluated for appropriateness. Where limits have been established for MS/MSD samples, the LCS/LCSD limits should fall within those limits, as the LCS/LCSD are prepared in a clean matrix. Surrogate limits should be updated using all sample types and should be evaluated to ensure that all instruments as well as a reasonable dispersion across days are represented by the data. LCS/LCSD recovery limits should be evaluated to verify that they are neither inappropriately wide nor unreasonably tight. The default LCS/LCSD acceptance limits of 70-130% and RPD of 20% (or those limits

specified by the method for LCS/LCSD and/or CCV acceptability), should be used to help make this evaluation. Technical directors may choose to use warning limits when they feel their generated limits are too wide, or default LCS limits when they feel their limits have become arbitrarily tight.

Once new Control Limits have been established and updated in the LIMS, the Control Charts shall be printed and reviewed by the appropriate section supervisor and primary analyst performing the analysis for possible trends and compared to the previous Control Charts. The technical director initials the control charts, indicating that they have been reviewed and that the updated Limits have been determined to be accurate and appropriate. Any manual alterations to the limits will be documented and justified on the printed control chart. These initialed charts are then filed in the QA/QCO office.

Once established, control limits should be reviewed after every 20-30 data values and updated at least every six months, provided that there are sufficient points to do so. The limits used to evaluate results shall be those in place at the time that the sample was analyzed. Once limits are updated, those limits apply to all subsequent analyses.

When updating surrogate control limits, all data, regardless de sample/QC type, shall be updated together and assigned one set of limits for the same method/matrix.

In the event that there are insufficient data points to update limits that are over a year old, the default limits, as established in the method or SOB shall be re-instated. Refer to the requirements in SW-846 method 8000B and 8000C for further guidance on generating control limits.

Calculated Measurement Uncertainty is calculated annually using LCSs in order to determine the laboratory specific uncertainty associated with each test method. These uncertainty values are available to our clients upon request and are utilized as a trending tool internally to determine the effectiveness of new variables introduced into the procedure over time.

# **Client Requested QC**

Occasionally certain clients will require QC that is not defined by or covered in the SOPs. These special requests will be issued to all analysts and data reviewers in writing and the analysts and data reviewers will be provided with guidance on how to properly document the client requested deviation/QC in their preparation and analytical batches.

# Precision, Accuracy, Detection Levels

#### Precision

The laboratory uses sample duplicates, laboratory control spike duplicates, and matrix spike duplicates to assess precision in terms of relative percent difference

(RPD). HEAL requires the RPD to fall within the 99% confidence interval of established control charts or an RPD of less than 20% if control charts are not available. RPD's greater than these limits are considered out-of-control and require an appropriate response.

RPD = 2 x (Sample Result - Duplicate Result) X 100 (Sample Result + Duplicate Result)

# **Accuracy**

The accuracy of an analysis refers to the difference between the calculated value and the actual value of a measurement. The accuracy of a laboratory result is evaluated by comparing the measured amount of QC reference material recovered from a sample and the known amount added. Control limits can be established for each analytical method and sample matrix. Recoveries are assessed to determine the method efficiency and/or the matrix effect.

Analytical accuracy is expressed as the Percent Recovery (%R) of an analyte or parameter. A known amount of analyte is added to an environmental sample before the sample is prepared and subsequently analyzed. This equation used to calculate percent recovery is:

%Recovery = {(concentration\* recovered)/(concentration\* added)} X 100

\*or amount

HEAL requires that the Percent Recovery to fall within the 99 % confidence interval of established control limits. A value that falls of tside of the confidence interval requires a warning and process evaluation. The confidence intervals are calculated by determining the mean and cample standard deviation. If control limits are not available, the range of 80 to 120% is used unless the specific method dictates otherwise. Percent Recoveries outside of this range mandate additional action such as analyses by Method of Standard Additions, additional sample preparation(s) where applicable, method changes, and out-of-control action or data qualification.

#### **Detection Limit**

Current practices at HEAL define the Detection Limit (DL) as the smallest amount that can be detected above the baseline noise in a procedure within a stated confidence level.

HEAL presently utilizes an Instrument Detection Limit (IDL), a Method Detection Limit (MDL), and a Practical Quantitation Limit (PQL). The relationship between these levels is approximately

IDL: MDL: PQL = 1:5:5.

The IDL is a measure of the sensitivity of an analytical instrument. The IDL is the amount which, when injected, produces a detectable signal in 99% of the analyses at that concentration. An IDL can be considered the minimum level of analyte concentration that is detectable above random baseline noise.

The MDL is a measure of the sensitivity of an analytical method. MDL studies are required annually for each quality system matrix, technology and analyte, unless indicated otherwise in the referenced method. An MDL determination (as required in 40CFR part 136 Appendix B) consists of replicate spiked samples carried through all necessary preparation steps. The spike concentration is three times the standard deviation of three replicates of spikes. At least seven replicates are spiked and analyzed and their standard deviation(s) calculated. Routine variability is critical in passing the 10 times rule and is best achieved by running the MDLs over different days and when possible over several calibration events. Standard Methods and those methods used for drinking water analysis must have MDL studies that are performed over a period of at least three days in order to include day to day variations. The method detection limit (MDL) can be calculated using the standard deviation according to the formula: Service Control

$$MDL = s * t (99%),$$

where t (99%) is the Student's t-value for the 99% confidence interval. The t-value depends on the number of trials used in calculating the sample standard deviation, so choose the appropriate value according to the number of trials.

| Number of Trial | t(92%) |
|-----------------|--------|
| 6               | 3 6    |
| 7               | 6.14   |
| 8               | 3.00   |
| 9               | 2.90   |
| 2000            |        |

The calculated MDL must not be less than 10 times the spiked amount or the study must be performed again with a lower concentration.

Where there are multiple MDL values for the same test method in the LIMS the highest MDL value is utilized.

The PQL is significant because different laboratories can produce different MDLs although they may employ the same analytical procedures, instruments and sample matrices. The PQL is about two to five times the MDL and represents a practical, and routinely achievable, reporting level with a good certainty that the reported value is reliable. It is often determined by regulatory limits. The reported PQL for a sample is dependent on the dilution factor utilized during sample analysis.

In the event that an analyte will not be reported less than the PQL, an MDL study is not required and a PQL check shall be done, at least annually, in place of the MDL study. The PQL check shall consist of a QC sample spiked at or below the PQL. All sample-processing and analysis steps of the analytical method shall be included in the PQL check and shall be done for each quality system matrix, technology, and analyte. A successful check is one where the recovery of each analyte is within the established method acceptance criteria. When this criterion is not defined by the method or SOP, a default limit of +/-50% shall be utilized.

# **Quality Control Parameter Calculations**

#### Mean

The sample mean is also known as the arithmetic average. It can be calculated by adding all of the appropriate values together, and dividing this sum by the number of values.

Average =  $(\Sigma x_i) / n$ 

 $x_i$  = the value x in the  $i^{th}$  trial n = the number of trials

#### Standard Deviation

The sample standard deviation, represented by s, is a measure of dispersion. The dispersion is considered to be the difference between the average and each of the values x<sub>i</sub>. The variance, s<sub>i</sub> can be calculated by summing the squares of the differences and dividing by the number of differences. The sample standard deviation, s, can be found by the pumper root of the variance.

Standard deviation =  $s = \left[\sum (x_i - average)^2 / (n-1)\right]^{\frac{1}{2}}$ 

Percent Recovery (LCS and LCSD)

Percent Recovery = (Spike Sample Result) X100 (Spike Added)

Percent Recovery (MS, MSD)

Page 42 of 57 Quality Assurance Plan 9.7 Effective July 29th, 2013

# Percent Recovery = (Spike Sample Result – Sample Result) X100 (Spike Added)

#### **Control Limits**

Control Limits are calculated by the LIMS using the average percent recovery (x), and the standard deviation (s).

Upper Control Limit = x + 3sLower Control Limit = x - 3s

These control limits approximate a 99% confidence interval around the mean recovery.

# **RPD (Relative Percent Difference)**

Analytical precision is expressed as a percentage of the difference between the results of duplicate samples for a given analyst. Relative percent difference (RPD) is calculated as follows:

RPD = 2 x (Sample Result – Duplicate Result) (Sample Result + Duplicate Result)

# **Uncertainty Measurements**

Uncertainty, as defined by ISO, is the parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurement. Ultimately, uncertainty measurements are used to state how good a test result is and to allow the end user of the data to properly interpret their reported data. All procedures allow for some uncertainty. For most analyses, the components and estimates of uncertainty are reduced by following well-established test methods. To further reduce uncertainty, results generally are not reported below the lowest calibration point (PQL) or above the highest calibration point (UQL). Understanding that there are many influential quantities affecting a measurement result, so many in fact that it is impossible to identify all of them, HEAL calculates measurement uncertainty at least annually using LCSs. These estimations of measurement uncertainty are kept on file in the method folders in the QA/QC office.

Measurement Uncertainty contributors are those that may be determined statistically. These shall be generated by estimating the overall uncertainty in the entire analytical

process by measuring the dispersion of values obtained from laboratory control samples over time. At least 20 of the most recent LCS data points are gathered. The standard deviation(s) is calculated using these LCS data points. Since it can be assumed that the possible estimated values of the spikes are approximately normally distributed with approximate standard deviation(s), the unknown value of the spike is believed to lie in 95% confidence interval, corresponding to an uncertainty range of +/- 2(s).

Calculate standard deviation (s) and 95% confidence interval according to the following formulae:

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{(n-1)}}$$

Where: s = standard deviation

x = number in series

 $\bar{x}$  = calculated mean of series

n = number of samples taken

95% confidence =  $2 \times s$ 

Example: Assuming that after gathering 20 of the most recent LCS results for Bromide, we have calculated the standard deviations of the values and achieved a result of 0.0326, our measurement of uncertainty for Bromide (at 95% confidence =  $2 \times s$ ) is 10652

# **Total Nitrogen**

Total nitrogen is calculated as follows

# **Langelier Saturation Index**

The Langelier Saturation Index (LSI) is calculated as follows:

Solids Factor (SF) =(Log10[TDS] - 1) / 10 Ca Hardness Factor (HF) = Log10([Ca] x 2.497) - 0.4 Alkalinity Factor (AF) = Log10[Alkalinity] Temp. Factor (TF) = -13.12 x Log10( $^{\circ}$ C + 273) + 34.55 pHs (pH @ saturation) =(9.3 + SF + TF) - (HF + AF) LSI = pH - pH<sub>s</sub>

#### **Calibration Calculations**

1. Response Factor or Calibration Factor:

$$RF = ((A_x)(C_{is}))/((A_{is})(C_x))$$

 $CF=(A_x)/(C_x)$ 

a. Average RF or CF

$$RF_{AVE} = \Sigma RF_i / n$$

b. Standard Deviation

$$s = SQRT \{ [\Sigma (RF_i - RF_{AVE})^2] / (n-1) \}$$

c. Relative Standard Deviation

#### Where:

 $A_x$  = Area of the compound

 $C_x$  = Concentration of the compound

A<sub>is</sub> = Area of the internal standard

C<sub>is</sub> = Concentration of the internal standard

n = number of pairs of data

RF<sub>i</sub> = Response Factor (or other determined value)

RF<sub>AVE</sub> = Average of all the response factors

 $\Sigma$  = the sum of all the individual values

# 2. Linear Regression

a. Slope (m)

$$\mathbf{m} = (\mathbf{n} \Sigma \mathbf{x_i} \mathbf{y_i} - (\mathbf{n} \Sigma \mathbf{x_i})^* (\mathbf{n} \Sigma \mathbf{y_i})) / (\mathbf{n} \Sigma \mathbf{x_i}^2 - (\Sigma \mathbf{x_i})^2)$$

b. Intercept (b)

$$b = y_{AVE} - m^*(x_{AVE})$$

c. Correlation Coefficient (cc)

CC (r) ={ 
$$\Sigma((x_i-x_{ave})^*(y_i-y_{ave}))$$
 } / {  $SQRT((\Sigma(x_i-x_{ave})^2)^*(\Sigma(y_i-y_{ave})^2))$  }

Page 45 of 57 Quality Assurance Plan 9.7 Effective July 29th, 2013 Or

CC (r) =[
$$(\Sigma w * \Sigma wxy) - (\Sigma wx * \Sigma wy)] / (sqrt( ( [( $\Sigma w * \Sigma wx^2) - (\Sigma wx * \Sigma wx)]) * [( $\Sigma w * \Sigma wy^2$ ) -  $(\Sigma wy * \Sigma wy)])))]$$$$

d. Coefficient of Determination

$$COD(r^2) = CC*CC$$

#### Where:

y = Response (Area) Ratio A<sub>id</sub>/A<sub>is</sub>

x = Concentration Ratio C<sub>x</sub>/C<sub>is</sub>

m ≔ slope

b = intercept

n = number of replicate x,y pairs

 $x_i = individual values for independent variable$ 

y<sub>i</sub> = individual values for dependent variable

 $\Sigma$  = the sum of all the individual values

 $x_{avis}$  = average of the x values

yave = average of the y values

w = weighting factor, for equal weighting w=1



$$y = ax^2 + bx + c$$

a. Coefficient of Determination

COD 
$$(r^2) = (\Sigma(y_i - y_{aye})^2 + \{[(n-1)/(n-p)] + [\Sigma(y_i - Y_i)^2]\}) / \Sigma(y_i - y_{ave})^2$$

#### Where

y = Response (Area) Ratio A

 $x = C_{oncentration} Ratio C_{x}/C_{is}$ 

 $a = x^2$  coefficient

b = x coefficient

c = intercept

y<sub>i</sub> = individual values for each dependent variable

x<sub>i</sub> = individual values for each independent variable

 $y_{ave}$  = average of the y values

n = number of pairs of data

p = number of parameters in the polynomial equation (I.e., 3 for third order, 2 for second order)

 $Yi = ((2*a*(C_x/C_{is})^2)-b^2+b+(4*a*c))/(4a)$ 

# b. Coefficients (a,b,c) of a Quadratic Regression

 $a = S_{(x2y)}S_{(xx)} - S_{(xy)}S_{(xx2)} / S_{(xx)}S_{(x2x2)} - [S_{(xx2)}]^2$ 

 $b = S_{(xy)}S_{(x2x2)} - S_{(x2y)}S_{(xx2)} / S_{(xx2)}S_{(x2x2)} - [S_{(xx2)}]^2$ 

 $c = [(\Sigma yw)/n] - b^*[(\Sigma xw)/n] - a^*[\Sigma (x^2w)/n]$ 

#### Where:

n = number of replicate x,y pairs

x = x values

y = y values

 $w = S^{-2} / (\Sigma S^{-2}/n)$ 

 $S_{(\infty)} = (\Sigma x^2 w) - [(\Sigma x w)^2 / n]$ 

 $S_{(xy)} = (\Sigma xyw) - [(\Sigma xw)^*(\Sigma yw) / n]$ 

 $S_{(xx^2)} = (\Sigma x^3 w) - [(\Sigma x w)^* (\Sigma x^2 w) / n]$ 

 $S_{(x2y)} = (\Sigma x^2 yw) - [(\Sigma x^2 w)^* (\Sigma yw) / n]$ 

 $S_{(x2x2)} = (\Sigma x^4 w) - [(\Sigma x^2 w)^2 / n]$ 

Or If unweighted calibration, w=1

S(xx) = (Sx2) - [(Sx)2 / n]

S(xy) = (Sxy) - [(Sx)\*(Sy) / n]

S(xx2) = (Sx3) - [(Sx)\*(Sx2) / n]

S(x2y) = (Sx2y) - [(Sx2)\*(Sy) / n]

S(x2x2) = (Sx4) - [(Sx2)2 / n]

# Weighting

Weighting of 1/x or  $1/x^2$  is permissible for linear calibrations. Weighting shall not be employed for quadratic calibrations. When weighting, use the above equations by substituting x for  $1/x^2$ .

#### **Concentration Calculations**

On-Column Concentration for Average RRF Calibration using Internal Standard

On-Column Concentration  $C_x = ((A_x)(C_{ls}))/((A_{ls})(RF_{AVE}))$ 

On-Column Concentration for Average CF Calibration using External Standard

On-Column Concentration  $C_x = (A_x)/(CF_{AVE})$ 

#### On-Column Concentration for Linear Calibration

If determining an external standard, then exclude the  $A_{is}$  and  $C_{is}$  for internal standards On-Column Concentration  $C_x = ((Absolute\{[(A_x)/(A_{is})] - b\})/m) * C_{is}$ 

Page 47 of 57 Quality Assurance Plan 9.7 Effective July 29th, 2013 Where: m = slope

b = intercept

 $A_x$  = Area of the Sample

C<sub>is</sub> = Concentration of the Internal Standard

A<sub>la</sub> = Area of the Internal Standard

#### On-Column Concentration for Quadratic Calibration

If determining an external standard, then exclude the  $A_{\mbox{\tiny ls}}$  and  $C_{\mbox{\tiny ls}}$  for internal standards On-Column Concentration =[(+SQRT(b²-(4\*a\*(c-y)))-b)/(2\*a)] \* C<sub>is</sub>

Where: a = x² coefficient

b = x coefficient

c = intercept

y = Area Ratio = A<sub>x</sub>/A<sub>is</sub>

C<sub>is</sub> = Concentration of the Internal Standard

#### Final Concentration (Wet Weight)

Concentration for Extracted Samples = (On-Column Conc)(Dilution)(Final Volume) (Initial Amount)(Injection Volume)

Concentration for Purged Samples = (On-Column Conc)(Purged Amount)(Dilution) (Purged Argount)

### **Dry Weight Concentration**

Dry Weight Concentration = Final Concentration Wet Weight % Solids

#### **Percent Difference**

% Difference= Absolute(Continuing Calibration Average RRF) Average RIRF

#### **Percent Drift**

% Drift= Absolute(Calculated Concert ration - Theoretical Concentration) Theoretical Con

#### **Dilution Factor**

Dilution Factor = (Volume of Solvent + Solute) / Volume of Solute

#### Relative Retention Time

RRT =RT of Compound / RT of ISTD

#### Breakdown Percent

Breakdown = Area of DDD + Area of DDE Average (DDT, DDE and DDD)

Area of Endrin Ketone + Area of Endrin Aldehyde Average (Endrin, Endrin Ketone, Endrin Aldehyde)

> Page 48 of 57 Quality Assurance Plan 9.7 Effective July 29th, 2013

# 11.0 Data Reduction, Validation, Reporting, and Record Keeping

All data reported must be of the highest possible accuracy and quality. During the processes of data reduction, validation, and report generation, all work is thoroughly checked to insure that error is minimized.

#### **Data Reduction**

The analyst who generated the data usually performs the data reduction. The calculations include evaluation of surrogate recoveries (where applicable), and other miscellaneous calculations related to the sample quantitation.

If the results are computer generated, then the formulas must be confirmed by hand calculations, at minimum, one per batch.

See the current Data Validation SOP for details regarding data reduction.

#### **Validation**

A senior analyst, most often the section supervisor, validates the data. All data undergoes peer review. If an error is detected, it is brought to the enalyst's attention so that he or she can rectify the error, and perform further checks to ensure that all data for that batch is sound. Previous and/or common mistakes are stangently monitored throughout the validation process. Data is reported using appropriate significant figure criteria. In most cases, two significant digits are utilized, but three significant digits can be used in QC calculations. Significant digits are not counded until after the last step of a sample calculation. All final reports undergo a review by the laboratory manager, the project manager, or their designee, to provide a logical review of all results before they are released to the client.

If data is to be manually transferred between media, the transcribed data is checked by a peer. This includes data typing, computer data entry, chromatographic data transfer, data table inclusion to a cover letter, or when data results are combined with other data fields.

All hand-written data from run logs, analytical standard logbooks, hand-entered data logbooks, or on instrument-generated chromatograms, are systematically archived should the need for future retrieval arise.

See the current Data Validation SOP for details regarding data validation.

# Reports and Records

All records at HEAL are retained and maintained through the procedures outlined in the most recent version of the Records Control SOP.

Sample reports are compiled by the Laboratory Information Management System (LIMS). Most data is transferred directly from the instruments to the LIMS. After being processed by the analyst and reviewed by a data reviewer, final reports are approved and signed by the senior laboratory management. A comparative analysis of the data is performed at this point. For example, if TKN and NH3 are analyzed on the same sample, the NH3 result should never be greater than the TKN result. Lab results and reports are released only to appropriately designated individuals. Release of the data can be by fax, email, electronic deliverables, or mailed hard copy.

When a project is completed, the final report, chain of custody, any relevant supporting data, and the quality assurance/control worksheets are scanned as a .pdf file onto the main server. Original client folders are kept on file and are arranged by project number. Additionally, all electronic data is backed up routinely on the HEAL main server. The backup includes raw data, chromatograms, and report documents. Hard copies of chromatograms are stored separately according to the instrument and the analysis date. All records and analytical data reports are retained in a secure location as permanent records for a minimum period of five years (unless secure location as permanent archived information shall be documented with an access log. Access to archived electronic reports and data will be passward protected. In the event that HEAL transfers ownership or terminates business practices, complete records will be maintained or transferred according to the client's instructions.

After issuance, the original report shall remain un hanged. If a correction to the report is necessary, then an additional document shall be assued. This document shall have a title of "Addendum to Test Report or Correction to Original Report", or equivalent. Demonstration of original report integrity comes in two forms. First, the report date is included on each page of the first report. Second, each page is numbered in sequential order, making the addition or omission of any data page(s) readily detectable.

#### 12.0 Corrective Action

Refer to the most recent version of the Data Validation SOP for the procedure utilized in filling out a Corrective Action Report. A blank copy of the corrective action report is available in the current Document Control Logbook.

The limits that have been defined for data acceptability also form the basis for corrective action initiation. Initiation of corrective action occurs when the data generated from continuing calibration standard, sample surrogate recovery, laboratory control spike, matrix spike, or sample duplicates exceed acceptance criteria. If corrective action is necessary, the analyst or the section supervisor will coordinate to take the following guidelines into consideration in order to determine and correct the measurement system deficiency:

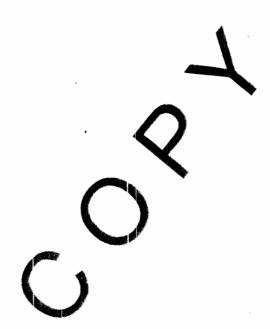
Check all calculations and data measurements systems (Calibrations, reagents, instrument performance checks, etc.).

Assure that proper procedures were followed.

Unforeseen problems that arise during sample preparation and/or sample analysis that lead to treating a sample differently from documented procedures shall be documented with a corrective action report. The section supervisor and laboratory manager shall be made aware of the problem at the time of the occurrence. See the appropriate SOP regarding departures from documented procedures.

Continuing calibration standards below acceptance criteria can not be used for reporting analytical data unless method specific criteria states of envise.

Continuing calibration standards above acceptance criteria can be used to report data as long as the failure is isolated to a single standard and the corresponding samples are non-detect for the failing analyte.


Samples with non-compliant surrogate recoveries should be reanalyzed, unless deemed unnecessary by the supervisor for matrix, historical data, or other analysis-related anomalies.

Laboratory and Matrix Spike acceptance criteria vary significantly depending on method and matrix. Analysts and supervisors meet and discuss appropriate corrective action measures as spike failures occur.

Sample duplicates with RPD values outside control limits require supervisor evaluation and possible reanalysis.

A second mechanism for initiation of corrective action is that resulting from Quality Assurance performance audits, system audits, inter- and intra-laboratory comparison studies. Corrective Actions initiated through this mechanism will be monitored and coordinated by the laboratory QA/QCO.

All corrective action forms are entered in the LIMS and included with the raw data for peer review, signed by the technical director of the section and included in the case narrative to the client whose samples were affected. All Corrective action forms in the LIMS are reviewed by the QA/QCO.



# 13.0 Quality Assurance Audits, Reports and Complaints

# Internal/External Systems' Audits, Performance Evaluations, and Complaints

Several procedures are used to assess the effectiveness of the quality control system. One of these methods includes internal performance evaluations, which are conducted by the use of control samples, replicate measurements, and control charts. External performance audits, which are conducted by the use of inter-laboratory checks, such as participation in laboratory evaluation programs and performance evaluation samples available from a NELAC-accredited Proficiency Standard Vendor, are another method.

Proficiency samples will be obtained twice per year from an appropriate vendor for all tests and matrices for which we are accredited and for which PTs are available. HEAL participates in soil, waste water, drinking water, and underground storage tank PT studies. Copies of results are available upon request. HEAL's management and all analysts shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities, and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance criteria, sequence of analytical steps, number of replicates, and other procedures, as used when analyzing routine samples.

With regards to analyzing PT Samples, HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seek accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall not attempt to obtain the assigned value of any PT sample from the PT Provider.

Internal Audits are performed annually by the QA/QCO in accordance with the current Internal Audit SOP. The system audit confists of a qualitative inspection of the QA system in the laboratory and an assessment of the adequacy of the physical facilities for sampling, calibration, and measurement. This audit includes a careful evaluation and review of laboratory quality control procedures. Internal audits are performed using the guidelines outlined below, which include, but are not limited to:

- 1. Review of staff qualifications, demonstration of capability, and personnel training programs
- 2. Storage and handling of reagents, standards, and samples
- 3. Standard preparation logbook and LIMS procedures
- 4. Extraction logbooks
- 5. Raw data logbooks
- 6. Analytical logbooks or batch printouts and instrument maintenance logbooks
- 7. Data review procedures

- 8. Corrective action procedures
- Review of data packages, which is performed regularly by the lab manager/QA Officer.

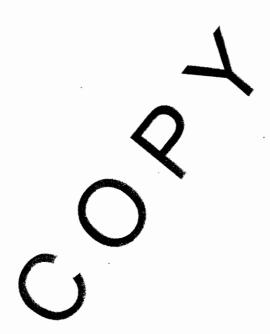
The QA/QCO will conduct these audits on an annual basis.

# Management Reviews

HEAL management shall periodically, and at least annually, conduct a review of the laboratory's quality system and environmental testing activities to ensure their continuing suitability and effectiveness, and to introduce necessary changes or improvements. The review shall take account of:

- 1. the suitability and implementation of policies and procedures
- 2. reports from managerial and supervisory personnel
- 3. the outcome of recent internal audits
- 4. corrective and preventive actions
- 5. assessments by external bodies
- 6. the results of inter-laboratory comparisons or proficiency tests
- 7. changes in volume and type of work
- 8. client feed back
- 9. complaints
- 10. other relevant factors, such as laboratory health and safety, QC activities, resources, and staff training.

Findings from management reviews and the actions that arise from them shall be recorded and any corrective actions that arise shall be completed in an appropriate and agreed upon timescale.

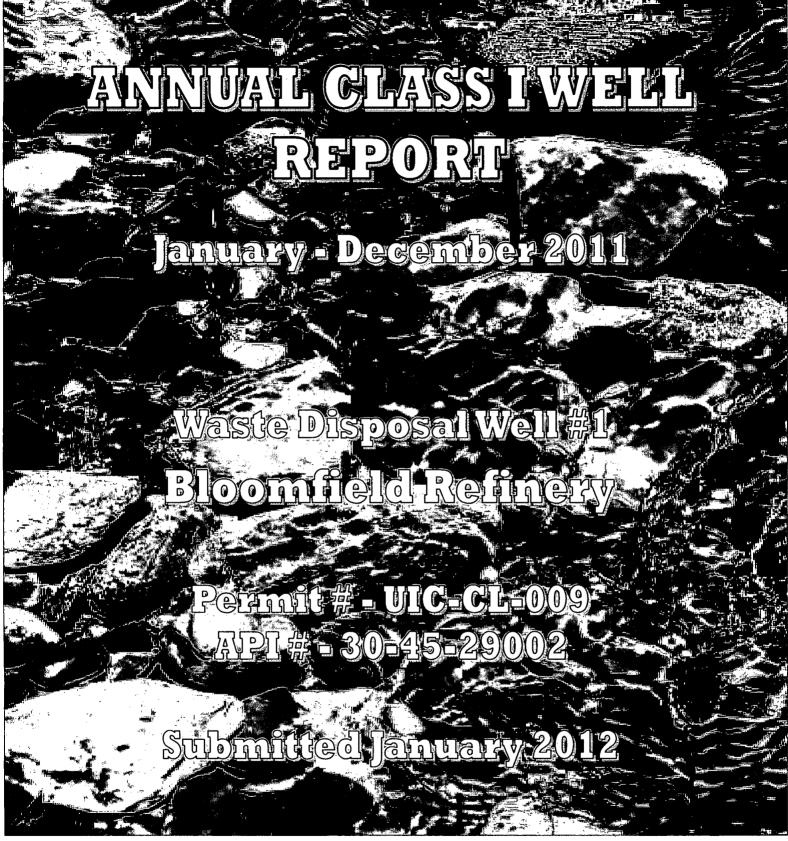

# Complaints

Complaints from clients are docuntented and given to the laboratory manager. The lab manager shall review the information and contact the client. If doubt is raised concerning the laboratory's policies or procedures, then an audit of the section or sections may be performed. All records of complaints and subsequent actions shall be maintained in the client compliant logbook for five years unless otherwise stated.

#### Internal and External Reports

The QA/QCO is responsible for preparation and submission of quality assurance reports to the appropriate management personnel as problems and issues arise. These reports include the assessment of measurement systems, data precision and accuracy, and the results of performance and system audits. Additionally, they include significant QA

problems, corrective actions, and recommended resolution measures. Reports of these Quality Assurance Audits describe the particular activities audited, procedures utilized in the examination and evaluation of laboratory records, and data validation procedures. Finally, there are procedures for evaluating the performance of Quality Control and Quality Assurance activities, and laboratory deficiencies and the implementation of corrective actions with the review requirements.




# 14.0 References (Analytical Protocols Utilized at HEAL)

- 1. Analytica Chemistry of PCB's. Erickson, Mitchell D., CRC Press, Inc. 1992.
- Diagnosis & Improvement of Saline & Alkali Soils. Agriculture Handbook No. 60, USDA, 1954
- 3. <u>Environmental Perspective on the Emerging Oil Shale Industry</u>, EPA Oil & Shale Research Group.
- 4. <u>Field and Laboratory Methods Applicable to Overburdens and Mine Soils.</u> USEPA, EPA-600/2-78-054, March 1978
- 5. Handbook of Chemistry and Physics, 62nd Edition, CRC Press, Inc. 1981-1982.
- 6. <u>Handbook on Reference Methods for Soil Testing</u>, The Council on Soil Testing & Plant Analysis, 1980 and 1992
- 7. <u>Laboratory Procedures for Analyses of Oilfield Waste.</u> Department of Natural Resources, Office of Conservation, Injection and Mining Division, Louisiana, Jugust 1988
- 8. <u>Langelier index calculation.</u> <u>http://www.corrosion-doctors.org/Natural</u>-Vaters/Langelier.htm.
- 9. <u>Manual for the Certification of Laboratories Analyzing Drinking Water, Criteria and procedures</u>

  Quality Assurance Fifth Edition, U.S. Environmental Protection Agency, January 2005.
- 10. Manual of Operating Procedures for the Analysis of Selected Soil, Water, Plant Tissue and Wastes Chemical and physical Parameter. Soil, Water, and Plant Analysis Laboratory, Dept. of Soil and Water Science, The University of Arizona, August 1989
- 11. The Merck Index, Eleventh Edition Merck & Co., Inc. 1989.
- 12. <u>Methods for Chemical Analysis of Water and Wastes</u>, USEPA, EPA-600/4-79-020, March 1979 and as amended December, 1982 (EPA-600/4-82-055)
- 13. <u>Methods for the Determination of Metals in Environmental Samples</u>, USEPA, EPA-600/4-91-010, June 1991
- 14. <u>Methods of Soil Analysis</u>: Parts 1 & 2, 2nd Edition, Agronomy Society of America, Monograph 9
- 15. Polycyclic Aromatic Hydrocarbons in Water Systems, CRC Press, Inc.
- 16. <u>Procedures for Collecting Soil Samples and Methods of Analysis for Soil Survey.</u> USDA Soil Conservation Service, SSIR No. 1

- 17. Quality Systems for Analytical Services, Revision 2.2, U.S. Department of Energy, October 2006.
- 18. <u>Sampling Procedures and Chemical Methods in Use at the U.S. Salinity Laboratory for Characterizing Salt-Affected Soils and Water.</u> USDA Salinity Laboratory.
- 19. <u>Soil Survey Laboratory Methods Manual.</u> Soil Survey Laboratory Staff. Soil Survey Investigations Report No. 42, version 2.0, August 1992.
- 20. <u>Soil Testing Methods Used at Colorado State University for the Evaluation of Fertility, Salinity and Trace Element Toxicity, Technical Bulletin LT B88-2 January, 1988</u>
- 21. <u>Standard Methods for the Examination of Water and Wastewater:</u> AOHA, AWWA, and WPCG; 20th Edition, 1999.
- 22. <u>Technical Notes on Drinking Water Methods</u>, U.S. Environmental Protection Agency, October 1994.
- 23. <u>Test Methods for Evaluating Solid Waste: Physical/Chemical Methods</u>, USEPA SW-846, 3rd Edition, Updates I, II, IIA, IIB, III, December, 1996.



Western Refining Southwest, Inc.





January 30, 2012

Carl Chavez
New Mexico Oil Conservation Division
Environmental Bureau
1220 South St. Francis Dr
Santa Fe, NM 87505

UPS Tracking #: 1ZF9F6470192579738

RE: Western Refining Southwest, Inc. - Bloomfield Refinery 2011 Annual Class I Well Report Non-Hazardous Injection Well Permit # - UIC-CL-009 API # - 30- 45-29002

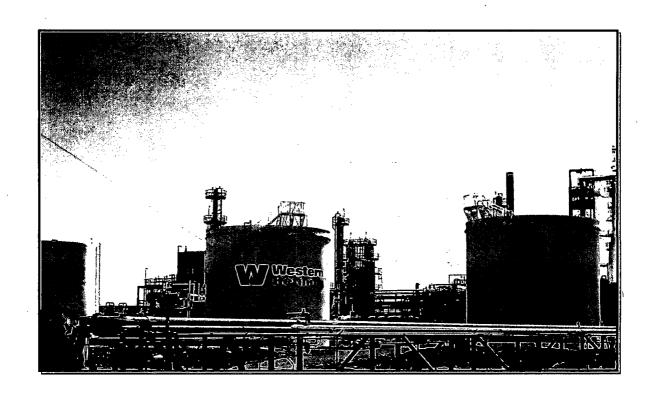
Mr. Chavez,

Bloomfield Refinery submits the *Annual Class I Well Report January – December 2011* The well is located in the NE/4, SE/4 of Section 27, Township 29 North, Range 11West, NMPM, San Juan County, New Mexico and is operated by Western Refining Southwest Inc.

If you need more information, please contact me at (505) 632-417/1.

Sincerely,

James R: Schmaltz


Health, Safety, Environmental, and Regulatory Director Western Refining Southwest, Inc. - Bloomfield Refinery

Cc: Kelly G. Roberts – NMOCD Aztec District Office V.R. McDaniel – Bloomfield Refinery Site Manager Allen Hains – Western Refining – El Paso

# ANNUAL CLASS I WELL REPORT Waste Disposal Well #1 January – December 2011

Western Refining Southwest, Inc.
Bloomfield Refinery
Bloomfield, New Mexico
Permit # - UIC-CL1-009
API # - 30-45-29002

# January 2012



# **ANNUAL CLASS I WELL REPORT**

# Waste Disposal Well #1 January – December 2011

Western Refining Southwest, Inc. Bloomfield Refinery Bloomfield, New Mexico Permit # - UIC-CL1-009 API # - 30-45-29002

January 30, 2012

Prepared by:

Kelly Robinson

**Environmental Supervisor** 

Reviewed by:

James R. Schmaltz

**HSER Director** 

# Certification

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

Vic R. McDaniel

Site Manager

# TABLE OF CONTENTS

| EXECUTIV | 'E SUMMARY                         | 1  |
|----------|------------------------------------|----|
| 1.0      | INTRODUCTION                       | 3  |
| 1.1      | Well Information                   | 3  |
| 2.0      | SUMMARY OF ACTIVITIES              | 4  |
| 3.0      | INJECTION VOLUME                   | 6  |
| 3.1      | Injection Volume                   |    |
| 3.2      | Injection Well Down-Time           | 6  |
| 4.0      | SAMPLING AND CHEMICAL ANALYSIS     | 7  |
| 5.0      | TESTING AND MAINTENANCE ACTIVITIES | 8  |
| 5.1      | Well Clean-Out Activities          | 8  |
| 5.2      | Well Acidization Activities        |    |
| 5.3      | Mechanical Integrity Testing       | 9  |
| 5.4      | Annual Pressure Fall-Off Test      |    |
| 6.0      | WELL EVALUATION                    | 12 |
| 6.1      | Well Evaluation                    | 12 |
| 6.2      | Area of Review (AOR)               | 12 |
| 7.0      | CONCLUSIONS AND RECOMMENDATIONS    |    |
| 7.1      | Conclusions                        | 14 |
| 7.2      | Recommendations                    | 15 |
| 8.0      | REFERENCES                         | 16 |

# **LIST OF FIGURES**

Figure 1 Site Location Map

Figure 2 Well Schematic

Figure 3 Disposal Well and Area Wells

# **LIST OF TABLES**

Table 1 Monthly Injection Well Report

Table 2 Area of Review

# **LIST OF APPENDICES**

Appendix A Form C-103 Notifications

Appendix B Laboratory Analytical Reports

Appendix C Laboratory Quality Assurance Plan

# **EXECUTIVE SUMMARY**

This report provides a summary of activities conducted in 2011 on Waste Disposal Well #1 (WDW-#1) at the Bloomfield Refinery. The following is a summary of well operations and well testing activities performed in 2011.

#### **Operational Summary**

**Injection Volume -** The volume injected into the disposal well during 2011 was 20,411,654 gallons. Western Refining suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation.

**Sampling and Chemical Analyses -** Injection fluids samples were collected on a quarterly basis for chemical analysis. Analytical results did not exhibit characteristics of hazardous waste.

**Maintenance Operations -** During 2011, down-hole maintenance activities included well clean-out via a coil-tubing rig and acidization. The completion of both activities resulted in a significant increase in well operation efficiency.

Mechanical Integrity Tests - The 2011 well testing program witnessed by a representative of the New Mexico Oil Conservation Division (NMOCD) included a High-Pressure Shutdown Test, Bradenhead Test, Mechanical Integrity Test, Bottomhole Pressure Survey and Pressure Fall-Off Test. Results of these tests prove that the operational integrity of the well is sound.

**Well Evaluation** – In 2011, operational data of the Bloomfield Refinery injection well identified a decreasing trend in injection flow rate over a constant pressure. The decrease in well operation efficiency was caused by a restriction in flow through the

lower well casing perforations. Well clean-out activities conducted in 2011 were successful in removing the flow restriction and thus returning the well to normal operation efficiency.

Area of Review (AOR) - No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of WDW #1.

# **Recommendations**

Western will continue the routine monitoring, maintenance, and testing programs which include quarterly chemical analysis of injection fluids, mechanical integrity testing, Bradenhead testing, and the pressure Fall-Off Test in 2012. Western will continue to utilize the maximum operating injection pressure at the wellhead as permitted by Discharge Permit GW-130.

# INTRODUCTION

This report provides a summary of activities conducted during 2011 on Waste Disposal Well #1 (WDW #1). The disposal well is part of the Bloomfield Refinery operations. The refinery is located immediately south of Bloomfield, New Mexico in San Juan County. The well location is depicted in Figure 1. The physical address of the facility is as follows:

# **Bloomfield Refinery**

#50 County Road 4990 Bloomfield, NM 87413

The Bloomfield Refinery is located on approximately 263 acres. Bordering the facility is a combination of federal and private properties. Public property managed by the Bureau of Land Management lies to the south. The majority of undeveloped land in the vicinity of the facility is used extensively for oil and gas production and, in some instances, grazing. U.S. Highway 550 is located approximately one-half mile west of the facility. The topography of the main portion of the site is generally flat with steep bluffs to the north.

WDW #1 is owned by San Juan Refining Company, a New Mexico corporation. It is operated by Western Refining Southwest, Inc. formerly known as Giant Industries Arizona, Inc. an Arizona corporation.

#### Well Information 1.1

Well Name & Number:

OCD UIC:

Well Classification:

API Number:

Legal Location: **Physical Address:** 

OCD Discharge Plan Permit Number:

Class I Non-hazardous

Waste Disposal Well #1

30-045-29002

UIC-CL1-009 GW-130

1250 FEL, 2442FSL, I Sec 27 T29S R11E

#50 Road 4990, Bloomfield, NM 87413

# 2.0 SUMMARY OF ACTIVITIES

The following list of activities was conducted in 2011 on WDW #1 located at the Bloomfield Refinery:

| <ul><li>01/19/11</li></ul> | 1st Quarter 2011 Sampling Event                   |
|----------------------------|---------------------------------------------------|
| • 04/04/11                 | 2nd Quarter 2011 Sampling Event                   |
| • 06/15/11                 | Bradenhead Test                                   |
| • 06/15/11                 | High-Pressure Shut-Down Test                      |
| • 06/15/11                 | Mechanical Integrity Test                         |
| • 07/14/11                 | 3rd Quarter 2011 Sampling Event                   |
| • 10/04/11                 | Down-hole Coil Tubing Clean-Out                   |
| • 10/10/11                 | Well Acidization Treatment Event                  |
| • 10/11/11                 | 4th Quarter 2011 Sampling Event                   |
| <ul><li>10/19/11</li></ul> | Commencement of the Annual Pressure Fall-Off Test |
| • 11/1/2011                | Completion of the Annual Pressure Fall-Off Test   |

Quarterly samples collected for laboratory analysis were submitted to Hall Environmental Laboratories located in Albuquerque, New Mexico. Copies of the analytical reports are provided in Appendix B.

A representative of New Mexico Oil Conservation Division (NMOCD) was on-site to witness the Bradenhead Test, High-Pressure Shut-Down Test, and Mechanical Integrity Test on June 15, 2011. A copy of the test reports is provided in Appendix A.

On September 9, 2011, NMOCD reviewed and approved Western's request to acidize WDW #1 prior to conducting the annual Fall-Off Test. On September 16th, 2011 in preparation for the up-coming scheduled acidization field work, Western identified scaling inside the well casing that restricting flow to the bottom perforations of the well casing. Due to the restricted flow into the lower formation, Western received verbal approval from NMOCD to post-pone the acidization work until arrangements could be made to have the well cleaned-out via a coil-tubing unit. NMOCD approval was followed-up via an e-mail dated Friday, September 16, 2011 (see Appendix A). A revised

acidization and well clean-out procedure was submitted on September 21, 2011 and approved by NMOCD on September 22, 2011.

The well clean-out and acidization activities were performed on October 4th and October 10th, 2011, respectively. Clean-out of the well was found to be effective in removing the blockage that prevented flow from accessing the lower perforations of the well casing. Correspondence between OCD and Western pertaining to the scheduling of these activities is provided in Appendix A.

The Annual Pressure Fall-Off Test was conducted between October 19, 2011 and November 1, 2011. The approved testing procedures were submitted to NMOCD along with the respective C-103 notification form dated September 16, 2011. A copy of the testing procedures and correspondence between OCD and Western pertaining to the scheduling of these activities is provided in Appendix A.

# 3.0 INJECTION VOLUME

The Monthly Injection Well Report summarizing injection volumes and well performance parameters is presented as Table 1.

# 3.1 Injection Volume

The volume injected into the disposal well during 2011 was 20,411,654 gallons.

Throughout 2011 the Bloomfield Refinery injection well operated within the operational limits of less than 1,150 psi.

# 3.2 Injection Well Down-Time

The Injection Well was down approximately 1,131 hours in 2011. Plant operational issues resulted in the injection well to be off-line for a period of time in June 2011. Well performance tests and clean-out activities conducted in 2011 resulting in the well to be off-line for an extended period in October 2011. Decreased volume of plant produced water in December 2011 resulting in decreased operational time of the injection well. All other additional down-times in 2011 correlated with regular equipment maintenance activities.

# 4.0 SAMPLING AND CHEMICAL ANALYSIS

Injection fluid samples were collected on a quarterly basis and analyzed for the constituents listed per Item #9 of the Bloomfield Refinery Class I (Non-Hazardous)

Disposal Well UIC-CL1-009 (GW-130) Discharge Permit Renewal dated March 23, 2004.

First quarter samples were collected on January 19, 2011. Second quarter samples were collected April 4, 2011. Third quarter samples were obtained July 14, 2011. Fourth quarter samples were taken October 11, 2011.

All quarterly samples collected for laboratory analysis were submitted to Hall Environmental Analysis Laboratory located in Albuquerque, NM. The analytical results conclude that the injected water did not exhibit characteristics of hazardous waste. The respective quarterly analytical reports and Laboratory Quality Assurance Plan are provided in Appendices B and C, respectively.

# 5.0 TESTING AND MAINTENANCE ACTIVITIES

In addition to the conducting general preventative maintenance activities on the injection well equipment, the following testing and well maintenance activities were conducted during 2011:

- Well Clean-Out Activities
- Well Acidization Activities
- Mechanical Integrity Testing (includes high-pressure shutdown and Bradenhead Testing)
- Annual Pressure Fall-Off Testing

All activities were conducted following NMOCD approval, and such documentation is provided in Appendix A. The following is a brief summary of the testing and well maintenance activities conducted in 2011.

## 5.1 Well Clean-Out Activities

In preparation for the up-coming well acidization activities that was originally scheduled for September 19, 2011, Western contracted with Tefteller, Inc. to tag the bottom of the well to ensure there was no tubing or well obstruction. The total well depth was measured to be 3,394 ft deep, which indicated that down-hole flow was being prevented from flowing though the lower perforations of the wall that accessed the Menefee Formation. Based on these finding, Western requested and received approval from OCD to perform well clean-out activities that included coiling the well for the purpose of removing the scale and/or blockage within the well casing.

On October 4th, 2011, Western contracted with Basic Energy Services to clean-out the Bloomfield Refinery injection well. A 1 ¼-inch coil tube was lowered down the well to a total depth of 3,520 ft. At approximately 3,300 ft. circulation pressure decreased significantly indicating a restriction or blockage in the casing. After attempting to re-tag the well, the coil line broke-through the restriction and was then able to be lowered to the bottom of the well (3,520 ft) with ease.

The success of the coil-tubing activities resulted in a significant increase in well operation efficiency.

## 5.2 Well Acidization Activities

Following completion of the well clean-out activities, Western contracted with Halliburton to acidize the well to further enhance the well's performance. Acidization activities included pumping 4,200 gallons of 15% HCl acid with inhibitor along with 300 bio-degradable ball sealers down into the well. The acid solution was allowed to displace to the bottom perforations. The well was then shut-in for approximately 1 hr to let the acid treatment "soak." After sufficient time had elapsed, the well was allowed to flow back into on-site frac tanks. Approximately 400 barrels of fluid was allowed to flow back before returning the well to normal operation.

# 5.3 Mechanical Integrity Testing

A representative of New Mexico Oil Conservation Division (NMOCD) was on-site to witness a High Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrity Test (MIT) on June 15, 2011. All tests were witnessed by Monica Kuehling of NMOCD-Aztec. The MIT held at 515 psi for 30 minutes, therefore confirming the integrity of the well. A copy of the Test Reports is provided in Appendix A.

## 5.4 Annual Pressure Fall-Off Test

Bloomfield Refinery retained William M. Cobb & Associates, Inc. to perform the annual Bottomhole Pressure Survey and Pressure Fall-Off Test on Waste Disposal Well #1 located at the Bloomfield Refinery. The Annual Pressure Fall-Off Test was conducted in accordance with United States Environmental Protection Agency (USEPA) 40 CFR 146.13 and the State of New Mexico Fall-Off Test Guidelines, December 3, 2007. The 2011 pressure Fall-Off Test procedure was conducted in accordance with the USEPA's Region

6 "Pressure Fall-Off Testing Guidelines, Third Revision", dated August 8, 2002, and required by the State of New Mexico as of December 3, 2007. The Pressure Fall-Off test and Bottomhole Pressure survey performed on Waste Disposal Well No. 1 also met the NMOCD requirements for such testing.

The chronological order of events performed during the Fall-Off Test is as follows:

- October 19, 2011 9:06 am Tefteller, Inc. runs tandem bottomhole pressure gauges in the well to monitor the falloff portion of the test.
- October 19, 2011 10:19 am Pre-flow period begins.
- October 21, 2011 11:04 am Well is flowing at 82.6 gallons per minute (gpm)
   with an average rate of 82.6 gpm for the 49-hour period. The well is shut-in for the falloff test.
- November 1, 2011 10:26am Falloff test ends after 263 hours. A pressure gradient survey is conducted as pressure gauges are retrieved from the well.

Fluids from WDW-1 are injected into the Menefee and Cliff House formations. Geologic assessment indicates the WDW #1 is in a confined low permeability sand interval and historically is not capable of producing a bottomhole 100 psi pressure drop. Records show that WDW #1 was hydraulically fractured after it was initially drilled. The 2006, 2008, 2009, and 2010 Fall-Off Test data confirm this with a linear flow regime observed after the end of storage effects.

The 2011 Fall-Off Test data showed no unexpected pressure changes. The pressure dropped quickly during the first few minutes of the test due to wellbore storage effects and then continued to decline as the pressure in the reservoir adjusted to the no-flow period. The Fall-Off Test data show linear flow for the duration of the test with no indication of end of linear flow or reservoir boundary effects. There does not appear to

be any reservoir response to injection other than that which would be expected from normal growth of the injected volume.

All test data and conclusions are presented in the 2011 Annual Bottomhole Pressure Surveys and Pressure Fall-Off Tests for Waste Disposal Well #1Report (Cobb and Associates, 2011) that was submitted to NMOCD – Santa Fe on December 21, 2011.

# 6.0 WELL EVALUATION

## 6.1 Well Evaluation

In 2011, operational data of the Bloomfield Refinery injection identified a decreasing trend in injection flow rate at a constant pressure. The well clean-out activities resulted in a significant increase in the well's operating efficiency.

# 6.2 Area of Review (AOR)

The Area of Review data from the 2008 Fall-Off test report was reviewed and updated in 2011 Annual Bottomhole Pressure Surveys and Pressure Fall-Off Tests for Waste Disposal Well #1Report (Cobb & Associates, 2011). No new wells were found in the one-mile radius.

Fifty-eight wells were found within a one-mile radius of WDW #1, which injects water into the Mesaverde formation. The wells and status are spotted on an area map, Figure 3, with a well number listed with the well data in Table 2. Of these wells, 15 have been plugged and abandoned. Four wells are classified as dry holes and are believed to be plugged and abandoned. Twenty-four wells produce petroleum from shallow zones. One well is an Entrada injection well. Fourteen wells produce petroleum from the Dakota and Gallup zones, which are deeper than the Mesaverde interval used for injection purposes. No wells are producing from the injection interval within a one-mile radius of WDW #1.

Twenty-four of the 59 wells have penetrated the injection zone. Of these, three have been plugged. Five wells are currently producing from shallow zones and 14 wells produce from deep zones. There are two injection wells including WDW #1 and Ashcroft SWD #1 well.

No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of WDW #1.

# 7.0 CONCLUSIONS AND RECOMMENDATIONS

The following is a summary of well operations and well testing activities performed in 2011.

# 7.1 Conclusions

**Injection Volume -** The volume injected into the disposal well during 2011 was 20,411,654 gallons. Western Refining suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation.

**Sampling and Chemical Analyses -** Injection fluids samples were collected on a quarterly basis for chemical analysis. Analytical results did not exhibit characteristics of hazardous waste.

**Maintenance Operations -** During 2011, down-hole maintenance activities included well clean-out via a coil-tubing rig and acidization. The completion of both activities resulted in a significant increase in well operation efficiency.

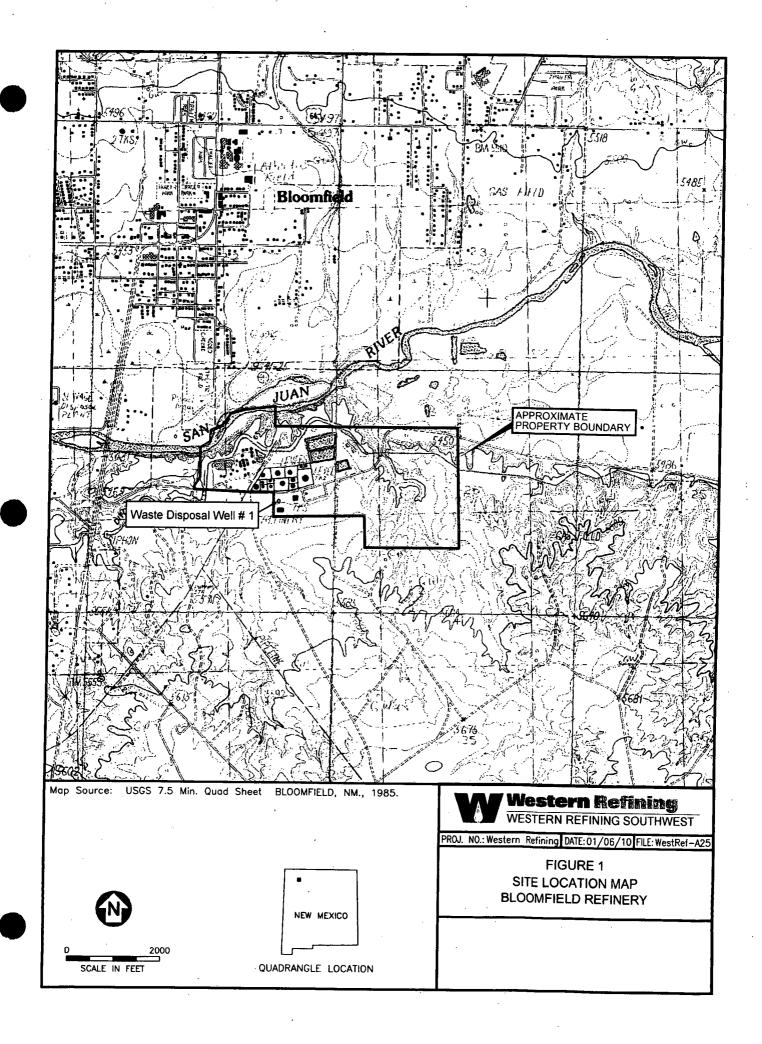
Mechanical Integrity Tests - The 2011 well testing program witnessed by a representative of OCD included a High-Pressure Shutdown Test, Bradenhead Test, Mechanical Integrity Test, Bottomhole Pressure Survey and Pressure Fall-Off Test. Results of these tests prove that the operational integrity of the well is sound.

**Well Evaluation** – In 2011, operational data of the Bloomfield Refinery injection well identified a decreasing trend in injection flow rate over a constant pressure. The decrease in well operation efficiency was caused by a restriction in flow through the lower well casing perforations. Well clean-out activities conducted in 2011 were successful in removing the flow restriction and thus returning the well to normal operation efficiency.

**Area of Review (AOR) -** No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of WDW #1.

# 7.2 Recommendations

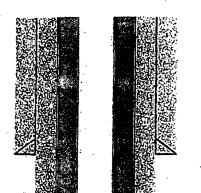
Western will continue the routine monitoring, maintenance, and testing programs which include quarterly chemical analysis of injection fluids, mechanical integrity testing, Bradenhead testing, and the pressure Fall-Off Test in 2012. Western will continue to utilize the maximum operating injection pressure at the wellhead as permitted by Discharge Permit GW-130.


# 8.0 REFERENCES

Cobb & Associates, 2009a, Evaluation of Disposal Well #1 Bloomfield Refinery, August 26, 2009.

Cobb & Associates, 2011, 2011 Annual Bottomhole Pressure Surveys and Pressure Fall-Off Tests for Waste Disposal Well #1Report December 21, 2011.

Bloomfield Refinery Class I (Non-Hazardous) Disposal Well UIC-CL1-009 (GW-130) Discharge Permit Renewal dated March 23, 2004.


# **FIGURES**



# **WESTERN REFINING DISPOSAL WELL #1**

SW SECTION 26, T29N, R11W

NO.: 30-045-29002





# FIGURE 2 DISPOSAL WELL #1 WELL SCHEMATIC Western Refining Inc. Bloomfield, NM

|           |           |              |    | _        |         |
|-----------|-----------|--------------|----|----------|---------|
| Date:     | 4/26/2006 | Approved By: | ds | Job No.: | 70F5830 |
| Orawn By: | rie       | Checked By:  |    | Scale:   | N/A     |

8-5/8", 48#/ft, Surface Casing @ 830'

TOC: Surface Hole Size: 11.0"

Tubing: 2-7/8", Acid Resistant Fluorotine Cement Lined

Wt of Tubing: 6.5 #/ft

Wt of Tubing Lined: 7,55 #/ft

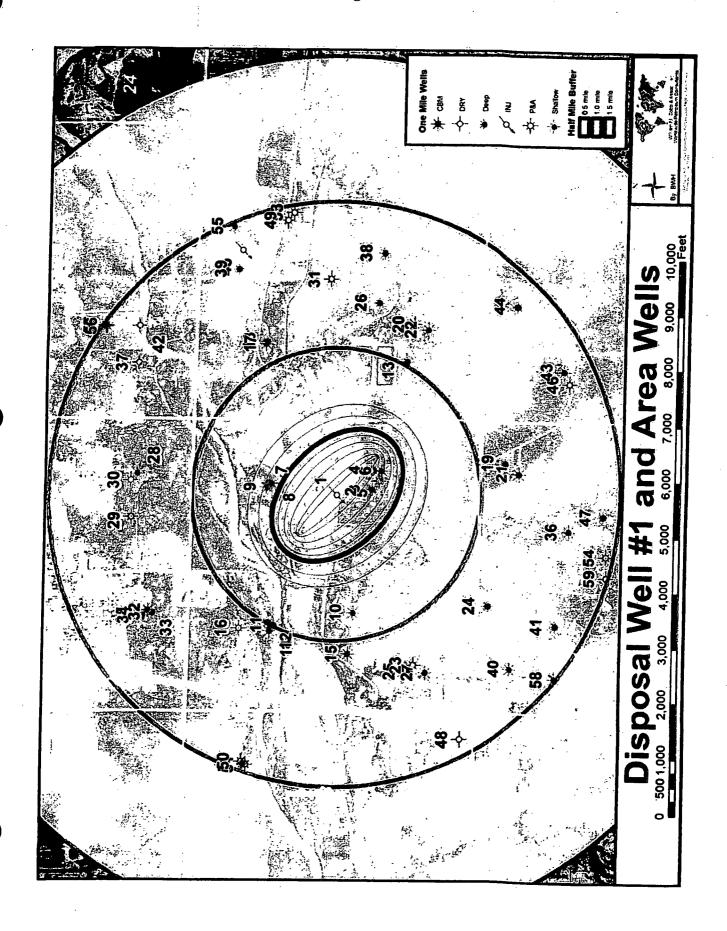
Tubing ID: 2.128"
Tubing Drift ID: 2.000"

Minimum ID @ Packer: ~1.87" estimated

Packer: Unknown Packer Type @ 3221'
Could be a Guiberson or similar model Uni-6

Perforations: 3276' - 3408' 4JSPF 0.5 EHD Top of the Cliff House Formation: 3276'

Fill was cleaned out of well on 4/20/06 Fill was orginally tagged at 3325'


Perforations: 3435' - 3460' 4JSPF 0.5 EHD Top of the Menefee Formation: 3400'

RBP: 3520'

5-1/2", 15.5#/ft, Production Casing @3600'

TOC: Surface Hole Size: 7-7/8"

Figure 3



# **TABLES**

# WESTERN REFINING SOUTHWEST, INC. - BLOOMFIELD REFINERY P.O. BOX 159

# **BLOOMFIELD, NEW MEXICO 87413**

# MONTHLY INJECTION WELL REPORT DISCHARGE PLAN GW-130 NE1/4 SE1/4 SECTION 27, T29N, R11W NMPM, SAN JUAN COUNTY, NEW MEXICO

|                                    |             | AMOUNT    | TOTALIZER |              | ,      |                    |          |        |                  |          |       | ON-LINE    | Ш     |
|------------------------------------|-------------|-----------|-----------|--------------|--------|--------------------|----------|--------|------------------|----------|-------|------------|-------|
| TO SOLAR                           | TO SOLAR    | AMOUNT    |           | DOWN-        | INJE   | INJECTION PRESSURE | SURE     | ANN    | ANNULAR PRESSURE | SURE     |       | FLOW RATES | ES    |
| FROM RIVER   EVAP PONDS   INJECTED | EVAP PONDS  | INJECTE   | _         | TIME         | MAX    | Z                  | AVG      | MAX    | NIM              | AVG      | MAX   | NIM        | AVG   |
| (GALLONS) (GALLONS) (GALLONS)      |             | (GALLONS) |           | (HRS)        | (PSIA) | (PSIA)             | · (PSIA) | (PSIA) | (PSIA)           | · (PSIA) | (GPM) | (GPM)      | (GPM) |
|                                    |             | -         |           |              |        |                    |          |        |                  |          |       |            |       |
| 3,038,000 0 1,344,152              |             | 1,344,152 | i l       | 0            | 1055   | 889                | 943      | 179    | 142              | 164      | 47    | 18         | 30    |
| 482,000 0 1,236,937                | 0 1,236,937 | 1,236,937 |           | 0 .          | 1078   | 891                | 937      | 188    | 155              | 170      | 51    | 18         | 30.2  |
| 1,578,000 0 1,127,624              | 0 1,127,624 | 1,127,624 |           | <b>&amp;</b> | 1118   | 889.0              | 992.7    | . 202  | 116              | 152      | 45.0  | 18         | 25    |
|                                    |             |           |           |              |        |                    |          |        |                  |          |       |            |       |
| 1,845,000 0 1,420,829              |             | 1,420,829 |           | 0            | 1109   | 892                | 996      | 190    | 145              | 163      | 54    | 18         | 32    |
| 2,250,000 0 1,658,138              |             | 1,658,138 |           | 0            | 1120   | 926                | 1044     | 209    | 150              | 180      | 47    | 25         | 38    |
| 1,351,000 2,448,862 1,056,598      |             | 1,056,598 |           | 217.5        | 1115   | 917                | 1042     | 210    | 163              | 166      | 47    | 22         | 34    |
|                                    |             | ,         |           |              |        |                    | ,        | ٠.     |                  |          |       |            |       |
| 2,684,000 3,052,200 1,823,541      |             | 1,823,541 |           | .0           | 1111   | 926                | 1045     | 236    | 117              | 165      | 49    | 30         | 40    |
| 1,991,000 1,745,829 1,569,856      |             | 1,569,856 |           | 45.75        | 1120   | 935                | 1048     | 153    | 101              | 125      | 53    | 22         | 38    |
| 1,478,000 2,823,969 2,823,969      |             | 2,823,969 |           | 13           | 1113   | 1012               | 1074     | 140    | 114              | 120      | 51    | 37         | 45    |
|                                    |             |           |           |              |        |                    |          |        |                  |          |       |            |       |
| 789,000 1,607,062 1,828,580        | _           | 1,828,580 | L         | 319          | 1062   | 910                | 1006     | 143    | 114              | 119.5    | 97    | 35         | 66.5  |
|                                    |             |           | L         |              |        |                    | ļ        |        |                  |          |       |            |       |

The total amount injected in 2011 is 20,411,654 gallons.

2,011,000

NOV DEC

80.9

52 54

97

133.5

117

200

1019

931

1057

50 44

3,260,845

84,960 803,606

CERTIFICATION:

DATE

| Pen.<br>Ini.<br>Zone     | Yes                        | Yes             | Š               | Yes              | Š                 | 8              | 8                        | 8<br>8                    | Yes                          | Yes             | 8              | Yes          | Yes                     | 8<br>S                      | Yes            | 8             | Yes                      | Yes                | Yes          | 8              | 2°           | ž            | Š                       | Yes          |
|--------------------------|----------------------------|-----------------|-----------------|------------------|-------------------|----------------|--------------------------|---------------------------|------------------------------|-----------------|----------------|--------------|-------------------------|-----------------------------|----------------|---------------|--------------------------|--------------------|--------------|----------------|--------------|--------------|-------------------------|--------------|
| Status                   | Ž                          | P&A             | Shallow         | Deep             | P&A               | CBM            | CBM                      | P&A                       | Shallow                      | Shallow         | Shallow        | Deep         | Deep                    | Shallow                     | CBM            | P&A           | CBM                      | Deep               | Deep         | CBM            | Shallow      | Shallow      | P&A                     | Deep         |
| RESERVOIR                | MESAVERDE                  | DAKOTA          | CHACRA          | GALLUP           | PICTURED CLIFFS   | FRUITLAND COAL | FRUITLAND COAL           |                           | CHACRA                       | PICTURED CLIFFS | FRUITLAND SAND | DAKÓTA       | DAKOTA                  | CHACRA                      | FRUITLAND COAL |               | FRUITLAND COAL           | DAKOTA             | GALLUP       | FRUITLAND COAL | CHACRA       | CHACRA       | PICTURED CLIFFS         | GALLUP       |
| OPERATOR                 | WESTERN REFINING MESAVERDE | BP AMERICA      | XTO ENERGY, INC | XTO ENERGY, INC. | Pre-Ongard        | HOLCOMB O&G    | H-27-29N-11W HOLCOMB O&G | Pre-Ongard                | H-27-29N-11W XTO ENERGY, INC | Burlington      | MANANA GAS INC | Burlington   | Burlington              | F-27-29N-11W MANANA GAS INC | Burlington     | Pre-Ongard    | F-26-29N-11W HOLCOMB O&G | XTO ENERGY, INC    | Burlington   | Burlington     | Burlington   | ENERGEN      | Pre-Ongard              | ENERGEN      |
| ULSTR                    | 1-27-29N-11W               | I-27-29N-11W    | I-27-29N-11W    | I-27-29N-11W     | I-27-29N-11W      | I-27-29N-11W   | H-27-29N-11W             | H-27-29N-11W Pre-Ongard   | H-27-29N-11W                 | K-27-29N-11W    | F-27-29N-11W   | F-27-29N-11W | M-26-29N-11W Burlington | F-27-29N-11W                | L-27-29N-11W   | C-27-29N-11W  | F-26-29N-11W             | F-26-29N-11W       | A-34-29N-11W | N-26-29N-11W   | A-34-29N-11W | N-26-29N-11W | M-27-29N-11W Pre-Ongard | C-34-29N-11W |
| P&A Date                 |                            | 19-Jan-94       |                 |                  | 18-Oct-82         | -              |                          | 18-Aug-55                 |                              |                 |                |              |                         |                             |                | 09-Nov-78     |                          |                    |              |                |              |              | 27-Jun-75               |              |
| <u>Total</u><br>Depth    | 3514                       | 6298            | 2839            | 6177             | 1717              | 1714           | 1689                     | 1800                      | 6262                         | 5808            | 1354           | 6160         | 6348                    | 2710                        | 6214           | 800           | 4030                     | 6242               | 6148         | 1760           | 2857         | 2869         | 1747                    | 5970         |
| Perf<br>Bottom           | 3514                       | 6298            | 2839            | 5646             |                   | 1714           | 1689                     |                           | 2810                         | 1770            | 1354           | 6160         | 6348                    | 2710                        | 1661           |               | 1645                     | 6242               | 6148         | 1760           | 2857         | 2869         | 1747                    | 5970         |
| Perf<br>Top              | 3276                       | 6157            | 2827            | 5314             |                   | 1543           | 1483                     |                           | 2701                         | 1680            | 1326           | 6024         | 6176                    | 2578                        | 1388           |               | 1462                     | 6086               | 6086         | 1468           | 2747         | 2746         | 1664                    | 5326         |
| APINO                    | 30-045-29002               | 30-045-07825    | 30-045-23554    | 30-045-30833     | 30-045-07812      | 30-045-34463   | 30-045-34409             | 30-045-07883              | 30-045-24084                 | 30-045-25673    | 30-045-27361   | 30-045-24673 | 30-045-12003            | 30-045-27365                | 30-045-07835   | 30-045-07896  | 30-045-25329             | 30-045-24083       | 30-045-25657 | 30-045-31118   | 30-045-24574 | 30-045-24572 | 30-045-07903            | 30-045-25707 |
| #1                       | -                          | -               | -               | ൩                | -                 | -              | . 7                      | 7                         | 1                            | 18              | ₹~             | 1            | ~                       | ~                           | ~              | -             | <b>-</b>                 | 1                  | 16           | 100            | თ            | 6            | ~                       | 15           |
| WELLNAME                 | DISPOSAL                   | DAVIS GAS COM F | DAVIS GAS COM G | DAVIS GAS COM F  | Davis Pooled Unit | JACQUE         | JACQUE                   | 0.23 Davis PU/FB Umbarger | DAVIS GAS COM F              | CONGRESS        | LAUREN KELLY   | MANGUM       | CALVIN                  | MARIAN S                    | MANGUM         | Black Diamond | DAVIS GAS COM J          | SULLIVAN GAS COM.D | CONGRESS     | CALVIN         | SUMMIT       | CONGRESS     | Garland "B"             | SUMMIT       |
| Map Miles to<br>Seq. DW1 | 0.00                       | 0.11            | 0.12            | 0.15             | 0.16              | 0.18           | 0.23                     | 0.23                      | 0.24                         | 0.41            | 0.49           | 0.49         | 0.51                    | 0.52                        | 0.55           | 0.56          | 0.57                     | 0.58               | 09.0         | 0.64           | 0.64         | 0.64         | 0.64                    | 0.65         |
| Map<br>Seq.              | -                          | 7               | ო               | 4                | လ                 | <b>σ</b>       | 7                        | <b>∞</b>                  | 6                            | 10              | <b>,E</b>      | 12           | 13                      | 14                          | 15             | 16            | 17                       | 18                 | 19           | 20             | 21           | 22           | 23                      | 24           |

| Pen.<br>Ini.<br>Zone  | Š                    | Yes                     | Š                       | 8<br>8         | Š                           | Yes                         | °Z                      | Š                           | Š                           | Yes                         | ž                           | Š                          | Š                       | Yes          | Yes                          | ž                         | Yes          | Š                       | Yes          | Yes                     | Yes                          | Š                          | Yes          | ş                       |
|-----------------------|----------------------|-------------------------|-------------------------|----------------|-----------------------------|-----------------------------|-------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------------|-------------------------|--------------|------------------------------|---------------------------|--------------|-------------------------|--------------|-------------------------|------------------------------|----------------------------|--------------|-------------------------|
| Status                | Shallow              | Deep                    | Shallow                 | Shallow        | P&A                         | P&A                         | P&A                     | Shallow                     | CBM                         | Deep                        | Shallow                     | Shallow                    | DRY                     | Deep         | Deep                         | Shallow                   | Deep         | DRY                     | Shallow      | Deep                    | <u>2</u>                     | P&A                        | Deep         | DRY                     |
| RESERVOIR             | CHACRA               | GALLUP                  | PICTURED CLIFFS         | CHACRA         | FRUITLAND SAND              | DAKOTA                      | (N/A)                   | CHACRA                      | FRUITLAND COAL              | DAKOTA                      | FRUITLAND SAND              | PICTURED CLIFFS            | FARMINGTON              | DAKOTA       | DAKOTA                       | FARMINGTON, NORTH Shallow | DAKOTA       | FARMINGTON              | CHACRA       | GALLUP                  | MORRISON BLUFF EN            | PICTURED CLIFFS            | DAKOTA       |                         |
| OPERATOR              | ENERGEN              | Burlington              | Burlington              | MANANA GAS INC | O-22-29N-11W JOHN C PICKETT | P-22-29N-11W MANANA GAS INC | Pre-Ongard              | N-22-29N-11W MANANA GAS INC | N-22-29N-11W MANANA GAS INC | N-22-29N-11W MANANA GAS INC | N-22-29N-11W MANANA GAS INC | G-34-29N-11W CHAPARRAL O&G | Pre-Ongard              | Burlington   | B-26-29N-11W XTO ENERGY, INC | D-34-29N-11W MCELVAIN O&G | Burlington   | Pre-Ongard              | Burlington   | Burlington              | B-26-29N-11W XTO ENERGY, INC | E-35-29N-11W CHAPARRAL O&G | Burlington   | Pre-Ongard              |
| ULSTR                 | M-27-29N-11W ENERGEN | K-26-29N-11W Burlington | M-27-29N-11W Burlington | P-22-29N-11W   | 0-22-29N-11W                | P-22-29N-11W                | M-26-29N-11W Pre-Ongard | N-22-29N-11W                | N-22-29N-11W                | N-22-29N-11W                | N-22-29N-11W                | G-34-29N-11W               | M-23-29N-11W Pre-Ongard | J-26-29N-11W | B-26-29N-11W                 | D-34-29N-11W              | F-34-29N-11W | O-23-29N-11W Pre-Ongard | E-35-29N-11W | C-35-29N-11W Burlington | B-26-29N-11W                 |                            | G-34-29N-11W | P-28-29N-11W Pre-Ongard |
| P&A Date              |                      |                         |                         |                | 02-Mar-00                   | 14-Jun-99                   | 11-Nov-58               |                             |                             |                             | •                           |                            |                         |              |                              |                           |              |                         |              |                         |                              | 18-Dec-99                  |              |                         |
| <u>Total</u><br>Depth | 2790                 | 5870                    | 1678                    | 2754           | 1466                        | 6274                        | 1917                    | 2732                        | 1608                        | 6226                        | 1410                        | 1736                       | 2335                    | 6430         | 6160                         | 1525                      | 6347         | 2015                    | 6328         | 5943                    | 7382                         | 1790                       | 6340         | 870                     |
| Perf<br>Bottom        | 2790                 | 5870                    | 1678                    | 2754           | 1466                        | 6274                        |                         | 2732                        | 1608                        | 6226                        | 1410                        | 1736                       |                         | 6430         | 6160                         | 1064                      | 6347         |                         | 2906         | 5943                    | 7070                         | 1790                       | 6340         |                         |
| Perf                  | 2668                 | 5295                    | 1648                    | 2627           | 1380                        | 6072                        |                         | 2622                        | 1440                        | 6052                        | 1390                        | 1726                       |                         | 6172         | 6047                         | 1060                      | 6202         |                         | 2784         | 5369                    | 6952                         | 1776                       | 6171         |                         |
| APINO                 | 30-045-24573         | 30-045-25612            | 30-045-21732            | 30-045-26721   | 30-045-07959                | 30-045-07961                | 30-045-07776            | 30-045-26731                | 30-045-34312                | 30-045-07940                | 30-045-13089                | 30-045-20755               | 30-545-02123            | 30-045-33093 | 30-045-07733                 | 30-045-24834              | 30-045-24835 | 30-545-02124            | 30-045-24837 | 30-045-25675            | 30-045-30788                 | 30-045-20752               | 30-045-07672 | 30-045-07751            |
| #!                    | က                    | ო                       | Ħ.                      | 7              | -                           | -                           | <del>~-</del>           | -                           | -                           | _                           | 7                           | 7                          | က                       | 7            | -                            | =                         | 7E           | 4                       | 4            | 15                      | -                            | -                          | ł,           | -                       |
| WELLNAME              | GARLAND              | CALVIN                  | GARLAND B               | NANCY HARTMAN  | GRACE PEARCE                | HARTMAN                     | Davis                   | MARY JANE                   | ROYAL FLUSH                 | COOK                        | C00K                        | SHELLY                     | HARE                    | CALVIŅ       | SULLIVAN GAS COM D           | ELLEDGE FEDERAL 34        | CONGRESS     | HARE                    | CONGRESS     | CONGRESS                | ASHCROFT SWD                 | LEA ANN                    | CONGRESS     | Viles EE                |
| Miles to<br>DW1       | 0.65                 | 0.67                    | 0.68                    | 0.70           | 0.71                        | 0.72                        | 0.73                    | 0.75                        | 0.76                        | 0.79                        | 0.79                        | 0.82                       | 0.82                    | 0.84         | 0.85                         | 0.85                      | 0.89         | 0.90                    | 06.0         | 0.90                    | 0.90                         | 0.90                       | 0.94         | 0.94                    |
| Map.<br>Seq.          | 25                   | 56                      | 27                      | 28             | 53                          | 30                          | 31                      | 32                          | 33                          | 8                           | 35                          | 36                         | 37                      | 38           | 39                           | 4                         | 4            | 45                      | 43           | 4                       | 45                           | 46                         | 47           | 48                      |

| c | 7 |
|---|---|
| ť |   |
| - | _ |
| ç | 2 |
| 9 |   |
| č |   |
| ń | • |

| Pen.<br>Inj.<br>Zone  | ş                       | <u>8</u>                          | 8<br>2                            | Yes                          | 8<br>8                            | . °                               | N <sub>o</sub>               | N <sub>o</sub>           | Yes                    | S<br>S                     | Š              |
|-----------------------|-------------------------|-----------------------------------|-----------------------------------|------------------------------|-----------------------------------|-----------------------------------|------------------------------|--------------------------|------------------------|----------------------------|----------------|
| Status                | P&A                     | P&A                               | P&A                               | Deep                         | P&A                               | P&A                               | Shallow                      | CBM                      | P&A                    | Shallow                    | DRY            |
| RESERVOIR             | PICTURED CLIFFS         | PICTURED CLIFFS                   |                                   | <b>DAKOTA</b>                | PICTURED CLIFFS                   | PICTURED CLIFFS                   | CHACRA                       | FRUITLAND COAL           | DAKOTA                 | PICTURED CLIFFS            | FRUITLAND SAND |
| <u>OPERATOR</u>       | Pre-Ongard              | Pre-Ongard                        | Pre-Ongard                        | A-28-29N-11W XTO ENERGY, INC | Pre-Ongard                        | Pre-Ongard                        | B-26-29N-11W XTO ENERGY, INC | K-23-29N-11W HOLCOMB O&G | BP AMERICA             | E-34-29N-11W CHAPARRAL O&G | Pre-Ongard     |
| ULSTR                 | G-26-29N-11W Pre-Ongard | 05-May-78 A-28-29N-11W Pre-Ongard | 05-Jun-78 A-28-29N-11W Pre-Ongard | A-28-29N-11W                 | 31-Aug-53 G-26-29N-11W Pre-Ongard | 30-Oct-53 J-34-29N-11W Pre-Ongard | B-26-29N-11W                 | K-23-29N-11W             | 10-Mar-97 K-23-29N-11W | E-34-29N-11W               | -34-29N-11W    |
| P&A Date              | 23-Jun-55               | 05-May-78                         | 05-Jun-78                         |                              | 31-Aug-53                         | 30-Oct-53                         |                              |                          | 10-Mar-97              |                            |                |
| <u>Total</u><br>Depth | 006                     | 1600                              | 009                               | 6125                         | 1420                              | S <sub>C</sub>                    | 2761                         | 2761                     | 6182                   | 1731                       | FrtInd         |
| Perf<br>Bottom        |                         |                                   |                                   | 6125                         |                                   |                                   | 2761                         | 1648                     | 6182                   | 1731                       |                |
| Per                   |                         |                                   |                                   | 6023                         |                                   |                                   | 2750                         | 1470                     | 6154                   | 1712                       |                |
| APINO                 | 30-045-29107            | 30-045-07895                      | 30-045-07762                      | 30-045-07894                 | 30-045-07870                      | 30-045-07674                      | 30-045-23163 2750            | 30-045-23550 1470        | 30-045-07985           | 30-045-20609               | 30-545-02151   |
| #1                    | ¥                       | 7                                 | က                                 | -                            | -                                 | -                                 | _                            | -                        | ~                      | -                          | 7              |
| WELLNAME              | Sullivan                | Madsen Selby Pooled Unit          | Masden-Selby                      | MASDEN GAS COM               | Sullivan                          | CONGRESS                          | EARL B SULLIVAN              | STATE GAS COM BS         | PEARCE GAS COM         | CHAPARRAL                  | CONGRESS       |
| Miles to<br>DW1       | 0.95                    | 0.97                              | 0.97                              | 0.97                         | 0.97                              | 96.0                              | 96.0                         | 66.0                     | 0.99                   | 0.99                       | 0.99           |
| Map<br>Seq.           | 49                      | 20                                | 5.                                | 25                           | 53                                | 54                                | 22                           | 26                       | 22                     | 58                         | 29             |

| Zone.         | 윙      | 12  | 4   | 0   | 10  | 4       |      | 35    |
|---------------|--------|-----|-----|-----|-----|---------|------|-------|
| Pen Inj. Zone | Yes    | က   | 0   | 7   | 8   | က       | 4    | 24    |
| Total         | Wells  | 15  | 4   | 2   | ^   | 17      | 4    | 69    |
|               | Status | P&A | Dry | ÎN. | CBM | Shallow | Deep | Total |

# APPENDIX A

From:

Chavez, Carl J, EMNRD [CarlJ.Chavez@state.nm.us]

Sent:

Friday, September 09, 2011 5:07 PM

To:

Robinson, Kelly

Cc: Subject: Kuehling, Monica, EMNRD; Roberts, Kelly G, EMNRD; Schmaltz, Randy RE: UICI-009 Bloomfield Refinery Well Acidization September 2011

Attachments:

C-103 Well Stimulation 9-9-2011.pdf

Ms. Robinson:

Please find attached the OCD- Environmental Bureau's approval of your C-103.

Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Dept.

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: http://www.emnrd.state.nm.us/ocd/

"Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the

Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental)

From: Robinson, Kelly [mailto:Kelly.Robinson@wnr.com]

Sent: Friday, September 09, 2011 2:28 PM

To: Chavez, Carl J, EMNRD

**Cc:** Kuehling, Monica, EMNRD; Roberts, Kelly G, EMNRD; Schmaltz, Randy **Subject:** UICI-009 Bloomfield Refinery Well Acidization\_September 2011

Importance: High

Good Afternoon Sir.

Western Refining Southwest, Inc. – Bloomfield Refinery is requesting OCD's approval to conduct acidization and well clean-out activities on the Refinery's injection well. Attached is the completed C-103 notification for this event and a written summary of the proposed activities. These proposed activities are intended to follow the same procedures OCD previously approved in August 2009. Following OCD's approval, Western is hoping to be able to schedule this work for the later part of next week pending contractor availability as well.

As we discussed during an earlier phone conversation, Cindy Hurtado is no longer with Western Refining. Therefore, if you have any questions or need additional information, please do not hesitate to contact me at your convenience.

Thank you for your time and have a great weekend!

Sincerely,

Kelly R. Robinson
Environmental Supervisor

Western Refining Southwest, Inc.

Bloomfield, NM87413

- (o) 505-632-4166 (c) 505-801-5616 (f) 505-632-4024

- (e) kelly.robinson@wnr.com

From:

Chavez, Carl J, EMNRD [CarlJ.Chavez@state.nm.us]

Sent:

Tuesday, September 13, 2011 10:22 AM

To:

Robinson, Kelly, Kuehling, Monica, EMNRD; Roberts, Kelly G, EMNRD

Cc:

Schmaltz, Randy

Subject:

RE: Bloomfield Refinery Well Acidization Work - Schedule

Ok. Thanks.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Dept.

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: http://www.emnrd.state.nm.us/ocd/

"Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the

Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at:

http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental)

From: Robinson, Kelly [mailto:Kelly.Robinson@wnr.com]

Sent: Monday, September 12, 2011 8:53 AM

To: Kuehling, Monica, EMNRD; Roberts, Kelly G, EMNRD

Cc: Chavez, Carl J, EMNRD; Schmaltz, Randy

Subject: Bloomfield Refinery Well Acidization Work - Schedule

Good Morning Everyone,

Following Mr. Chavez's approval of the proposed acid treatment of the Bloomfield Refinery injection well, we have scheduled the approved activities to be conducted on Monday, September 19, 2011. The reason for the quick schedule is so as to be able to initiate the Fall-Off Testing prior to the OCD deadline. I will be finalizing the Fall-Off Test procedure within the next day or two, and will then be submitting it to OCD for review and approval. The final schedule of the Fall-Off Test will be pending approval and coordination with OCD on their schedule for viewing of the test.

If you would like to be on-site for the activities scheduled for Monday, September 19<sup>th</sup>, 2011, please let me know at your convenience. At this time the acid work is scheduled to be performed in the morning hours of Monday, September 19<sup>th</sup>.

Thank you again for your time, and have a great Monday!

Sincerely,

Kelly R. Robinson Environmental Supervisor

#### Western Refining Southwest, Inc.

111 County Road 4990 Bloomfield, NM87413

- (o) 505-632-4166
  - (c) 505-801-5616
  - (f) 505-632-4024
  - (e) kelly.robinson@wnr.com

From:

Chavez, Carl J, EMNRD [CarlJ.Chavez@state.nm.us]

Sent:

Friday, September 16, 2011 8:37 AM

To:

Robinson, Kelly

Cc:

Kuehling, Monica, EMNRD; Powell, Brandon, EMNRD; Roberts, Kelly G, EMNRD

Subject:

RE: UICI-009 Bloomfield Refinery Injection Well Fall Off Test 2011

Ms. Robinson:

The OCD is in receipt of your Fall-Off Test (FOT) request and OCD- EB will respond by COB today.

Please inform the OCD District (Ms. Kuehling and me) of the planned date and time for installation of the bottom hole gauges in advance of shutting off injection to the well for the FOT; and also in advance of shutting off injection after achieving a pseudo steady-state injection condition into the well to allow the OCD to witness pressure fall-off at that time.

Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Dept.

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: http://www.emnrd.state.nm.us/ocd/

"Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the

Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at:

http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental)

**From:** Robinson, Kelly [mailto:Kelly.Robinson@wnr.com]

Sent: Friday, September 16, 2011 8:18 AM

To: Chavez, Carl J, EMNRD

Cc: Kuehling, Monica, EMNRD; Powell, Brandon, EMNRD; Roberts, Kelly G, EMNRD

**Subject:** UICI-009 Bloomfield Refinery Injection Well Fall Off Test 2011

#### Good Morning Sir,

Western Refining Southwest Inc. - Bloomfield Refinery (Western) is requesting OCD's approval to conduct the Annual Fall-Off Test on the Refinery's injection well. Attached is the completed C-103 notification for this event, and a written summary of the proposed activities.

Pending QCD approval, Western would like to initiate the Fall-Off Test following completion of the Acidizing that is scheduled to commence on Monday, September 19<sup>th</sup>. With this said, it is anticipated that the memory gauges would be installed in the well on Friday, September 23rd, and the well would be shut-in on Monday, September 26th, 2011 (thus starting the fall-off portion of the testing).

If you have any questions or need any additional information, please do not hesitate to contact me at your convenience.

Thank you for your time!

Sincerely,

Kelly R. Robinson **Environmental Supervisor** 

# Western Refining Southwest, Inc.

111 County Road 4990 Bloomfield, NM87413

- (o) 505-632-4166
- (c) 505-801-5616
- (f) 505-632-4024
- (e) kelly.robinson@wnr.com

From: Sent: Chavez, Carl J, EMNRD [CarlJ.Chavez@state.nm.us]

Thursday, July 21, 2011 12:31 PM

To:

Robinson, Kelly

Cc:

Varela, Monica G., EMNRD

Subject: RE: Western Re

RE: Western Refining Bloomfield Refinery - Fall-Off Test Scheduling

Ms. Robinson:

Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Dept.

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: http://www.emnrd.state.nm.us/ocd/index.htm

"Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the

Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental)

From: Robinson, Kelly [mailto:Kelly.Robinson@wnr.com]

Sent: Thursday, July 21, 2011 12:20 PM

**To:** Chavez, Carl J, EMNRD **Cc:** Schmaltz, Randy

**Subject:** Western Refining Bloomfield Refinery - Fall-Off Test Scheduling

Importance: High

Good Morning Mr. Chavez,

As discussed during our phone conversation yesterday, Western has not finalized the schedule for the Injection Well Fall-Off Test at the Bloomfield Refinery. It is our intention to perform a well stimulation procedure prior to conducting the Injection Well Fall-Off Test. At this time, we are hoping to be able to schedule the well stimulation event during the week of August 29th, 2011. This schedule is contingent on contractor availability. Upon completion of the well stimulation event, we anticipate to be able to conduct the Well Fall-Off Test during the week of September 12th, 2011.

Western will notify OCD once the schedules for both events are finalized. Once the schedules are finalized, Western will also submit the respective C-103 notifications that will include Scope of Work summaries for OCD's review and approval.

I appreciate your time in talking with me yesterday. If you have any questions, please don't hesitate to contact me at your convenience.

Sincerely,

Kelly R. Robinson nvironmental Supervisor

Western Refining Southwest, Inc. 111 County Road 4990

# Bloomfield, NM87413

office: (505) 632-4166 cell: (505) 801-5616 ax: (505) 632-4024 email: kelly.robinson@wnr.com

# Chavez, Carl J. EMNRD

From:

Chavez, Carl J. EMNRD

Sent:

Friday, August 20, 2010 11:58 AM

To:

'Hurtado, Cindy'; Roberts, Kelly G, EMNRD

Cc: Subject: Schmaltz, Randy; Kuehling, Monica, EMNRD

RE: Bloomfield Refinery - UiCI-009 Fall-Off Test (UICI-009)

Attachments:

C-103 Annual FOT 8-20-10.pdf

Cindy:

Approved. Please see attachment.

As a reminder, during the steady-state injection period prior to fall-off test (FOT) monitoring, please be sure to include the real-time injection flow rate with pressure and temperature data to verify that a steady-state flow condition was achieved prior to FOT monitoring. Also, an updated historical pressure-flow rate chart should be submitted with the fall-off test package for the disposal well.

Please contact me if you have questions. Thank you.

Please be advised that NMOCD approval of this plan does not relieve Western Refining Southwest, Inc.-Bloomfield Refinery of responsibility should their operations pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve Western Refining Southwest, Inc.- Bloomfield Refinery of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Dept.

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Dr., Santa Fe. New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: http://www.emnrd.state.nm.us/ocd/index.htm (Pollution Prevention Guidance is under "Publications")

From: Hurtado, Cindy [mailto:Cindy.Hurtado@wnr.com]

Sent: Friday, August 20, 2010 9:31 AM

To: Chavez, Carl J, EMNRD; Roberts, Kelly G, EMNRD Cc: Schmaltz, Randy; Kuehling, Monica, EMNRD Subject: Bloomfield Refinery - UiCI-009 Fall-Off Test

Good Morning Carl,

Please disregard the previous e-mail concerning Bloomfield Refinery's Fall-Off Test. It did not contain the signed C-103 application. This current e-mail contains the signed C-103.

Please find attached the C-103 application for Bloomfield Refinery's Class 1 Injection Well Fall-Off Test to begin on August 29, 2010. Also attached is the Fall-Off Test Plan incorporating your request to install bottom hole gauges at 48 hours before cessation of injection and the Wellbore Diagram.

Monica Kueling with Aztec OCD is available on August 30, 2010 to witness installation of the bottom hole gauges.

A hard copy of this submittal will be mailed to your office.

Thanks,

From:

Chavez, Carl J, EMNRD [CarlJ.Chavez@state.nm.us]

ent:

Friday, September 16, 2011 10:48 AM

To:

Robinson, Kelly

Cc:

Kuehling, Monica, EMNRD; Powell, Brandon, EMNRD; Roberts, Kelly G, EMNRD; Schmaltz,

Randy: McDaniel, Vic

**Subject:** 

RE: UICI-009 Bloomfield Refinery Injection Well Fall Off Test 2011

Kelly:

OCD is in receipt of the update.

Please remember to submit a C-103 for the "coiling" of the injection well if you are entering the well, etc. Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Dept.

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: http://www.emnrd.state.nm.us/ocd/

"Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the

Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental)

From: Robinson, Kelly [mailto:Kelly.Robinson@wnr.com]

Sent: Friday, September 16, 2011 10:24 AM

To: Chavez, Carl J, EMNRD

Cc: Kuehling, Monica, EMNRD; Powell, Brandon, EMNRD; Roberts, Kelly G, EMNRD; Schmaltz, Randy; McDaniel, Vic

Subject: RE: UICI-009 Bloomfield Refinery Injection Well Fall Off Test 2011

Importance: High

Mr. Chavez,

Thank you for talking with me this morning. As we discussed, Western has identified scaling inside the injection well that has minimize the capacity of the Bloomfield Refinery injection well. The result of these findings have made it necessary to post-pone the acid work on the well, and thus the scheduling of the Fall-Off Test.

As of this morning, Western is in the process of contracting with a Coil Tubing company to be able to coil the Bloomfield Refinery injection well. Coiling the well will allow us to remove the scale in the bottom 80 ft, and thus allow us to resume injection into the Menefee Formation. At this time, the earliest the Coil Tubing Contractor could be on-site is Monday, September 26<sup>th</sup>, 2011. We will have a more firm schedule next week, and at that time we will provide OCD with an up-dated schedule.

Following the coiling activities, we would like to proceed in conducting the well stimulization/acidization to ensure any scale within the perforations of the well has been removed. We are confident that these two activities will return the well to is normal production capacity.

Once the coiling process and acidization activities are completed, we will then be able to schedule the Fall-Off Test.

We appreciate OCD's understanding on these issues. Western will send out a confirmed schedule of events once they are know next week. At that time, we will make sure that we coordinate these activity with OCD so as to provide the opportunity to witness any or all of these activities.

Thank you again for your time, and have a great weekend!

Sincerely,

Kelly R. Robinson Environmental Supervisor

#### Western Refining Southwest, Inc.

111 County Road 4990 Bloomfield, NM87413

(o) 505-632-4166

(c) 505-801-5616

(f) 505-632-4024

(e) kelly.robinson@wnr.com

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]

Sent: Friday, September 16, 2011 8:37 AM

To: Robinson, Kelly

**Cc:** Kuehling, Monica, EMNRD; Powell, Brandon, EMNRD; Roberts, Kelly G, EMNRD **Subject:** RE: UICI-009 Bloomfield Refinery Injection Well Fall Off Test 2011

Ms. Robinson:

The OCD is in receipt of your Fall-Off Test (FOT) request and OCD- EB will respond by COB today.

Please inform the OCD District (Ms. Kuehling and me) of the planned date and time for installation of the bottom hole gauges in advance of shutting off injection to the well for the FOT; and also in advance of shutting off injection after achieving a pseudo steady-state injection condition into the well to allow the OCD to witness pressure fall-off at that time.

hank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: http://www.emnrd.state.nm.us/ocd/

"Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the

Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: <a href="http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental">http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental</a>)

**From:** Robinson, Kelly [mailto:Kelly.Robinson@wnr.com]

Sent: Friday, September 16, 2011 8:18 AM

To: Chavez, Carl J, EMNRD

Cc: Kuehling, Monica, EMNRD; Powell, Brandon, EMNRD; Roberts, Kelly G, EMNRD

Subject: UICI-009 Bloomfield Refinery Injection Well Fall Off Test\_2011

Good Morning Sir,

Western Refining Southwest Inc. – Bloomfield Refinery (Western) is requesting OCD's approval to conduct the Annual Fall-Off Test on the Refinery's injection well. Attached is the completed C-103 notification for this event, and a written immary of the proposed activities.

Pending OCD approval, Western would like to initiate the Fall-Off Test following completion of the Acidizing that is scheduled to commence on Monday, September 19<sup>th</sup>. With this said, it is anticipated that the memory gauges would be

From:

Chavez, Carl J, EMNRD [CarlJ.Chavez@state.nm.us]

ent:

Thursday, September 22, 2011 2:47 PM

To:

Robinson, Kelly

Cc:

Kuehling, Monica, EMNRD; Powell, Brandon, EMNRD; Schmaltz, Randy

Subject: Attachments: RE: UICI-009 Revised Notification\_Bloomfield Refinery Injection Well Stimulation Activities C-103 Well Stimulation 9-22-2011.pdf

Kelly:

Please find OCD's approval attached.

Good luck. Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Dept.

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: http://www.emnrd.state.nm.us/ocd/

"Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the

Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental)

From: Robinson, Kelly [mailto:Kelly.Robinson@wnr.com]

Sent: Wednesday, September 21, 2011 4:37 PM

To: Chavez, Carl J, EMNRD

Cc: Kuehling, Monica, EMNRD; Powell, Brandon, EMNRD; Schmaltz, Randy

Subject: UICI-009 Revised Notification Bloomfield Refinery Injection Well Stimulation Activities.

#### Good Afternoon Sir,

Western Refining Southwest, Inc. – Bloomfield Refinery is submitting a revised C-103 that pertains to the proposed well stimulation/acidization activities on the Refinery's injection well. As per our previous phone conversation, Western is currently working to finalize a contract with Basic Energy Services (formerly known as Maverick Coil Tubing, Inc.) to perform the coil tubing activities that is needed to evacuate the accumulation of scale within the bottom perforations of the Bloomfield Injection Well. Once this Contract with Basic Energy is finalized and OCD has approve the proposed activities, Western will notify OCD of the schedule to implement the field activities so that opportunity is provided to witness any or all of the field activities.

Thank you for your time, and please contact me at your convenience if you have any questions or need any additional information.

Sincerely,

Kelly R. Robinson
Environmental Supervisor

#### Western Refining Southwest, Inc.

11 County Road 4990 Bloomfield, NM87413

- (o) 505-632-4166
- (c) 505-801-5616

- (f) 505-632-4024 (e) <u>kelly\_robinson@wnr.com</u>

| Submit 1 Copy To Appropriate District                                        | State of New Mexico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       | C-103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Office<br><u>District 1</u> (575) 393-6161                                   | Energy, Minerals and Natural Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sources Revised Augus                                 | it 1, 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1625 N. French Dr., Hobbs, NA1 88240<br>District II - (575) 748-1283         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WELL API NO.<br>30-045-29002-00                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 811 S. First St., Artesia, NM 88210                                          | OIL CONSERVATION DIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 Indicate Type of Lance                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <u>District III ~ (505) 334-6178</u><br>1000 Rio Brazos Rd., Aztec, NM 87410 | 1220 South St. Francis I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r. STATE   FEE                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| District IV - (505) 476-3460                                                 | Santa Fe, NM 87505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6. State Oil & Gas Lease No.                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1220 S. St. Francis Dr., Santa Fe, NM<br>87505                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SUNDRY NOTICE (DO NOT USE THIS FORM FOR PROPOSA                              | ES AND REPORTS ON WELLS<br>LS TO DRILL OR TO DEEPEN OR PLUG BAG<br>TION FOR PERMIT" (FORM C-101) FOR SIJO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PROPOSALS.)                                                                  | and 87 of the sales of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8. Well Number: #001                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                              | as Well  Other - (Disposal Well) ing Co. / Western Refining Southwest,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Bloomfield Refinery                                                          | mg Co. / Western Returing Southwest,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | inc. – 9. OGRAD Nanoce: 037218                        | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3. Address of Operator                                                       | - the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the | 10. Pool name or Wildcat:                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| # 50 Road 4990, Bloomfield, NM, 87                                           | 413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Blanco/Mesa Verde                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4. Well Location                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Unit Letter1_:2442                                                           | feet from the south lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e and 1250 feet from the east 1                       | ine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Section 27                                                                   | Township 29 Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11 NMPM County San                                    | luan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                              | 11. Elevation (Show whether DR, RKB,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RT, GR, etc.)                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 12. Check Ap                                                                 | propriate Box to Indicate Nature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of Notice, Report or Other Data                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NOTICE OF INTE                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SUBSEQUENT REPORT OF:                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EDIAL WORK                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MENCE DRILLING OPNS P AND A                           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PULL OR ALTER CASING DOWNHOLE COMMINGLE                                      | MULTIPLE COMPL   CAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NG/CEMENT JOB                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DOAMMONE COMMININGES []                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| OTHER: Well Stimulation / Acidize V                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nt details, and give pertinent dates, including estim |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Multiple Completions: Aftach wellbore diagram o       | ſ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| proposed completion or recom                                                 | pietion,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| •                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o perform well stimulation/acidization procedures     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| from OCD.                                                                    | . The procedures for this project are at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ached. The procedure will be scheduled pending a      | ipprovai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| nom ocb.                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                              | <i>:</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Spud Date:                                                                   | Rig Release Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| I hereby certify that the information abo                                    | ve is true and complete to the best of n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | y knowledge and belief.                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Jet V                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SIGNATURE of elly foli                                                       | TITLE Environm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ental Supervisor DATE 9/21/2011                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       | Managodia - que región h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Type or print name Kelly Robinson                                            | E-mail address: <u>kell</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | v.robinson@wnr.com PHONE: 505-632-4166                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| For State Use Only                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| APPROVED BY:                                                                 | Sim TITLE Environ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | til Enginee DATE 9/22/2                               | 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Conditions of Approval (if any):                                             | A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR |                                                       | Marine State Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control |

#### Western Refining Southwest, Inc. – Bloomfield Refinery

Well Clean-Out and Acid Treatment Field Procedure - September 2011

Well:

Disposal Well #1

Field:

Mesaverde

Location:

Bloomfield Refinery S27, T29N, R11W

API No. :

30-045-29002

PROJECT: Lower Injection pressure by pumping 15% HCl acid.

#### Prior to Job:

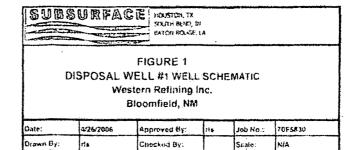
A safety meeting will be held for all contractors and facility visitors prior to the start of field activities. Equipment staged on-site for well clean-out and acidizing activities include two 400-bbl frac tanks to be used for flow-back after acid job. An additional frac tank may be used for flow-back during well clean out activities. The tanks will be hard-piped to the injection well piping for flow-back. All field piping will be pressured tested at 4,000 psi to ensure no leaks exist on field equipment prior to commencement of field work.

A water truck will be used for fluid displacement. Hydrants at the Bloomfield Refinery have too much pressure for these field activities. A summary of the activities proposed are as follows:

#### Phase 1: Clean out and Acid Spot

- 1. Rig up the coil tubing unit & Halliburton to well head and conduct pressure test on pumps and lines.
- 2. RIH with 1-1/4-inch coil tubing to PBTD at 3520 ft. Clean out if necessary.
- 3. Pull coiled tubing up to bottom perforation at 3,460 ft KB (bottom perforation) to ensure acid placement is at the perforations.
- Pump 200 gallons of 15% HCL with inhibitors into well.
- 5. Pull out coiled tubing and shut well in overnight.

#### Phase 2: Acid / Ball Off


- Establish an injection rate with water. Pump 4,200 gallons of 15% HCl acid w/ inihibtors and mutual solvent with 300 ea. bio-degradable ball sealers. Pump initial 500-gallons without balls.
- Displace acid to bottom perforation with ~ 24 bbls of 2% KCl water (or disposal water if available).
- Shut well in for ~ 1 hr and let acid treatment "soak".
- Open well through 2-inch line and let well flow back to frac tank. Flow back approximately 400 bbls of fluid.
- After flowback, return well to injection status and monitor rates and pressures.

#### Materials & Vendors

Add: Halliburton Energy Services Coll Tubing: Basic Energy Services

## WESTERN REFINING DISPOSAL WELL #1 NW, SW SECTION 26, T29N, R11W

NO.: 30-045-29002



8-5/8", 48#/ft, Surface Casing @ 830"

TOC: Surface Hole Size: 11.0°

Tubing: 2-7/8", Acid Resistant Fluoroline Cement Lined

Wt of Tubing: 6.5 #/ft

Wt of Tubing Lined: 7.55 #/ft

Tubing ID: 2,128"
Tubing Drift ID: 2,000"

Minimum ID @ Packer: ~1.87" estimated

Packer: Unknown Packer Type @ 3221'
Could be a Guiberson or similar model Uni-6

Perforations: 3276' - 3408' 4JSPF 0.5 EHD Top of the Cliff House Formation: 3276'

Fill was cleaned out of well on 4/20/06 Fill was orginally tagged at 3325'

Perforations: 3435' - 3460' 4JSPF 0.5 EHD Top of the Menefee Formation: 3400'

RBP: 3520'

5-1/2", 15.5#/ft, Production Casing @3600'

TOC: Surface Hole Size: 7-7/8"

From:

Robinson, Kelly

ent:

Tuesday, October 04, 2011 7:02 AM

To:

'Powell, Brandon, EMNRD', Kuehling, Monica, EMNRD

Cc:

Schmaltz, Randy; 'Chavez, Carl J, EMNRD'

Subject:

Bloomfield Refinery Injection Well - Acidizing and Coiling Work

#### Good Morning Brandon and Monica,

I apologize for the short notice, but as of 5pm yesterday afternoon I was given Corporate approval to go forward with the Injection Well coiling and acidizing work. As you know, we have been delayed in scheduling and moving forward with these activities pending finalization of the contracts.

Basic Energy Services in Aztec, NM is being contracted to perform the well coiling activities. Halliburton will be performing the acidizing work. As of 6am this morning, we were told that the only opportunity Basic Energy has for coiling the well is today. The next opportunity would not be for several weeks. Therefore, I have asked Basic Energy to mobilize to the Bloomfield Refinery this morning. They are expected to arrive within the hour, and at that time, after safety orientations are complete, we will begin the coiling work.

Halliburton has also a similar limited schedule of opportunity. Their next available opportunity to be on-site to perform the acidizing work is Friday, October 7<sup>th</sup>.

Following completion of these two activities, we will schedule the Fall-Off Test for the Injection Well. That test will be conducted at a time that is convenient for both the contract (Teffteller) and OCD representatives.

I apologize for the late notice. If you have any questions, please do not hesitate to contact me at your convenience.

incerely,

Kelly R. Robinson Environmental Supervisor

#### Western Refining Southwest, Inc.

111 County Road 4990 Bloomfield, NM87413

- (o) 505-632-4166
- (c) 505-801-5616
- (f) 505-632-4024
- (e) kelly.robinson@wnr.com

From:

Robinson, Kelly

ent:

Thursday, October 06, 2011 10:17 AM

To: Cc: 'Powell, Brandon, EMNRD'; Kuehling, Monica, EMNRD

'Chavez, Carl J, EMNRD'; Schmaltz, Randy

Subject:

Acidization Work Scheduled for the Bloomfield Refinery Injection Well

#### Good Morning Brandon and Monica,

As of 10am this morning, Western Refining Southwest, Inc. (Western) was able to finalize the schedule for acidizing the injection well at the Bloomfield Refinery. Halliburton is scheduled to arrive on-site between 9am and 10am tomorrow, October 7<sup>th</sup>, 2011. I will be the Western representative who will oversee these activities. If you have any questions regarding these schedule activities, please feel free to contact me at your convenience.

Following the well acidization activities, the injection well will be returned to normal operation. I will be contacting you again next week to schedule a time that meets your schedule for conducting the Annual Fall-Off Test.

Thank you for your time, and have a great day!

Sincerely,

Kelly R. Robinson **Environmental Supervisor** 

#### Western Refining Southwest, Inc.

111 County Road 4990 Bloomfield, NM87413

- (o) 505-632-4166
- (c) 505-801-5616
- (f) 505-632-4024
- (e) kelly.robinson@wnr.com

From:

Robinson, Kelly

ent:

Thursday, October 06, 2011 3:48 PM

To: Subject: 'Powell, Brandon, EMNRD'; Kuehling, Monica, EMNRD

Bloomfield Refinery Injection Well Acidization Activities - Change in Schedule

#### Good Afternoon Brandon and Monica.

I received a call from Halliburton just about 10 minutes ago informing me that due to the recent rainy weather in the Four Corners Area, Halliburton was unable to complete the acid job they are working on at the Reservation. With this said, they had to postpone the work scheduled for the Bloomfield Refinery Injection Well until Monday, October 10<sup>th</sup>. They are scheduled to be on-site around 8am on Monday.

I apologize for the change in schedule.

If you have any questions, please don't hesitate to contact me at your convenience.

Thank you for your time and have a great weekend!

Kelly R. Robinson Environmental Supervisor

#### Western Refining Southwest, Inc.

111 County Road 4990 Bloomfield, NM87413

(o) 505-632-4166

(c) 505-801-5616

505-632-4024

e) kelly.robinson@wnr.com

From:

Chavez, Carl J, EMNRD [CarlJ.Chavez@state.nm.us]

ent:

Thursday, October 13, 2011 5:16 PM

To:

Robinson, Kelly

Subject:

RE: UICI-009 Bloomfield Refinery Injection Well Fall Off Test 2011

Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Dept.

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: http://www.emnrd.state.nm.us/ocd/

"Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the

Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: <a href="http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental">http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental</a>)

From: Robinson, Kelly [mailto:Kelly.Robinson@wnr.com]

Sent: Thursday, October 13, 2011 1:53 PM

To: Kuehling, Monica, EMNRD; Powell, Brandon, EMNRD

Cc: Chavez, Carl J, EMNRD; Schmaltz, Randy

Subject: FW: UICI-009 Bloomfield Refinery Injection Well Fall Off Test\_2011

#### Good Afternoon,

Over the past few weeks, Western Refining Southwest, Inc. – Bloomfield Refinery has been able to successfully complete the well stimulation and well coiling activities at the Bloomfield Refinery injection well. With this said, Western has contracted Tefteller, Inc. to assist in performing the up-coming Fall-Off Test.

At this time, Tefteller, Inc. is scheduled to arrive on-site at approximately 8am on Wednesday, October 19th to install the memory gauges down the well. By this time, the injection well will have reached and maintained a steady-state injection rate for a minimum of 24-hours prior. Once the gauges are installed, they will be allowed to stabilize for at least 48-hours before the well is shut-in and the fall-off monitoring commences. The well will remain shut-in for approximately 3 to 11 days, pending the fall-off data results collected. Attached is the OCD approved procedure that will be followed.

Western understands that OCD requests to be on-site for a part or all of these activities. If the above schedule does not meet your availability and OCD would like the testing schedule to be changed or adjusted, please let me know at your convenience so that the appropriate arrangements can be made.

Thank you for your time, and have a great weekend!

Sincerely,

Kelly R. Robinson Environmental Supervisor

#### Western Refining Southwest, Inc.

111 County Road 4990 Hoomfield, NM87413

- (o) 505-632-4166
- (c) 505-801-5616

(f) 505-632-4024

(e) kelly.robinson@wnr.com

**From:** Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]

Sent: Friday, September 16, 2011 4:42 PM

**To:** Robinson, Kelly

Cc: Kuehling, Monica, EMNRD; Powell, Brandon, EMNRD; Roberts, Kelly G, EMNRD; Schmaltz, Randy; McDaniel, Vic

Subject: RE: UICI-009 Bloomfield Refinery Injection Well Fall Off Test 2011

Ms. Robinson:

Please find attached OCD's approval of the C-103 FOT. Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Dept.

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: http://www.emnrd.state.nm.us/ocd/

"Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the

Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental)

**From:** Robinson, Kelly [mailto:Kelly.Robinson@wnr.com]

Sent: Friday, September 16, 2011 10:24 AM

To: Chavez, Carl J, EMNRD

🗲: Kuehling, Monica, EMNRD; Powell, Brandon, EMNRD; Roberts, Kelly G, EMNRD; Schmaltz, Randy; McDaniel, Vic

**Subject:** RE: UICI-009 Bloomfield Refinery Injection Well Fall Off Test\_2011

Importance: High

Mr. Chavez,

Thank you for talking with me this morning. As we discussed, Western has identified scaling inside the injection well that has minimize the capacity of the Bloomfield Refinery injection well. The result of these findings have made it necessary to post-pone the acid work on the well, and thus the scheduling of the Fall-Off Test.

As of this morning, Western is in the process of contracting with a Coil Tubing company to be able to coil the Bloomfield Refinery injection well. Coiling the well will allow us to remove the scale in the bottom 80 ft, and thus allow us to resume injection into the Menefee Formation. At this time, the earliest the Coil Tubing Contractor could be on-site is Monday, September 26<sup>th</sup>, 2011. We will have a more firm schedule next week, and at that time we will provide OCD with an up-dated schedule.

Following the coiling activities, we would like to proceed in conducting the well stimulization/acidization to ensure any scale within the perforations of the well has been removed. We are confident that these two activities will return the well to is normal production capacity.

Once the coiling process and acidization activities are completed, we will then be able to schedule the Fall- Off Test.

We appreciate OCD's understanding on these issues. Western will send out a confirmed schedule of events once they are know next week. At that time, we will make sure that we coordinate these activity with OCD so as to provide the opportunity to witness any or all of these activities.

hank you again for your time, and have a great weekend!

Sincerely,

#### Kelly R. Robinson Environmental Supervisor

#### Jestern Refining Southwest, Inc.

111 County Road 4990 Bloomfield, NM87413

- (o) 505-632-4166
- (c) 505-801-5616
- (f) 505-632-4024
- (e) kelly.robinson@wnr.com

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]

Sent: Friday, September 16, 2011 8:37 AM

To: Robinson, Kelly

**Cc:** Kuehling, Monica, EMNRD; Powell, Brandon, EMNRD; Roberts, Kelly G, EMNRD **Subject:** RE: UICI-009 Bloomfield Refinery Injection Well Fall Off Test 2011

Ms. Robinson:

The OCD is in receipt of your Fall-Off Test (FOT) request and OCD- EB will respond by COB today.

Please inform the OCD District (Ms. Kuehling and me) of the planned date and time for installation of the bottom hole gauges in advance of shutting off injection to the well for the FOT; and also in advance of shutting off injection after achieving a pseudo steady-state injection condition into the well to allow the OCD to witness pressure fall-off at that time.

Thank you.

arl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Dept.

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: http://www.emnrd.state.nm.us/ocd/

"Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the

Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at:

http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental)

**From:** Robinson, Kelly [mailto:Kelly.Robinson@wnr.com]

Sent: Friday, September 16, 2011 8:18 AM

To: Chavez, Carl J, EMNRD

Cc: Kuehling, Monica, EMNRD; Powell, Brandon, EMNRD; Roberts, Kelly G, EMNRD

Subject: UICI-009 Bloomfield Refinery Injection Well Fall Off Test 2011

Good Morning Sir,

Western Refining Southwest Inc. – Bloomfield Refinery (Western) is requesting OCD's approval to conduct the Annual Fall-Off Test on the Refinery's injection well. Attached is the completed C-103 notification for this event, and a written summary of the proposed activities.

Pending OCD approval, Western would like to initiate the Fall-Off Test following completion of the Acidizing that is cheduled to commence on Monday, September 19<sup>th</sup>. With this said, it is anticipated that the memory gauges would be installed in the well on Friday, September 23<sup>rd</sup>, and the well would be shut-in on Monday, September 26<sup>th</sup>, 2011 (thus starting the fall-off portion of the testing).

If you have any questions or need any additional information, please do not hesitate to contact me at your convenience.

Thank you for your time!

Sincerely,

Kelly R. Robinson Environmental Supervisor

#### Western Refining Southwest, Inc.

111 County Road 4990 Bloomfield, NM87413

- (o) 505-632-4166
- (c) 505-801-5616
- (f) 505-632-4024
- (e) kelly.robinson@wnr.com

From:

Chavez, Carl J. EMNRD [CarlJ.Chavez@state.nm.us]

Sent:

Friday, October 21, 2011 1:18 PM

To:

Robinson, Kelly, Powell, Brandon, EMNRD; Kuehling, Monica, EMNRD; Wiebe, Paul, EMNRD

Cc:

Schmaltz, Randy; Sanchez, Daniel J., EMNRD; VonGonten, Glenn, EMNRD

Subject:

RE: Bloomfield Refinery Injection Well - Schedule Up-Date

Kelly:

Thank you for the update.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Dept.

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: http://www.emnrd.state.nm.us/ocd/

"Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the

Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at:

http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental)

From: Robinson, Kelly [mailto:Kelly.Robinson@wnr.com]

Sent: Friday, October 21, 2011 12:03 PM

To: Powell, Brandon, EMNRD; Kuehling, Monica, EMNRD; Wiebe, Paul, EMNRD

Cc: Schmaltz, Randy; Chavez, Carl J, EMNRD

Subject: Bloomfield Refinery Injection Well - Schedule Up-Date

#### Good Afternoon Everyone!

I wanted to take this opportunity to provide you with an up-dated schedule regarding the Fall-Off Test that is currently being conducted at the Bloomfield Refinery injection well. As you may know, we installed down-hole memory gauges at the injection well on Wednesday, October 19<sup>th</sup>. We maintained a steady injection flow during the three days prior and 48-hour following the installation of the gauges. As of 11am this morning, the injection well has been blocked-in and down-hole flow by the injection well pump has ceased. The well will be blocked-in for 11 days. At this time, the contractor is scheduled to return to the facility on **Tuesday, November 1<sup>ch</sup> at 10:30am**, at which time the gauges will be pulled from the well with incremental interval pressure readings collected as outlined in the approved Fall-Off Test procedure.

During the time the well is blocked-in, surface casing pressures can be monitored from a field gauge that was installed by the contractor at the well head. This pressure reading will be monitored several times during each shift by Operations and Environmental personnel.

If there are any questions or concerns regarding these activities, please feel free to contact me at your convenience.

I appreciate your time, and have a great weekend!

Sincerely,

Kelly R. Robinson Environmental Supervisor

Western Refining Southwest, Inc.

111 County Road 4990

installed in the well on Friday, September 23<sup>rd</sup>, and the well would be shut-in on Monday, September 26<sup>th</sup>, 2011 (thus starting the fall-off portion of the testing).

If you have any questions or need any additional information, please do not hesitate to contact me at your convenience.

Thank you for your time!

Sincerely,

Kelly R. Robinson Environmental Supervisor

#### Western Refining Southwest, Inc.

111 County Road 4990 Bloomfield, NM87413

- (o) 505-632-4166
- (c) 505-801-5616
- (f) 505-632-4024
- (e) kelly.robinson@wnr.com



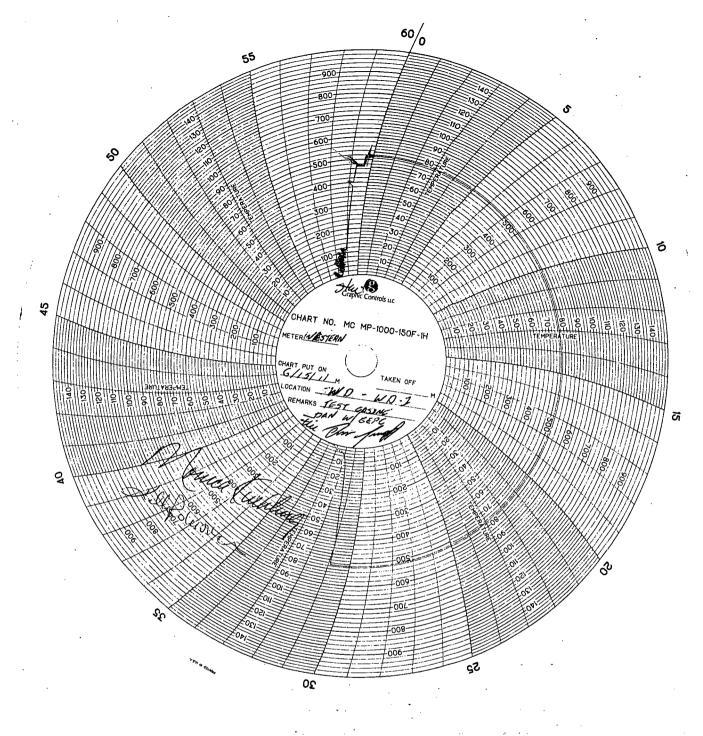
# NEW MEXICO ENERGY, MINERALS & NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION
AZTEC DISTRICT OFFICE
1000 RIO BRAZOS ROAD
AZTEC NM 87410
(505) 334-6178 FAX: (505) 334-6170
http://emnrd.state.nm.us/ocd/District III/3distric.htm

# **BRADENHEAD TEST REPORT**

(submit 1 copy to above address)

| Date o          | of Test                  | 6             | -15-                    | //            | Opera       | ator Western API #30-0                            |
|-----------------|--------------------------|---------------|-------------------------|---------------|-------------|---------------------------------------------------|
|                 |                          | ne S          |                         |               |             | Location: Unit_Section Township Range //          |
|                 |                          |               |                         |               |             | Tubing DIntermediate VIII Casing Bradenhead O     |
| OPE             | N BR                     | ADENH         | EAD Al                  | ND INTER      | MEDIA1      | TE TO ATMOSPHERE INDIVIDUALLY FOR 15 MINUTES EACH |
| Testing         | ВН                       | Braden<br>Int | PRESSI<br>head<br>. Csg | URE<br>INTE   | RM<br>Csg   | FLOW CHARACTERISTICS<br>BRADENHEAD INTERMEDIATE   |
| TIME<br>5 min_  |                          |               |                         |               |             | Steady Flow                                       |
| 10 min_         |                          |               |                         |               |             | Surges                                            |
| 15 min_         |                          |               |                         |               |             | Down to Nothing                                   |
| 20 min_         |                          |               |                         |               |             | Nothing                                           |
| 25 min_         |                          | ļ             |                         |               |             | Gas                                               |
| 30 min_         |                          |               |                         |               |             | Gas & Water                                       |
|                 |                          |               |                         |               |             | Water                                             |
| <u>If brade</u> | nhead 1                  | lowed w       | ater, che               | eck all of th | e descript  | ions that apply below:                            |
|                 | CLEAF                    | <u> </u>      | FRESH                   | I S           | ALTY        | SULFURBLACK                                       |
| 5 MINU          | TE SH                    | UT-IN P       | RESSUF                  | RE B          | RADENI      | HEADINTERMEDIATE/_A                               |
|                 |                          |               | _                       |               |             | opened.                                           |
|                 |                          |               |                         | /             |             |                                                   |
|                 |                          |               |                         |               |             |                                                   |
| By Ne           | llek                     | dus           | 71                      |               |             | Witness // Mula Luckling                          |
| <u>Eu</u>       | <u>Uroni</u><br>(Positio | <u>meide</u>  | 1 S                     | nbeino;       | <b>b^</b> . |                                                   |
| -mail ad        | `                        | ,             |                         |               |             |                                                   |




# NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

# MECHANICAL INTEGRITY TEST REPORT

(TA OR UIC)

| Date of Test $6-15-11$                                        | Operator Western              | API # 30-0                                                                                  |
|---------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------|
| Property NameSWD                                              | Well #/                       | Location: Unit_SecTwn=Rge//_                                                                |
| Land Type:  State Federal Private Indian                      | Well Ty                       | Water Injection  Salt Water Disposal  Gas Injection  Producing Oil/Gas  Pressure obervation |
| Temporarily Abandoned Well (Y/N)                              | ТА Ехр                        | ires:                                                                                       |
| Sasing Pres. Padenhead Pres. Tubing Pres. Int. Casing Pres.   | Tbg. SI Pres. Tbg. Inj. Pres. | Max. Inj. Pres                                                                              |
| Pressured annulus up to                                       | psi for 30                    | mins. Test passed/failed                                                                    |
| REMARKS: C                                                    | Def. 3221<br>Copperf 3276     |                                                                                             |
| ,                                                             |                               |                                                                                             |
| (Operator Representative)  Environmental Supervis  (Position) | Witness                       | NMOCD)  Revised 02-11-02                                                                    |



| Office Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | State of New Mexico                                                                     | Form C-103                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------|
| District 1 - (575) 393-6161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Energy, Minerals and Natural Resources                                                  | Revised August 1, 2011 WELL API NO.              |
| 1625 N. Freech Dr., Hobbs, NM 88240<br>District II - (575) 748-1283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATT CONCERNAL MEAN PROPERTY.                                                            | 30-045-29002-00                                  |
| 811 S. Pirst St., Artesia, NM 88210<br>District III - (505) 334-6178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OIL CONSERVATION DIVISION                                                               | 5. Indicate Type of Lease                        |
| 1000 Rio Brazos Rd., Aztoc, NM 87410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1220 South St. Francis Dr.<br>Santa Fe, NM 87505                                        | STATE FEE S                                      |
| <u>District IV</u> - (505) 476-3460<br>1220 S. St. Francis Dr., Santa Fe, NM<br>87505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sama 1 c, 1414 67205                                                                    | 6. State Oil & Gas Lease No.<br>N/A              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CES AND REPORTS ON WELLS                                                                | 7. Lease Name or Unit Agreement Name             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TALS TO DRILL OR TO DEEPEN OR PLUG BACK TO A<br>ATTON FOR PERMIT" (FORM C-101) FOR SUCH | Disposal                                         |
| 1. Type of Well: Oil Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gas Well 🛛 Other - (Disposal Well)                                                      | 8. Well Number: #001                             |
| Bloomfield Refinery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ining Co. / Western Refining Southwest, Inc                                             | 9. OGRID Number: 037218                          |
| 3. Address of Operator<br>#.50 Road 4990, Bloomfield, NM, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37413                                                                                   | 10. Pool name or Wildcat:<br>Blanco/Mesa Verde   |
| 4. Well Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                                  |
| Unit Letter   1 : 244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 feet from the <u>south</u> line and <u>12</u>                                         | 50 feet from the east line                       |
| Section 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Township 29 Range 11                                                                    | NMPM County San Juan                             |
| A CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH | 11. Elevation (Show whether DR, RKB, RT, GR, etc.                                       | ) he ill is                                      |
| 12. Check A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ppropriate Box to Indicate Nature of Notice,                                            | Report or Other Data                             |
| NOTICE OF IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         | SEQUENT REPORT OF:                               |
| PERFORM REMEDIAL WORK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PLUG AND ABANDON   REMEDIAL WOR                                                         |                                                  |
| TEMPORARILY ABANDON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHANGE PLANS COMMENCE DR                                                                |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MULTIPLE COMPL   CASING/CEMEN                                                           | T JOB                                            |
| DOWNHOLE COMMINGLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                         |                                                  |
| OTHER: Well Stimulation / Acidize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                                                  |
| 13. Describe proposed or comple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ted operations. (Clearly state all pertinent details, an                                | d give pertinent dates, including estimated date |
| of starting any proposed wor<br>proposed completion or reco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | k). SEE RULE 19.15.7.14 NMAC. For Multiple Commission                                   | mpletions: Attach wellbore diagram of            |
| proposed completion of reco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | inpeton.                                                                                |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                  |
| Western Refining Southwest, Inc B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | loomfield Refinery requests permission to perform w                                     | ell stimulation/acidization procedures on the    |
| Class I Injection Well referenced above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ve. The procedures for this project are attached. The                                   | procedure will be scheduled pending approval     |
| from OCD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                         |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                  |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                                                  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         | -                                                |
| Spud Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rig Release Date:                                                                       |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                  |
| I hereby certify that the information al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sove is true and complete to the best of my knowledge                                   | e and belief.                                    |
| JAIDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                         |                                                  |
| SIGNATURE Kellykolu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TITLE Environmental Superv                                                              | isor DATE 9/9/2011                               |
| Type or print name Kelly Robinso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n E-mail address: kelly.robinson@                                                       | wir.com PHONE: 503-632-4166                      |
| For State Use Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | пенульними                                                                              | 2011-1-100                                       |
| APPROVED BY: Carl J. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TITLE Environmental                                                                     | Engline DATE 9/9/2011                            |
| Conditions of Approval (if any):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del></del>                                                                             |                                                  |

#### Western Refining Southwest, Inc. - Bloomfield Refinery

Well Clean-Out and Acid Treatment Field Procedure - September 2011

Well:

Disposal Well #1

Field:

Mesaverde

Location:

Bloomfield Refinery S27, T29N, R11W

API No. :

30-045-29002

PROJECT: Lower Injection pressure by pumping 15% HCl acid.

#### Prior to Job:

A safety meeting will be held for all contractors and facility visitors prior to the start of field activities. Equipment staged on-site for well clean-out and additional activities include two 400-bbl frac tanks to be used for flow-back after acid job. An additional frac tank may be used for flow-back during well clean out activities. The tanks will be hard-piped to the injection well piping for flow-back. All field piping will be pressured tested at 4,000 psi to ensure no leaks exist on field equipment prior to commencement of field work.

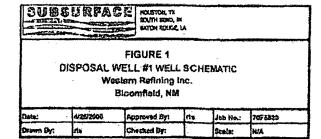
A water truck will be used for fluid displacement. Hydrants at the Bloomfield Refinery have too much pressure for these field activities. A summary of the activities proposed are as follows:

#### Phase 1: Clean out and Acid Spot

- Rig up the Sanjel coll tubing unit & Halliburton to well head and conduct press test on pumps and lines.
- 2. RIH with 1-1/4-Inch coil tubing to PBTD at 3520 ft. Clean out if necessary.
- 3. Pull colled tubing up to bottom perforation at 3,460 ft KB (bottom perforation) to ensure acid placement is at the perforations.
- 4. Pump 200 gallons of 15% HCL with inhibitors into well
- 5. Pull out coiled tubing and shut well in overnight.

#### Phase 2: Acid / Ball Off

- Establish an injection rate with water. Pump 4,200 gallons of 15% HCl acid w/ inihibtors and mutual solvent with 300 ea. bio-degradable ball sealers. Pump Initial 500-gallons without balls.
- Displace acid to bottom perforation with ~ 24 bbls of 2% KCl water (or disposal water if available).
- Shut well in for ~ 1 hr and let acid treatment "soak".
- Open well through 2-inch line and let well flow back to frac tank. Flow back approximately 400 bbls of fluid.
- After flowback, return well to injection status and monitor rates and pressures.


#### Materials & Vendors

Acid: Halliburton Energy Services

Coll Tubing: Sanjel

# WESTERN REFINING DISPOSAL WELL #1 NW, SW SECTION 26, T29N, R11W

NO.: 30-045-29002



8-5/8", 48#/fi, Surface Casing @ 830' TOC: Surface

Hole Size: 11.0"

Tubing: 2-7/8", Acid Resistant Fluoroline Cement Lined

Wt of Tubing: 6.5 #/ft

Wt of Tubing Lined: 7.55 #ft

Tubing ID: 2.128"
Tubing Drift ID: 2.000"

Minimum ID @ Packer: ~1.87" estimated

Packer: Unknown Packer Type @ 3221'

Could be a Guiberson or similar model Uni-6

Perforations: 3276' - 3408' 4JSPF 0.5 EHD Top of the Cliff House Formation: 3276'

Fill was cleaned out of well on 4/20/06 Fill was orginally tagged at 3325'

Perforations: 3435' - 3460' 4JSPF 0.5 EHD Top of the Menefee Formation: 3400'

RBP: 3520'

5-1/2", 15.5#/ft, Production Casing @3800"

TOC: Surface Hole Size: 7-7/8"

| Office                                                                                                         | State of New M                                                    |                                              |                                     | Form C-103                    |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------|-------------------------------------|-------------------------------|
| District 1 - (575) 393-6161                                                                                    | Energy, Minerals and Nati                                         | ural Resources                               | WELL API NO.                        | Revised August 1, 2011        |
| 1625 N. French Dr., Hobbs, NM 88240<br>District II - (575) 748-1283                                            | OIL CONSERVATION                                                  | J PARVICIONI                                 | 30-045-29002-00                     |                               |
| 811 S. First St., Artesia, NM 88210<br>District III - (505) 334-6178                                           | 1220 South St. Fra                                                |                                              | 5. Indicate Type o                  |                               |
| 1000 Rio Brazos Rd., Aztec, NM 87410                                                                           | Santa Fe, NM 8                                                    |                                              | STATE [                             | FEE 🛛                         |
| <u>District IV</u> - (505) 476-3460<br>1220 S. St. Francis Dr., Santa Fe, NM<br>87505                          | Santa PC, Nivi o                                                  | 7303                                         | 6. State Oil & Gas<br>N/A           | Lease No.                     |
| SUNDRY NOTI                                                                                                    | CES AND REPORTS ON WELL!                                          |                                              |                                     | Unit Agreement Name           |
| (DO NOT USE THIS FORM FOR PROPOSE DIFFERENT RESERVOIR. USE "APPLICE PROPOSALS.)                                |                                                                   |                                              | Disposal                            |                               |
|                                                                                                                | Gas Well 🛛 Other - (Disposal                                      |                                              | 8. Well Number:                     |                               |
| Name of Operator San Juan Res<br>Bloomfield Refinery                                                           | ining Co. / Western Refining Sout                                 | hwest, Inc                                   | 9. OGRID Numbe                      |                               |
| 3. Address of Operator<br># 50 Road 4990, Bloomfield, NM,                                                      | B7413                                                             |                                              | 10. Pool name or \ Blanco/Mesa Verd |                               |
| 4. Well Location                                                                                               |                                                                   |                                              |                                     |                               |
| Unit LetterI24                                                                                                 | feet from the south                                               | line and12:                                  | 50 feet from the                    | _eastline                     |
| Section 27                                                                                                     |                                                                   | Range 11 E                                   | NMPM                                | County San Juan               |
|                                                                                                                | 11. Elevation (Show whather DR                                    | , RKB, RT, GR, etc.,                         | )                                   |                               |
| 12. Check A                                                                                                    | appropriate Box to Indicate N                                     | lature of Notice,                            | Report or Other I                   | Data                          |
| NOTICE OF IN                                                                                                   | TENTION TO                                                        | l cum                                        | CEOUENT DEC                         |                               |
| NOTICE OF IN PERFORM REMEDIAL WORK                                                                             | PLUG AND ABANDON                                                  | REMEDIAL WOR                                 | SEQUENT REP                         | ORTOF:<br>ALTERING CASING [7] |
| TEMPORARILY ABANDON                                                                                            | CHANGE PLANS                                                      | COMMENCE DRI                                 |                                     | P AND A                       |
| PULL OR ALTER CASING                                                                                           | MULTIPLE COMPL                                                    | CASING/CEMEN                                 | •                                   | ,                             |
| DOWNHOLE COMMINGLE                                                                                             |                                                                   |                                              |                                     |                               |
| OTHER: Annual Fall-Off Test                                                                                    | <u>⊠</u>                                                          | OTHER:                                       |                                     | <u> </u>                      |
| of starting any proposed wa                                                                                    | eted operations. (Clearly state all rk). SEE RULE 19.15.7.14 NMA( | pertinent delaits, and                       | a give perinent dates               | , including estimated date    |
| proposed completion or reco                                                                                    |                                                                   | c. Poi ividilipie Coi                        | nprenons. Anach we                  | moore diagram of              |
| <b>PPPPP</b>                                                                                                   |                                                                   |                                              |                                     |                               |
|                                                                                                                |                                                                   |                                              |                                     |                               |
| Western Refining Southwest, Inc I                                                                              | Hoomfold Daffman, manage norm                                     | icaina to madama th                          | a annual Eall Offer                 | d am tha Claus I belonder     |
| well referenced above. The injection                                                                           | build-up period will been followi                                 | ission to perform the<br>ne the Acid Stirmls | tannarran-On res                    | t on the Class I injection    |
| Monday, September 29th. Following                                                                              | a minimum of 24 hours of stable is                                | njection down-hole,                          | the bottom hole pres                | Sure memory gauges will       |
| be lowered into the well (two memory                                                                           | y gauges) and allowed to stabilize.                               | Pending OCD appr                             | roval, Western anticip              | pates installing the          |
| memory gauges on Friday, Septembe                                                                              | 23, 2011. The gauges will be all                                  | owed to stabilize an                         | d the well will be shu              | t-in on Monday,               |
| September 26th. The well will be shu                                                                           | I in for a minimum of 12 hours.                                   |                                              |                                     |                               |
| A more detailed outline of the propos                                                                          | ed procedure is attached.                                         |                                              |                                     |                               |
|                                                                                                                | ·                                                                 |                                              |                                     |                               |
|                                                                                                                |                                                                   | f                                            |                                     | <del></del> 1                 |
| Spud Date:                                                                                                     | Rig Release Da                                                    | ite:                                         |                                     |                               |
|                                                                                                                | <del> </del>                                                      |                                              |                                     | ·                             |
|                                                                                                                |                                                                   |                                              |                                     |                               |
| I hereby certify that the information a                                                                        | bove is true and complete to the be                               | est of my knowledge                          | and belief.                         |                               |
| 1000                                                                                                           | •                                                                 |                                              |                                     |                               |
| SIGNATURE XellyCole                                                                                            | MUTITLEEn                                                         | vironmental Superv                           | isorDATE                            | 9/16/2011                     |
| Type or print name Kelly Robinse                                                                               | E-mail address:                                                   | kelly.robinson@                              | wnr.com PHONE:                      | 505-632-4166                  |
| For State Use Only                                                                                             |                                                                   |                                              | _                                   |                               |
| APPROVED RV:                                                                                                   | Chine TITLE A.                                                    | in the TT &                                  | a. i nam                            | c 9/16/2011                   |
| Conditions of Approval (if any):                                                                               |                                                                   | CHIM-MAY D                                   | June DAII                           | 117 5                         |
| APPROVED BY: last of Conditions of Approval (if any):  1) Test to be run  2) Test to be Cons approved fall-off | after scale rem                                                   | ovel & Well                                  | lacid stir                          | nulation.                     |
| a) A.L. L. L. Com                                                                                              | intent w attached &                                               | 7/20/2010 8                                  | -mail msg.                          | to operator d                 |
| of less to be cons                                                                                             | Test Plan                                                         |                                              |                                     |                               |
| will show and - ac                                                                                             | E-state to                                                        |                                              |                                     | t materials                   |

#### 2011 WELL BUILDUP/FALLOFF TEST PLAN WESTERN REFINERY - BLOOMFIELD, NM WASTE DISPOSAL WELL NO. 1

#### 1.0 INTRODUCTION

The following procedure describes the proposed activities to be conducted to perform the annual bottom-hole pressure survey and pressure fall-off test on Waste Disposal Well (WDW) #1, located at the Bloomfield Refinery in Bloomfield, New Mexico. The proposed procedures are in accordance with the United States Environmental Protection Agency (USEPA) 40 FCR 146.13 and the State of New Mexico Fall-Off Guidelines.

#### 1.1 Well Information

| Well Name & No. | OCD UIC or         | Well Classification | API Number   |
|-----------------|--------------------|---------------------|--------------|
|                 | Discharge Permit # | : · · · ·           |              |
| WDW #1          | UIC-CL1-009        | Class I Non-        | 30-045-29002 |
|                 | GW-130             | Hazardous           |              |

#### 2.0 BACKGROUND

#### 2.1 Previous Fall-Off Testing

Western Refining (formally Giant Refining) has conducted fall-off tests annually on WDW-1 using quartz crystal bottom-hole memory gauges. The tests followed EPA guidelines and complied with OCD directives for UIC non-hazardous Class I injection wells.

In July 2006, a build-up/fall-off test was conducted after the well stimulation. The 72 hour build-up portion of the testing was done at a constant injection rate of 70 gallons per minute (gpm). The fall-off portion of the testing was terminated after 84 hours.

In August 2008, an additional test was conducted with a final flowing rate of 80 gpm prior to shutting in the well for a fall-off monitoring duration of 189 hours.

The results of the previous fall-off tests produced measureable results with all flow skin, storage, and linear flow regimes present. The WDW-1 had linear flow at the end of these fall-off tests. Radial flow was not observed. As a result, the calculated permeability based on radial flow equations is not a reliable estimate of injection zone permeability.

#### 2.2 Geology

The injection zones are porous sandstones of the lower portion of the Cliff House formation and the carbonate section of the Menefee formation. These formations occur in Waste Disposal Well #1 at the depths shows in the table below. The injection zones are shown in the attached well log for Waste Disposal Well #1.

|                          | Waste Disposal Well #1   |               |  |  |
|--------------------------|--------------------------|---------------|--|--|
| Injection Zone Formation | KB Elevation = 5545 feet |               |  |  |
|                          | MD below KB (ft)         | SS Depth (ft) |  |  |
| Cliff House              | 3,276                    | 2,269         |  |  |
| Menefee                  | 3,435                    | 2,110         |  |  |

The WDW-1 is in a confined low permeability sand interval and historically is not capable of producing a bottom-hole 100 psi differential pressure drop between the final injection and shut-in pressures. Records show that WDW-1 was hydraulically fractured after it was drilled. The 2006, 2008, 2009, and 2010 Fall-Off Test data confirm this with a linear flow regime observed after the end of storage effects.

#### 3.0 SUMMARY OF PROPOSED TESTING ACTIVITES

#### 3.1 Data Research

Before performing the 2011 Fall-Off Test, a one-mile Area of Review (AOR) will be conducted to determine the status of any off-set wells that may be injecting into or producing from the WDW-1 injection interval. If any are found, arrangements will be made with the owners of the wells to monitor the well(s) during the build-up/fall-off test period. Historically there has not been any production or injection in the current injection interval within a one mile radius of WDW-1.

#### 3.2 Summary of Field Activities

The proposed Fall-Off Test is similar to the procedures conducted in years prior. The initial three days of testing activities are considered the "build-up" phase of the test. The Bloomfield Refinery injection well (WDW-1) will be operated at a constant rate for a minimum of 72 hours.

After 24 hours of stable injection, bottom-hole pressure memory gauges will be lowered into the well (two gauges total) and allowed to equalize for a minimum of 48 hours, during which time down-hole pressure readings will be recorded. The memory gauges that will be used are SP-2000 hybrid-quartz gauges provided by Tefteller, Inc. These gauges will have a resolution of 0.01 psi and an accuracy of  $\pm$  0.05% of full scale. The pressure range of the gauges will be from 0-5,000 psi, minimum.

After installation and equalization of the down-hole gauges, the injection well will be blockedin and the pressure down-hole will be monitored using bottom-hole pressure memory gauges. The recording period will be set to record pressures at a minimum of every 5 minutes, with more frequent readings collected during the early part of the fall-off test period.

The amount of time anticipated to monitor down-hole pressures will be approximately three to eight days. After such time as elapsed, the bottom-hole pressure gauges will be pulled from the well, making gradient stops every 1,000 feet. A more detailed listing of activities to be completed is described below.

The fluid that will be used for the injection test is the refinery's brine waste water (effluent). A current waste analysis of the fluid will be included in the final report.

Attachment 1 (Figure 1 from the 2008 fall-off test report) is the well schematic for WDW-1 which is the same as submitted in 2010. Table 1 is a summary of the injection intervals for the well. Table 2 is a summary of the injection fluid analysis. Table 3 is a summary of the formation fluid analysis. A connate water analysis prior to injection was not found in any of the records, therefore the original formation water properties will have to be estimated from offset wells. The majority of the background information can also be found in the permit

application that was submitted to the State of New Mexico Oil Conservation Division for the well on September 10, 1992.

#### 3.3 Chronology of Field Activities

The following is a day-to-day summary of the activities proposed to fulfill the annual Fall-Off Testing requirement for the Bloomfield Refinery injection well (WDW-1).

#### During the Initial 72-hours of Testing (Build-up Phase):

- 1. A stabilized injection rate (approximately 40 gallons per minute) will be established using the Refinery pumps. The optimal injection rate for the three day period will be equivalent to the average injection rate for the prior 30 days of operation. A stable injection rate will be maintained for a minimum of 24-hours before the memory gauges are installed.
- 2. The injection well is equipped with a crown valve. Using a slick-line unit, the tandem memory gauges will be run down-hole through the crown valve and lubricator to 3,250 feet, the top of the injection interval.
- Stable injection of the Refinery's effluent will continue into the well for a minimum of 48 hours following placement of the tandem memory gauges to allow the tandem memory gauges to stabilize. During this time, down-hole pressure readings will be recorded.
- 4. Once the stabilization time for the memory gauges has elapsed, the injection pump will be shut down and the well blocked-in by closing wing valve on the wellhead and in the pump room.

#### Pressure Fall-Off Monitoring:

5. While the well is isolated from service, bottom hole pressure readings will be recorded for a minimum of three days and up to eight days. The recording period will be set to record pressures at a minimum of every 5 minutes, with more frequent readings recorded during the early part of the fall-off test period.

#### Following Down-Hole Monitoring:

- 6. Once the appropriate fall-off monitoring time has elapsed, the memory gauges will be pulled making five minute gradient stops at 3250 ft, 3000 ft, 2000 ft, 1000 ft.
- After the gradient interval pressure readings are collected, the fall-off test is considered complete. The slick line unit will rig down and the well will return to normal operation.

#### 4.0 TESTING REPORT

All background information will be included in the final report, which will include a log of the events (Chronology of Field Activity), a overview of the geology, a current Area-of-Review (AOR) update, fall-off analysis including previous injection data (rate and volume history), gauge calibration certificates, bottom hole pressure analysis, well schematic, electric logs, reservoir fluid description, and injection fluid analysis. The procedure to do the fall-off test will also be included in the final report. If necessary, an AOR update will be included prior to the build-up/fall-off testing to ascertain the offset injection wells current condition.

Historically there has not been any production or injection in the current injection interval within a one mile radius of WDW-1.

#### 4.1 Evaluation of the Test Results

The fall-off and other analysis will be completed by a geologist and/or qualified engineer. The Reservoir Engineer will utilize the standard transient pressure analysis methods and the results will be reviewed for accuracy by a licensed professional engineer (PE). The fall-off analysis will include the following:

- A log-log plot with a derivative diagnostic plot used to identify flow regimes.
- A wellbore storage portion and infinite acting portion of the plot.
- A linear flow plot with wellbore storage, P\*, and slope.
- An expanded portion of the linear flow plot showing the infinite acting pressure portion (linear flow).
- The height of the injection interval used for the calculations will be 106 feet (average of 27 feet and 185 feet) unless test data indicate a different interval should be used.
- The viscosity of the formation fluid used for the calculations will be based on historical data.
- A summary of all the equations used for the analysis.
- An explanation of any temperature or pressure anomalous.

The injection records for one year prior to the testing will be included in the analysis.

Well Data Table 1

|                              | WDW - 1                                                                                                             |  |  |  |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Tubing                       | 2.875", 7.55 lb/ft, Fluoroline Cement Lined, 3221'                                                                  |  |  |  |  |
| Packer                       | 5.5"x 2.875", Guiberson Tools, Uni-6, ID 1.87", 3221'                                                               |  |  |  |  |
| Perforations                 | Top of the Cliff House at 3276' 3276' - 3408', 4SPF 0.5 EHD Top of the Menefee at 3400' 3435' - 3460', 4SPF 0.5 EHD |  |  |  |  |
| Protection Casing            | 5.5", 15.5 lb/ft, 3600"                                                                                             |  |  |  |  |
| Cement Top Protection Casing | Surface                                                                                                             |  |  |  |  |
| PBTD / TD                    | RBP at 3520', Fill Tagged on 4/20/06 at 3325' & cleaned of                                                          |  |  |  |  |
| Formation                    | Cliff House / Menefee                                                                                               |  |  |  |  |

Injected Brine Waste Water Table 2

| Chemical                  | Refinery Waste | Refinery Waste |
|---------------------------|----------------|----------------|
| Chemicai                  | Water          | Water          |
| Date                      | March 10, 1998 | Sept 27, 2005  |
| Arsenic (mg/L)            | 0.014          | -              |
| Calcium (mg/L)            | 120            | 68             |
| Magnesium (mg/L)          | 39             | 33             |
| Potassium (mg/L)          | 27             | *              |
| Sodium (mg/L)             | 920            | 1659           |
| Chloride (mg/L)           | 1200           | 2200           |
| Sulfate (mg/L)            | 400            | 708            |
| Alkalinity (CaCO3) (mg/L) | 330            | 100            |
| pH (s.u.)                 | 7.7            | 8,0            |
| Specific Gravity (g/L)    | 1.00 - 1.01    | 1.00 - 1.01    |

Formation Brine Waste Water Table 3

| Chemical                  | Formation Water |
|---------------------------|-----------------|
| Date.                     | May 22, 1995    |
| Arsenic (mg/L)            | 0.023           |
| Cadmium (mg/L)            | 0.003           |
| Calcium (mg/L)            | 375             |
| Lead (mg/L)               | 0.063           |
| Magnesium (mg/L)          | 99              |
| Potassium (mg/L)          | 69              |
| Selenium (mg/L)           | 0.006           |
| Sodium (mg/L)             | 3610            |
| Chloride (mg/L)           | 5370            |
| Sulfate (mg/L)            | 1620            |
| Alkalinity (CaCO3) (mg/L) | 306             |
| pH (s.u.)                 | 8.5             |
| Specific Gravity (g/L)    | - ·             |

# **APPENDIX B**



#### COVER LETTER

Thursday, February 03, 2011

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Injection Well 1st QTR 2011

Dear Cindy Hurtado:

Order No.: 1101665

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 1/20/2011 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX



CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1101665

Project:

Injection Well 1st QTR 2011

Lab ID:

1101665-01

Date: 03-Feb-11

Client Sample ID: Injection Well

Collection Date: 1/19/2011 10:45:00 AM

Date Received: 1/20/2011
Matrix: AQUEOUS

| Lab 1D: 1101003-01             |            |         |      |       |                   |                       |
|--------------------------------|------------|---------|------|-------|-------------------|-----------------------|
| Analyses                       | Result     | PQL     | Qual | Units | DF                | Date Analyzed         |
| EPA METHOD 300.0: ANIONS       |            |         |      |       | سعاب بسخنف اناتده | Analyst: SRM          |
| Chloride                       | 390        | 25      | ·    | ng/L  | 50                | 1/25/2011 9:16:25 PM  |
| Sulfate                        | <b>9</b> 7 | 2.5     | .1   | ng/L  | 5                 | 1/22/2011 7:32:03 PM  |
| EPA METHOD 7470: MERCURY       |            |         |      |       |                   | Analyst: ELS          |
| Mercury                        | ND         | 0.00020 | r    | ng/L  | 1                 | 1/27/2011 11:13:34 AM |
| EPA 6010B: TOTAL RECOVERABLE   | METALS     |         |      |       |                   | Analyst: RAGS         |
| Arsenic                        | ND         | 0.020   | r    | ng/L  | 1                 | 1/26/2011 8:43:55 AM  |
| Barlum                         | 0.29       | 0.020   | r    | ng/L  | 1                 | 1/26/2011 8:43:55 AM  |
| Cadmium                        | ND         | 0.0020  | r    | ng/L  | . 1               | 1/26/2011 8:43:55 AM  |
| Calcium                        | <b>8</b> 5 | 1.0     | · n  | ng/L  | 1                 | 1/26/2011 8:43:55 AM  |
| Chromium                       | ND         | 0.0060  | n    | ng/L  | 1                 | 1/26/2011 8:43:55 AM  |
| Lead                           | ND         | 0.0050  | п    | ng/L  | 1                 | 1/26/2011 8:43:55 AM  |
| Magnesium                      | 21         | 1.0     | n    | ng/L  | 1                 | 1/26/2011 8:43:55 AM  |
| Potassium                      | 6.0        | 1.0     | n    | ng/L  | 1                 | 1/26/2011 8:43:55 AM  |
| Selenium                       | ND         | 0.050   | n    | ng/L  | 1                 | 1/26/2011 8:43:55 AM  |
| Silver                         | ΝÞ         | 0.0050  | n    | ng/L  | 1                 | 1/26/2011 8:43:55 AM  |
| Sodium                         | 330        | 5.0     | n    | ng/L  | 5                 | 1/26/2011 11:34:42 AM |
| EPA METHOD 8270C: SEMIVOLATILE | S          |         |      | ,     |                   | Analyst: MAW          |
| Acenaphthene                   | ND         | 10      | μ    | g/L   | 1                 | 1/25/2011 5:19:39 PM  |
| Acenaphthylene                 | ND         | · 10    | μ    | g/L   | 1                 | 1/25/2011 5:19:39 PM  |
| Aniline                        | ND         | 10      | μ    | g/L   | 1                 | 1/25/2011 5:19:39 PM  |
| Anthracene                     | ND         | 10      | μ    | g/L   | 1                 | 1/25/2011 5:19:39 PM  |
| Azobenzene                     | ND         | • 10    | μ    | g/L   | 1                 | 1/25/2011 5:19:39 PM  |
| Benz(a)anthracene              | ND         | 10      | μ    | g/L   | 1                 | 1/25/2011 5:19:39 PM  |
| Benzo(a)pyrene                 | ND         | 10      | μ    | g/L   | 1                 | 1/25/2011 5:19:39 PM  |
| Benzo(b)fluoranthene           | ND         | 10      | μ    | g/L   | 1                 | 1/25/2011 5:19:39 PM  |
| Benzo(g,h,i)perylene           | ND         | 10      | μ    | g/L   | 1                 | 1/25/2011 5:19:39 PM  |
| Benzo(k)fluoranthene           | ND         | . 10    | μ    | g/L   | 1                 | 1/25/2011 5:19:39 PM  |
| Benzoic acid                   | 39         | 20      | μ    | g/L   | 1                 | 1/25/2011 5:19:39 PM  |
| Benzyl alcohol                 | ND         | 10      | μ    | g/L   | 1                 | 1/25/2011 5:19:39 PM  |
| Bis(2-chloroethoxy)methane     | ND         | 10      | ΄ μ  | g/L   | 1                 | 1/25/2011 5:19:39 PM  |
| Bis(2-chloroethyl)ether        | ND         | 10      | μ    | g/L   | 1                 | 1/25/2011 5:19:39 PM  |
| Bis(2-chloroisopropyl)ether    | ND         | 10      | μ    | g/L   | 1                 | 1/25/2011 5:19:39 PM  |
| Bis(2-ethylhexyl)phthalate     | 13         | 10      | μ    | g/L   | 1                 | 1/25/2011 5:19:39 PM  |
| 4-Bromophenyl phenyl ether     | ND         | 10      | μ    | g/L   | 1                 | 1/25/2011 5:19:39 PM  |
| Butyl benzyl phthalate         | ND         | 10      | μ    | g/L   | 1                 | 1/25/2011 5:19:39 PM  |
| Carbazole                      | ND         | 10      | μ    | g/L   | 1                 | 1/25/2011 5:19:39 PM  |
| 4-Chloro-3-methylphenol        | ND         | 10      | μ    | g/L   | 1                 | 1/25/2011 5:19:39 PM  |
| 4-Chloroaniline                | ND         | 10      | þ    | g/L   | 1                 | 1/25/2011 5:19:39 PM  |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 03-Feb-11

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1101665

Project:

Injection Well 1st QTR 2011

Lab ID:

1101665-01

Client Sample ID: Injection Well

Collection Date: 1/19/2011 10:45:00 AM

Date Received: 1/20/2011

Matrix: AQUEOUS

| Analyses                    | Result | PQL  | Qual Units   | DF  | Date Analyzed        |
|-----------------------------|--------|------|--------------|-----|----------------------|
| EPA METHOD 8270C: SEMIVOLA  | TILES  | ·.·· | <del></del>  |     | Analyst: MAV         |
| 2-Chloronaphthalene         | ND .   | 10   | μ <b>g/L</b> | 1   | 1/25/2011 5:19:39 PM |
| 2-Chlorophenol              | ND     | 10   | µg/L         | 1   | 1/25/2011 5:19:39 PM |
| 4-Chlorophenyl phenyl ether | ND     | 10   | μg/L         | 1   | 1/25/2011 5:19:39 PM |
| Chrysene                    | ND     | . 10 | μg/L         | . 1 | 1/25/2011 5:19:39 PM |
| DI-n-butyl phthalate        | ND     | 10   | μg/L         | 1   | 1/25/2011 5:19:39 PM |
| Di-n-octyl phthalate        | , ND   | 10   | µg/L         | 1   | 1/25/2011 5:19:39 PM |
| Dibenz(a,h)anthracene       | ND     | 10   | μg/L         | 1   | 1/25/2011 5:19:39 PM |
| Dibenzofuran                | ND     | 10   | µg/L         | 1   | 1/25/2011 5:19:39 PM |
| 1,2-Dichlorobenzene         | ND     | 10   | μg/L         | 1   | 1/25/2011 5:19:39 PM |
| 1,3-Dichlorobenzene         | . ND   | 10   | μg/L         | 1   | 1/25/2011 5:19:39 PM |
| 1,4-Dichlorobenzene         | · ND   | 10   | µg/L         | 1 . | 1/25/2011 5:19:39 PM |
| 3,3'-Dichlorobenzidine      | ND.    | 10   | μg/L         | 1   | 1/25/2011 5:19:39 PM |
| Diethyl phthalate           | . ND   | 10   | μg/L         | 1   | 1/25/2011 5:19:39 PM |
| Dimethyl phthalate          | ND     | 10   | μg/L         | 1   | 1/25/2011 5:19:39 PM |
| 2,4-Dichlorophenol          | ND     | 20   | µg/L         | 1   | 1/25/2011 5:19:39 PM |
| 2,4-Dimethylphenol          | 21     | 10   | μg/L         | 1   | 1/25/2011 5:19:39 PM |
| 4,6-Dinitro-2-methylphenol  | ND .   | 20   | µg/L         | 1   | 1/25/2011 5:19:39.PM |
| 2,4-Dinitrophenol           | ND     | 20   | µg/L         | 1   | 1/25/2011 5:19:39 PM |
| 2,4-Dinitrotoluene          | ND     | 10   | μg/L         | 1   | 1/25/2011 5:19:39 PM |
| 2,6-Dinitrotoluene          | ND     | · 10 | μg/L         | 1   | 1/25/2011 5:19:39 PM |
| Fluoranthene                | ND     | 10   | µg/L         | 1   | 1/25/2011 5:19:39 PM |
| Fluorene                    | ND     | 10   | μg/L         | 1   | 1/25/2011 5:19:39 PM |
| Hexachlorobenzene           | . ND   | 10   | µg/L         | 1   | 1/25/2011 5:19:39 PM |
| Hexachlorobutadiene         | ND     | 10   | μg/L         | . 1 | 1/25/2011 5:19:39 PM |
| Hexachlorocyclopentadiene   | ND     | 10   | µg/L         | 1   | 1/25/2011 5:19:39 PM |
| Hexachloroethane            | ND     | 10   | µg/L         | 1   | 1/25/2011 5:19:39 PM |
| Indeno(1,2,3-cd)pyrene      | ND     | 10   | μg/L         | 1   | 1/25/2011 5:19:39 PM |
| Isophorone                  | ND .   | 10   | μg/L         | 1   | 1/25/2011 5:19:39 PM |
| 2-Methylnaphthalene         | ND     | 10   | μg/L         | 1   | 1/25/2011 5:19:39 PM |
| 2-Mathylphenol              | 27     | 10   | µg/L         | 1   | 1/25/2011 5:19:39 PM |
| 3+4-Methylphenol            | 23     | 10   | µg/L         | 1   | 1/25/2011 5:19:39 PM |
| N-Nitrosodi-n-propylamine   | ND     | 10   | µg/L         | 1   | 1/25/2011 5:19:39 PM |
| N-Nitrosodimethylamine      | ND     | 10   | μg/L         | 1   | 1/25/2011 5:19:39 PM |
| N-Nitrosodiphenylamine      | ND     | - 10 | µg/L         | 1   | 1/25/2011 5:19:39 PM |
| Naphthalene                 | ND     | 10   | μg/L ·       | 1   | 1/25/2011 5:19:39 PM |
| 2-Nitroaniline              | ND     | 10   | µg/L         | 1   | 1/25/2011 5:19:39 PM |
| 3-Nitroaniline              | ND     | 10   | μg/L         | 1   | 1/25/2011 5:19:39 PM |
| 4-Nitroaniline              | ND .   | 20   | μg/L         | 1   | 1/25/2011 5:19:39 PM |
| Nitrobenzene                | · ND   | 10   | µg/L         | 1   | 1/25/2011 5:19:39 PM |
| 2-Nitrophenol               | ND     | 10   | μg/L         | 1   | 1/25/2011 5:19:39 PM |
| 4-Nitrophenol               | ND     | 10   | µg/L         | 1   | 1/25/2011 5:19:39 PM |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 03-Feb-11

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1101665

Project:

Injection Well 1st QTR 2011

Lab ID:

1101665-01

Client Sample ID: Injection Well

Collection Date: 1/19/2011 10:45:00 AM

Date Received: 1/20/2011 Matrix: AQUEOUS

| Analyses                               | Result | PQL       | Qual Un      | its | DF  | Date Analyzed        |
|----------------------------------------|--------|-----------|--------------|-----|-----|----------------------|
| <b>EPA METHOD 8270C: SEMIVOLATILES</b> |        | ****      |              |     |     | Analyst: MAW         |
| Pentachlorophenol                      | ND     | 20        | μg/i         | L   | 1   | 1/25/2011 5:19:39 PM |
| Phenanthrene                           | ND     | 10        | μg/          |     | 1   | 1/25/2011 5:19:39 PM |
| Phenol                                 | 19     | 10        | μg/          |     | 1   | 1/25/2011 5:19:39 PM |
| Pyrene                                 | ND     | 10        | μ <b>g</b> / |     | 1   | 1/25/2011 5:19:39 PM |
| Pyridine                               | ND     | 10        | μg/i         | L . | 1   | 1/25/2011 5:19:39 PM |
| 1,2,4-Trichlorobenzene                 | ND     | 10        | μg/l         | L   | 1   | 1/25/2011 5:19:39 PM |
| 2,4,5-Trichlorophenol                  | ND     | 10        | µg/l         | L   | 1   | 1/25/2011 5:19:39 PM |
| 2,4,6-Trichlorophenol                  | ND     | 10        | μg/l         | Ĺ   | 1 . | 1/25/2011 5:19:39 PM |
| Surr: 2,4,6-Tribromophenol             | 72.4   | 17.5-104  | %R           | EC  | 1   | 1/25/2011 5:19:39 PM |
| Surr: 2-Fluorobiphenyl                 | 82.6   | 30.9-98.9 | %R           | EC  | 1   | 1/25/2011 5:19:39 PM |
| Surr: 2-Fluorophenol                   | 45.3   | 12.4-90.1 | %R           | EC  | 1   | 1/25/2011 5:19:39 PM |
| Surr: 4-Terphenyl-d14                  | 65.3   | 43.5-91.9 | %R           | EC  | 1   | 1/25/2011 5:19:39 PM |
| Surr: Nitrobenzene-d5                  | 79.6   | 26.2-108  | %R           | EC  | 1   | 1/25/2011 5:19:39 PM |
| Surr: Phenol-d5                        | 29.1   | 11.8-73.1 | %R           | EC  | 1   | 1/25/2011 5:19:39 PM |
| EPA METHOD 8260B: VOLATILES            |        |           |              |     |     | Analyst; RAA         |
| Benzene                                | ND     | 1.0       | μg/l         | L   | 1   | 1/22/2011 8:35:16 AM |
| Toluene                                | ND     | 1.0       | μg/l         |     | 1   | 1/22/2011 6:35:16 AM |
| Ethylbenzene                           | ND     | 1.0       | μg/L         |     | 1   | 1/22/2011 6:35:16 AM |
| Methyl tert-butyl ether (MTBE)         | ND     | 1.0       | μg/L         |     | 1   | 1/22/2011 6:35:16 AM |
| 1,2,4-Trimethylbenzene                 | ND     | 1.0       | μg/L         |     | 1 . | 1/22/2011 6:35:16 AM |
| 1,3,5-Trimethylbenzene                 | ND     | 1.0       | µg/L         |     | 1   | 1/22/2011 6:35:16 AM |
| 1,2-Dichloroethane (EDC)               | ND     | 1.0       | μg/L         |     | 1   | 1/22/2011 6:35:16 AM |
| 1,2-Dibromoethane (EDB)                | ND     | 1.0       | µg/L         |     | 1   | 1/22/2011 6:35:16 AM |
| Naphthalene                            | ND     | 2.0       | µg/L         |     | 1   | 1/22/2011 6:35:16 AM |
| 1-Methylnaphthalene                    | ND     | 4.0       | μg/L         |     | 1   | 1/22/2011 6:35:16 AM |
| 2-Methylnaphthalene                    | ND     | 4.0       | μg/L         |     | 1   | 1/22/2011 6:35:16 AM |
| Acetone                                | ND     | 10        | µg/L         |     | 1   | 1/22/2011 6:35:16 AM |
| Bromobenzene                           | ND     | 1.0       | µg/L         | _   | 1   | 1/22/2011 6:35:16 AM |
| Bromodichloromethane                   | ND     | 1.0       | μg/L         |     | 1   | 1/22/2011 6:35:16 AM |
| Bromoform                              | ND     | 1.0       | μg/L         | -   | 1   | 1/22/2011 6:35:16 AM |
| Bromomethane                           | ND     | 3.0       | μg/L         |     | 1   | 1/22/2011 6:35:16 AM |
| 2-Butanone                             | ND     | 10        | µg/L         |     | 1   | 1/22/2011 6:35:16 AM |
| Carbon disulfide                       | ND     | 10        | µg/L         |     | 1   | 1/22/2011 6:35:16 AM |
| Carbon Tetrachloride                   | ND     | 1.0       | µg/L         |     | 1   | 1/22/2011 6:35:16 AM |
| Chlorobenzene                          | ND     | 1.0       | μg/L         |     | 1   | 1/22/2011 6:35:16 AM |
| Chloroethane                           | ND     | 2.0       | µg/L         |     | 1   | 1/22/2011 6:35:16 AM |
| Chloroform                             | ND     | 1.0       | μg/L         |     | 1   | 1/22/2011 8:35:16 AM |
| Chloromethane                          | ND     | 3.0       | μg/L         |     | 1   | 1/22/2011 6:35:16 AM |
| 2-Chlorotoluene                        | ND     | 1.0       | μg/L         |     | 1   | 1/22/2011 6:35:16 AM |
| 4-Chiorotoluene                        | ND     | 1.0       | μg/L         |     | 1   | 1/22/2011 6:35:16 AM |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- Analyte detected below quantitation limits
- Non-Chlorinated
- PQL Practical Quantitation Limit

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits  $\boldsymbol{3}$

Page 3 of 7

Date: 03-Feb-11

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1101665

Project:

Injection Well 1st QTR 2011

Lab ID:

1101665-01

Client Sample ID: Injection Well

Collection Date: 1/19/2011 10:45:00 AM

Date Received: 1/20/2011

Matrix: AQUEOUS

| Analyses                    | Result | PQL      | Qual Unit | s DF                                  | Date Analyzed        |
|-----------------------------|--------|----------|-----------|---------------------------------------|----------------------|
| EPA METHOD 8260B: VOLATILES |        |          |           | · · · · · · · · · · · · · · · · · · · | Analyst: RAA         |
| cls-1,2-DCE                 | ND     | 1.0      | µg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| cis-1,3-Dichloropropene     | ND     | 1.0      | µg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| 1,2-Dibromo-3-chloropropane | ND     | 2.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| Dibromochloromethane        | . ND   | 1.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| Dibromomethane              | ND     | 1.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| 1,2-Dichlorobenzene         | , ND   | 1.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| 1,3-Dichlorobenzene         | ND     | 1.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| 1,4-Dichlorobenzene         | ND     | 1.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| Dichlorodifluoromethane     | ND     | 1.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| 1,1-Dichloroethane          | ND     | 1.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| 1,1-Dichloroethene          | ND     | 1.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| 1,2-Dichloropropane         | ND     | 1.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| 1,3-Dichloropropane         | ND     | 1.0      | µg/L      | . 1                                   | 1/22/2011 6:35:16 AM |
| 2,2-Dichloropropane         | ND     | 2.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| 1,1-Dichloropropena         | ND     | 1.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| Hexachlorobutadiene         | ND     | 1.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| 2-Hexanone                  | ND     | 10       | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| Isopropylbenzene            | ND     | 1.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| 4-Isopropyltoluene          | ND     | 1.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| 4-Methyl-2-pentanone        | ND     | 10       | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| Methylene Chloride          | ND     | 3.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| n-Butylbenzene              | ND     | 1.0      | μġ/L      | 1                                     | 1/22/2011 6:35:16 AM |
| n-Propyibenzene             | ND     | 1.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| sec-Butylbenzene            | ND ND  | 1.0      | μg/L      | · 1                                   | 1/22/2011 6:35:16 AM |
| Styrene                     | ND     | 1.0      | μg/L      | . 1                                   | 1/22/2011 6:35:16 AM |
| tert-Butylbenzene           | ND     | 1.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| Tetrachloroethene (PCE)     | ND     | 1.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| trans-1,2-DCE               | ND     | 1.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| trans-1,3-Dichloropropene   | ND     | 1.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| 1,2,3-Trichiorobenzene      | ND     | 1.0      | μg/L      | . 1                                   | 1/22/2011 6:35:16 AM |
| 1,2,4-Trichlorobenzene      | ND     | . 1.0    | µg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| 1,1,1-Trichloroethane       | ND     | 1.0      | µg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| 1,1,2-Trichloroethane       | ND     | 1.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| Trichloroethene (TCE)       | ND     | 1.0      | μg/L      | 1                                     | 1/22/2011 8:35:16 AM |
| Trichlorofluoromethane      | ND     | 1.0      | μg/Ľ      | 1                                     | 1/22/2011 6:35:18 AM |
| 1,2,3-Trichioropropane      | ND     | 2.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| Vinyi chloride              | ND     | 1.0      | μg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| Xylenes, Total              | ND     | 1.5      | µg/L      | 1                                     | 1/22/2011 6:35:16 AM |
| Surr: 1,2-Dichloroethane-d4 | 108    | 77.7-113 | %REC      | 1                                     | 1/22/2011 6:35:16 AM |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
  - S Spike recovery outside accepted recovery limits

Page 4 of 7

Date: 03-Feb-11

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1101665

Project:

Injection Well 1st QTR 2011

Lab ID:

1101665-01

Client Sample ID: Injection Well

Collection Date: 1/19/2011 10:45:00 AM

Date Received: 1/20/2011

Matrix: AQUEOUS

| Analyses                         | Result | PQL                                                                                                             | Qual Units | DF          | Date Analyzed         |
|----------------------------------|--------|-----------------------------------------------------------------------------------------------------------------|------------|-------------|-----------------------|
| EPA METHOD 8260B: VOLATILES      |        | 100 ft 100 ft 100 ft 100 ft 100 ft 100 ft 100 ft 100 ft 100 ft 100 ft 100 ft 100 ft 100 ft 100 ft 100 ft 100 ft |            | <del></del> | Analyst: RAA          |
| Surr: 4-Bromofluorobenzene       | 95.0   | 76.4-106                                                                                                        | %REC       | 1           | 1/22/2011 6:35:16 AM  |
| Surr: Dibromofluoromethane       | 110    | 91.6-125                                                                                                        | %REC       | 1           | 1/22/2011 6:35:16 AM  |
| Surr: Toluene-d8                 | 103    | 92.3-107                                                                                                        | %REC       | 1           | 1/22/2011 6:35:16 AM  |
| SM 2320B: ALKALINITY             |        |                                                                                                                 |            |             | Analyst: IC           |
| Alkalinity, Total (As CaCO3)     | 290    | 20                                                                                                              | mg/L CaCO3 | 1           | 1/25/2011 12:40:00 PM |
| Carbonate                        | ND     | 2.0                                                                                                             | mg/L CaCO3 | 1           | 1/25/2011 12:40:00 PM |
| Bicarbonate                      | 290    | 20                                                                                                              | mg/L CaCO3 | 1           | 1/25/2011 12:40:00 PM |
| EPA 120.1: SPECIFIC CONDUCTANCE  |        | ,                                                                                                               |            |             | Analyst: IC           |
| Specific Conductance             | 2100   | 0.010                                                                                                           | μmhos/cm   | 1           | 1/25/2011 12:40:00 PM |
| SM4500-H+B: PH                   |        |                                                                                                                 |            |             | Analyst: IC           |
| рН                               | 7.29   | 0.100                                                                                                           | pH units   | 1           | 1/25/2011 12:40:00 PM |
| SM2540C MOD: TOTAL DISSOLVED SOI | LIDS   | •                                                                                                               |            |             | Analyst: KS           |
| Total Dissolved Solids           | 1300   | 20.0                                                                                                            | mg/L       | 1           | 1/26/2011 9:36:00 AM  |

#### Qualiflers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 03-Feb-11

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1101665

Injection Well 1st QTR 2011

Project: Lab ID:

1101665-02

Client Sample ID: TRIP BLANK

**Collection Date:** 

Date Received: 1/20/2011

Matrix: TRIP BLANK

| Analyses                       | Result | PQL | Qual     | Units | DF                 | Date Analyzed          |
|--------------------------------|--------|-----|----------|-------|--------------------|------------------------|
| EPA METHOD 8260B: VOLATILES    |        |     |          |       | <del>117 7 1</del> | Analyst: RA            |
| Benzene                        | ND     | 1.0 | <u> </u> | µg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| Toluene                        | ND     | 1.0 |          | µg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| Ethylbenzene                   | ND     | 1.0 | 1        | µg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0 | ! 1      | µg/Ł  | 1                  | 1/22/2011 7:01:34 AM   |
| 1,2,4-Trimethylbenzene         | ND     | 1.0 | a de     | μg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| 1,3,5-Trimethylbenzene         | ND     | 1.0 |          | µg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0 |          | µg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0 |          | µg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| Naphthalene                    | ND     | 2.0 |          | µg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| 1-Methylnaphthalene            | ND     | 4.0 |          | µg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| 2-Methylnaphthalene            | ND .   | 4.0 |          | μg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| Acetone                        | ND     | 10  |          | µg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| Bromobenzene                   | ND     | 1.0 |          | µg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| Bromodichloromethane           | ND     | 1.0 |          | μg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| Bromoform                      | ND     | 1.0 |          | µg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| Bromomethane                   | ND     | 3.0 |          | μg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| 2-Butanone                     | ND     | 10  |          | µg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| Carbon disulfide               | ND     | 10  |          | µg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| Carbon Tetrachloride           | ND     | 1.0 |          | ug/L  | 1                  | 1/22/2011 7:01:34 AM   |
| Chlorobenzene                  | ND     | 1.0 |          | ug/L  | 1                  | 1/22/2011 7:01:34 AM   |
| Chloroethane                   | ND     | 2.0 |          | ug/L  | 1                  | 1/22/2011 7:01:34 AM   |
| Chloroform                     | ND     | 1.0 |          | ig/L  | 1                  | 1/22/2011 7:01:34 AM   |
| Chloromethane                  | ND     | 3.0 |          | ıg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| 2-Chlorotoluene                | ND     | 1.0 |          | ıg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| 4-Chlorotoluene                | ND     | 1.0 |          | ıg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| cis-1,2-DCE                    | ND     | 1.0 |          | ıg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| cis-1,3-Dichloropropene        | ND     | 1.0 |          | ıg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| 1,2-Dibromo-3-chloropropane    | ND     | 2.0 | •        | ıg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| Dibromochloromethane           | ND     | 1.0 | •        | ıġ/L  | 1                  | 1/22/2011 7:01:34 AM   |
| Dibromomethane                 | ND     | 1.0 |          | ıg/L  | 1                  | . 1/22/2011 7:01:34 AM |
| 1,2-Dichlorobenzene            | ND     | 1.0 |          | ıg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| 1,3-Dichlorobenzene            | ND     | 1.0 | -        | ig/L  | 1                  | 1/22/2011 7:01:34 AM   |
| 1,4-Dichlorobenzene            | ND     | 1.0 |          | ıg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| Dichlorodifluoromethane        | ND     | 1,0 |          | ig/L  | 1                  | 1/22/2011 7:01:34 AM   |
| 1,1-Dichloroethane             | ND     | 1.0 |          | ıg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| 1,1-Dichloroethene             | ND     | 1.0 |          | ıg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| 1,2-Dichloropropane            | ND     | 1.0 |          | ıg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| 1,3-Dichloropropane            | ND     | 1.0 |          | ıg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| 2,2-Dichloropropane            | ND     | 2.0 |          | ıg/L  | 1                  | 1/22/2011 7:01:34 AM   |
| 1,1-Dichloropropene            | ND     | 1.0 |          | 18/L  | 1                  | 1/22/2011 7:01:34 AM   |
| Hexachlorobutadiene            | ND     | 1.0 |          | .g/L  | 1                  | 1/22/2011 7:01:34 AM   |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 03-Feb-11

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1101665

Project:

Injection Well 1st QTR 2011

Lab ID:

1101665-02

Client Sample ID: TRIP BLANK

**Collection Date:** 

Date Received: 1/20/2011

Matrix: TRIP BLANK

| Analyses                    | Result | PQL      | Qual | Units         | DF  | Date Analyzed        |
|-----------------------------|--------|----------|------|---------------|-----|----------------------|
| EPA METHOD 8260B: VOLATILES |        |          |      |               |     | Analyst: RAA         |
| 2-Hexanone                  | ND     | 10       |      | µg/L          | 1   | 1/22/2011 7:01:34 AM |
| Isopropylbenzene            | ND     | 1.0      |      | µg/L          | 1   | 1/22/2011 7:01:34 AM |
| 4-Isopropyitoluene          | ND     | 1.0      |      | µg/L          | 1   | 1/22/2011 7:01:34 AM |
| 4-Methyl-2-pentanone        | ND     | 10       | ,    | μg/L          | 1   | 1/22/2011 7:01:34 AM |
| Methylene Chloride          | ND     | 3.0      |      | μg/L          | 1   | 1/22/2011 7:01:34 AM |
| n-Butylbenzene              | , ND   | 1.0      |      | μ <b>g/</b> L | 1   | 1/22/2011 7:01:34 AM |
| n-Propylbenzene             | ND     | 1.0      |      | µg/L          | 1   | 1/22/2011 7:01:34 AM |
| sec-Butylbenzene            | ND     | 1.0      |      | µg/L          | 1   | 1/22/2011 7:01:34 AM |
| Styrene                     | ND     | 1.0      |      | µg/Ĺ          | 1   | 1/22/2011 7:01:34 AM |
| tert-Butylbenzene           | ND     | 1.0      |      | µg/L          | 1   | 1/22/2011 7:01:34 AM |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0      |      | μg/L          | 1   | 1/22/2011 7:01:34 AM |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0      |      | μg/L          | 1   | 1/22/2011 7:01:34 AM |
| Tetrachloroethene (PCE)     | ND     | 1.0      |      | μg/L          | 1   | 1/22/2011 7:01:34 AM |
| trans-1,2-DCE               | ND     | 1.0      |      | µg/L          | 1   | 1/22/2011 7:01:34 AM |
| trans-1,3-Dichloropropene   | ND     | 1.0      |      | μg/L          | 1   | 1/22/2011 7:01:34 AM |
| 1,2,3-Trichlorobenzene      | ND     | 1.0      |      | µg/L          | 1   | 1/22/2011 7:01:34 AM |
| 1,2,4-Trichlorobenzene      | ND     | 1.0      |      | μg/L          | 1 ' | 1/22/2011 7:01:34 AM |
| 1,1,1-Trichloroethane       | ND     | 1.0      |      | µg/L          | 1   | 1/22/2011 7:01:34 AM |
| 1,1,2-Trichiorcethane       | ND     | 1.0      |      | μg/L          | 1   | 1/22/2011 7:01:34 AM |
| Trichloroethene (TCE)       | ND     | 1.0      |      | µg/L          | 1   | 1/22/2011 7:01:34 AM |
| Trichlorofluoromethane      | ND     | 1.0      |      | µg/L          | · 1 | 1/22/2011 7:01:34 AM |
| 1,2,3-Trichloropropane      | ND     | 2.0      |      | µg/L          | 1   | 1/22/2011 7:01:34 AM |
| Vinyl chloride              | ND     | 1.0      |      | μg/L          | 1   | 1/22/2011 7:01:34 AM |
| Xylenes, Total              | , ND   | 1.5      |      | μg/L          | 1   | 1/22/2011 7:01:34 AM |
| Surr: 1,2-Dichloroethane-d4 | 103    | 77.7-113 |      | %REC          | 1   | 1/22/2011 7:01:34 AM |
| Surr: 4-Bromofluorobenzene  | 107    | 76.4-106 | S    | %REC          | 1   | 1/22/2011 7:01:34 AM |
| Surr: Dibromofluoromethane  | 105    | 91.6-125 |      | %REC          | 1   | 1/22/2011 7:01:34 AM |
| Surr: Toluene-d8            | 107    | 92.3-107 |      | %REC          | 1   | 1/22/2011 7:01:34 AM |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits 7



YOUR LAB OF CHOICE

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax 1.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

January 28, 2011

Anne Thorne Hall Environmental Analysis Laborat 4901 Hawkins NE Albuquerque, NM 87109

22, 2011

ESC Sample # :

Date Received Description

January 1101665

L498524-01

Sample ID

INJECTION WELL

Site ID :

Project # :

Collected By : Collection Date :

01/19/11 10:45

1101665

| Parameter                      | Result        | Det. Limit | Units | Method     | Date     | Dil. |
|--------------------------------|---------------|------------|-------|------------|----------|------|
| Corrosivity                    | Non-Corrosive |            |       | 9040C      | 01/28/11 | 1    |
| Flashpoint                     | See Footnote  |            | deg F | D93/1010A  | 01/24/11 | 1    |
| Reactive CN (SW846 7.3.3.2)    | BDL           | 0.125      | mg/l  | 9012B      | 01/27/11 | 1    |
| Reactive Sulf. (SW846 7.3.4.1) | BDL           | 25.        | mg/l  | 9034/9030B | 01/26/11 | 1    |

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL) Note:
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 01/28/11 16:43 Printed: 01/28/11 16:44 L498524-01 (FLASHPOINT) - Did Not Flash @ 170 F

## **QA/QC SUMMARY REPORT**

Client:

Western Refining Southwest, Inc.

Project: Injection Well 1st QTR 2011

Work Order:

1101665

|                              | <u>j</u> |         |        |        | Work Order. 1101003 |           |             |          |         |             |            |
|------------------------------|----------|---------|--------|--------|---------------------|-----------|-------------|----------|---------|-------------|------------|
| Analyte                      | Result   | Units   | PQL    | SPK Va | d SPK ref           | %Rec L    | .owLlmit Hi | ighLimit | %RPD    | RPDLimit    | Qual       |
| Method: EPA Method 300.0: A  | nions    |         | į<br>į |        |                     |           |             | •        | _       |             |            |
| Sample ID: MB                |          | MBLK    |        |        |                     | Batch ID: | R43288      | Analysi  | s Date: | 1/22/2011   | 1:11:11 AN |
| Chloride                     | ND       | mg/L    | 0.50   |        |                     |           |             |          |         | -           |            |
| Sulfate Sulfate              | ND       | mg/L    | 0.50   |        |                     |           |             |          |         |             |            |
| Sample ID: MB                |          | MBLK    |        |        | •                   | Batch ID: | R43288      | Analysi  | s Date: | 1/22/2011   | 1:17:47 AN |
| Chloride                     | ND       | mg/L    | 0.50   |        |                     |           |             |          |         |             |            |
| Sulfate                      | ND       | mg/L    | 0.50   |        |                     |           |             |          |         |             |            |
| Sample ID: MB                |          | MBLK    |        |        |                     | Batch ID: | R43362      | Analysi  | s Date: | 1/25/2011 1 | 1:36:07 AN |
| Sulfate                      | ND       | mg/L    | 0.50   |        |                     |           |             |          |         |             |            |
| Sample ID: MB                |          | MBLK    | !      |        |                     | Batch ID: | R43362      | Analysi  | s Date: | 1/25/2011 1 | 1:19:57 PN |
| Chloride                     | ND       | mg/L    | 0.50   |        |                     |           |             |          | ·~      |             |            |
| Sulfate                      | ND       | mg/L    | 0.50   |        |                     |           |             |          |         |             |            |
| Sample ID: LCS               |          | LCS     | į      |        | •                   | Batch ID: | R43288      | Analysi  | s Date: | 1/22/2011   | 1:22:25 AN |
| Chloride                     | 4.978    | mg/L    | 0.50   | 5      | 0                   | 99.6      | 90          | 110      |         |             |            |
| Sulfate                      | 10.06    | mg/L    | 0.50   | 10     | 0                   | 101       | 90          | 110      |         |             |            |
| Sample ID: LCS               |          | LCS     |        |        |                     | Batch ID: | R43288      | Analysis | Date:   | 1/22/2011 1 | 1:29:01 AN |
| Chloride                     | 4.991    | mg/L    | 0.50   | 5      | 0                   | 99.8      | 90          | 110      |         |             |            |
| Sulfate                      | 10.07    | mg/L    | 0.50   | 10     | 0                   | 101       | 90          | 110      |         |             | _          |
| Sample ID: LCS               |          | LCS     | i      |        |                     | Batch ID: | R43352      | Analysis | Date:   | 1/25/2011 1 | 1:47:22 A  |
| Sulfate                      | 10.07    | mg/L    | 0.50   | 10     | 0                   | 101       | 90          | 110      |         |             | `          |
| Sample ID: LCS               |          | LCS     |        |        |                     | Batch ID: | R43352      | Analysis | Date:   | 1/25/2011 1 | 1:31:11 PM |
| Chloride                     | 5.066    | mg/L    | 0.50   | 5      | 0                   | 101       | 90          | 110      |         |             |            |
| Sulfate                      | 10.19    | mg/L    | 0.50   | 10     | 0                   | 102       | 90          | 110      |         |             |            |
| Method: SM 2320B: Alkalinity |          |         |        |        | ,                   |           |             |          |         |             |            |
| sample ID: 1101665-01BMSD    |          | MSD     |        |        |                     | Batch ID: | R43323      | Analysis | Date:   | 1/25/2011   | 1:44:00 PM |
| lkalinity, Total (As CaCO3)  | 351.0    | mg/L Ca | 20     | 80     | 285.5               | 81.9      | 32.8        | 119      | 0.772   | 7.36        |            |
| sample ID: MB-1              |          | MBLK    | ļ      |        |                     | Batch ID: | R43323      | Analysis | Date:   | 1/25/2011 1 | 1:23:00 AM |
| Mkalinity, Total (As CaCO3)  | ND       | mg/L Ca | 20     |        |                     |           |             |          |         |             |            |
| arbonate                     | ND       | mg/L Ca | 2.0    |        |                     |           |             |          |         |             |            |
| licarbonate                  | ND       | mg/L Ca | 20     |        |                     |           |             |          |         |             |            |
| ample ID: LCS-1              |          | LCS     | 1      |        |                     | Batch ID: | R43323      | Analysis | Date:   | 1/25/2011 1 | 1:28:00 AM |
| Ikalinity, Total (As CaCO3)  | 80.08    | mg/L Ca | 20     | 80     | 0                   | 100       | 96.5        | 104      |         |             |            |
| ample ID: 1101665-01BMS      |          | MS      |        |        |                     | Batch ID: | R43323      | Analysis | Date:   | 1/25/2011   | 1:19:00 PM |
| lkalinity, Total (As CaCO3)  | 353.8    | mg/L Ca | 20     | 80     | 285.5               | 85.3      | 32.8        | 119      |         |             |            |

| Oua | lifiers: |
|-----|----------|

E Estimated value

R RPD outside accepted recovery limits

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

### **QA/QC SUMMARY REPORT**

Client:

Western Refining Southwest, Inc.

Project: Injection Well 1st QTR 2011

Work Order:

1101665

| Analyte                        | Result      | Units        | PQL | SPK Val SPK ref                                                                                                | %Rec Lo   | owLimit Hi | ghLimit | %RPD        | RPDLimit    | Qual       |
|--------------------------------|-------------|--------------|-----|----------------------------------------------------------------------------------------------------------------|-----------|------------|---------|-------------|-------------|------------|
| Method: EPA Method 8260B       | : VOLATILES |              |     |                                                                                                                |           |            |         | <del></del> | <del></del> |            |
| Sample ID: b4                  | •           | MBLK         |     | •                                                                                                              | Batch ID: | R43304     | Analysi | s Date:     | 1/21/2011   | 12:55:40 P |
| Benzene ·                      | ND          | μg/L         | 1.0 |                                                                                                                |           |            |         |             |             |            |
| Toluene                        | ND          | μg/L         | 1.0 |                                                                                                                |           |            |         |             |             |            |
| Ethylbenzene                   | ND          | μg/L         | 1.0 |                                                                                                                | '         | •          |         |             |             |            |
| Methyl tert-butyl ether (MTBE) | ND          | μ <b>g/L</b> | 1.0 |                                                                                                                |           |            |         |             | •           |            |
| 1,2,4-Trimethylbenzene         | ND          | μg/L         | 1.0 |                                                                                                                | I         | •          |         |             | •           |            |
| 1,3,5-Trimethylbenzene         | ND          | µg/L         | 1.0 |                                                                                                                |           |            |         |             |             |            |
| 1,2-Dichloroethane (EDC)       | ND          | µg/L         | 1.0 | -                                                                                                              |           |            |         |             |             |            |
| 1,2-Dibromoethane (EDB)        | ND          | μg/L         | 1.0 |                                                                                                                | ·<br>}    |            |         | •           |             |            |
| Naphthalene                    | ND          | μg/L         | 2.0 |                                                                                                                | ι<br>∳    |            |         |             |             |            |
| 1-Methylnaphthalene            | ND          | µg/L         | 4.0 | • ,                                                                                                            | r<br>16 - |            |         |             |             |            |
| 2-Methylnaphthalene            | ND          | μg/L         | 4.0 |                                                                                                                | r<br>J    |            |         |             |             |            |
| Acetone                        | ND          | μg/L         | 10  |                                                                                                                |           |            |         |             |             |            |
| Bromobenzene                   | ND          | μg/L         | 1.0 | A Page 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 | b •       |            |         |             |             |            |
| Bromodichloromethane           | ND          | μg/L         | 1.0 |                                                                                                                |           |            |         |             |             |            |
| Bromoform                      | ND          | µg/L         | 1.0 |                                                                                                                | !         |            |         |             |             |            |
| Bromomethane                   | ND          | μg/L         | 3.0 | 2                                                                                                              | 3         |            |         |             |             |            |
| 2-Butanone                     | ND          | μg/L         | 10  |                                                                                                                |           |            |         |             |             |            |
| on disulfide                   | ND          | μg/L         | 10  |                                                                                                                | ·<br>·    |            |         |             |             |            |
| oon Tetrachloride              | ND          | μg/L         | 1.0 |                                                                                                                |           |            |         |             |             |            |
| Chlorobenzene                  | ND -        | μg/L         | 1.0 |                                                                                                                |           |            | •       |             |             |            |
| Chioroethane                   | ND          | μ <b>g/L</b> | 2.0 |                                                                                                                | ı         |            |         |             |             |            |
| Chloroform                     | ND          | μg/L         | 1.0 |                                                                                                                |           | ,          | •       |             |             |            |
| Chloromethane                  | ND          | μg/L         | 3.0 |                                                                                                                | í         |            |         |             |             |            |
| 2-Chlorotoluene                | ND          | µg/L         | 1.0 |                                                                                                                |           |            |         |             |             |            |
| 1-Chlorotoluene                | ND          | µg/L         | 1.0 |                                                                                                                | r<br>L    |            |         |             |             |            |
| cis-1,2-DCE                    | ND          | μg/L         | 1.0 |                                                                                                                |           |            |         |             |             |            |
| cis-1,3-Dichloropropene        | ND          | µg/L         | 1.0 | •                                                                                                              | ,         |            |         |             |             |            |
| ,2-Dibromo-3-chloropropane     | ND          | µg/L         | 2.0 |                                                                                                                | r<br>r    | •          |         |             |             | •          |
| Dibromochloromethane           | ND          | µg/L         | 1.0 |                                                                                                                |           |            |         |             | i           |            |
| Dibromomethane                 | ND          | µg/L         | 1.0 | •                                                                                                              | •         |            |         |             | •           |            |
| ,2-Dichlorobenzene             | ND          | μg/L         | 1.0 |                                                                                                                |           |            |         |             | ٠           | •          |
| ,3-Dichlorobenzene             | ND          | μg/L         | 1.0 |                                                                                                                | •         |            |         |             |             |            |
| ,4-Dichlorobenzene             | ND          | μg/L         | 1.0 |                                                                                                                | . ,       |            |         |             |             |            |
| Dichlorodifluoromethane        | ND          | µg/L         | 1.0 | •                                                                                                              |           |            |         |             |             |            |
| ,1-Dichloroethane              | ND          | μg/L         | 1.0 |                                                                                                                |           |            | -       |             |             |            |
| ,1-Dichloroethene              | ND          | μg/L         | 1.0 | •                                                                                                              |           |            |         | -           |             | _          |
| ,2-Dichloropropane             | ND          | μg/L         | 1.0 |                                                                                                                |           |            |         |             | •           | . •        |
| ,3-Dichloropropane             | ND          | μg/L         | 1.0 |                                                                                                                |           |            |         |             |             |            |
| ,2-Dichloropropane             | ND          | μg/L         | 2.0 |                                                                                                                |           | •          |         |             |             |            |
| ,1-Dichloropropene             | ND          | µg/L         | 1.0 |                                                                                                                |           |            |         | •           |             |            |
| fexachlorobutadiene            | ND          | µg/L         | 1.0 |                                                                                                                |           | ,÷         |         |             |             | •          |
| -Hexanone                      | ND .        | hā/r         | 10  |                                                                                                                |           |            |         |             |             |            |
| sopropylbenzene                | ND          | h8\r         | 1.0 |                                                                                                                |           |            |         |             |             |            |
| propyitoluene                  | ND          | µg/L         | 1.0 |                                                                                                                |           |            |         |             |             |            |

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

RPD outside accepted recovery limits

## QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project: Injection Well 1st QTR 2011

Work Order:

1101665

| Analyte                        | Result      | Units | PQL              | SPK Val SPK ref | %Rec Lo   | owLimit Flig | hLimit  | %RPD     | RPDLimit     | Qua!       |
|--------------------------------|-------------|-------|------------------|-----------------|-----------|--------------|---------|----------|--------------|------------|
| Method: EPA Method 8260B       | : VOLATILES |       |                  |                 |           |              |         | •        | -            |            |
| Sample ID: b4                  |             | MBLK  |                  |                 | Batch ID: | R43304       | Analys  | is Date: | 1/21/2011 1  | 2:55:40 Pf |
| 4-Methyl-2-pentanone           | ND          | μg/L  | 10               |                 |           |              |         |          |              |            |
| Methylene Chloride             | ND          | μg/L  | 3.0              |                 |           |              |         |          |              |            |
| n-Butylbenzene                 | ND          | μg/L  | 1.0              |                 |           |              |         |          |              |            |
| n-Propylbenzene                | ND          | μg/L  | 1.0              |                 |           |              |         |          |              |            |
| sec-Butyibenzene               | ND          | μg/L  | 1.0              |                 |           |              |         |          |              |            |
| Styrene                        | ND          | µg/L  | 1.0              |                 |           |              |         |          |              |            |
| tert-Butyibenzene              | ND          | µg/L  | 1.0              |                 | •         |              |         |          |              |            |
| 1,1,1,2-Tetrachloroethane      | ND          | μg/L  | 1.0              |                 |           |              |         |          |              |            |
| 1,1,2,2-Tetrachloroethane      | ND          | μg/L  | 2.0              |                 |           |              |         | ٠.       |              |            |
| Tetrachloroethene (PCE)        | ND          | μg/L  | 1.0              |                 |           |              |         |          |              |            |
| trans-1,2-DCE                  | ND          | μg/L  | 1.0              |                 |           |              |         |          |              |            |
| trans-1,3-Dichloropropene      | - ND        | μg/L  | 1.0              |                 |           |              |         |          |              |            |
| 1,2,3-Trichlorobenzene         | ND          | μg/L  | 1.0              |                 |           |              |         |          |              |            |
| 1,2,4-Trichlorobenzene         | ND          | µg/L  | 1.0              |                 |           |              |         |          |              |            |
| 1,1,1-Trichloroethane          | ND          | μg/L  | 1.0              |                 | •         |              |         |          |              |            |
| 1,1,2-Trichloroethane          | ND          | μg/L  | 1.0              |                 |           |              |         |          |              |            |
| Frichloroethene (TCE)          | ND          | μg/L  | 1.0              |                 |           |              |         |          |              |            |
| Frichlorofluoromethane         | ND          | μg/L  | 1.0              |                 |           |              |         |          |              |            |
| 1,2,3-Trichloropropane         | ND          | μg/L  | 2.0              |                 |           |              |         |          |              | ,          |
| Vinyl chloride                 | ND          | µg/L  | 1.0              |                 |           |              |         |          | )            |            |
| Kylenes, Total                 | ND          | μg/L  | 1.5              |                 |           |              |         |          |              |            |
| Sample ID: b9                  |             | MBLK  | į                |                 | Batch ID: | R43304       | Analysi | s Date:  | 1/22/2011 12 | 2:03:48 AN |
| Benzene                        | ND          | μg/L  | 1.0              |                 |           |              | •       | •        |              |            |
| Toluene                        | ND          | μg/L  | 1.0              |                 |           |              |         |          |              |            |
| Ethylbenzene                   | ND          | μg/L  | 1.0              |                 |           |              |         |          |              |            |
| Methyl tert-butyl ether (MTBE) | ND          | μg/L  | 1.0              |                 |           |              |         |          |              |            |
| 1,2,4-Trimethylbenzene         | ND          | µg/L  | 1.0              |                 |           |              |         |          |              |            |
| 1,3,5-Trimethylbenzene         | ND          | μg/L  | 1.0,             |                 |           |              |         |          |              |            |
| 1,2-Dichloroethane (EDC)       | ND          | μg/L  | 1.0 <sup>1</sup> | ٠.,             |           |              |         |          | •            |            |
| ,2-Dibromoethane (EDB)         | ND          | µg/L  | 1.0              |                 |           |              |         |          |              |            |
| Naphthalene                    | ND          | μg/L  | 2.0              |                 |           |              |         |          |              |            |
| -Methylnaphthalene             | ND          | μg/L  | 4.0              |                 |           |              |         |          |              |            |
| ?-Methylnaphthalene            | ND          | μg/L  | 4.0              |                 |           |              |         |          |              |            |
| Acetone                        | ND          | μg/L  | 10               |                 |           |              |         |          |              |            |
| Bromobenzene                   | ND          | µg/L  | 1.0              |                 |           |              |         |          |              |            |
| Promodichloromethane           | ND          | μg/L  | 1.0              |                 |           |              |         |          |              |            |
| Bromoform                      | ND          | μg/L  | 1.0              |                 |           |              |         |          |              |            |
| Bromomethane                   | ND          | µg/L  | 3.0              |                 |           |              |         |          |              |            |
| -Butanone                      | ND          | µg/L  | 10               |                 |           |              |         |          |              |            |
| Carbon disulfide               | ND          | µg/L  | 10               |                 |           |              |         |          |              |            |
| Carbon Tetrachloride           | ND          | µg/L  | 1.0              |                 |           |              |         |          |              |            |
| Chlorobenzene                  | ND          | μg/L  | 1.0              |                 |           |              |         |          |              |            |
| Chloroethane                   | ND          | µg/L  | 2.0              |                 |           |              |         |          |              |            |
| Chloroform                     | ND          | µg/L  | 1.0              |                 |           |              |         |          |              |            |

#### Qualifiers:

R RPD outside accepted recovery limits

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

# Client:

## **QA/QC SUMMARY REPORT**

Western Refining Southwest, Inc.

Project: Injection Well 1st QTR 2011

Work Order:

1101665

| Analyte                                    | Result      | Units        | PQL | SPK Val SPK ref | %Rec Lo   | wLimit Hig | hLimit %RPD    | RPDLimit Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------|-------------|--------------|-----|-----------------|-----------|------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method: EPA Method 8260B                   | : VOLATILES | -            |     |                 |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample ID: b9                              |             | MBLK         |     |                 | Batch ID: | R43304     | Analysis Date: | 1/22/2011 12:03:48 AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chloromethane                              | ND          | μg/L         | 3.0 |                 |           | ,          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2-Chiorotoluene                            | ND          | µg/L         | 1.0 |                 |           |            |                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4-Chlorotoluene                            | ND          | µg/L         | 1.0 |                 |           |            | •              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| cis-1,2-DCE                                | ND          | µg/L         | 1.0 |                 |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| cis-1,3-Dichloropropene                    | ND          | µg/L         | 1.0 |                 |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2-Dibromo-3-chloropropane                | ND          | µg/L         | 2.0 |                 |           |            | -              | , and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second |
| Dibromochloromethane                       | ND          | µg/L         | 1.0 |                 |           |            | •              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dibromomethane                             | ND          | ha/r         | 1.0 | •               |           |            |                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1,2-Dichlorobenzene                        | ND          | µg/L         | 1:0 | **              |           |            |                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1,3-Dichlorobenzene                        | ND          | μg/L         | 1.0 |                 |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,4-Dichlorobenzene                        | ND          | μg/L         | 1.0 | -               |           |            |                | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Dichlorodifluoromethane                    | ND          | μg/L         | 1.0 |                 |           | •          |                | + .*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1,1-Dichloroethane                         | ND          | μg/L         | 1.0 |                 |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1-Dichloroethene                         | ND          | μg/L         | 1.0 |                 |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2-Dichloropropane                        | ND          | µg/L         | 1.0 |                 |           |            | •              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1,3-Dichloropropane                        | ND          | µg/L         | 1.0 |                 |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2,2-Dichloropropane                        | ND          | μg/L         | 2.0 |                 |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ichloropropene                             | ND          | µg/L         | 1.0 |                 |           | •          |                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| chlorobutadiene                            | ND          | μg/L         | 1.0 |                 |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2-Hexanone                                 | ND          | µg/L         | 10  |                 |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Isopropylbenzene                           | ND          | μg/L         | 1.0 | •               |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4-Isopropyltoluene                         | ND          | µg/L         | 1.0 |                 |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4-Methyl-2-pentanone                       | ND          | μg/L         | 10  |                 |           |            | •              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Methylene Chloride                         | ND          | µg/L         | 3.0 |                 |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| n-Butylbenzene                             | ND          | µg/L         | 1.0 |                 |           |            | ·              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| n-Propylbanzene                            | ND          | µg/L         | 1.0 |                 |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| sec-Butylbenzene                           | ND          | µg/L         | 1.0 |                 | 1         |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Styrene                                    | ND          | µg/L         | 1.0 |                 | 'n        |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| tert-Butylbenzene                          | ND          | µg/L         | 1.0 |                 | :         |            | •              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1,1,2-Tetrachloroethane                  | ND          | µg/L         | 1.0 |                 | ,         |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1,2,2-Tetrachloroethane                  | ND .        | μg/L         | 2.0 |                 | 4         |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tetrachloroethene (PCE)                    | ND          | µg/L         | 1.0 |                 |           |            | •              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| trans-1,2-DCE                              | ND          | µg/L         | 1.0 |                 |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| trans-1,3-Dichloropropene                  | ND          | µg/L         | 1.0 | •               |           |            | ,              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1,2,3-Trichlorobenzene                     | ND          | μg/L         | 1.0 |                 |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2,4-Trichlorobenzene                     | ND          | µg/L         | 1.0 |                 | •         | •          | ,              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1,1-Trichloroethane                      | ND          | µg/L         | 1.0 |                 |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1,2-Trichloroethane                      | ND          | µg/L         | 1.0 |                 |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Trichloroethene (TCE)                      | ND          | µg/L         | 1.0 |                 |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Trichlorofluoromethane                     | ND          | μg/L         | 1.0 |                 |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2,3-Trichioropropane                     | ND          | μg/L         | 2.0 | •               |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2,3-1 richloroproparie<br>Vinyl chloride | ND          | µg/L         | 1.0 |                 |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ~                                          | ND          | μg/L         | 1.5 |                 |           |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Xylenes, Total                             | NU          | MBLK<br>MBLK | 1.0 |                 | Batch ID: | R43304     | Analysis Date: | 1/22/2011 10:56:32 AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ele ID: b13                                |             | WIDLK        |     |                 | waten 12. | 1 410004   | , manyor base. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

RPD outside accepted recovery limits

# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project: Injection Well 1st QTR 2011

Work Order:

1101665

| Project: injection v           | veii ist QIR | ZUII <sub>.</sub> |     |                 |           |             | <del></del> | WOLK     | Order:      | 1101665    |
|--------------------------------|--------------|-------------------|-----|-----------------|-----------|-------------|-------------|----------|-------------|------------|
| Analyte                        | Result       | Units             | PQL | SPK Val SPK ref | %Rec L    | owLimit Hip | ghLimit     | %RPD     | RPDLimit    | Quai       |
| Method: EPA Method 8260B:      | VOLATILES    |                   |     |                 |           |             |             |          |             |            |
| Sample ID: b13                 |              | MBLK              |     |                 | Batch ID: | R43304      | Analya      | is Date: | 1/22/2011 1 | 0:56:32 AN |
| Benzene                        | ND           | µg/L              | 1.0 |                 |           |             |             |          |             |            |
| Toluene                        | ND           | μg/L              | 1.0 |                 |           |             |             |          |             |            |
| Ethylbenzene                   | ND           | µg/L              | 1.0 |                 |           |             |             |          |             |            |
| Methyl tert-butyl ether (MTBE) | ND           | μg/L              | 1.0 |                 |           |             |             |          | •           |            |
| 1,2,4-Trimethylbenzene         | ND           | μg/L              | 1.0 |                 |           |             |             |          |             |            |
| 1,3,5-Trimethylbenzene         | ND           | µg/L              | 1.0 |                 |           |             |             |          |             |            |
| 1,2-Dichloroethane (EDC)       | ND           | μg/L              | 1.0 | •               |           |             |             |          |             |            |
| 1,2-Dibromoethane (EDB)        | ND           | μg/L              | 1.0 |                 |           |             |             |          |             |            |
| Naphthalene                    | ND           | μg/L              | 2.0 |                 |           |             |             |          |             |            |
| 1-Methylnaphthalene            | ND           | μg/L              | 4.0 |                 |           |             |             |          |             |            |
| 2-Methylnaphthalene            | ND           | μg/L              | 4.0 |                 |           |             |             |          |             |            |
| Acetone                        | ND           | μg/L              | 10  |                 |           |             |             |          |             |            |
| Bromobenzene                   | ND           | μg/L              | 1.0 |                 |           |             |             |          |             |            |
| Bromodichioromethane           | ND           | µg/L              | 1.0 |                 |           |             |             |          |             |            |
| Bromoform                      | ND           | µg/L              | 1.0 |                 |           |             |             |          |             |            |
| Bromomethane                   | ND           | μg/L<br>μg/L      | 3.0 |                 |           |             |             |          |             |            |
| 2-Butanone                     | ND           | μg/L              | 10  |                 |           |             |             |          |             |            |
| Carbon disulfide               | ND           |                   | 10  |                 |           |             |             |          |             | 4          |
| Carbon Tetrachloride           | ND           | µg/L              |     |                 |           |             |             |          |             |            |
| Chlorobenzene                  | ND           | µg/L              | 1.0 |                 |           |             |             |          |             |            |
| Chloroethane                   |              | μg/L              | 1.0 |                 |           |             |             |          |             |            |
|                                | ND           | µg/L              | 2.0 |                 |           |             |             |          |             |            |
| Chloroform                     | ND           | µg/L              | 1.0 |                 |           |             |             |          |             |            |
| Chloromethane                  | ND           | µg/L              | 3.0 |                 |           |             |             |          |             |            |
| 2-Chlorotoluene                | ND           | µg/L              | 1.0 |                 |           |             |             |          |             |            |
| 4-Chlorotoluene                | ND           | µg/L              | 1.0 |                 |           |             |             |          |             |            |
| cis-1,2-DCE                    | ND           | μg/L              | 1.0 |                 |           |             |             |          |             |            |
| cls-1,3-Dichloropropene        | ND           | μg/L<br>"         | 1.0 |                 |           |             |             |          |             |            |
| 1,2-Dibromo-3-chloropropane    | ND           | μg/L              | 2.0 |                 |           |             |             |          |             |            |
| Dibromochloromethane           | ND           | μg/L              | 1.0 |                 |           |             |             |          |             |            |
| Olbromomethane                 | ND           | μg/L              | 1.0 |                 |           |             |             |          |             |            |
| 1,2-Dichlorobenzene            | ND           | μg/L<br>"         | 1.0 |                 |           |             |             |          |             | •          |
| 1,3-Dichlorobenzene            | ND           | μg/L              | 1.0 |                 |           |             |             |          |             |            |
| 1,4-Dichlorobenzene            | ND           | µg/L              | 1.0 | •               |           | •           |             |          |             |            |
| Dichlorodifluoromethane        | ND           | µg/L              | 1.0 |                 |           |             |             |          |             |            |
| 1,1-Dichloroethane             | ND           | µg/L              | 1.0 |                 |           |             |             |          |             |            |
| ,1-Dichloroethene              | ND           | µg/L              | 1.0 |                 |           |             |             |          |             |            |
| ,2-Dichloropropane             | ND           | h@/r              | 1.0 |                 |           |             |             |          |             |            |
| ,3-Dichloropropane             | ND           | µg/L              | 1.0 |                 |           |             |             |          |             |            |
| 2,2-Dichloropropane            | ND           | µg/L              | 2.0 |                 |           |             |             |          |             |            |
| ,1-Dichloropropene             | ND           | µg/L              | 1.0 |                 |           |             |             |          |             |            |
| fexachlorobutadiene            | ND           | µg/L              | 1.0 |                 |           |             |             |          |             |            |
| ?-Hexanone                     | ND           | µg/L              | 10  |                 |           |             |             |          |             |            |
| sopropylbenzene                | ND           | μg/L              | 1.0 |                 |           |             |             |          |             | 4          |
| i-laopropyitoluene             | ND           | µg/L              | 1.0 |                 |           |             |             |          |             |            |

#### Qualifiers:

R RPD outside accepted recovery limits

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated



## **QA/QC SUMMARY REPORT**

Client: Project: Western Refining Southwest, Inc. Injection Well 1st QTR 2011

Work Order:

1101665

| Analyte                   | Result       | Units | PQL         | SPK Val         | SPK ref | %Rec i    | _owLimit Hi | ghLimit  | %RPD    | RPDLimit     | Qual       |
|---------------------------|--------------|-------|-------------|-----------------|---------|-----------|-------------|----------|---------|--------------|------------|
| Method: EPA Method 8260   | B: VOLATILES |       | <del></del> |                 |         | P r       |             | . •      | ·       |              |            |
| Sample ID: b13            |              | MBLK  |             |                 |         | Batch ID: | R43304      | Anaiysi  | B Date: | 1/22/2011 1  | 0:56:32 AN |
| 4-Methyl-2-pentanone      | ND           | μg/L  | 10          |                 |         | ŀ         |             |          |         |              |            |
| Methylene Chloride        | ND           | µg/L  | 3.0         |                 |         |           |             |          |         |              |            |
| n-Butylbenzene            | ND           | μg/L  | 1.0         |                 |         | 1         |             |          | •       |              |            |
| n-Propylbenzene           | ND           | µg/L  | 1.0         |                 |         |           |             | •        |         |              |            |
| sec-Butylbenzene          | ND           | μg/L  | 1.0         | :               |         |           |             |          |         |              | ÷*         |
| Styrene                   | ND           | μg/L  | 1.0         |                 |         | 1         |             |          | *       | *            |            |
| tert-Butylbenzene         | ΝĎ           | μg/L  | 1.0         |                 | ٠.      |           |             |          |         |              | *          |
| 1,1,1,2-Tetrachloroethane | ND           | μg/L  | 1.0         |                 |         |           |             |          |         |              |            |
| 1,1,2,2-Tetrachloroethane | ND           | μg/L  | 2.0         |                 |         | į         |             |          |         |              | • •        |
| Tetrachloroethene (PCE)   | ND           | μg/L  | 1.0         |                 |         |           |             |          |         | •            |            |
| trans-1,2-DCE             | ND           | μg/L  | 1.0         |                 |         | *         |             | •        |         |              |            |
| trans-1,3-Dichloropropene | ND           | μg/L  | 1.0         |                 |         |           |             |          |         |              |            |
| 1,2,3-Trichlorobenzene    | ND           | µg/L  | 1.0         | <sub>2</sub> ** |         | if<br>Ir  | *           |          |         |              |            |
| 1,2,4-Trichlorobenzene    | ND           | µg/L  | 1.0         | . ,             | ter,    | *         |             | •        |         |              | •          |
| 1,1,1-Trichloroethane     | ND -         | μg/L  | 1.0         |                 |         | P         |             |          |         |              | . •        |
| 1,1,2-Trichloroethane     | ND           | µg/L  | 1.0         |                 |         | 4         | -           |          |         |              |            |
| Trichloroethene (TCE)     | , ND         | µg/L  | 1.0         | \               |         |           |             | ٠.       |         | ,            |            |
| orofluoromethane          | ND           | µg/L  | 1.0         |                 |         | 1         | •           |          |         |              | •          |
| 1,∠,3-Trichloropropane    | ND           | μg/L  | 2.0         |                 | ,       | h         |             | •        | 4       |              |            |
| Vinyl chloride            | ND           | µg/L  | 1.0         |                 |         | .1        | •           | •        |         |              |            |
| Xylenes, Total            | ND           | μg/L  | 1.5         |                 |         |           | •           |          |         |              |            |
| Sample ID: 100ng ics      |              | LCS   |             |                 |         | Batch ID: | R43304      | Analysis | Date:   | 1/21/2011    | 2:32:43 PM |
| Benzene                   | 19.24        | μg/L  | 1.0         | 20              | 0       | 96.2      | 84.6        | 109      |         | •            | ÷ .        |
| Toluene                   | 22.01        | μg/L  | 1.0         | 20              | 0       | 110       | 81          | 114      |         |              |            |
| Chlorobenzene             | 21.42        | μg/L  | 1.0         | 20              | 0       | 107       | 85.2        | 113      |         |              |            |
| 1,1-Dichloroethene        | 18.24        | μg/L  | 1.0         | 20              | 0       | 91.2      | 79.6        | 124      |         |              |            |
| Trichloroethene (TCE)     | 20.09        | µg/L  | 1.0         | 20              | 0       | 100       | 78.3        | 102      |         | •            |            |
| Sample ID: 100ng Ics2     |              | LCS   |             |                 |         | Batch ID: | R43304      | Analysis | Date:   | 1/22/2011 1: | 2:56:19 AM |
| Benzene                   | 20.09        | µg/L  | 1.0         | 20              | 0       | 100       | 84.6        | 109      |         |              |            |
| Toluene                   | 20.23        | μg/L  | 1.0         | 20              | 0       | 101       | 81          | 114      |         | •            |            |
| Chlorobenzene             | 20.20        | μg/L  | 1.0         | 20              | 0       | 101       | 85.2        | 113      |         |              |            |
| 1,1-Dichloroethene        | 19.08        | µg/L  | 1.0         | 20              | 0       | 95.4      | 79.6        | 124      | ٠.      |              | .,         |
| Trichloroethene (TCE)     | 20.02        | μg/L  | 1.0         | 20              | 0       | 100       | 78.3        | 102      | •       |              |            |



E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project: Injection Well 1st QTR 2011

Work Order:

1101665

|                             | ojeci. Injecticii Woli 13t Q1K 2011 |       |      |                 |           | ·          |        |          | Order:    | 1101002    |
|-----------------------------|-------------------------------------|-------|------|-----------------|-----------|------------|--------|----------|-----------|------------|
| Analyte                     | Result                              | Units | PQL  | SPK·Val SPK ref | %Rec Lo   | wLimit Hig | hLimit | %RPD     | RPDLimit  | Qual       |
| Method: EPA Method 8270C    | : Semivolatiles                     | 1     |      |                 |           |            |        |          | 1         |            |
| Sample ID: mb-25369         |                                     | MBLK  |      |                 | Batch ID: | 25369      | Analys | is Date: | 1/25/2011 | 3:52:27 PI |
| Acenaphthene                | ND                                  | μg/L  | 10   |                 |           |            |        |          |           |            |
| Acenaphthylene              | ND                                  | µg/L  | 10   |                 |           |            |        |          |           |            |
| Anlline                     | ND                                  | µg/L  | 10   |                 |           |            |        |          |           |            |
| Anthracene                  | ND ·                                | μg/L  | 10   | •               |           |            |        |          |           |            |
| Azobenzene                  | ND                                  | μg/L  | 10   |                 |           |            |        |          |           |            |
| Benz(a)anthracene           | ND                                  | μg/L  | 10   |                 |           |            |        |          |           |            |
| Benzo(a)pyrene              | . ND                                | μg/L  | 10   |                 |           | _          |        |          |           |            |
| Benzo(b)fluoranthene        | ND                                  | μg/L  | 10   |                 |           | -          |        |          |           |            |
| Benzo(g,h,i)perylene        | ND                                  | µg/L  | 10   |                 |           |            |        |          |           |            |
| Benzo(k)fluoranthene        | ND                                  | µg/L  | 10   |                 |           |            |        |          |           |            |
| Benzoic acid                | ND                                  | µg/L  | 20   |                 |           |            |        |          | •         |            |
| Benzyl alcohol              | ND .                                | µg/L  | 10   |                 |           |            | ,      |          |           |            |
| Bis(2-chloroethoxy)methane  | ND                                  | µg/L  | 10   |                 |           |            |        |          |           |            |
| Bis(2-chloroethyl)ether     | ND                                  | μg/L  | 10   |                 |           | ·          |        |          |           |            |
| Bis(2-chloroisopropyl)ether | ND                                  | μg/L  | 10   |                 |           |            |        |          |           |            |
| Bis(2-ethylhexyl)phthalate  | ND                                  | μg/L  | 10   |                 |           |            |        |          |           |            |
| 4-Bromophenyl phenyl ether  | ND                                  | µg/L  | . 10 |                 |           |            |        |          |           |            |
| Butyl benzyl phthalate      | NĐ                                  | μg/L  | 10   |                 |           |            |        |          |           |            |
| Carbazole                   | ND                                  | μg/L  | 10   |                 |           |            |        |          |           |            |
| 4-Chloro-3-methylphenol     | ND                                  | μg/L  | 10   |                 |           |            | ,      |          |           |            |
| 4-Chloroaniline             | ND                                  | µg/L  | 10   |                 |           |            |        |          |           | :          |
| 2-Chloronaphthalene         | ND                                  | µg/L  | 10   |                 |           |            |        |          |           |            |
| 2-Chlorophenol              | ND                                  | μg/L  | 10   |                 |           |            |        |          |           |            |
| 4-Chlorophenyl phenyl ether | ND                                  | μg/L  | 10   |                 |           |            |        |          |           |            |
| Chrysene                    | ND                                  | µg/L  | 10   | •               |           |            |        |          |           |            |
| Di-n-butyl phthalate        | ND                                  | μg/L  | 10   |                 |           |            |        |          |           |            |
| Di-n-octyl phthalate        | ND                                  | µg/L  | 10   | •               |           |            |        |          |           |            |
| Dibenz(a,h)anthracene       | ND                                  | μg/L  | 10   |                 |           |            |        |          |           |            |
| Dibenzofuran                | ND                                  | μg/L  | 10   |                 |           |            |        |          |           |            |
| 1,2-Dichlorobenzeле         | ND                                  | μg/L  | 10   |                 |           |            |        |          |           |            |
| 1,3-Dichlorobenzene         | ND                                  | μg/L  | 10   |                 |           |            |        |          |           |            |
| 1,4-Dichlorobenzene         | ND                                  | μg/L  | 10   |                 |           |            |        |          |           |            |
| 3,3'-Dichlorobenzidine      | ND                                  | µg/L  | 10   | •               |           |            |        |          |           |            |
| Diethyl phthalate           | ND                                  | μg/L  | 10   | ,               |           |            |        |          |           |            |
| Dimethyl phthalate          | ND                                  | µg/L  | 10   |                 |           |            |        |          |           |            |
| 2,4-Dichlorophenol          | ND                                  | µg/L  | 20   |                 |           |            |        |          |           |            |
| 2,4-Dimethylphenol          | ND                                  | μg/L  | 10   |                 |           |            |        |          |           |            |
| 1,6-Dinitro-2-methylphenol  | ND                                  | μg/L  | 20   |                 |           |            |        |          |           |            |
| 2,4-Dinitrophenol           | ND                                  | μg/L  | 20   |                 |           |            |        |          |           |            |
| 2,4-Dinitrotoluene          | ND                                  | μg/L  | 10   |                 |           |            |        |          |           |            |
| 2,6-Dinitrotoluene          | ND .                                | μg/L  | 10   |                 | •         |            |        |          |           |            |
| -luoranthene                | ND                                  | μg/L  | 10   |                 |           |            |        |          |           |            |
| Fluorene                    | ND                                  | µg/L  | 10   |                 |           |            |        |          |           |            |
| lexachlorobenzene           | ND                                  | µg/L  | 10   |                 |           |            |        |          |           |            |

#### Qualifiers:

RPD outside accepted recovery limits

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated



## **QA/QC SUMMARY REPORT**

Client: Project: Western Refining Southwest, Inc.

et: Injection Well 1st QTR 2011

Work Order:

1101665

| Analyte                                 | Result         | Units          | PQL          | SPK Val S  | SPK ref | %Rec L                   | owLimit H | ighLimit    | %RPD    | <b>RPDLimit</b> | Qual       |
|-----------------------------------------|----------------|----------------|--------------|------------|---------|--------------------------|-----------|-------------|---------|-----------------|------------|
| Method: EPA Method 8270C:               | Semiyolatile   |                | <del> </del> |            |         |                          | ****      |             |         |                 | ,          |
| Sample ID: mb-25369                     | Jenny Jiathe   | MBLK           |              |            |         | Batch ID:                | 25369     | Analysi     | s Date: | 1/25/2011       | 3:52:27 PN |
| Hexachlorobutadiene                     | ND -           | µg/L           | 10           |            |         |                          |           |             |         |                 |            |
| Hexachlorocyclopentadiene               | ND             | μg/L           | 10           |            |         |                          |           |             |         | •,              |            |
| Hexachloroethane                        | ND             | h8/F           | 10           |            |         | •                        |           |             |         |                 | •          |
| Indeno(1,2,3-cd)pyrene                  | ND             | µg/L           | 10           |            |         | 4                        |           | : '         |         |                 | •          |
| sophorone                               | ND             | µg/L           | 10           | •          |         |                          |           |             |         |                 | •          |
| 2-Methylnaphthalene                     | ND             | hg/L           | 10           | ,          |         |                          | 1         |             |         |                 |            |
| 2-Methylphenol                          | ND             | μg/L           | 10           |            |         | •                        |           |             |         |                 |            |
| 3+4-Methylphenol                        | ND             | μg/L           | 10           |            |         | * .                      |           |             |         |                 |            |
| N-Nitrosodi-n-propylamine               | ND             | µg/L           | 10           |            |         |                          |           |             |         |                 |            |
| N-Nitrosodimethylamine                  | ND             | μg/L           | 10           |            |         |                          |           |             |         |                 |            |
| N-Nitrosodiphenylamine                  | ND             | μg/L           | 10           |            |         |                          |           |             |         |                 |            |
| Vaphthalene                             | ND             | μg/L           | 10           |            |         |                          |           | _           |         |                 |            |
| 2-Nitroaniline                          | ND             | μg/Ľ           | 10           | ,          | •       |                          |           |             |         | 4.              |            |
| 3-Nitroaniline                          | ND             | μg/L           | 10           |            |         |                          |           |             |         |                 |            |
| 1-Nitroaniline                          | ND             | μg/L           | 20           | ř          | •       | £                        |           |             |         |                 |            |
| Nitrobenzene                            | ND             | µg/L<br>µg/L   | 10           |            |         |                          |           |             |         | •               |            |
| Nitrophenol                             | ND             | μg/L           | 10           |            |         |                          |           |             |         |                 |            |
| rophenol                                | ND             |                | 10           |            |         |                          |           |             |         | •               |            |
| entachlorophenol                        | . ND           | μg/L           | 20           |            |         | ŧ                        |           |             |         |                 | **         |
| Phenanthrene                            | ND             | µg/L<br>µg/L   | 10           |            |         |                          |           | •           |         |                 |            |
| Phenol                                  | ND             | μg/L           | 10           |            | •       |                          | •         | •           |         |                 |            |
| Pyrene                                  | ND             | μg/L<br>μg/L   | 10           |            |         |                          |           |             |         |                 |            |
| Pyridine                                | ND             | μg/L<br>μg/L   | 10           |            |         |                          |           |             |         |                 |            |
| ,2,4-Trichlorobenzene                   | ND             | μg/L           | 10           |            |         |                          | •         |             |         |                 |            |
| 2,4,5-Trichlorophenol                   | ND ND          | μg/L<br>μg/L   | 10           |            |         |                          |           | •           | *       |                 |            |
| 2,4,6-Trichlorophenol                   | ND             | μg/L           | 10           |            |         |                          |           |             |         |                 |            |
| Sample ID: Ics-26369                    | , AD           | LCS            |              |            |         | Batch ID:                | 25369     | Analysis    | Date:   | 1/25/2011 4     | -21-38 DA  |
| ·                                       | 44.00          |                | 40           | 400        |         |                          | 31        | 99.4        | Date.   | 1/20/20114      | 7.21.30 FN |
| Acenaphthene<br>I-Chloro-3-methylphenol | 44.26<br>84.46 | μg/L           | 10<br>10     | 100<br>200 | 0       | 44.3<br>42.2             | 34.3      | 99.4<br>111 |         |                 | •          |
| P-Chiorophenol                          | 76.22          | μg/L           | 10           | 200        | . 0     | 38.1                     | 24.1      | 98.7        |         |                 |            |
| .4-Dichlorobenzene                      | 36.10          | µg/L<br>µg/L : | 10           | 100        | 0       | 36.1                     | 20.6      | 85.6        |         |                 |            |
| 2,4-Dinitrotoluene                      | 37.96          | hâ\r<br>hâ\r   | 10           | 100        | 0       | 38.0                     | 26.6      | 126         |         |                 |            |
| V-Nitrosodi-n-propylamine               | 38.32          | μg/L           | 10           | 100        | 0       | 38.3                     | 29.2      | 94.4        |         |                 |            |
| -Nitrophenol                            | 55.14          | μg/L           | 10           | 200        | . 0     | 27.6                     | 9.87      | 86          |         |                 |            |
| Pentachlorophenol                       | 93.44          | μg/L           | 20           | 200        | Ō       | 46.7                     | 20        | 97.8        | .`      |                 |            |
| henol                                   | 55.62          | μg/L           | 10           | 200        | 0       | 27.8                     | 17.5      | 60.5        |         |                 |            |
| Pyrene                                  | 51.74          | μg/L           | 10           | .100       | 0       | 51.7                     | 46.8      | 92.2        |         |                 |            |
| ,2,4-Trichlorobenzene                   | 40.72          | μg/L           | 10           | 100        | 0       | 40.7                     | 25.2      | 92.3        |         |                 |            |
| Sample ID: Icsd-25369                   | 70.12          | LCSD           |              | . 100      | J       | Batch ID:                | 25369     | Analysis    | Date:   | 1/25/2011 4     | 50:41 PN:  |
| cenaphthene                             | 45.20          | μg/L           | 10           | 100        | . 0     | 45.2                     | 31        | 99.4        | 2.10    | 30              |            |
| -Chloro-3-methylphenol                  | 45.20<br>87.78 |                | 10           | 200        | . 0     | 45.2<br>43.9             | 34:3      | 111         | 3.86    | 30.8            |            |
| -Chioro-3-methylphenol<br>-Chiorophenol |                | µg/L           |              |            |         | 43. <del>9</del><br>46.2 | , ·       |             | 19.3    |                 |            |
| ~CHROIODHBHOI                           | 92.46          | µg/L           | 10           | 200        | 0       |                          | 24.1      | 98.7        |         | 31              |            |
| Dichlorobenzene                         | 38.32          | μg/L           | 10           | 100        | 0       | 38.3                     | 20.6      | 85.6        | 5.97    | 37              |            |

### Qualifiers:

R RPD outside accepted recovery limits

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

## **QA/QC SUMMARY REPORT**

Client:

Western Refining Southwest, Inc.

Project: Injection Well 1st QTR 2011

Work Order:

1101665

| PA Method 82700<br>lcsd-25369<br>propylamine | Result<br>C: Semivolatiles         | Units                                                                                                                                                                         | PQL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SPK Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SPK ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %Rec L                                 | owLimit H                                      | ighLlmit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RPDLimit                                                                                               | Qual                                                            |
|----------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| csd-25369                                    | C: Semivolatiles                   |                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
|                                              |                                    |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
| propylamine                                  |                                    | LCSD                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Batch ID:                              | 25369                                          | Analysi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/25/2011                                                                                              | 4:50:41 PM                                                      |
|                                              | 42.46                              | μg/L                                                                                                                                                                          | · 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42.5                                   | 29.2                                           | .94.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.8                                                                                                   |                                                                 |
|                                              | 59.42                              | μg/L                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.7                                   | 9.87                                           | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61.1                                                                                                   |                                                                 |
| nenol                                        | 96.82                              | µg/L                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48.4                                   | 20                                             | 97.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64.8                                                                                                   |                                                                 |
|                                              | 58.76                              | µg/L                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.4                                   | 17.5                                           | 60.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31.4                                                                                                   |                                                                 |
|                                              | 59.08                              | μg/L                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 59.1                                   | 46.8                                           | 92.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29.8                                                                                                   |                                                                 |
| benzene                                      | 39.92                              | µg/L                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39.9                                   | 25.2                                           | 92.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.9                                                                                                   |                                                                 |
|                                              | Mercury                            |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
| MB-25427                                     |                                    | MBLK                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Batch ID:                              | 25427                                          | Analysi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/27/2011 10                                                                                           | ):48:28 AM                                                      |
|                                              | ND                                 | mg/L                                                                                                                                                                          | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
| CS-25427                                     |                                    | LCS                                                                                                                                                                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Batch ID:                              | 25427                                          | Analysi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/27/2011 10                                                                                           | ):50:12 AM                                                      |
|                                              | 0.005109                           | ma/L                                                                                                                                                                          | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 102                                    | 80                                             | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
| CS-25427                                     |                                    | -                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/27/2011 10                                                                                           | ):51:57 AM                                                      |
|                                              | 0.005114                           |                                                                                                                                                                               | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
| DA ROADBI Tatal D                            |                                    |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>_</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                                | <u>-</u> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·····                                                                                                  |                                                                 |
|                                              | Geçoverable iylet                  |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Betch ID:                              | 25356                                          | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/26/2011                                                                                              | 1·38·10 AM                                                      |
| 1                                            | ND                                 |                                                                                                                                                                               | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Daton ID.                              | 20000                                          | , utalyon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J Dato.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HEUROTT                                                                                                | 7.00.10 AW                                                      |
|                                              | •                                  | _                                                                                                                                                                             | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
|                                              | •                                  |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
|                                              |                                    |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
|                                              |                                    |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
|                                              |                                    | •                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
|                                              |                                    | -                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
|                                              |                                    | _                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
|                                              |                                    | _                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
|                                              |                                    |                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                      |                                                                 |
| 1B-25356                                     |                                    | _                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Batch ID:                              | 25356                                          | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/26/2011 11                                                                                           | :06:34 AM                                                       |
|                                              | ND                                 |                                                                                                                                                                               | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
| CS-25356                                     |                                    | LCS                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Batch ID:                              | 25356                                          | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/26/2011 8                                                                                            | :41:12 AM                                                       |
|                                              | 0.5694                             | mg/L                                                                                                                                                                          | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 114                                    | 80                                             | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                      |                                                                 |
|                                              | 0.4957                             | -                                                                                                                                                                             | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
|                                              | 0.5312                             |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
|                                              | 53.20                              | _                                                                                                                                                                             | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | 80                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
|                                              | 0.5292                             | _                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
|                                              | 0.5321                             | mg/L                                                                                                                                                                          | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
|                                              | 53.35                              | mg/L                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 107                                    | 80                                             | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
|                                              | 55.66                              | mg/L                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111                                    | 80                                             | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
|                                              | 0.5858                             | mg/L                                                                                                                                                                          | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 117                                    | . 80                                           | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
|                                              | 0.5104                             | mg/L                                                                                                                                                                          | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        | 80                                             | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
| CS-25356                                     |                                    | LCS                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Batch ID:                              | 25356                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/26/2011 11                                                                                           | 09:57 AM                                                        |
| •                                            | 51.06                              |                                                                                                                                                                               | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 102                                    | 80                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                 |
|                                              | MB-25427<br>LCS-25427<br>LCS-25427 | Denzene 39.92  PA Method 7470: Mercury MB-25427  ND LCS-25427  0.005109 LCS-26427  0.005114  PA 6010B: Total Recoverable Met MB-25356  ND ND ND ND ND ND ND ND ND ND ND ND ND | PA Method 7470: Mercury   MB-25427   MBLK   ND   mg/L   LCS   0.005109   mg/L   LCS   0.005114   mg/L   LCS   0.005114   mg/L   MB-26356   MBLK   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   mg/L   ND   ND   mg/L   ND   ND   mg/L   ND   ND   ND   ND   ND   ND   ND   N | Debarage   39.92   μg/L   10   PA Method 7470: Mercury   MB-25427   MBLK   ND   mg/L   0.00020   LCS-25427   LCS   0.005109   mg/L   0.00020   LCS-25427   LCS   0.005114   mg/L   0.00020   PA 6010B: Total Recoverable Metals   MBLK   ND   mg/L   0.020   ND   mg/L   0.020   ND   mg/L   0.020   ND   mg/L   0.0050   ND   mg/L   1.0   ND   mg/L   1.0   ND   mg/L   1.0   ND   mg/L   1.0   ND   mg/L   1.0   ND   mg/L   0.0050   ND   mg/L   0.0050   ND   mg/L   0.0050   ND   mg/L   0.0050   ND   mg/L   0.0050   ND   mg/L   0.0050   ND   mg/L   0.0050   ND   mg/L   0.0020   0.5312   mg/L   0.0020   0.5321   mg/L   0.0020   0.5321   mg/L   0.0050   0.5321   mg/L   0.0050   0.5321   mg/L   0.0050   0.5321   mg/L   0.0050   0.5321   mg/L   0.0050   0.5321   mg/L   0.0050   0.5321   mg/L   0.0050   0.5321   mg/L   0.0050   0.5325   mg/L   0.0050   0.5858   mg/L   0.0050   0.5858   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.0050   0.5104   mg/L   0.005 | Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific   Specific | Spenzene   39.92   µg/L   10   100   0 | Debanzene   39.92   pg/L   10   100   0   39.9 | Debato   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   Septemb | Debanzene   39.92   µg/L   10   100   0   39.9   25.2   92.3     PA Method 7470: Mercury   MB_K   Batch ID:   25427   Analysis     ND   mg/L   0.00020   0.005   0   102   80   120     LCS   Batch ID:   25427   Analysis     LCS-26427   LCS   Batch ID:   25427   Analysis     LCS-26427   LCS   Batch ID:   25427   Analysis     LCS-26427   LCS   Batch ID:   25427   Analysis     LCS-26427   LCS   Batch ID:   25427   Analysis     LCS-26427   LCS   Batch ID:   25427   Analysis     LCS-26427   LCS   Batch ID:   25427   Analysis     LCS-26427   LCS   Batch ID:   25427   Analysis     LCS-26427   LCS   Batch ID:   25427   Analysis     LCS-26427   LCS   Batch ID:   25356   Analysis     PA 6010B: Total Recoverable Metals   MBLK   Batch ID:   25356   Analysis     MB-26356   MBLK   Batch ID:   25356   Analysis     ND mg/L 0.0020   ND mg/L 0.0050   ND mg/L 0.0050     ND mg/L 0.0050   ND mg/L 0.0050   ND mg/L 0.0050     ND mg/L 0.0050   MBLK   Batch ID:   25356   Analysis     Analysis   LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   Batch ID:   25356   Analysis     LCS   B | Debanzene   39.92   µg/L   10   100   0   39.9   25.2   92.3   1.98     PA Method 7470: Mercury   MBLK | ### PAMethod 7470: Mercury #################################### |

#### Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

## **QA/QC SUMMARY REPORT**

ient:

Western Refining Southwest, Inc.

Project:

Injection Well 1st QTR 2011

Work Order:

1101665

| A alut-                 | Danill           | A 8 14 |      | 000000000000000000000000000000000000000 | 0/2 1     |            | - Name of DDD  | DDDI (mil) Over      |
|-------------------------|------------------|--------|------|-----------------------------------------|-----------|------------|----------------|----------------------|
| Analyte                 | Result           | Units  | PQL  | SPK Val SPK ref                         | %Rec Lo   | wLimit Hig | hLimit %RPD    | RPDLimit Qual        |
| Method: SM2540C MOD: To | otal Dissolved S | Bolids |      |                                         |           |            |                |                      |
| Sample ID: MB-25352     |                  | MBLK   |      |                                         | Batch ID: | 25352      | Analysis Date: | 1/26/2011 9:38:00 AM |
| Total Dissolved Solids  | ND               | mg/i.  | 20.0 | j.                                      |           |            |                | •                    |
| Sample ID: LCS-25352    |                  | LCS    |      | ì                                       | Batch ID: | 25352      | Analysis Date: | 1/26/2011 9:36:00 AM |
| Total Dissolved Solids  | 1020             | mg/L   | 20.0 | 1000 11                                 | 101       | 80         | 120            |                      |



E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Client Name WESTERN REFINING SOUT

### Sample Receipt Checklist

Date Received:

1/20/2011

| Checklist completed by Signature                              | Sample ID labels checked by:      |
|---------------------------------------------------------------|-----------------------------------|
| Matrix: Carrier name: UPS                                     |                                   |
| Shipping container/cooler in good condition? Yes ✓            | No Not Present                    |
| Custody seals intact on shipping container/cooler?            | No Not Present Not Shipped        |
| Custody seals intact on sample bottles?                       | No N/A ✓                          |
| Chain of custody present? Yes ✓                               | No                                |
| Chain of custody signed when relinquished and received?       | . No                              |
| Chain of custody agrees with sample labels? Yes ✔             | No ·                              |
| Samples in proper container/bottle? Yes ✔                     | No                                |
| Sample containers intact? Yes ✔                               | No                                |
| Sufficient sample volume for indicated test? Yes ✔            | No                                |
| All samples received within holding time? Yes ✓               | No Number of preserved            |
| Water - VOA vials have zero headspace? No VOA vials submitted | bottles checked for Yes V No pH:  |
| Water - Preservation labels on bottle and cap match? Yes ❤    | NO N/A J. N                       |
| Water - pH acceptable upon receipt? Yes ✔                     | No N/A (<2) 72 unless noted       |
| Container/Temp Blank temperature? 1.1°                        | <6° C Acceptable                  |
| COMMENTS:                                                     | If given sufficient time to cool. |
|                                                               |                                   |
| ·                                                             |                                   |
|                                                               |                                   |
|                                                               |                                   |
|                                                               |                                   |
|                                                               |                                   |
| Client contacted Date contacted:                              | Person contacted                  |
| Contacted by: Regarding:                                      |                                   |
| Comments:                                                     |                                   |

Corrective Action

Air Bubbles (Y or M) **ANALYSIS LABORATORY** HALL ENVIRONMENTAL if necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report. LIPISAMO) Š 4901 Hawkins NE - Albuquerque, NM 87109 Fax 505-345-4107 ₹ Y (AOV-ima2) 07S8  $\prec$ www.hallenvironmental.com **Analysis Request** ∠ (AOV) 80828 8081 Pesticides / 8082 PCB's Anions (F,CI,NO3,NO2,PO4,SO4) RCRA 8 Metals X Tel. 505-345-3975 (HA9 10 AN9) 01:E8 SACK UP X (GasiQ\ss&) 43 f 08 bodfeM H97 Remarks: BTEX + MTBE + TPH (Gas only) BTEX + MTBE + TMB's (8021) INJECTION Well 1st OTR 2011 2011 1100 Time □ Rush Preservative -500ml 2m Acetal -50m H2804 Na OH Anber -58m H NO2 Sample Temperature: **望** Turn-Around Time: Project Manager: Project Name: X Standard -500ml On Ice 1-1iter Type and # - 500A Container 1-500m Sampler: 3-16A Project #: Received by <u>ح</u> Level 4 (Full Validation) Sample Request ID INJECTION WELL ank Chargof-Custody Record - Bloomfreld, NM 874/3 email or Fax#: 505-633-39// Client Western Refining Mailing Address: 50 CR 4990 Phone #: 55,5-632- 4/6/ Relinquished by: Relinquished by: Other O Matrix 1/10;45 H2O 1-19-11/3:00 Time QA/QC Package: □ EDD (Type) Accreditation Time: 区 Standard □ NELAP Date

7



#### **COVER LETTER**

Wednesday, April 20, 2011

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Injection Well 2nd QTR 4-11

Dear Kelly Robinson:

Order No.: 1104184

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 4/5/2011 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX



Date: 20-Apr-11

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1104184

Project:

Injection Well 2nd QTR 4-11

Lab ID:

1104184-01

Client Sample ID: Injection Well

Collection Date: 4/4/2011 12:45:00 PM

Date Received: 4/5/2011

Matrix: AQUEOUS

|                               |         |         |            |                                                                                                                  | r                     |  |  |  |
|-------------------------------|---------|---------|------------|------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|
| Analyses                      | Result  | PQL     | Qual Units | DF                                                                                                               | Date Analyzed         |  |  |  |
| EPA METHOD 300.0: ANIONS      | ·       |         |            | والمستجد المستحد المستحد المستحد المستحد المستحد المستحد المستحد المستحد المستحد المستحد المستحد المستحد المستحد | Analyst: SRM          |  |  |  |
| Chloride                      | 900     | 50      | mg/L       | 100 -                                                                                                            | 4/9/2011 2:09:24 PM   |  |  |  |
| Sulfate                       | 110     | 2.5     | mg/L       | 5                                                                                                                | 4/6/2011 11:05:42 AM  |  |  |  |
| EPA METHOD 7470: MERCURY      |         |         |            |                                                                                                                  | Analyst: TES          |  |  |  |
| Mercury                       | 0.00053 | 0.00020 | mg/L       | 1                                                                                                                | 4/15/2011 2:45:08 PM  |  |  |  |
| EPA 6010B: TOTAL RECOVERABLE  | METALS  | ••      |            |                                                                                                                  | Analyst: RAGS         |  |  |  |
| Arsenic                       | ND      | 0.020   | mg/L       | 1                                                                                                                | 4/15/2011 11:04:28 AM |  |  |  |
| Barium                        | 0.40    | 0.020   | mg/L       | 1                                                                                                                | 4/15/2011 11:04:28 AM |  |  |  |
| Cadmium                       | ND      | 0.0020  | mg/L       | 1                                                                                                                | 4/15/2011 11:04:28 AM |  |  |  |
| Calcium                       | 140     | 5.0     | mg/L       | 5                                                                                                                | 4/13/2011 3:53:35 PM  |  |  |  |
| Chromium                      | 0.0079  | 0.0060  | mg/L       | 1                                                                                                                | 4/15/2011 11:04:28 AM |  |  |  |
| Lead                          | ND      | 0.0050  | mg/L       | . 1                                                                                                              | 4/15/2011 11:04:28 AM |  |  |  |
| Magnesium                     | 33      | 1.0     | mg/L       | 1                                                                                                                | 4/15/2011 11:04:28 AM |  |  |  |
| Potassium                     | 9.4     | 1.0     | mg/L       | 1                                                                                                                | 4/15/2011 11:04:28 AM |  |  |  |
| Selenium                      | ND      | 0.050   | mg/L       | 1                                                                                                                | 4/15/2011 11:04:28 AM |  |  |  |
| Silver                        | ND      | 0.0050  | mg/L       | 1                                                                                                                | 4/15/2011 11:04:28 AM |  |  |  |
| Sodium                        | 530     | 10      | mg/L       | . 10                                                                                                             | 4/15/2011 11:17:21 AM |  |  |  |
| EPA METHOD 8270C: SEMIVOLATIL | ES      |         |            |                                                                                                                  | Analyst: JDC          |  |  |  |
| Acenaphthene                  | ND      | 10      | μg/L       | 1                                                                                                                | 4/14/2011 6.58:21 PM  |  |  |  |
| Acenaphthylene                | ND      | 10      | μg/L       | 1                                                                                                                | 4/14/2011 6:58:21 PM  |  |  |  |
| Anlline                       | ND      | 10      | μg/L       | 1                                                                                                                | 4/14/2011 6:58:21 PM  |  |  |  |
| Anthracene                    | ND      | 10      | μg/L       | 1                                                                                                                | 4/14/2011 6:58:21 PM  |  |  |  |
| Azobenzene                    | ND      | 10      | µg/L       | 1                                                                                                                | 4/14/2011 6:58:21 PM  |  |  |  |
| Benz(a)anthracene             | ND      | 10      | μg/L       | 1                                                                                                                | 4/14/2011 6:58:21 PM  |  |  |  |
| Benzo(a)pyrene                | ND      | 10      | μg/L       | 1                                                                                                                | 4/14/2011 6:58:21 PM  |  |  |  |
| Benzo(b)fluoranthene          | ND      | 10      | μg/L       | 11                                                                                                               | 4/14/2011 6:58:21 PM  |  |  |  |
| Benzo(g,h,i)perylene          | ND      | 10      | μg/L       | 1                                                                                                                | 4/14/2011 6:58:21 PM  |  |  |  |
| Benzo(k)fluoranthene          | ND      | 10      | μg/L       | 1                                                                                                                | 4/14/2011 6:58:21 PM  |  |  |  |
| Benzoic acid                  | 20      | 20      | μg/L       | , 1                                                                                                              | 4/14/2011 6:58:21 PM  |  |  |  |
| Benzyi alcohol                | ND      | 10      | μg/L       | 1 .                                                                                                              | 4/14/2011 6:58:21 PM  |  |  |  |
| Bis(2-chloroethoxy)methane    | ПN      | 10      | μg/L       | 1                                                                                                                | 4/14/2011 6:58:21 PM  |  |  |  |
| Bis(2-chloroethyl)ether       | ND      | 10      | μg/L       | 1                                                                                                                | 4/14/2011 6:58:21 PM  |  |  |  |
| Bis(2-chloroisopropyl)ether   | ND      | 10      | μg/L       | 1 .                                                                                                              | 4/14/2011 6:58:21 PM  |  |  |  |
| Bis(2-ethylhexyl)phthalate    | 13      | 10      | μg/L       | 1                                                                                                                | 4/14/2011 6:58:21 PM  |  |  |  |
| 4-Bromophenyl phenyl ether    | ND      | 10      | μg/L       | 1                                                                                                                | 4/14/2011 6:58:21 PM  |  |  |  |
| Butyl benzyl phthalate        | ND      | 10      | μg/L       | 1                                                                                                                | 4/14/2011 6:58:21 PM  |  |  |  |
| Carbazole                     | ND      | 10      | μg/L       | · 1                                                                                                              | 4/14/2011 6:58:21 PM  |  |  |  |
| 4-Chloro-3-methylphenol       | ND      | 10      | μg/L       | 1                                                                                                                | 4/14/2011 6:58:21 PM  |  |  |  |
| 4-Chloroaniline               | ND      | 10      | μg/L       | 1                                                                                                                | 4/14/2011 6:58:21 PM  |  |  |  |
|                               | i       |         |            |                                                                                                                  |                       |  |  |  |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 1 of 7

Date: 20-Apr-11

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1104184

Project:

Injection Well 2nd QTR 4-11

Lab ID:

1104184-01

Client Sample ID: Injection Well

Collection Date: 4/4/2011 12:45:00 PM

Date Received: 4/5/2011

Matrix: AQUEOUS

| Analyses                     | Result | PQL | Qual Units | DF  | Date Analyzed        |
|------------------------------|--------|-----|------------|-----|----------------------|
| PA METHOD 8270C: SEMIVOLATIL | .ES    |     |            |     | Analyst: JD0         |
| 2-Chloronaphthalene          | ND     | 10  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| 2-Chlorophenol               | ND     | 10  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| 4-Chlorophenyl phenyl ether  | ND     | 10  | . µg/L     | 1   | 4/14/2011 6:58:21 PM |
| Chrysene                     | ND     | 10  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| Di-n-butyl phthalate         | ND     | 10  | µg/L       | 1   | 4/14/2011 6:58:21 PM |
| Di-n-octyl phthalate         | ND     | 10  | µg/L       | 1   | 4/14/2011 6:58:21 PM |
| Dibenz(a,h)anthracene        | ND     | 10  | µg/L       | · 1 | 4/14/2011 6:58:21 PM |
| Dibenzofuran                 | ND     | 10  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| 1,2-Dichlorobenzene          | ND ·   | 10  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| 1,3-Dichlorobenzene          | ND     | 10  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| 1,4-Dichlorobenzene          | ND     | 10  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| 3,3'-Dichlorobenzidine       | ND     | 10  | µg/L       | 1   | 4/14/2011 6:58:21 PM |
| Diethyl phthalate            | ND     | 10  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| Dimethyl phthalate           | ND     | 10  | µg/L       | 1   | 4/14/2011 6:58:21 PM |
| 2,4-Dichlorophenol           | ND     | 20  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| 2,4-Dimethylphenol           | ND     | 10  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| 4,6-Dinitro-2-methylphenol   | ND     | 20  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| 2,4-Dinitrophenol            | ND     | 20  | μg/L       | 1 . | 4/14/2011 6:58:21 PM |
| 2,4-Dinitrotoluene           | ND     | 10  | µg/L       | ·1  | 4/14/2011 6:58:21 PM |
| 2,6-Dinitrotoluene           | ND     | 10  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| Fluoranthene                 | ND     | 10  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| Fluorene                     | ND '   | 10  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| Hexachlorobenzene            | ND     | 10  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| Hexachlorobutadiene          | ND     | 10  | µg/L       | 1   | 4/14/2011 6:58:21 PM |
| Hexachlorocyclopentadlene    | ND     | 10  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| Hexachloroethane             | ND     | 10  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| Indeno(1,2,3-cd)pyrene       | ND     | 10  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| Isophorone .                 | ND     | 10  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| 2-Methylnaphthalene          | ND     | 10  | µg/L       | 1   | 4/14/2011 6:58:21 PM |
| 2-Methylphenol               | 26     | 10  | µg/L       | 1   | 4/14/2011 6:58:21 PM |
| 3+4-Methylphenol             | 72     | 10  | µg/L       | 1   | 4/14/2011 6:58:21 PM |
| N-Nitrosodi-n-propylamine    | ND     | 10  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| N-Nitrosodimethylamine       | ND     | 10  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| N-Nitrosodiphenylamine       | ND     | 10  | µg/L       | 1   | 4/14/2011 6:58:21 PM |
| Naphthalene                  | ND     | 10  | μg/L       | 1   | 4/14/2011 6:58:21 PM |
| 2-Nitroaniline               | ND     | 10  | µg/L       | 1   | 4/14/2011 6:58:21 PM |
| 3-Nitroaniline               | ND     | 10  | µg/L       | 1   | 4/14/2011 6:58:21 PM |
| I-Nitroaniline               | ND     | 20  | µg/L       | 1   | 4/14/2011 6:58:21 PM |
| Vitrobenzene                 | ND     | 10  | µg/L       | 1   | 4/14/2011 6:58:21 PM |
| 2-Nitrophenoi                | ND     | 10  | µg/L       | 1   | 4/14/2011 6:58:21 PM |
| 4-Nitrophenol                | ND     | 10  | µg/L       | 1   | 4/14/2011 6:58:21 PM |

#### Qualiflers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 2 of 7

Western Refining Southwest, Inc.

Lab Order:

1104184

Project: Injection Well 2nd QTR 4-11

Lab ID:

CLIENT:

1104184-01

Date: 20-Apr-11

Client Sample ID: Injection Well

Collection Date: 4/4/2011 12:45:00 PM

Date Received: 4/5/2011

Matrix: AQUEOUS

| Analyses                               | Result | PQL       | Qual Units | DF          | Date Analyzed        |
|----------------------------------------|--------|-----------|------------|-------------|----------------------|
| <b>EPA METHOD 8270C: SEMIVOLATILES</b> | ;      |           |            | <del></del> | Analyst: JDC         |
| Pentachlorophenol                      | . ND   | 20        | μg/L       | 1           | 4/14/2011 6:58:21 PM |
| Phenanthrene                           | ND     | 10        | µg/L       | 1           | 4/14/2011 6:58:21 PM |
| Phenol                                 | 13     | 10        | µg/L       | 1           | 4/14/2011 6:58:21 PM |
| Pyrene                                 | ND     | 10        | · µg/L     | 1           | 4/14/2011 6:58:21 PM |
| Pyridine                               | ND     | 10        | µg/L       | 1           | 4/14/2011 6:58:21 PM |
| 1,2,4-Trichlorobenzene                 | ND     | 10        | μg/L       | 1           | 4/14/2011 6:58:21 PM |
| 2,4,5-Trichlorophenol                  | ND     | 10        | μg/L       | 1           | 4/14/2011 6:58:21 PM |
| 2,4,6-Trichlorophenol                  | ND     | 10        | μg/L       | 1           | 4/14/2011 6:58:21 PM |
| Surr: 2,4,6-Tribromophenol             | 72.4   | 17.5-104  | %REC       | 1           | 4/14/2011 6:58:21 PM |
| Surr: 2-Fluorobiphenyl                 | 57.2   | 30.9-98.9 | %REC       | 1           | 4/14/2011 6:58:21 PM |
| Surr: 2-Fluorophenol                   | 49.7   | 12.4-90.1 | %REC       | 1           | 4/14/2011 6:58:21 PM |
| Surr: 4-Terphenyl-d14                  | 51.9   | 43.5-91.9 | %REC       | 1           | 4/14/2011 6:58:21 PM |
| Surr: Nitrobenzene-d5                  | 55.5   | 26.2-108  | %REC       | 1           | 4/14/2011 6:58:21 PM |
| Surr: Phenol-d5                        | 43.8   | 11.8-73.1 | %REC       | 1           | 4/14/2011 6:58:21 PM |
| EPA METHOD 8260B: VOLATILES            |        |           |            |             | Analyst: BDH         |
| Benzene                                | ND     | 5.0       | µg/L       | 5           | 4/11/2011 5:31:08 PM |
| Toluene                                | ND     | 5.0       | μg/L       | 5           | 4/11/2011 5:31:08 PM |
| Ethylbenzene                           | ND     | 5.0       | μg/L       | 5           | 4/11/2011 5:31:08 PM |
| Methyl tert-butyl ether (MTBE)         | · ND   | 5.0       | μg/L       | 5           | 4/11/2011 5:31:08 PM |
| 1,2,4-Trimethylbenzene                 | ND     | 5.0       | μg/L       | 5           | 4/11/2011 5:31:08 PM |
| 1,3,5-Trimethylbenzene                 | , ND   | 5.0       | µg/L       | . 5         | 4/11/2011 5:31:08 PM |
| 1,2-Dichloroethane (EDC)               | ND     | 5.0       | μg/L       | 5           | 4/11/2011 5:31:08 PM |
| 1,2-Dibromoethane (EDB)                | ND     | 5.0       | μg/L       | 5           | 4/11/2011 5:31:08 PM |
| Naphthalene                            | ND     | 10        | μg/L       | 5           | 4/11/2011 5:31:08 PM |
| 1-Methylnaphthalene                    | ND     | 20        | μg/L       | 5           | 4/11/2011 5:31:08 PM |
| 2-Methylnaphthalene                    | ND     | 20        | μg/L       | 5           | 4/11/2011 5:31:08 PM |
| Acetone                                | 600    | 50        | µg/L       | 6           | 4/11/2011 5:31:08 PM |
| Bromobenzene                           | ND     | 5.0       | µg/L       | 5           | 4/11/2011 5:31:08 PM |
| Bromodichloromethane                   | ND     | 5.0       | μg/L       | 5           | 4/11/2011 5:31:08 PM |
| Bromoform                              | ND ND  | 5.0       | µg/L       | 5           | 4/11/2011 5:31:08 PM |
| Bromomethane                           | ND     | 15        | µg/L       | 5           | 4/11/2011 5:31:08 PM |
| 2-Butanone                             | ND     | 50        | μg/L       | 5           | 4/11/2011 5:31:08 PM |
| Carbon disulfide                       | ND     | 50        | μg/L       | 5           | 4/11/2011 5:31:08 PM |
| Carbon Tetrachloride                   | ND     | 5.0       | μg/L       | 5           | 4/11/2011 5:31:08 PM |
| Chlorobenzene                          | ND     | 5.0       | μg/L       | 5           | 4/11/2011 5:31:08 PM |
| Chloroethane                           | ND     | 10        | µg/L       | 5           | 4/11/2011 5:31:08 PM |
| Chloroform                             | ND     | 5.0       | µg/L       | 5           | 4/11/2011 5:31:08 PM |
| Chloromethane                          | ND     | 15        | μg/L       | 5           | 4/11/2011 5:31:08 PM |
| 2-Chlorotoluene                        | ND     | 5.0       | µg/L       | 5           | 4/11/2011 5:31:08 PM |
| 4-Chlorotoluene                        | ND     | 5.0       | μg/L       | 5           | 4/11/2011 5:31:08 PM |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 3 of 7

Date: 20-Apr-11

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1104184

Project:

Injection Well 2nd QTR 4-11

Lab ID:

1104184-01

Client Sample ID: Injection Well

Collection Date: 4/4/2011 12:45:00 PM

Date Received: 4/5/2011

Matrix: AQUEOUS

| Analyses                    | Result | PQL         | Qual Uni     | ts DF | Date Analyzed        |
|-----------------------------|--------|-------------|--------------|-------|----------------------|
| EPA METHOD 8260B: VOLATILES |        |             |              | ·     | Analyst: BD          |
| cls-1,2-DCE                 | ND     | 5.0         | µg/L         | . 5   | 4/11/2011 5:31:08 PM |
| cis-1,3-Dichloropropene     | ND     | 5.0         | μg/L         | . 5   | 4/11/2011 5:31:08 PM |
| 1,2-Dibromo-3-chloropropane | ND     | 10          | μg/L         |       | 4/11/2011 5:31:08 PM |
| Dibromochloromethane        | ND     | 5.0         |              | •     | 4/11/2011 5:31:08 PM |
| Dibromomethane              | ND     | 5.0         | μg/L         | 5     | 4/11/2011 5:31:08 PM |
| 1,2-Dichlorobenzene         | ND     | 5.0         | μg/L         | . 5   | 4/11/2011 5:31:08 PM |
| 1,3-Dichlorobenzene         | ND     | 5.0         | μg/L         | 5     | 4/11/2011 5:31:08 PM |
| 1,4-Dichlorobenzene         | ND     | 5.0         | µg/L         | . 5   | 4/11/2011 5:31:08 PM |
| Dichlorodifluoromethane     | ND     | 5.0         | ͺμg/L        | 5     | 4/11/2011 5:31:08 PM |
| 1,1-Dichloroethane          | ND     | 5.0         | µg/L         | 5     | 4/11/2011 5:31:08 PM |
| 1,1-Dichlorgethene          | ND     | 5.0         | µg/L         | 5     | 4/11/2011 5:31:08 PM |
| 1,2-Dichloropropane         | ND     | 5.0         | μg/L         | 5     | 4/11/2011 5:31:08 PM |
| 1,3-Dichloropropane         | ND     | 5.0         | μg/L         | 5     | 4/11/2011 5:31:08 PM |
| 2,2-Dichloropropane         | ND     | 10          | µg/L         | 5     | 4/11/2011 5:31:08 PM |
| 1,1-Dichloropropene         | ND     | 5.0         | μ <b>g/L</b> | 5     | 4/11/2011 5:31:08 PM |
| Hexachlorobutadiene         | ND     | 5.0         | (µg/L        | 5     | 4/11/2011 5:31:08 PM |
| 2-Hexanone                  | ND     | · <b>50</b> | μg/L         | 5     | 4/11/2011 5:31:08 PM |
| Isopropylbenzene            | ND     | 5.0         | μg/L         | 5     | 4/11/2011 5:31:08 PM |
| 4-isopropyitoluene          | ND     | 5.0         | μg/L         | 5     | 4/11/2011 5:31:08 PM |
| 4-Methyl-2-pentanone        | ND     | 50          | µg/L         | 5     | 4/11/2011 5:31:08 PM |
| Methylene Chloride          | ND     | 15          | μg/Ł         | 5     | 4/11/2011 5:31:08 PM |
| n-Butylbenzene              | ND     | 5.0         | μg/Ł         | 5     | 4/11/2011 5:31:08 PM |
| n-Propylbenzene             | ND     | 5.0         | µg/L         | 5     | 4/11/2011 5:31:08 PM |
| sec-Butylbenzene            | ND     | 5.0         | †µg/L        | 5     | 4/11/2011 5:31:08 PM |
| Styrene                     | ND     | 5.0         | μg/L         | 5     | 4/11/2011 5:31:08 PM |
| tert-Butylbenzene           | ND     | 5.0         | μg/L         | . 5   | 4/11/2011 5:31:08 PM |
| 1,1,1,2-Tetrachloroethane   | ND     | 5.0         | μg/L         | · 5   | 4/11/2011 5:31:08 PM |
| 1,1,2,2-Tetrachloroethane   | ND     | 10          | μg/L         | 5     | 4/11/2011 5:31:08 PM |
| Tetrachloroethene (PCE)     | ND     | 5.0         | µg/L         | 5     | 4/11/2011 5:31:08 PM |
| trans-1,2-DCE               | ND     | 5.0         | µg/L         | 5     | 4/11/2011 5:31:08 PM |
| trans-1,3-Dichloropropene   | ND     | 5.0         | "µg/L        | 5     | 4/11/2011 5:31:08 PM |
| 1,2,3-Trichlorobenzene      | ND     | 5.0         | μg/L         | 5     | 4/11/2011 5:31:08 PM |
| 1,2,4-Trichlorobenzene      | ND     | 5.0         | μg/L         | 5     | 4/11/2011 5:31:08 PM |
| 1,1,1-Trichloroethane       | ND     | 5.0         | μg/L         | 5     | 4/11/2011 5:31:08 PM |
| 1,1,2-Trichloroethane       | ND     | 5.0         | μg/L         | 5     | 4/11/2011 5:31:08 PM |
| Trichloroethene (TCE)       | ND     | 5.0         | μg/L         | 5     | 4/11/2011 5:31:08 PM |
| Trichlorofluoromethane      | ND     | 5.0         | μg/L         | 5     | 4/11/2011 5:31:08 PM |
| 1,2,3-Trichloropropane      | ND     | 10          | µg/L         | 5     | 4/11/2011 5:31:08 PM |
| Vinyi chloride              | ND     | 5.0         | μg/L         | 5     | 4/11/2011 5:31:08 PM |
| Xylenes, Total              | ND     | 7.5         | μg/L         | 5     | 4/11/2011 5:31:08 PM |
| Surr: 1,2-Dichloroethane-d4 | 101    | 65.8-138    | %RE          | C 5   | 4/11/2011 5:31:08 PM |

### Qualiflers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 4 of 7

Date: 20-Apr-11

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1104184

Project:

Injection Well 2nd QTR 4-11

Lab ID:

1104184-01

Client Sample ID: Injection Well

Collection Date: 4/4/2011 12:45:00 PM

Date Received: 4/5/2011

Matrix: AQUEOUS

| Analyses                        | Result | PQL      | Qual Units | DF         | Date Analyzed        |
|---------------------------------|--------|----------|------------|------------|----------------------|
| EPA METHOD 8260B: VOLATILES     |        |          |            |            | Analyst: BDH         |
| Surr: 4-Bromofluorobenzene      | 102    | 72.7-128 | %REC       | 5          | 4/11/2011 5:31:08 PM |
| Surr: Dibromofluoromethane      | 106    | 69-135   | %REC       | <b>5</b> . | 4/11/2011 5:31:08 PM |
| Surr: Toluene-d8                | 103    | 86.1-134 | %REC       | 5          | 4/11/2011 5:31:08 PM |
| SM 2320B: ALKALINITY            |        |          | •          |            | Analyst: LJB         |
| Alkalinity, Total (As CaCO3)    | 310    | 20       | mg/L CaCO3 | 1          | 4/6/2011 8:57:00 PM  |
| Carbonate                       | ND     | 2.0      | mg/L CaCO3 | 1          | 4/6/2011 8:57:00 PM  |
| Bicarbonate                     | 310    | 20       | mg/L CaCO3 | 1          | 4/6/2011 8:57:00 PM  |
| EPA 120.1: SPECIFIC CONDUCTANCE |        |          |            |            | Analyst: LJB         |
| Specific Conductance            | 3400   | 0.010    | µmhos/cm   | 1          | 4/6/2011 8:57:00 PM  |
| SM4500-H+B: PH                  |        |          |            |            | Analyst: LJB         |
| PΗ                              | 7.16   | 0.100    | pH units   | 1          | 4/6/2011 8:57:00 PM  |
| SM2540C MOD: TOTAL DISSOLVED SO | LIDS   |          |            |            | Analyst: KS          |
| Total Dissolved Solids          | 2090   | 40.0     | mg/L       | 1          | 4/11/2011 2:00:00 PM |

#### Qualiflers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
  - S Spike recovery outside accepted recovery limits

Date: 20-Apr-11

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1104184

Project:

Injection Well 2nd QTR 4-11

Lab ID:

1104184-02

Client Sample ID: TRIP BLANK

**Collection Date:** 

Date Received: 4/5/2011

Matrix: TRIP BLANK

| Analyses                       | Result | PQL         | Qual Ur       | its | DF | Date Analyzed        |
|--------------------------------|--------|-------------|---------------|-----|----|----------------------|
| EPA METHOD 8260B: VOLATILES    |        | <del></del> | P             |     |    | Analyst: BDI         |
| Benzene                        | ND     | 1.0         | μg/           | 'L  | 1  | 4/10/2011 4:19:47 AM |
| Toluene                        | ND     | 1.0         | µg/           |     | 1  | 4/10/2011 4:19:47 AM |
| Ethylbenzene                   | ND     | 1.0         | μg/           |     | 1  | 4/10/2011 4:19:47 AM |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0         | μg/           |     | 1  | 4/10/2011 4:19:47 AM |
| 1,2,4-Trimethylbenzene         | ND     | 1.0         | μg/           |     | 1  | 4/10/2011 4:19:47 AM |
| 1,3,5-Trimethylbenzene         | ND     | 1.0         | µg/           |     | 1  | 4/10/2011 4:19:47 AM |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0         | µg/           |     | 1  | 4/10/2011 4:19:47 AM |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0         | μg/           |     | 1  | 4/10/2011 4:19:47 AM |
| Naphthalene                    | ND     | 2.0         | μg/           |     | 1  | 4/10/2011 4:19:47 AM |
| 1-Methylnaphthalene            | ND     | 4.0         | µg/           |     | 1  | 4/10/2011 4:19:47 AM |
| 2-Methylnaphthaiene            | ND     | 4.0         | μg/           |     | 1  | 4/10/2011 4:19:47 AM |
| Acetone                        | ND     | 10          | μg/           |     | 1  | 4/10/2011 4:19:47 AM |
| Bromobenzene                   | ND     | 1.0         | μg/l          |     | 1  | 4/10/2011 4:19:47 AM |
| Bromodichloromethane           | ND     | 1.0         | μg/l          |     | 1  | 4/10/2011 4:19:47 AM |
| Bromoform                      | ND     | 1.0         | μg/i          |     | 1  | 4/10/2011 4:19:47 AM |
| Bromomethane                   | ND     | 3.0         | μg/l          |     | 1  | 4/10/2011 4:19:47 AM |
| 2-Butanone                     | ND     | 10          | μg/l          | ,   | 1  | 4/10/2011 4:19:47 AM |
| Carbon disulfide               | ND     | 10          | µg/l          |     | 1  | 4/10/2011 4:19:47 AM |
| Carbon Tetrachloride           | ND     | 1.0         | μ <b>g/</b> l |     | 1  | 4/10/2011 4:19:47 AM |
| Chlorobenzene                  | ND .   | 1.0         | μg/l          |     | 1  | 4/10/2011 4:19:47 AM |
| Chloroethane                   | ND     | 2.0         | μg/I          |     | 1  | 4/10/2011 4:19:47 AM |
| Chloroform                     | ND     | 1.0         | μg/l          |     | 1  | 4/10/2011 4:19:47 AM |
| Chloromethane                  | ND     | 3.0         | μg/l          |     | 1  | 4/10/2011 4:19:47 AM |
| 2-Chlorotoluene                | ND     | 1.0         | µg/l          |     | 1  | 4/10/2011 4:19:47 AM |
| 4-Chlorotoluene                | ND     | 1.0         | μg/l          |     | 1  | 4/10/2011 4:19:47 AM |
| cis-1,2-DCE                    | ND     | 1.0         | μg/l          |     | 1  | 4/10/2011 4:19:47 AM |
| cis-1,3-Dichloropropene        | ND ·   | 1.0         | μg/L          |     | 1  | 4/10/2011 4:19:47 AM |
| 1,2-Dibromo-3-chloropropane    | ND     | 2.0         | μg/L          |     | 1  | 4/10/2011 4:19:47 AM |
| Dibromochloromethane           | ND     | 1.0         | μg/L          |     | 1  | 4/10/2011 4:19:47 AM |
| Dibromomethane                 | ND     | 1.0         | μg/L          |     | 1  | 4/10/2011 4:19:47 AM |
| I,2-Dichlorobenzene            | ND     | 1.0         | μg/L          |     | 1  | 4/10/2011 4:19:47 AM |
| I,3-Dichlorobenzene            | ND     | 1.0         | µg/L          |     | 1  | 4/10/2011 4:19:47 AM |
| ,4-Dichlorobenzene             | ND     | 1.0         | µg/L          |     | 1  | 4/10/2011 4:19:47 AM |
| Dichlorodifluoromethane        | ND     | 1.0         | μg/L          |     | 1  | 4/10/2011 4:19:47 AM |
| ,1-Dichloroethane              | ND     | 1.0         | μg/L          |     | 1  | 4/10/2011 4:19:47 AM |
| ,1-Dichloroethene              | ND     | 1.0         | μg/L          |     | 1  | 4/10/2011 4:19:47 AM |
| ,2-Dichloropropane             | ND     | 1.0         | μg/L          |     | 1. | 4/10/2011 4:19:47 AM |
| ,3-Dichloropropane             | ND     | 1.0         | µg/L          |     | 1  | 4/10/2011 4:19:47 AM |
| 2,2-Dichloropropane            | ND     | 2.0         | μg/L          |     | 1  | 4/10/2011 4:19:47 AM |
| 1,1-Dichloropropene            | ND     | 1.0         | μg/L          |     | 1  | 4/10/2011 4:19:47 AM |
| -lexachlorobutadiene           | ND     | 1.0         | μg/L          |     | 1  | 4/10/2011 4:19:47 AM |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
  - S Spike recovery outside accepted recovery limits

Page 6 of 7

Date: 20-Apr-11

**CLIENT:** 

Western Refining Southwest, Inc.

Lab Order:

1104184

Project:

Injection Well 2nd QTR 4-11

Lab ID:

1104184-02

Client Sample ID: TFIP BLANK

**Collection Date:** 

Date Received: 4/5/2011

Matrix: TRIP BLANK

| Analyses                    | Result | PQL      | Qual Units | DF  | Date Analyzed          |
|-----------------------------|--------|----------|------------|-----|------------------------|
| EPA METHOD 8260B: VOLATILES |        | ···      |            |     | Analyst: BDH           |
| 2-Hexanone                  | ND     | 10       | μg/L       | 1   | 4/10/2011 4:19:47 AM   |
| Isopropylbenzene            | ND     | 1.0      | μg/L       | 1   | 4/10/2011 4:19:47 AM   |
| 4-Isopropyltoluene          | ND     | 1.0      | µg/L       | 1   | 4/10/2011 4:19:47 AM   |
| 4-Methyl-2-pentanone        | ND     | 10       | μg/L       | · 1 | 4/10/2011 4:19:47 AM   |
| Methylene Chloride          | ND     | 3.0      | μg/L       | 1   | 4/10/2011 4:19:47 AM   |
| n-Butylbenzene              | ND     | 1.0      | μg/L       | . 1 | 4/10/2011 4:19:47 AM   |
| n-Propylbenzene             | ND     | 1.0      | μg/L       | 1   | 4/10/2011 4:19:47 AM   |
| sec-Butylbenzene            | ND     | 1.0      | µg/L       | 1   | 4/10/2011 4:19:47 AM   |
| Styrene                     | ND     | 1.0      | μg/L       | 1   | 4/10/2011 4:19:47 AM   |
| tert-Butylbenzene           | ND     | 1.0      | µg/L       | 1   | 4/10/2011 4:19:47 AM   |
| 1,1,1,2-Tetrachioroethane   | ND     | 1.0      | μg/L       | 1   | 4/10/2011 4:19:47 AM   |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0      | μg/L       | 1   | 4/10/2011 4:19:47 AM   |
| Tetrachloroethene (PCE)     | NĐ     | 1.0      | μg/L       | 1   | 4/10/2011 4:19:47 AM   |
| trans-1,2-DCE               | ND     | 1.0      | μg/L       | 1   | 4/10/2011 4:19:47 AM   |
| trans-1,3-Dichloropropene   | ND     | 1.0      | μg/L       | 1   | 4/10/2011 4:19:47 AM   |
| 1,2,3-Trichlorobenzene      | ND     | 1.0      | μg/L       | 1   | 4/10/2011 4:19:47 AM   |
| 1,2,4-Trichlorobenzene      | ND     | 1.0      | µg/L       | 1   | 4/10/2011 4:19:47 AM   |
| 1,1,1-Trichloroethane       | ND     | 1.0      | μg/L       | 1   | 4/10/2011 4:19:47 AM   |
| 1,1,2-Trichloroethane       | ND     | 1.0      | μg/L       | 1   | 4/10/2011 4:19:47 AM   |
| Trichloroethene (TCE)       | ND     | 1.0      | μg/L       | 1   | 4/10/2011 4:19:47 AM   |
| Trichlorofluoromethane      | ND     | 1.0      | µg/L       | 1   | 4/10/2011 4:19:47 AM   |
| 1,2,3-Trichloropropane      | ND     | .2.0     | µg/L       | 1   | 4/10/2011 4:19:47 AM   |
| Vinyl chloride              | ND     | 1.0      | μg/L       | 1   | 4/10/2011 4:19:47 AM . |
| Xylenes, Total              | ND     | 1.5      | µg/L       | 1   | 4/10/2011 4:19:47 AM   |
| Surr: 1,2-Dichloroethane-d4 | 99.5   | 65.8-138 | %REC       | 1   | 4/10/2011 4:19:47 AM   |
| Surr: 4-Bromofluorobenzene  | 106    | 72.7-128 | %REC       | 1   | 4/10/2011 4:19:47 AM   |
| Surr: Dibromofluoromethane  | 105    | 69-135   | %REC       | 1   | 4/10/2011 4:19:47 AM   |
| Surr: Toluene-d8            | 104    | 86.1-134 | %REC       | 1   | 4/10/2011 4:19:47 AM   |

### Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- Analyte detected below quantitation limits
- Non-Chlorinated
- PQL Practical Quantitation Limit

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits 7

# Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9248 • email moscow@anatekiabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anatekiabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

110407046

Address:

4901 HAWKINS NE SUITE D

**Project Name:** 

1104184

Addiess

ALBUQUERQUE, NM 87109

Attn:

**ANDY FREEMAN** 

#### **Analytical Results Report**

Sample Number

110407046-001

Sampling Date

4/4/2011 12:45 PM Date/Time Received

4/7/2011 12:30 PM

Client Sample ID

1104184-01E / INJECTION WELL

Sampling Time

**Extraction Date** 

12.001

Matrix

Water

Sample Location

Comments

| Parameter          | Result | Units    | PQL | Analysis Date | Analyst | Method    | Qualifier |
|--------------------|--------|----------|-----|---------------|---------|-----------|-----------|
| Cyanide (reactive) | ND     | mg/L     | 0.1 | 4/11/2011     | JTT.    | SW846 CH7 |           |
| Flashpoint         | >200   | °F       |     | 4/18/2011     | MAH     | EPA 1010  |           |
| pН                 | 6.78   | ph Units |     | 4/14/2011     | CRW     | EPA 150.1 |           |
| Reactive suifide   | 1.20   | mg/kg    | 1   | 4/18/2011     | JTT     | SW846 CH7 |           |

**Authorized Signature** 

John Coddington, Lab Manager

MÇL

EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

## QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd QTR 4-11

Work Order:

1104184

|                              |        |         |      |          |        |           |           |          |       | 0        | 1107107      |
|------------------------------|--------|---------|------|----------|--------|-----------|-----------|----------|-------|----------|--------------|
| Analyte                      | Result | Units   | PQL  | SPK Va S | PK ref | %Rec L    | owLimit H | ighLimit | %RPD  | RPDLim   | it Qual      |
| Method: EPA Method 300.0:    | Anions |         |      |          |        |           | . :       |          |       |          |              |
| Sample ID: MB                | • .    | MBLK    |      |          |        | Batch ID: | R44598    | Analysis | Date: | 4/6/2011 | 10:43:20 AM  |
| Chloride                     | ND     | mg/L    | 0.50 |          |        |           |           | , .      |       |          |              |
| Sulfate                      | ND     | mg/L    | 0.50 |          |        |           |           |          |       |          |              |
| Sample ID: MB                |        | MBLK    |      |          |        | Batch ID: | R44664    | Analysis | Date: | 4/9/2011 | 12:59:45 PM  |
| Chloride                     | ND     | mg/L    | 0.50 |          |        |           |           |          |       |          | *            |
| Sulfate                      | ND     | mg/L    | 0.50 |          |        |           |           |          |       |          |              |
| Sample ID: LCS               |        | LCS     |      |          |        | Batch ID: | R44598    | Analysis | Date: | 4/6/2011 | 10:54:31 AM  |
| Chloride "                   | 4.911  | mg/L    | 0.50 | . 5      | 0      | 98.2      | 90        | 110      |       |          |              |
| Sulfate                      | 9.968  | mg/L    | 0.50 | 10       | 0 -    | 99.7      | 90        | 110      |       |          |              |
| Sample ID: LCS               |        | LCS     | ŀ    |          |        | Batch ID: | R4465i4   | Analysis | Date: | 4/9/2011 | l 1:17:10 PM |
| Chloride                     | 4.929  | mg/L    | 0.50 | 5        | 0      | 98.6      | 90        | 110      | 28.0  | 0        |              |
| Sulfate                      | 10.22  | mg/L    | 0.50 | 10       | 0      | 102       | 90        | 110      | 4.50  | 0        |              |
| Method: SM 2320B: Alkalinity | У      |         |      |          |        | •         |           |          |       |          |              |
| Sample ID: MB-1              |        | MBLK    | -    | • .      |        | Batch ID: | R44617    | Analysis | Date: | 4/6/2011 | 5:44:00 PM   |
| Alkalinity, Total (As CaCO3) | ND     | mg/L Ca | 20   |          |        |           |           |          |       |          |              |
| Carbonate                    | ND     | mg/L Ca | 2.0  |          |        |           |           |          |       |          |              |
| Bicarbonate                  | ND     | mg/L Ca | 20   |          |        |           |           |          |       |          | _            |
| Sample ID: LCS-1             |        | LCS     |      |          |        | Batch ID: | R44617    | Analysis | Date: | 4/6/2011 | 5:50:00 P    |
| Alkalinity, Total (As CaCO3) | 80.36  | mg/L Ca | 20   | 80       | 0      | 100       | 98.7      | 102      |       |          |              |
|                              |        |         |      |          |        |           |           |          |       |          |              |

| Qu | al | ífi  | er | ٠. |
|----|----|------|----|----|
| ٧u | 41 | 31,1 | u  |    |

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

## **QA/QC SUMMARY REPORT**

Chent:

7

Western Refining Southwest, Inc.

Project:

Injection Well 2nd QTR 4-11

Work Order:

1104184

| Analyte                        | Result    | Units | PQL | SPK Va SPK ref | %Rec Lo   | owLimit Hig | ghLimit | %RPD     | RPDLimit   | Qual       |
|--------------------------------|-----------|-------|-----|----------------|-----------|-------------|---------|----------|------------|------------|
| Method: EPA Method 8260B:      | VOLATILES |       |     |                |           |             | •       |          |            |            |
| Sample ID: b12                 |           | MBLK  |     | •              | Batch ID: | R44651      | Analys  | ls Date: | 4/9/2011 1 | 1:24:39 AN |
| Benzene                        | ND        | µg/L  | 1.0 |                |           |             |         | •        |            |            |
| Toluene                        | ND        | μg/L  | 1.0 |                |           |             |         |          | _          |            |
| Ethylbenzene                   | ND        | µg/L  | 1.0 |                |           |             |         |          |            |            |
| Methyl tert-butyl ether (MTBE) | ND        | µg/L  | 1.0 |                |           |             |         |          |            |            |
| 1,2,4-Trimethylbenzene         | ND        | μg/L  | 1.0 |                |           |             |         |          |            |            |
| 1,3,5-Trimethylbenzene         | ND        | μg/L  | 1.0 |                |           |             |         |          |            |            |
| 1,2-Dichloroethane (EDC)       | ND        | μg/L  | 1.0 |                |           |             |         |          |            |            |
| 1,2-Dibromoethane (EDB)        | ND        | μg/L  | 1.0 |                |           |             |         |          |            |            |
| Naphthalene                    | ND        | µg/L  | 2.0 |                |           |             |         |          |            |            |
| 1-Methylnaphthalene            | ND        | μg/L  | 4.0 |                |           |             |         |          |            |            |
| 2-Methylnaphthalene            | ND        | μg/L  | 4.0 |                |           |             |         |          |            |            |
| Acetone                        | ND .      | μg/L  | 10  |                |           |             |         |          |            |            |
| Bromobenzene                   | NĐ        | μg/L  | 1.0 |                |           |             |         |          | •          |            |
| Bromodichloromethane           | ND        | μg/L  | 1.0 |                |           |             |         |          |            |            |
| Bromoform                      | ND        | µg/L  | 1.0 |                | . :       | •           |         |          |            |            |
| Bromomethane                   | ND        | μg/L  | 3.0 |                |           | 1           |         |          |            |            |
| 2-Butanone                     | ND        | μg/L  | 10  |                |           |             |         |          |            |            |
| en bon disulfide               | ND        | μg/L  | 10  |                |           |             |         |          |            |            |
| on Tetrachloride               | ND        | μg/L  | 1.0 |                | ·         |             |         |          |            |            |
| Chlorobenzene                  | ND        | μg/L  | 1.0 |                |           |             |         |          |            |            |
| Chloroethane                   | ND        | μg/L  | 2.0 |                | •         |             |         |          |            |            |
| Chloroform                     | ND        | μg/L  | 1.0 |                |           |             |         |          |            |            |
| Chloromethane                  | ND        | μg/L  | 3.0 |                |           |             |         |          |            |            |
| 2-Chlorotoluene                | ND        | μg/L  | 1.0 |                |           |             |         |          |            |            |
| 4-Chlorotoluene                | ND        | μg/L  | 1.0 |                |           |             |         |          |            |            |
| cis-1,2-DCE                    | ND        | μg/L  | 1.0 | •              | •         |             | ,       |          |            |            |
| cis-1,3-Dichloropropene        | ND        | μg/L  | 1.0 |                |           |             |         |          |            |            |
| 1,2-Dibromo-3-chioropropane    | ND        | μg/L  | 2.0 | ,              | · .       |             |         |          |            |            |
| Dibromochioromethane           | ND        | μg/L  | 1.0 |                |           |             |         |          |            |            |
| Dibromomethane                 | ND        | μg/L  | 1.0 |                |           |             |         |          |            |            |
| 1,2-Dichlorobenzene            | ND        | μg/L  | 1.0 |                |           |             |         |          |            |            |
| 1,3-Dichlorobenzene            | ND        | μg/L  | 1.0 |                |           |             |         |          |            |            |
| 1,4-Dichlorobenzene            | ND        | μg/L  | 1.0 |                |           |             |         |          |            |            |
| Dichlorodifluoromethane        | ND        | μg/L  | 1.0 |                |           |             |         |          |            | -          |
| 1,1-Dichtoroethane             | ND        | μg/L  | 1.0 |                |           |             |         |          |            |            |
| 1,1-Dichloroethene             | ND        | μg/L  | 1.0 |                |           | •           |         |          |            |            |
| 1,2-Dichtoropropane            | ND        | µg/L  | 1.0 | ••             |           |             |         |          |            |            |
| 1,3-Dichloropropane            | ND        | μg/L  | 1.0 |                |           |             |         |          |            |            |
| 2,2-Dichloropropane            | ND        | μg/L  | 2.0 |                |           |             | -       |          |            |            |
| 1,1-Dichloropropene            | ND        | µg/L  | 1.0 |                |           |             | t.      |          |            |            |
| Hexachlorobutadiene            | ND        | μg/L  | 1.0 | •              |           |             | • .     |          |            |            |
| ?-Hexanone                     | ND        | µg/L  | 10  |                |           |             |         |          | ·          |            |
| sopropylbenżene                | ND.       | µg/L  | 1.0 |                |           |             |         |          |            |            |
| propyltoluene                  | ND        | μg/L  | 1.0 |                |           |             |         |          |            |            |
|                                |           | -     |     |                |           |             |         |          |            |            |

#### Qualifiers:

- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit

- H Holding times for preparation or analysis exceeded
- NC Non-Chlorinated
- R RPD outside accepted recovery limits

## **QA/QC SUMMARY REPORT**

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd QTR 4-11

Work Order: 1104184

| Analyte                        | Result      | Units                                 | PQL | SPK Va SPK ref | %Rec Lo   | owLlmit Hig | ghLimit %RP[   | RPDLimit Qual        |
|--------------------------------|-------------|---------------------------------------|-----|----------------|-----------|-------------|----------------|----------------------|
| Method: EPA Method 8260B       | : VOLATILES | · · · · · · · · · · · · · · · · · · · |     |                | ·         |             |                |                      |
| Sample ID: b12                 |             | MBLK                                  | į   |                | Batch ID: | R44851      | Analysis Date: | 4/9/2011 11:24:39 AM |
| 4-Methyl-2-pantanone           | ND          | μg/L                                  | 10  |                |           |             |                |                      |
| Methylene Chloride             | ND          | μg/L                                  | 3.0 |                |           |             |                |                      |
| n-Butylbenzene                 | ND          | µg/L                                  | 1,0 |                |           |             |                |                      |
| n-Propylbenzene                | ND          | μg/L                                  | 10  | •              |           |             |                |                      |
| sec-Butylbenzene               | ND          | µg/L                                  | 10  |                |           |             |                |                      |
| Styrene                        | ND          | µg/L                                  | 10  |                | *         |             |                |                      |
| tert-Butylbenzene              | ND          | μg/L                                  | 10  |                |           |             | •              |                      |
| 1,1,1,2-Tetrachioroethane      | ND          | μg/L                                  | 1.0 |                |           |             |                |                      |
| 1,1,2,2-Tetrachloroethane      | ND          | µg/L                                  | 2.0 |                |           |             |                | •                    |
| Tetrachloroethene (PCE)        | ND          | µg/L                                  | 1.0 |                |           |             |                |                      |
| trans-1,2-DCE                  | . ND        | μg/L                                  | 1.0 |                |           |             |                |                      |
| trans-1,3-Dichloropropene      | ND          | μg/L                                  | 1.0 |                |           |             |                |                      |
| 1,2,3-Trichforobenzene         | ND          | μg/L                                  | 1.0 |                |           |             |                |                      |
| 1,2,4-Trichtorobenzene         | ND          | µg/L                                  | 1.0 | •              |           |             |                | •                    |
| 1,1,1-Trichteroethane          | · ND        | μg/L                                  | 1.0 |                |           |             | •              |                      |
| 1,1,2-Trichloroethane          | ND          | μg/L                                  | 1.0 |                |           |             |                |                      |
| Trichloroethene (TCE)          | ND          | µg/L                                  | 1.0 |                |           |             |                |                      |
| Trichlorofluoromethane         | ND          | µg/L                                  | 1.0 |                | •         |             |                |                      |
| 1,2,3-Trichloropropane         | ND          | μg/L                                  | 2.0 |                |           |             |                |                      |
| Vinyl chloride                 | ND          | μg/L                                  | 1.0 |                |           |             |                |                      |
| Xylenes, Total                 | ND          | μg/L                                  | 1.5 |                |           |             |                |                      |
| Sample ID: 5mL rb              |             | MBLK                                  | }   |                | Batch ID: | R44868      | Analysis Date: | 4/11/2011 8:22:37 AM |
| Benzene                        | ND          | µg/L                                  | 1.0 |                |           |             |                |                      |
| Foluene                        | ND          | µg/L                                  | 1.0 |                | •         |             |                |                      |
| Ethylbenzene                   | ND          | µg/L                                  | 1.0 |                |           | •           |                |                      |
| Methyl tert-butyl ether (MTBE) | ND          | µg/L                                  | 1.0 |                |           |             |                |                      |
| ,2,4-Trimethylbenzene          | ND          | μg/L                                  | 1.0 |                |           |             |                |                      |
| 1,3,5-Trimethylbenzene         | ND          | μg/L                                  | 1.0 |                |           |             | •              | •                    |
| ,2-Dichloroethane (EDC)        | ND          | μg/L                                  | 1.0 |                |           |             |                |                      |
| ,2-Dibromoethane (EDB)         | ND          | μg/L                                  | 1.0 |                |           |             |                |                      |
| Naphthalene                    | ND          | μg/L                                  | 2.0 |                |           |             | , .            |                      |
| -Methylnaphthalene             | ND          | μg/L                                  | 4.0 |                |           |             |                |                      |
| 2-Methylnaphthalene            | ND          | μg/L                                  | 4.0 |                |           |             |                |                      |
| Acetone                        | ND          | μg/L                                  | 10  |                | •         |             |                |                      |
| Bromobenzene                   | ND          | μg/L                                  | 1.0 |                |           |             |                |                      |
| Bromodichloromethane           | ND          | μg/L                                  | 1.0 |                |           |             |                |                      |
| Bromoform                      | ND          | μg/L                                  | 1.0 | •              |           |             |                |                      |
| Bromomethane                   | ND          | μg/L                                  | 3.0 |                |           |             | •              |                      |
| -Butanone                      | ND          | µg/L                                  | 10  |                |           |             |                |                      |
| Carbon disulfide               | ND          | µg/L                                  | 10  |                |           | •           | •              |                      |
| Carbon Tetrachloride           | ND          | μg/L                                  | 1.0 |                |           |             |                |                      |
|                                |             |                                       | 1.0 |                |           |             |                |                      |
| Chlorobenzene                  | ND          | µg/L                                  | 1.0 |                |           |             |                |                      |
| Chlorobenzene<br>Chloroethane  | ND<br>ND    | µg/L                                  | 2.0 |                |           |             |                | •                    |

Qualifiers:

ND Not Detected at the Reporting Limit NC Non-Chlorinated

RPD outside accepted recovery limits

E Estimated value

J Analyte detected below quantitation limits

Н Holding times for preparation or analysis exceeded



## **QA/QC SUMMARY REPORT**

Western Refining Southwest, Inc.

Project: Injection Well 2nd QTR 4-11

Work Order:

1104184

| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | alyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result    | Units | PQL | SPK Va SPK ref | %Rec L    | owLimit Hig | ghLimit %RPD   | RPDLImit Q       | ual    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|-----|----------------|-----------|-------------|----------------|------------------|--------|
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | od: EPA Method 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VOLATILES |       |     |                |           |             |                |                  |        |
| 2-Chlorotoluene         ND         μg/L         1.0           4-Chlorotoluene         ND         μg/L         1.0           cis-1,3-Dichloropropene         ND         μg/L         1.0           cis-1,3-Dichloropropene         ND         μg/L         1.0           Dibromo-3-chloropropene         ND         μg/L         1.0           Dibromo-3-chloropropene         ND         μg/L         1.0           1,2-Dichloromemene         ND         μg/L         1.0           1,2-Dichlorobenzene         ND         μg/L         1.0           1,4-Dichlorobenzene         ND         μg/L         1.0           1,4-Dichlorobenzene         ND         μg/L         1.0           1,4-Dichlorobenzene         ND         μg/L         1.0           1,1-Dichlorobenzene         ND         μg/L         1.0           1,1-Dichlorobethene         ND         μg/L         1.0           1,2-Dichloropropane         ND         μg/L         1.0           2,2-Dichloropropane         ND         μg/L         1.0           2,2-Dichloropropane         ND         μg/L         1.0           2,2-Dichloropropane         ND         μg/L         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pie ID: 5mL rb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | MBLK  |     |                | Batch ID: | R44668      | Analysis Date: | 4/11/2011 8:22   | :37 AN |
| 4-Chlorotoluene   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | romethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND        | μg/L  | 3.0 |                | ì         |             |                |                  |        |
| 4-Chlorotoluene   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND        | μg/L  | 1.0 |                |           |             |                |                  |        |
| Cis-1,3-Dichloropropene   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND        |       | 1.0 |                | 1         |             |                |                  |        |
| 1,2-Dibromo-3-chloropropane   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-DCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND        | μg/L  | 1.0 |                |           |             | •              |                  |        |
| Dibromochloromethane         ND         µg/L         1.0           Dibromomethane         ND         µg/L         1.0           1,2-Dichlorobenzene         ND         µg/L         1.0           1,3-Dichlorobenzene         ND         µg/L         1.0           1,4-Dichlorobenzene         ND         µg/L         1.0           1,1-Dichloroethane         ND         µg/L         1.0           1,1-Dichloroethane         ND         µg/L         1.0           1,1-Dichloropropane         ND         µg/L         1.0           1,2-Dichloropropane         ND         µg/L         1.0           1,3-Dichloropropane         ND         µg/L         1.0           1,3-Dichloropropane         ND         µg/L         1.0           1,4-Dichloropropane         ND         µg/L         1.0           1,2-Dichloropropane         ND         µg/L         1.0           1,2-Dichloropropane         ND         µg/L         1.0           1,3-Dichloropropane         ND         µg/L         1.0           1,4-Dichloropropane         ND         µg/L         1.0           1,4-Dichloropropane         ND         µg/L         1.0           1,4-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND        | μg/L  | 1.0 |                | +         |             |                |                  |        |
| Dibromomethane         ND         µg/L         1.0           1,2-Dichlorobenzene         ND         µg/L         1.0           1,3-Dichlorobenzene         ND         µg/L         1.0           1,4-Dichlorobenzene         ND         µg/L         1.0           1,1-Dichloroethane         ND         µg/L         1.0           1,1-Dichloropropane         ND         µg/L         1.0           1,2-Dichloropropane         ND         µg/L         1.0           1,3-Dichloropropane         ND         µg/L         1.0           2,2-Dichloropropane         ND         µg/L         1.0           2,2-Dichloropropane         ND         µg/L         1.0           1,3-Dichloropropane         ND         µg/L         1.0           1,3-Dichloropropane         ND         µg/L         1.0           2,2-Dichloropropane         ND         µg/L         1.0           4-Methyl-acpenene         ND         µg/L         1.0           4-Holloropropane         ND         µg/L         1.0           4-Hospropylbonzene         ND         µg/L         1.0           4-Hospropylbonzene         ND         µg/L         1.0           4-Hospropylb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lbromo-3-chloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND        | µg/L  | 2.0 |                |           |             |                | •                |        |
| 1,2-Dichlorobenzene 1,3-Dichlorobenzene ND μg/L 1.0 1,3-Dichlorobenzene ND μg/L 1.0 Dichlorodifluoromethane ND μg/L 1.0 Dichlorodifluoromethane ND μg/L 1.0 1,1-Dichloroethane ND μg/L 1.0 1,1-Dichloropropane ND μg/L 1.0 1,3-Dichloropropane ND μg/L 1.0 1-Dichloropropane | mochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND        | µg/L  | 1.0 |                |           |             |                |                  |        |
| 1,3-Dichlorobenzene ND μg/L 1.0 1,4-Dichlorodifluoromethane ND μg/L 1.0 1,1-Dichlorodifluoromethane ND μg/L 1.0 1,1-Dichlorodifluoromethane ND μg/L 1.0 1,1-Dichloroethane ND μg/L 1.0 1,2-Dichloropropane ND μg/L 1.0 1,2-Dichloropropane ND μg/L 1.0 1,2-Dichloropropane ND μg/L 1.0 1,2-Dichloropropane ND μg/L 1.0 1,2-Dichloropropane ND μg/L 1.0 1,3-Dichloropropane ND μg/L 1.0 1,3-Dichloropropane ND μg/L 1.0 1,3-Dichloropropane ND μg/L 1.0 1,3-Dichloropropane ND μg/L 1.0 1,4-Dichloropropane ND μg/L 1.0 1,4-Trichloroethane (PCE) ND μg/L 1.0 1,4-Trichlorobenzene ND μg/L 1.0 1,2-Trichlorobenzene ND μg/L 1.0 1,2-Trichlorobenzene ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,2-Trichloropropane ND μg/L 1.0 1,0-Trichloropropane ND μg/L 1.0 1,0-Trichloropropane ND μg/L 1.0 1,0-Trichloropropane ND μg/L 1.0                                                                                                                                                                       | momethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND        | μg/L  | 1.0 | •              |           | ·           |                |                  |        |
| 1,4-Dichlorobenzene ND μg/L 1.0 Dichlorodifluoromethane ND μg/L 1.0 1,1-Dichloroethane ND μg/L 1.0 1,1-Dichloroethane ND μg/L 1.0 1,1-Dichloroethane ND μg/L 1.0 1,2-Dichloropropane ND μg/L 1.0 1,3-Dichloropropane ND μg/L 1.0 1,3-Dichloropropane ND μg/L 1.0 1,3-Dichloropropane ND μg/L 1.0 1,3-Dichloropropane ND μg/L 1.0 1,1-Dichloropropane ND μg/L 1.0 1,1-Dichloropropane ND μg/L 1.0 1,1-Dichloropropane ND μg/L 1.0 1,1-Oichloropropane ND μg/L 1.0 1,2-Oichloropropane ND μg/L 1.0 1,0-Oichloropropane ND μg/L   | Pichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND        | µg/L  | 1.0 |                |           |             |                |                  |        |
| Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ochlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND        | µg/L  | 1.0 |                |           |             |                |                  |        |
| 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropane 1,2-Dichloropropane 1,3-Dichloropropane 1,1-Dichloropropane 1,1-Dichl | ichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND        | µg/L  | 1.0 |                |           |             |                |                  |        |
| 1,1-Dichloroethene 1,2-Dichloropropane ND μg/L 1,0-Dichloropropane ND μg/L 1,0-Dichloropropane ND μg/L 1.0 2,2-Dichloropropane ND μg/L 1.0 2,2-Dichloropropane ND μg/L 1.0 1-Dichloropropane orodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        | μg/Ľ  | 1.0 |                | , = "a .  |             |                |                  |        |
| 1,2-Dichloropropane 1,3-Dichloropropane ND μg/L 1,0 2,2-Dichloropropane ND μg/L 2,0 14-Dichloropropane ND μg/L 1,0 14-Dichloropropane ND μg/L 1,0 14-Dichloropropane ND μg/L 1,0 1-Dichloropropane ND μg/L 1,0 1,1,2-Tetrachloroethane ND μg/L 1,0 1,1,2-Tetrachloroethane ND μg/L 1,0 1,1,2-Tetrachloropethane ND μg/L 1,0 1,1,2-Tetrachloropethane ND μg/L 1,0 1,1,2-Tetrachloropethane ND μg/L 1,0 1,1,2-Tetrachloropethane ND μg/L 1,0 1,1,1-Dichloropropane ND μg/L 1,0 1,2-Trichlorobenzene ND μg/L 1,0 1,1-Trichloropethane ND μg/L 1,0 1,1,2-Trichloropethane ND μg/L 1,0 1,0 1,1,2-Trichloropethane ND μg/L 1,0 1,0 1,1,2-Trichloropethane ND μg/L 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0                                                                                                                                                                                                                                                                      | ichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND        | μg/L  | 1.0 |                |           |             |                |                  |        |
| 1,3-Dichloropropane 1,2-Dichloropropane ND µg/L 2,2-Dichloropropane ND µg/L 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND        | μg/L  | 1.0 |                |           | -           |                |                  |        |
| 2,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND        | μg/L  | 1.0 |                |           |             |                |                  |        |
| A Dichloropropene   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND        | μg/L  | 1.0 |                |           |             |                |                  |        |
| Chilorobutadiene   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND        | μg/L  | 2.0 | •              |           |             |                |                  |        |
| Philosoputadiene   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND        | μg/L  | 1.0 |                |           |             |                |                  |        |
| Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  Sepropy  S   | No. of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the con | ND        |       | 1.0 |                |           |             |                |                  |        |
| ### ### ##############################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | kanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND        | μg/L  | 10  |                |           |             |                |                  | •      |
| #-Isopropyltoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND        | µg/L  | 1.0 |                |           |             |                |                  |        |
| #-Methyl-2-pentanone ND µg/L 10 #-Butylbenzene ND µg/L 1.0 #-Propylbenzene ND µg/L 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND        |       | 1.0 |                |           |             |                |                  |        |
| Alethylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND        |       | 10  |                |           |             |                |                  |        |
| n-Butylbenzene         ND         μg/L         1.0           n-Propylbenzene         ND         μg/L         1.0           per-Butylbenzene         ND         μg/L         1.0           Styrene         ND         μg/L         1.0           pert-Butylbenzene         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |       | 3.0 |                |           |             |                |                  |        |
| 1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | . –   |     |                |           |             |                |                  |        |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |     |                |           |             |                |                  |        |
| ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |       |     |                |           |             |                |                  |        |
| ert-Butylbenzene         ND         μg/L         1.0           I,1,1,2-Tetrachloroethane         ND         μg/L         1.0           I,1,2,2-Tetrachloroethane         ND         μg/L         2.0           Tetrachloroethane (PCE)         ND         μg/L         1.0           rans-1,2-DCE         ND         μg/L         1.0           rans-1,3-Dichloropropene         ND         μg/L         1.0           I,2,3-Trichlorobenzene         ND         μg/L         1.0           I,2,4-Trichloroethane         ND         μg/L         1.0           I,1,1-Trichloroethane         ND         μg/L         1.0           I,1,2-Trichloroethane         ND         μg/L         1.0           Trichlorofluoromethane         ND         μg/L         1.0           Trichlorofluoromethane         ND         μg/L         1.0           Invyl chloride         ND         μg/L         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |     | *              |           |             |                |                  |        |
| 1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |     |                | *         |             |                |                  |        |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |       |     |                |           |             |                |                  |        |
| Tetrachloroethene (PCE)         ND         μg/L         1.0           rans-1,2-DCE         ND         μg/L         1.0           rans-1,3-Dichloropropene         ND         μg/L         1.0           1,2,3-Trichlorobenzene         ND         μg/L         1.0           1,2,4-Trichlorobenzene         ND         μg/L         1.0           1,1,1-Trichloroethane         ND         μg/L         1.0           1,2-Trichloroethane         ND         μg/L         1.0           Trichloroethane         ND         μg/L         1.0           Trichlorofluoromethane         ND         μg/L         1.0           1,2,3-Trichloropropane         ND         μg/L         2.0           /inyl chloride         ND         μg/L         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |       |     |                |           |             |                |                  |        |
| rans-1,2-DCE         ND         μg/L         1.0           rans-1,3-Dichloropropene         ND         μg/L         1.0           1,2,3-Trichlorobenzene         ND         μg/L         1.0           1,2,4-Trichlorobenzene         ND         μg/L         1.0           1,1,1-Trichloroethane         ND         μg/L         1.0           1,2-Trichloroethane         ND         μg/L         1.0           Irichloroethane         ND         μg/L         1.0           Irichlorofluoromethane         ND         μg/L         1.0           1,2,3-Trichloropropane         ND         μg/L         2.0           Inyl chloride         ND         μg/L         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |     |                | •         | •           |                |                  |        |
| rans-1,3-Dichloropropene       ND       μg/L       1.0         1,2,3-Trichlorobenzene       ND       μg/L       1.0         1,2,4-Trichlorobenzene       ND       μg/L       1.0         1,1,1-Trichloroethane       ND       μg/L       1.0         1,1,2-Trichloroethane       ND       μg/L       1.0         Irichloroethene (TCE)       ND       μg/L       1.0         Irichlorofluoromethane       ND       μg/L       1.0         1,2,3-Trichloropropane       ND       μg/L       2.0         Vinyl chloride       ND       μg/L       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |       |     |                |           | • • • •     |                |                  |        |
| ,2,3-Trichlorobenzene   ND   μg/L   1.0     ,2,4-Trichlorobenzene   ND   μg/L   1.0     ,1,1-Trichloroethane   ND   μg/L   1.0     ,1,2-Trichloroethane   ND   μg/L   1.0     Trichloroethane   ND   μg/L   1.0     Trichloroethane   ND   μg/L   1.0     Trichlorofluoromethane   ND   μg/L   1.0     ,2,3-Trichloropropane   ND   μg/L   2.0     Trichlorofluoromethane   ND   μg/L   1.0     Trichlorofluoromethane   ND   μg/L   1.0     Trichloropropane   ND   μg/L   1.0     Trichlorofluoromethane   ND   μg/L   1.0     Trichlorofluoromethane   ND   μg/L   1.0     Trichlorofluoromethane   ND   μg/L   1.0     Trichloropropane   ND   μg/L   1.0                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |     |                |           |             |                |                  |        |
| ,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |       |     |                |           |             |                |                  |        |
| ,1,1-Trichloroethane ND µg/L 1.0 ,1,2-Trichloroethane ND µg/L 1.0 richloroethane (TCE) ND µg/L 1.0 richlorofluoromethane ND µg/L 1.0 ,2,3-Trichloropropane ND µg/L 2.0 /inyl chloride ND µg/L 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |     |                |           |             | -              |                  |        |
| ,1,2-Trichloroethane ND µg/L 1.0  Trichloroethane (TCE) ND µg/L 1.0  Trichlorofluoromethane ND µg/L 1.0  ,2,3-Trichloropropane ND µg/L 2.0  /inyl chloride ND µg/L 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |       |     |                |           |             |                |                  |        |
| richloroethene (TCE)  ND  µg/L  1.0  richlorofluoromethane  ND  µg/L  1.0  ,2,3-Trichloropropane  ND  µg/L  2.0  /inyl chloride  ND  µg/L  1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |     |                |           | •           |                | •                |        |
| richlorofluoromethane ND µg/L 1.0 ,2,3-Trichloropropane ND µg/L 2.0 /inyl chloride ND µg/L 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |     |                |           |             |                |                  |        |
| ,2,3-Trichloropropane ND µg/L 2.0<br>'inyl chloride ND µg/L 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |     |                |           |             |                |                  |        |
| linyl chloride ND μg/L 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |     |                |           |             |                |                  |        |
| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |     |                |           |             |                | •                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND        | µg/L  | 1.5 |                |           |             |                |                  |        |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |     | •              | Batch ID: | R44851      | Analysis Date: | 4/10/2011 11:35: | 56 AM  |

#### Qualifiers:

ND Not Detected at the Reporting Limit

NC Non-Chlorinated

R RPD outside accepted recovery limits

E Estimated value

J Analyte detected below quantitation limits

H Holding times for preparation or analysis exceeded

# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project: Injection Well 2nd QTR 4-11

Work Order:

1104184

| 1 Tojecti Injection            | Ven zna Q11 |              |            |                |           |            |         | 44 OLK   | Orger:      | 104184     |
|--------------------------------|-------------|--------------|------------|----------------|-----------|------------|---------|----------|-------------|------------|
| Analyte                        | Result      | Units        | PQL        | SPK Va SPK ref | %Rec L    | owLimit Hi | ghLimit | %RPD     | RPDLimit    | Qual       |
| Method: EPA Method 8260B       | VOLATILES   |              |            |                |           |            |         |          |             |            |
| Sample ID: b24                 |             | MBLK         |            |                | Batch ID: | R44651     | Analys  | is Date: | 4/10/2011 1 | 1:35:56 AN |
| Benzene                        | ND          | μg/L         | 1.0        |                |           |            |         |          |             |            |
| Toluene                        | ND          | µg/L         | 10         |                |           |            |         |          |             |            |
| Ethylbenzene                   | ND          | µg/L         | 1.0        | •              |           |            |         |          |             | •          |
| Methyl tert-butyl ether (MTBE) | ND          | μg/L         | 10         |                |           |            |         |          |             |            |
| 1,2,4-Trimethylbenzene         | ND          | µg/L         | 1.0        |                |           |            |         |          |             |            |
| 1,3,5-Trimethylbenzene         | ND          | μg/L         | 1.0        |                |           |            |         |          |             |            |
| 1,2-Dichloroethane (EDC)       | ND          | μg/L         | 1.0        |                |           |            |         |          |             |            |
| 1,2-Dibromoethane (EDB)        | ND          | μg/L         | 1.0        |                |           |            |         | •        |             |            |
| Naphthalene                    | ND          | μg/Ļ         | 2.0        |                |           |            |         |          |             |            |
| 1-Methylnaphthalene            | ND          | ha.÷         | 4.0        |                | -         |            |         |          |             |            |
| 2-Methylnaphthalene            | ND          | µg/L         | 4.0        |                |           |            |         |          |             |            |
| Acetone                        | ND          | μg/L         | 10         |                |           |            |         |          |             |            |
| Bromobenzene                   | ND          | μg/L         | 1.0        |                |           |            |         |          |             |            |
| Bromodichloromethane           | ND          | µg/L         | 1.0        |                |           |            |         |          |             |            |
| Bromoform                      | ND          | μg/L         | 1.0        | •              |           |            |         |          |             |            |
| Bromomethane                   | ND          | μg/L         | 3.0        | , .            | -         |            |         |          |             |            |
| 2-Butanone                     | ND          | μg/L         | 10         |                |           |            |         |          |             |            |
| Carbon disulfide,              | ND          | μg/L         | 10<br>10   |                |           |            |         |          |             |            |
| Carbon Tetrachloride           | ND          | μg/L<br>μg/L | 10<br>1.0  |                |           |            |         |          |             |            |
| Chlorobenzene                  | ND          | µg/L<br>µg/L | 1.0        |                |           |            |         |          |             |            |
| Chloroethane                   | ND          | μg/L         | 2.0        |                |           |            |         |          |             |            |
| Chloroform                     | ND          |              | 2.0<br>1.0 |                |           |            |         |          |             |            |
| Chloromethane                  | ND          | μg/L         | 3.0        |                |           |            |         |          |             |            |
| 2-Chlorotoluene                | ND          | µg/L         | 1.0        |                |           |            |         |          |             |            |
| 1-Chiorotoluene                | ND          | µg/L         | 1.0        |                |           |            |         |          | •           |            |
| sis-1,2-DCE                    | ND          | μg/L         | 1.0<br>1.0 |                |           |            |         |          |             |            |
| cis-1,3-Dichloropropene        | ND          | μg/L<br>μg/L | 1.0        |                |           |            |         |          |             |            |
| ,2-Dibromo-3-chloropropane     | ND          | μg/L<br>μg/L | 2.0        |                | ,         |            |         |          |             |            |
| Dibromochloromethane           |             |              | 1.0        |                |           | •          |         |          |             |            |
| Dibromochiolomethane           | ND          | µg/L         | 1          |                |           |            |         |          |             |            |
| 1,2-Dichlorobenzene            | ND<br>ND    | μg/L         | 1.0        |                |           |            |         |          |             |            |
| ,3-Dichlorobenzene             | ND<br>ND    | μg/L         | 1.0        |                |           |            |         |          |             |            |
|                                |             | μg/L         | 1.0        |                |           |            |         |          |             |            |
| ,4-Dichlorobenzene             | ND          | μg/L         | 1.0        |                |           |            |         |          |             |            |
| Dichlorodifiuoromethane        | ND .        | μg/L         | 1.0        |                |           |            |         |          |             |            |
| ,1-Dichloroethane              | ND          | µg/L         | 1.0        |                |           |            |         |          |             |            |
| ,1-Dichloroethene              | ND          | µg/L         | 1.0        |                |           |            |         |          |             |            |
| ,2-Dichloropropane             | ND          | μg/L         | 1.0        |                |           |            |         |          |             |            |
| ,3-Dichloropropane             | ND          | μg/L         | 1.0        |                |           |            |         |          |             |            |
| ,2-Dichloropropane             | ND          | µg/L         | 2.0        |                |           |            |         |          |             |            |
| ,1-Dichloropropene             | ND          | µg/L         | 1.0        |                |           |            |         |          |             |            |
| lexachlorobutadiene            | ND          | μg/L         | 1.0        |                |           |            |         |          | •           |            |
| -Hexanone                      | ND          | μg/L<br>     | 10         |                |           |            |         |          |             |            |
| sopropylbanzene                | ND          | µg/L         | 1.0        |                |           |            |         |          |             |            |
| -Isopropyltoluene              | ND          | µg/L         | 1.0        |                |           |            |         |          |             | 4          |
|                                |             |              | 1          |                |           |            |         |          |             | V          |

#### Qualifiers:

ND Not Detected at the Reporting Limit

NC Non-Chlorinated

R RPD outside accepted recovery limits

E Estimated value

J Analyte detected below quantitation limits

H Holding times for preparation or analysis exceeded

### **QA/QC SUMMARY REPORT**

ment:

Western Refining Southwest, Inc.

Project: Injection Well 2nd QTR 4-11

Work Order:

1104184

| Analyte                   | Result         | Units        | PQL   | SPK Va SPK | ref %Rec l | LowLimit H | ighLimit %RPI  | O RPDLimit Qual       |
|---------------------------|----------------|--------------|-------|------------|------------|------------|----------------|-----------------------|
| Method: EPA Method 8260   | B: VOLATILES   |              | ,     |            | Ý.         |            |                |                       |
| Sample ID: b24            |                | MBLK         |       |            | Batch ID:  | R44651     | Analysis Date: | 4/10/2011 11:35:56 AN |
| 4-Methyl-2-pentanone      | NĎ             | μg/L         | 10    |            | •          |            |                | •                     |
| Methylene Chloride        | ND             | μg/L         | 3.0   | •          |            |            |                |                       |
| n-Butylbenzene            | ND             | μg/L         | 1.0   |            |            |            |                |                       |
| n-Propylbenzene           | ND             | μg/L         | 1.0   |            |            |            |                |                       |
| sec-Butylbenzene          | ND             | μg/L         | . 1.0 |            |            | •          |                |                       |
| Styrene                   | ND             | µg/L         | 1.0   |            | •          |            |                | The second second     |
| tert-Butylbenzene         | ND             | μg/L         | 1.0   |            |            |            | -              | ÷ 11 11 1             |
| 1,1,1,2-Tetrachioroethane | ND             | μg/L         | 1.0   |            | _          |            |                |                       |
| 1,1,2,2-Tetrachloroethane | ND             | μg/L         | 2.0   |            |            |            |                |                       |
| Tetrachloroethene (PCE)   | ND             | µg/L         | 1.0   |            |            |            |                |                       |
| trans-1,2-DCE             | ND             | μg/L         | 1.0   |            |            | -          |                | •                     |
| trans-1,3-Dichloropropene | ND             | μg/L         | 1.0   |            |            |            |                | •                     |
| 1,2,3-Trichlorobenzene    | ŅD             | μg/L         | 1.0   |            |            |            |                |                       |
| 1,2,4-Trichlorobenzene    | ND             | μg/L         | 1.0   |            |            |            |                |                       |
| 1,1,1-Trichloroethane     | ND             | μg/L         | 1.0   |            |            |            |                |                       |
| 1,1,2-Trichloroethane     | ND             | μg/L         | 1.0   |            |            |            |                |                       |
| Trichloroethene (TCE)     | ND             | μg/L         | 1.0   |            |            |            |                |                       |
| Eichlorofluoromethane     | ND             | μg/L         | 1.0   |            |            |            |                |                       |
| -Trichloropropane         | ND             | μg/L         | 2.0   |            |            |            |                |                       |
| Vinyl chloride            | ND             | μg/L         | 1.0   |            |            |            |                |                       |
| Xylenes, Total            | ND             | μg/L         | 1.5   |            |            |            |                |                       |
| Sample ID: 100ng lcs-2    |                | LCS          |       |            | Batch ID:  | R44651     | Analysis Date: | 4/9/2011 10:56:28 AN  |
| Benzene                   | 21.37          | μg/L         | 1.0   | 20 0       | 107        | 85.2       | 121            |                       |
| Toluene                   | 20.56          | µg/L         | 1.0   | 20 0.155   | 102        | 88.3       | 121            |                       |
| Chlorobenzene             | 19.35          | μg/L         | 1.0   | 20 0.2426  | 95.6       | 91.9       | 110            |                       |
| 1,1-Dichloroethene        | 24.14          | μg/L         | 1.0   | 20 0       | 121        | 91.5       | 134            |                       |
| Trichioroethene (TCE)     | 19.05          | µg/L         | 1.0   | 20 0       | 95.3       | 78.3       | 102            |                       |
| Sample ID: 100ng ics      |                | LCS          |       |            | Batch ID:  | R44668     | Analysis Date: | 4/11/2011 9:45:31 AM  |
| Benzene .                 | 21.19          | μg/L         | 1.0   | 20 0       | 106        | 85.2       | 121            |                       |
| Toluene                   | 20.33          | µg/L         | 1.0   | 20 · 0     |            | 88.3       | 121            |                       |
| Chlorobenzene             | 19.84          | µg/L         | 1.0   | 20 0       |            | 91.9       | 110            |                       |
| I,1-Dichlorcethene        | 25.11          | μg/L         | 1.0   | 20 0       |            | 91.5       | 134            |                       |
| Frichloroethene (TCE)     | 19.73          | μg/L         | 1.0   | 20 0       |            | 78.3       | 102            | •                     |
| Sample ID: 100ng Ics-3    |                | LCS          |       | •          | Batch iD:  | R44651     | Analysis Date: | 4/10/2011 11:07:47 AM |
| Benzene                   | 21.72          | μg/L         | 1.0   | 20 葷 0     |            | 85.2       | 121            |                       |
| roluene                   | 21.72          | μg/L<br>μg/L | 1.0   | 20 0.1342  |            | 88.3       | 121            |                       |
| Chiorobenzene             | 20.07          | µg/L         | 1.0   | 20 0.1342  |            | 91.9       | 110            | •                     |
| ,1-Dichloroethene         | 23.97          | µg/L         | 1.0   | 20 0,244   |            | 91.5       | 134            |                       |
| richloroethene (TCE)      | 23.97<br>19.32 | µg/L         | 1.0   | 20 0       |            | 78.3       | 102            |                       |



E Estimated value

ND Not Detected at the Reporting Limit

NC Non-Chlorinated

R RPD outside accepted recovery limits

J Analyte detected below quantitation limits

H Holding times for preparation or analysis exceeded

## QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd QTR 4-11

Work Order:

1104184

| Analyte                     | Result l | Jnits PQ           | SPK Va SPK ref | %Rec Lo   | wLimit Hip | ghLimit <sup>.</sup> | %RPD     | RPDLimit  | Qual       |
|-----------------------------|----------|--------------------|----------------|-----------|------------|----------------------|----------|-----------|------------|
| Method: EPA Method 82700    |          |                    |                |           |            |                      |          |           |            |
| Sample ID: mb-26338         | •        | MBLK               |                | Batch ID: | 26338      | Analys               | is Date: | 4/14/2011 | 5:59:47 Pi |
| Acenaphthene                |          | μg/L 1Ç            |                | •         |            |                      |          |           |            |
| Acenaphthylene              |          | µg/L 1Ç            | l              |           |            |                      |          |           |            |
| Aniline                     |          | µg/L 10            | l              |           |            |                      |          | •         | •          |
| Anthracene                  |          | µg/L 1Ç            | •              |           |            |                      |          |           | •          |
| Azobenzene                  |          | μg/L 10            |                |           |            |                      |          |           |            |
| Benz(a)anthracene           |          | µg/L 10            |                |           |            |                      |          |           |            |
| Benzo(a)pyrene              |          | µg/L 10            |                |           |            |                      |          |           | -          |
| Benzo(b)fluoranthene        |          | µg/L 10            |                |           |            |                      |          | •         |            |
| Benzo(g,h,i)perylene        |          | µg/L 1Ó            |                |           |            |                      |          |           |            |
| Benzo(k)fluoranthene        |          | ug/L 10            |                |           |            |                      |          |           |            |
| Benzolc acid                |          | ug/L 20<br>ug/L 10 |                |           |            |                      |          |           |            |
| Benzyl alcohol              | ND I     |                    |                |           |            |                      |          |           |            |
| 3is(2-chloroethoxy)methane  | ND (     | μ <b>g/L 1</b> 0   |                |           |            |                      |          |           |            |
| 3is(2-chloroethyl)ether     | ND I     | ug/L 10            |                |           |            |                      |          |           |            |
| 3is(2-chloroisopropyl)ether | ND I     | .lg/L 10           |                |           |            |                      |          |           |            |
| 3is(2-ethylhexyl)phthalate  | ND I     | ug/L 10            |                |           |            |                      |          |           |            |
| i-Bromophenyl phenyl ether  | ND I     | Jg/L 10̇́          |                |           | •          |                      |          | •         |            |
| Butyl benzyl phthalate      | ND i     | ig/L 10            |                |           |            |                      |          |           | 4          |
| Carbazole                   |          | ug/L: 10           |                |           |            |                      |          |           |            |
| I-Chloro-3-methylphenol     | ND I     | ug/L 10            |                |           |            |                      |          |           | ·          |
| I-Chloroaniline             | ND j     | ıg/L 10            |                |           |            |                      |          |           |            |
| 2-Chloronaphthalene         | ND i     | ig/L 10            |                |           |            |                      |          |           |            |
| 2-Chlorophenol              | ND I     | ıg/L 10            |                |           |            |                      |          |           |            |
| I-Chlorophenyl phenyl ether | ND I     | ıg/L 10            |                |           |            |                      |          |           |            |
| Chrysene                    | ND I     | ıg/L 10            |                |           |            |                      |          |           |            |
| Di-n-butyl phthalate        |          | ig/L 10            |                |           |            |                      |          |           |            |
| Di-n-octyl phthalate        | ND I     | ıg/L 10            |                |           |            |                      |          |           |            |
| Dibenz(a,h)anthracene       | ND ;     | ıg/L 10            |                |           |            |                      |          |           |            |
| Dibenzofuran                | ND ;     | ıg/L 10            | •              |           |            |                      |          |           |            |
| ,2-Dichlorobenzene          | ND L     | ıg/L 10            |                |           |            |                      |          |           |            |
| ,3-Dichlorobenzene          | ND h     | ıg/L 10            |                |           |            |                      |          |           |            |
| ,4-Dichlorobenzene          | ND µ     | ıg/L 10            |                |           |            |                      |          |           | •          |
| ,3'-Dichlorobenzidine       | ND j     | ıg/L 10            |                |           |            |                      |          |           |            |
| ethyl phthalate             | ND h     | ıg/L 10            |                |           |            |                      |          |           |            |
| imethyl phthalate           | ND H     | ıg/L 10            |                |           |            |                      |          |           |            |
| .4-Dichlorophenol           | ND µ     | ıg/L 20            |                |           |            |                      |          |           |            |
| ,4-Dimethylphenol           | ND µ     | g/L 10             |                |           |            |                      |          |           |            |
| ,6-Dinitro-2-methylphenol   |          | g/L 20             |                |           |            |                      |          |           | •          |
| ,4-Dinitrophenol            |          | g/L 20             | •              |           |            |                      |          |           |            |
| ,4-Dinitrotoluene           |          | g/L 10             |                |           |            |                      |          |           |            |
| ,6-Dinitrotoluene           |          | g/L 10             |                |           |            |                      |          |           |            |
| luoranthene                 |          | g/L 10             |                |           |            |                      |          |           |            |
| luorene                     |          | g/L 10             |                |           |            |                      |          |           |            |
| lexachlorobenzene           |          | g/L 10             |                |           |            |                      |          |           |            |

### Qualifiers:

ND Not Detected at the Reporting Limit

NC Non-Chlorinated

R RPD outside accepted recovery limits

E Estimated value

J Analyte detected below quantitation limits

H Holding times for preparation or analysis exceeded



E

ND

Estimated value

Analyte detected below quantitation limits

Not Detected at the Reporting Limit

## **QA/QC SUMMARY REPORT**

Western Refining Southwest, Inc.

Project: Injection Well 2nd QTR 4-11

Work Order:

1104184

Page 8

| Analyte                    | Result          | Units | PQL         | SPK V | a SPK re | F %Rec I  | LowLimit H | lighLimit | %RPD     | RPDLimit    | Qual      |
|----------------------------|-----------------|-------|-------------|-------|----------|-----------|------------|-----------|----------|-------------|-----------|
| Method: EPA Method 82700   | : Semivolatiles | ,     | <del></del> |       | ******   |           |            |           |          |             |           |
| Sample ID: mb-26338        |                 | MBLK  |             |       |          | Batch ID: | 26338      | Analys    | is Date: | 4/14/2011   | 5:59:47 P |
| Hexachlorobutadiene        | ND              | μg/L  | 10          | •     |          |           |            |           |          |             |           |
| Hexachlorocyclopentadiene  | ND              | μg/L  | 10          |       |          |           |            |           |          |             |           |
| Hexachloroethane           | ND              | µg/L  | 10          |       |          | •         |            |           |          |             |           |
| indeno(1,2,3-cd)pyrene     | ND              | μg/L  | 10          |       |          |           |            |           |          |             |           |
| Isophorone                 | ND              | μg/L  | 10          |       | •        | •         |            |           |          |             |           |
| 2-Methylnaphthalene        | ND              | μg/L  | 10          |       |          | +         |            |           |          |             |           |
| 2-Methylphenol             | ND              | μg/L  | 10          |       |          |           |            |           |          |             |           |
| 3+4-Methylphenol           | ND              | μg/L  | 10          |       |          |           |            |           |          |             |           |
| N-Nitrosodi-n-propylamine  | ND              | μg/L  | 10          |       |          |           |            |           |          |             |           |
| N-Nitrosodimethylamine     | ND              | µg/L  | 10          |       |          |           | •          |           |          |             |           |
| N-Nitrosodiphenylamine     | ND              | μg/L  | 10          |       |          | e .       |            |           |          |             |           |
| Naphthalene                | ND              | µg/L  | 10          |       |          | d -       |            |           |          |             |           |
| 2-Nitroaniline             | ND              | μg/L  | 10          |       |          | ,         |            |           |          |             |           |
| 3-Nitroaniline             | ND              | µg/L  | 10          |       |          |           |            |           |          |             | ٠.        |
| 1-Nitroaniline             | ND              | µg/L  | 20          |       |          |           |            |           |          |             |           |
| Nitrobenzene               | ΝĎ              | µg/L  | 10          |       |          | ,         |            |           |          |             |           |
| 2-Nitrophenol              | ND              | μg/L  | 10          |       |          |           |            |           |          |             |           |
| - <u>Nit</u> rophenol      | ND .            | µg/L  | 10          |       |          |           |            |           |          |             |           |
| schlorophenol              | ND              | μg/L  | 20          |       |          |           |            | -         |          |             |           |
| nenanthrene                | ND              | µg/L  | 10          |       |          |           |            |           |          |             |           |
| Phenol                     | ND              | μg/L  | 10          |       |          |           |            |           |          |             | •         |
| Pyrene                     | ND              | μg/L  | .10         |       |          |           |            |           |          | •           |           |
| Pyridine                   | ND              | µg/L  | 10          |       |          |           |            |           |          |             |           |
| ,2,4-Trichlorobenzene      | ND              | μg/L  | 10          |       |          |           |            |           |          |             |           |
| 2,4,5-Trichlorophenol      | ND              | μg/L  | 10          |       |          |           |            |           |          |             |           |
| 2,4,6-Trichlorophenol      | ND              | μg/L  | 10          |       |          |           |            |           |          |             | -         |
| Sample ID: lcs-26338       |                 | LCS   |             |       |          | Batch ID: | 26338      | Analysis  | s Date:  | 4/14/2011 6 | :29:07 PM |
| Acenaphthene               | 67,42           | μg/L  | 10          | 100   | 0        | 67.4      | 31         | 99.4      |          |             |           |
| -Chloro-3-methylphenol     | 70.28           | μg/L  | 10          | 100   | .0       | 70.3      | 34.3       | 111       |          |             |           |
| -Chlorophenol              | 65.46           | µg/L  | 10          | 100   | 0        | 65.5      | 24.1       | 98.7      |          |             |           |
| ,4-Dichlorobenzene         | 49.96           | µg/L  | 10          | 100   | O        | 50.0      | 20.6       | 85.6      |          |             |           |
| .,4-Dinitrotoluene         | 68.66           | µg/L  | 10          | 100   | 0        | 68.7      | 26.6       | 126       |          |             |           |
| I-Nitrosodi-n-propylamine  | 65.98           | μg/L  | 10          | 100   | 0        | 66.0      | 29.2       | 94.4      |          |             |           |
| -Nitrophenol               | 36.42           | µg/L  | 10          | 100   | 6.26     | 30.2      | 9.87       | 86        |          |             |           |
| entachlorophenol           | 49.12           | μg/L  | 20          | 100   | . 0      | 49.1      | 20         | 97.8      |          |             |           |
| Phenol                     | 45.58           | µg/L  | 10          | 100   | 0        | 45.6      | 17.5       | 60.5      |          |             |           |
| yrene                      | 61.02           | μg/L  | 10          | 100   | 0        | 61.0      | 46.8       | 92.2      |          |             |           |
| ,2,4-Trichlorobenzene      | 57.02           | µg/L  | 10          | 100   | 0        | 57.0      | 25.2       | 92.3      |          |             |           |
| Nethod: EPA Method 7470: N | flercury        |       |             | •     |          |           |            |           | _        |             |           |
| ample ID: MB-26430         | •               | MBLK  | •           |       |          | Batch ID: | 26430      | Analysis  | Date:    | 4/15/2011 2 | :39:54 PM |
| lercury                    | ND              | mg/L  | 0.00020     | •     |          |           | •          |           |          |             |           |
| ample ID: LCS-26430        |                 | LCS   |             |       |          | Batch ID: | 26430      | Analysis  | Date:    | 4/15/2011 2 | 41:38 PM  |
| ury                        | 0.005134        | mg/L  | 0.00020     | 0.005 | 3E-05    | 102       | 80         | 120       |          |             |           |

Non-Chlorinated

Н

NC

R

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

## **QA/QC SUMMARY REPORT**

Client:

Western Refining Southwest, Inc.

Project: Injection Well 2nd QTR 4-11

Work Order:

1104184

|                        |                       |       |        |       |           |           |            |                   | WORK  |              | 104184    |
|------------------------|-----------------------|-------|--------|-------|-----------|-----------|------------|-------------------|-------|--------------|-----------|
| Analyte                | Result                | Units | PQL    | SPK V | a SPK ref | %Rec L    | owLimit Hi | lghLim <b>i</b> t | %RPD  | RPDLimit     | Qual      |
| Method: EPA 6010B      | Total Recoverable M   |       |        |       |           |           |            |                   |       |              |           |
| Sample ID: MB-26363    |                       | MBLK  |        |       |           | Batch ID: | 26363      | Analysis          | Date: | 4/13/2011 1  | :52:02 PN |
| Arsenic                | ND                    | mg/L  | 0.020  |       |           |           |            |                   |       |              |           |
| Barlum                 | ND                    | mg/L  | 0.020  |       |           |           |            |                   |       |              |           |
| Cadmium                | ND                    | mg/L  | 0.0020 |       |           |           |            |                   |       |              |           |
| Calcium                | ND                    | mg/L  | 1.0    |       |           |           |            |                   |       |              |           |
| Chromlum               | ND                    | mg/L  | 0.0060 |       |           |           |            |                   |       |              |           |
| Lead                   | ND                    | mg/L  | 0.0050 |       |           |           |            |                   |       |              |           |
| Magnesium              | ND                    | mg/L  | 1.Ò    |       |           |           |            |                   |       |              | •         |
| Potassium              | ND                    | mg/L  | 1.Ò    |       |           |           |            |                   |       |              |           |
| Selenium               | ND                    | mg/L  | 0.050  |       | •         |           |            |                   |       |              |           |
| Silver                 | ND                    | mg/L  | 0.0050 |       |           |           |            |                   |       |              |           |
| Sodium                 | ND                    | mg/L  | 1.Ò    |       |           |           | •          |                   |       |              |           |
| Sample ID: LCS-26363   | 1                     | LCS   |        |       |           | Batch ID: | 26363      | Analysis          | Date: | 4/13/2011 1  | :54:59 PN |
| Arsenic                | 0.5247                | mg/L  | 0.020  | 0.5   | . 0       | 105       | 80         | 120               |       |              | •         |
| Barium                 | 0.4764                | mg/L  | 0.020  | 0.5   | O         | 95.3      | 80         | 120               |       |              |           |
| Cadmium                | 0.4981                | mg/L  | 0.0020 | 0.5   | 0.0003    | 99.6      | 80         | 120               |       |              |           |
| Calcium                | 52.24                 | mg/L  | 1.Ò    | 50    | 0.0715    | 104       | 80         | 120               |       |              |           |
| Chromlum ·             | 0.5230                | mg/L  | 0.0060 | 0.5   | 0         | 105       | 80         | 120               |       |              |           |
| Lead '                 | 0.4959                | mg/L  | 0.0050 | 0.5   | . 0       | 99.2      | 80         | 120               |       |              | 4         |
| Magnesium              | 53.05                 | mg/L  | 1.0    | 50    | 0         | 106       | 80         | 120               |       |              |           |
| Potassium              | 55.46                 | mg/L  | 1.0    | 50    | 0.3116    | 110       | 80         | 120               |       |              |           |
| Selenium               | 0.5052                | mg/L  | 0.050  | 0.5   | 0         | 101       | 80         | 120               |       |              |           |
| Silver                 | 0.5158                | mg/L  | 0.0050 | 0.5   | . 0       | 103       | 80         | 120               |       |              |           |
| Sodium                 | 51.17                 | mg/L  | 1.0    | 50    | 0         | 102       | 80         | 120               |       |              |           |
| Sample ID: LCS-26363   | i                     | LCS   |        |       | •         | Batch ID: | 26363      | Analysis          | Date: | 4/13/2011 1  | 57:43 PM  |
| Arsenic                | 0.5285                | mg/L  | 0.020  | 0.5   | . 0       | 106       | 80         | 120               |       |              |           |
| Barium                 | 0.4745                | mg/L  | 0.020  | 0.5   | 0         | 94.9      | 80         | 120               |       |              |           |
| Cadmium                | 0.4993                | mg/L  | 0.0020 | 0.5   | 0.0003    | 99.8      | 80         | 120               |       |              |           |
| Calcium                | 51.81                 | mg/L  | 1.0    | 50    | 0.0715    | 103       | 80         | 120               |       |              |           |
| Chromium               | 0,5196                | mg/L  | 0.0060 | 0.5   | 0         | · 104     | 80         | 120               |       |              |           |
| Lead                   | 0.4967                | mg/L  | 0.0050 | 0.5   | 0         | 99.3      | 80         | 120               |       |              |           |
| Magnesium              | 51.72                 | mg/L  | 1.0    | 50    | 0         | 103       | 80         | 120               |       |              |           |
| Potassium              | 55.52                 | mg/L  | 1.0    | 50    | 0.3116    | 110       | 80         | 120               |       |              |           |
| Selenium               | 0.5120                | mg/L  | 0.050  | 0.5   | 0         | 102       | 80         | 120               |       |              |           |
| Silver                 | 0.5150                | mg/L  | 0.0050 | 0.5   | 0         | 103       | 80         | 120               |       |              |           |
| Sodium                 | 51.23                 | mg/L  | 1.0    | 50    | 0         | 102       | 80         | 120               |       |              |           |
| Wethod: SM2540C M      | OD: Total Dissolved S | olids |        |       |           |           |            |                   |       |              |           |
| Sample ID: MB-26320    |                       | MBLK  |        |       | •         | Batch ID: | 26320      | Analysis          | Date: | 4/11/2011 2: | 00:00 PM  |
| Fotal Dissolved Solids | ND                    | mg/L  | 20.0   |       |           |           |            |                   |       |              |           |
| Sample ID: LCS-26320   |                       | LCS   | į      |       |           | Batch ID: | 26320      | Analysis          | Date: | 4/11/2011 2: | 00:00 PM  |
| sample in rog-roger    |                       |       |        |       |           |           |            |                   |       |              |           |



E Estimated value

ND Not Detected at the Reporting Limit

NC Non-Chlorinated

R RPD outside accepted recovery limits

J Analyte detected below quantitation limits

H Holding times for preparation or analysis exceeded

|                                                  | Sampl            | le Rec   | eipt           | Check | dist         | •                 |              |                                       |                                         |
|--------------------------------------------------|------------------|----------|----------------|-------|--------------|-------------------|--------------|---------------------------------------|-----------------------------------------|
| ent Name WESTERN REFINING SOUT                   |                  |          | ,              |       | ate Recei    | ived:             |              | 4/5/2011                              | •                                       |
| Work Order Number 1104184                        | ( )              |          |                |       | Received     | by: LNM           |              | ٨                                     |                                         |
|                                                  |                  |          |                | c11.  | Sample II    | D labels checked  | by:          | AT                                    | . v                                     |
| Checklist completed by:                          |                  |          | . <u>/</u> /   | 7/03  | <u> </u>     | _                 |              | initials                              |                                         |
| Malin                                            |                  | , ,,,,,, |                |       | f            |                   |              | •                                     | 4.                                      |
| Matrix:                                          | Carrier name     | : UPS    | !              |       |              | ē                 |              | • • • • • • • • • • • • • • • • • • • |                                         |
| Shipping container/cooler in good condition?     |                  | Yes      | $\mathbf{V}$   |       | No 🗆         | Not Present       |              |                                       |                                         |
| Custody seals intact on shipping container/coo   | ler?             | Yes      | $\square$      |       | No 🗆         | Not Present       |              | Not Shipped                           |                                         |
| Custody seals intact on sample bottles?          |                  | Yes      |                |       | No 🗆         | N/A               | $\checkmark$ |                                       |                                         |
| Chain of custody present?                        |                  | Yes      | V              | •     | No 🗆         |                   |              |                                       |                                         |
| Chain of custody signed when relinquished and    | received?        | Yes      | $\checkmark$   |       | No 🗆         |                   |              |                                       |                                         |
| Chain of custody agrees with sample labels?      |                  | Yes      | V              |       | No 🗆         |                   |              |                                       |                                         |
| Samples in proper container/bottle?              |                  | Yes      | $\checkmark$   |       | No 🗆         |                   |              |                                       |                                         |
| Sample containers intact?                        |                  | Yes      | $\square$      |       | No 🗌         |                   |              |                                       |                                         |
| Sufficient sample volume for indicated test?     |                  | Yes      | $\checkmark$   |       | No 🗌         | • .               |              |                                       |                                         |
| All samples received within holding time?        |                  | Yes      | $\checkmark$   |       | No 🗔         |                   | •            |                                       | preserved                               |
| ter - VOA vials have zero headspace?             | No VOA vials sub | mitted   |                | Y     | es 🗹         | No 🗆              |              | bottles che                           | S///                                    |
| rater - Preservation labels on bottle and cap in | natch?           | Yes      | V              | •     | No 🗆         | N/A □             |              | 3-2-                                  |                                         |
| Water - pH acceptable upon receipt?              |                  | Yes      | $\checkmark$   | •     | No 🗌         | Ņ/A 🗆             |              | <2/>2)>12)unio                        | ess noted                               |
| Container/Temp Blank temperature?                | ,                | 4.       | 8°             |       | C Accept     |                   | •            | DOJOW.                                |                                         |
| COMMENTS:                                        |                  |          |                | If gi | ven sufficie | ent time to cool. |              |                                       |                                         |
|                                                  |                  |          |                |       |              |                   |              |                                       |                                         |
|                                                  |                  |          |                | í     | •            |                   | •            |                                       |                                         |
| <b></b>                                          |                  |          | <del>-</del> - |       | ====         |                   | ==:          |                                       | _====================================== |
|                                                  |                  |          |                | ·.    |              |                   |              |                                       |                                         |
|                                                  | , <b>.</b>       |          |                | 1     |              |                   |              |                                       |                                         |
|                                                  |                  |          |                |       |              | ,                 |              | •                                     |                                         |
| Client contacted                                 | Date contacted:  | •        |                | • • • | P6           | erson contacted   |              |                                       |                                         |
| Contacted by:                                    | Regarding:       |          |                |       |              |                   |              | ·<br>                                 |                                         |
| Comments:                                        |                  |          |                |       |              |                   |              |                                       |                                         |
|                                                  |                  |          |                |       |              |                   |              |                                       |                                         |
|                                                  |                  |          |                |       |              |                   |              | •                                     |                                         |
|                                                  | · .              |          |                |       |              |                   |              |                                       |                                         |
| ***************************************          |                  |          |                |       |              | • •               |              |                                       | ,                                       |
| Corrective Action                                |                  | •        | •              |       |              | ***               |              |                                       | · .                                     |
|                                                  |                  |          |                |       |              |                   |              |                                       |                                         |
|                                                  |                  |          |                |       |              | ·                 |              |                                       |                                         |

#### Air Bubbles (Y or N) **ANALYSIS LABORATORY** HALL ENVIRONMENTAL X ves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical 4901 Hawkins NE - Albuquerque, NM 87109 Fax 505-345-4107 www.hallenvironmental.com **Analysis Request** (AOV) 808S8 8081 Pesticides / 8082 PCB's Anions (F,CI,NO3,NO2,PO4,SO4) Tel. 505-345-3975 (HA9 10 ANA) 01E8 Remarks: TMB's (8021) INJECTION Well 2nd OIR 4- -11 (SS) j Time ples submitted to Hall Environmental may be subcontracted to other accredited laboratories. 1-500m1 = N ACETATE Preservative □ Rush Amber H2504 Na OH HNOZ 7 Tum-Around Time: Project Manager: Project Name: X Standard 1-Liter 11-250m Container Type and # (1-50m) 11-50m 11-500m 1-500m 13-16A Received by: Received by: Sampler: -Sample-Request-ID-□ Level 4 (Full Validation) **Chain-of-Custody Record** K. Con INJECTION Well Bloomfield, NM BD413 Mailing Address: #53 CR +990 CALINING email or Fax#: 525-633 — 391/ Phone #. 505-659-4/6 Q Z Relipersished by: Relinquished by Client: Western K □ Other D: 45 HaD 12:45 3:00 QA/QC Package: ☐ EDD (Type) Accreditation Time: If necessa X Standard Time: O NELAP 11-4-4 11-4-4



#### COVER LETTER

Wednesday, July 27, 2011

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Injection Well 3rd Qtr

Dear Kelly Robinson:

Order No.: 1107575

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 7/15/2011 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682



Date: 27-Jul-11
Analytical Report

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1107575

Project:

Injection Well 3rd Qtr

Lab ID:

1107575-01

Client Sample ID: Injection Well

Collection Date: 7/14/2011 2:10:00 PM

Date Received: 7/15/2011

Matrix: AQUEOUS

| Analyses                       | Result  | PQL     | Qual       | Units | DF  | Date Analyzed         |
|--------------------------------|---------|---------|------------|-------|-----|-----------------------|
| EPA METHOD 300.0: ANIONS       |         |         |            |       | ·   | Analyst: SRM          |
| Chloride .                     | 180     | 10      |            | mg/L  | 20  | 7/16/2011 10:40:59 AM |
| Suifate                        | 62      | 2.5     | r          | ng/L  | 5   | 7/16/2011 11:50:38 AM |
| EPA METHOD 7470: MERCURY       |         |         |            |       |     | Analyst: MBR          |
| Mercury                        | 0.00023 | 0.00020 | '. r       | mg/L  | 1   | 7/19/2011 2:59:05 PM  |
| EPA 6010B: TOTAL RECOVERABLE   | METALS  |         |            |       |     | Analyst: ELS          |
| Arsenic                        | ND      | 0.020   | r          | ng/L  | 1   | 7/21/2011 8:37:50 AM  |
| Barium                         | 0.21    | 0.020   | r          | ng/L  | 1   | 7/22/2011 1:45:51 PM  |
| Cadmium                        | ND      | 0.0020  | r          | ng/L  | 1   | 7/21/2011 8:37:50 AM  |
| Calcium                        | 61      | 1.0     | r          | ng/L  | 1   | 7/22/2011 1:45:51 PM  |
| Chromium                       | 0.014   | 0.0060  | r          | ng/L  | 1   | 7/21/2011 8:37:50 AM  |
| Lead                           | ND      | 0.0050  | r          | ng/L  | 1   | 7/21/2011 8:37:50 AM  |
| Magnesium                      | 12      | 1.0     | r          | ng/L  | 1   | 7/21/2011 8:37:50 AM  |
| Potassium                      | 4.5     | 1.0     | n          | ng/L  | 1   | 7/21/2011 8:37:50 AM  |
| Selenium                       | ND      | 0.050   | . n        | ng/L  | 1   | 7/21/2011 8:37:50 AM  |
| Silver                         | ND      | 0.0050  | . <b>n</b> | ng/L  | 1   | 7/21/2011 8:37:50 AM  |
| Sodium                         | . 140   | 5.0     | 'n         | ng/L  | 5   | 7/22/2011 1:47:52 PM  |
| EPA METHOD 8270C: SEMIVOLATILE | ES      |         |            |       |     | Analyst: JDC          |
| Acenaphthene                   | ND      | 10      | μ          | ig/L  | 1   | 7/20/2011 1:26:20 PM  |
| Acenaphthylene                 | ND      | 10      | μ          | g/L   | 1   | 7/20/2011 1:26:20 PM  |
| Aniline                        | ND      | 10      | μ          | ıg/L  | 1   | 7/20/2011 1:26:20 PM  |
| Anthracene                     | ND      | 10      | μ          | ıg/L  | 1   | 7/20/2011 1:26:20 PM  |
| Azobenzene                     | ND      | 10      | μ          | g/L   | 1   | 7/20/2011 1:26:20 PM  |
| Benz(a)anthracene              | ND      | 10      | μ          | g/L   | 1   | 7/20/2011 1:26:20 PM  |
| Benzo(a)pyrene                 | ND      | 10      | μ          | g/L   | 1   | 7/20/2011 1:26:20 PM  |
| Benzo(b)fluoranthene           | ND      | 10      | μ          | g/L   | 1   | 7/20/2011 1:26:20 PM  |
| Benzo(g,h,i)perylene           | ND      | 10      | μ          | g/L   | 1   | 7/20/2011 1:26:20 PM  |
| Benzo(k)fluoranthene           | ND J    | 10      | μ          | g/L   | 1   | 7/20/2011 1:26:20 PM  |
| Benzoic acid                   | 26      | 20      | μ          | g/L   | 1   | 7/20/2011 1:26:20 PM  |
| Benzyl alcohol                 | ND      | 10      | μ          | g/L   | 1   | 7/20/2011 1:26:20 PM  |
| Bis(2-chloroethoxy)methane     | ND      | 10      | j.i.       | g/L   | 1   | 7/20/2011 1:26:20 PM  |
| Bis(2-chloroethyl)ether        | ND      | 10      | μ          | g/L   | 1 ` | 7/20/2011 1:26:20 PM  |
| Bis(2-chloroisopropyl)ether    | ND      | 10      | <b>µ</b> ; | g/L   | 1   | 7/20/2011 1:26:20 PM  |
| Bis(2-ethylhexyl)phthalate     | ND      | 10      | μ          | g/L   | 1   | 7/20/2011 1:26:20 PM  |
| 4-Bromophenyl phenyl ether     | ND      | 10      | μ          | g/L   | 1   | 7/20/2011 1:26:20 PM  |
| Butyl benzył phthalate         | ND      | 10      | þ          | g/L   | 1   | 7/20/2011 1:26:20 PM  |
| Carbazole                      | ND      | 10      | þi         | g/L   | 1   | 7/20/2011 1:26:20 PM  |
| 4-Chloro-3-methylphenol        | . ND    | 10      | μ          | g/L   | 1   | 7/20/2011 1:26:20 PM  |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 1 of 7

Date: 27-Jul-11

Analytical Report

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1107575

Project:

Injection Well 3rd Qtr

Lab ID:

1107575-01

Client Sample ID: Injection Well

Collection Date: 7/14/2011 2:10:00 PM

Date Received: 7/15/2011
Matrix: AQUEOUS

| Analyses                               | Result | PQL                                   | Qual U | nits D       | )F | Date Analyzed        |
|----------------------------------------|--------|---------------------------------------|--------|--------------|----|----------------------|
| <b>EPA METHOD 8270C: SEMIVOLATILES</b> |        | · · · · · · · · · · · · · · · · · · · |        |              | ** | Analyst: JDC         |
| 4-Chloroaniline                        | ND     | 10                                    | . µg   | /L 1         |    | 7/20/2011 1:26:20 PM |
| 2-Chloronaphthalene                    | ND     | 10                                    | μ̈́g   |              |    | 7/20/2011 1:26:20 PM |
| 2-Chlorophenol                         | ND     | 10                                    | μg     | /L 1         |    | 7/20/2011 1:26:20 PM |
| 4-Chlorophenyl phenyl ether            | ND     | 10                                    | hã     | /L 1         |    | 7/20/2011 1:26:20 PM |
| Chrysene                               | ND     | 10                                    | րց     | /L 1         |    | 7/20/2011 1:26:20 PM |
| Di-n-butyl phthalate                   | ND     | 10                                    | μg     | /L 1         |    | 7/20/2011 1:26:20 PM |
| Di-n-octyl phthalate                   | ND     | 10                                    | hâ     | /L 1         |    | 7/20/2011 1:26:20 PM |
| Dibenz(a,h)anthracene                  | ND     | 10                                    | μg     | /L 1         | *  | 7/20/2011 1:26:20 PM |
| Dibenzofuran                           | ND     | 10                                    | μg     | /L 1         |    | 7/20/2011 1:26:20 PM |
| 1,2-Dichlorobenzene                    | ND     | 10                                    | μg     | /L 1         |    | 7/20/2011 1:26:20 PM |
| 1,3-Dichlorobenzene                    | ND     | 10                                    | μ̈́g   | /L 1         |    | 7/20/2011 1:26:20 PM |
| 1,4-Dichlorobenzene                    | ND     | 10                                    | μg     | <i>I</i> L 1 |    | 7/20/2011 1:26:20 PM |
| 3,3'-Dichlorobenzidine                 | ND     | 10                                    | μg     | /L 1         |    | 7/20/2011 1:26:20 PM |
| Diethyl phthalate                      | ND     | 10                                    | μg     | /L _ 1       |    | 7/20/2011 1:26:20 PM |
| Dimethyl phthalate                     | ND     | 10                                    | μg     | /L 1         |    | 7/20/2011 1:26:20 PM |
| 2,4-Dichlorophenol                     | ND     | 20                                    | μg     | /L 1         |    | 7/20/2011 1:26:20 PM |
| 2,4-Dimethylphenol                     | ND     | 10                                    | μ̈g    | /L 1         |    | 7/20/2011 1:26:20 PM |
| 4,6-Dinitro-2-methylphenol             | ND     | 20                                    | μg     | /L 1         |    | 7/20/2011 1:26:20 PM |
| 2,4-Dinitrophenol                      | ND     | 20                                    | μg     | /L 1         |    | 7/20/2011 1:26:20 PM |
| 2,4-Dinitrotoluene                     | ND     | 10                                    | hā     | /L 1         | •  | 7/20/2011 1:26:20 PM |
| 2,6-Dinitrotoluene                     | ND     | 10                                    | μg     | /L 1         |    | 7/20/2011 1:26:20 PM |
| Fluoranthene                           | ND     | 10                                    | μg     | /L 1         |    | 7/20/2011 1:26:20 PM |
| Fluorene                               | ND     | 10                                    | μg     | /L 1         |    | 7/20/2011 1:26:20 PM |
| Hexachlorobenzene                      | ND     | 10                                    | μg     | /L 1         |    | 7/20/2011 1:26:20 PM |
| Hexachlorobutadiene                    | ND     | 10                                    | μg     | /L 1         |    | 7/20/2011 1:26:20 PM |
| Hexachlorocyclopentadiene              | ND     | 10                                    | μg     | /L 1         |    | 7/20/2011 1:26:20 PM |
| Hexachloroethane                       | ND     | 10                                    | μg     | /L 1         |    | 7/20/2011 1:26:20 PM |
| Indeno(1,2,3-cd)pyrene                 | ND     | 10                                    | Ьā     | /L 1         |    | 7/20/2011 1:26:20 PM |
| Isophorone                             | ND     | 10                                    | h8     | /L 1         |    | 7/20/2011 1:26;20 PM |
| 2-Methylnaphthalene                    | ND     | 10                                    | hã     | /L 1         |    | 7/20/2011 1:26:20 PM |
| 2-Methylphenol                         | 14     | 10                                    | рд     | /L 1         |    | 7/20/2011 1:26:20 PM |
| 3+4-Methylphenol                       | 13     | 10                                    | μg     | /L 1         |    | 7/20/2011 1:26:20 PM |
| N-Nitrosodi-n-propylamine              | ND     | 10                                    | μg     | /L 1         |    | 7/20/2011 1:26:20 PM |
| N-Nitrosodimethylamine                 | . ND   | 10                                    | μg     | /L 1         |    | 7/20/2011 1:26:20 PM |
| N-Nitrosodiphenylamine                 | ND     | 10                                    | hâ     | /L 1         |    | 7/20/2011 1:26:20 PM |
| Naphthalene                            | ND     | 10                                    | þg     | /L 1         |    | 7/20/2011 1:26:20 PM |
| 2-Nitroaniline                         | ND     | 10                                    | ha     | /L 1         |    | 7/20/2011 1:26:20 PM |
| 3-Nitroanlline                         | ND     | 10                                    | þĝ     | /L 1         |    | 7/20/2011 1:26:20 PM |
| 4-Nitroaniline                         | ND ·   | 20                                    | μg     | /L 1         |    | 7/20/2011 1:26:20 PM |
| Nitrobenzene                           | ND     | 10                                    | μg     | /L 1         |    | 7/20/2011 1:26:20 PM |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 2 of 7

Date: 27-Jul-11
Analytical Report

**CLIENT:** 

Western Refining Southwest, Inc.

Lab Order:

1107575

Project:

Injection Well 3rd Qtr

Lab ID:

1107575-01

Client Sample ID: Injection Well

Collection Date: 7/14/2011 2:10:00 PM

Date Received: 7/15/2011 Matrix: AQUEOUS

| Analyses                       | Result | PQL       | Qual Units | DF | Date Analyzed        |
|--------------------------------|--------|-----------|------------|----|----------------------|
| EPA METHOD 8270C: SEMIVOLATILE | S      |           |            |    | Analyst: JDC         |
| 2-Nitrophenol                  | ND     | 10        | µg/L       | 1  | 7/20/2011 1:26:20 PM |
| 4-Nitrophenol                  | ND     | 10        | μg/L       | 1  | 7/20/2011 1:26:20 PM |
| Pentachlorophenol              | ND     | 20        | μg/L       | 1  | 7/20/2011 1:26:20 PM |
| Phenanthrene                   | ND     | 10        | μg/L       | 1  | 7/20/2011 1:26:20 PM |
| Phenol                         | 12     | 10        | µg/L       | 1  | 7/20/2011 1:26:20 PM |
| Pyrene                         | ND     | 10        | µg/L       | 1  | 7/20/2011 1:26:20 PM |
| Pyridine                       | ND.    | 10        | μġ/L       | 1  | 7/20/2011 1:26:20 PM |
| 1,2,4-Trichlorobenzene         | ND     | 10        | µg/L,      | 1  | 7/20/2011 1:26:20 PM |
| 2,4,5-Trichlorophenol          | ND     | 10        | μg/L       | 1  | 7/20/2011 1:26:20 PM |
| 2,4,6-Trichlorophenol          | ND     | 10        | μg/L       | 1  | 7/20/2011 1:26:20 PM |
| Surr: 2,4,6-Tribromophenol     | 87.6   | 14.4-140  | %REC       | 1  | 7/20/2011 1:26:20 PM |
| Surr: 2-Fluoroblphenyl         | 78.8   | 31.2-116  | %REC       | 1  | 7/20/2011 1:26:20 PM |
| Surr: 2-Fluorophenol           | 61.9   | 11.8-102  | %REC       | 1  | 7/20/2011 1:26:20 PM |
| Surr: 4-Terphenyl-d14          | 79.0   | 19.1-132  | %REC       | 1  | 7/20/2011 1:26:20 PM |
| Surr: Nitrobenzene-d5          | 75.8   | 21.3-126  | %REC       | 1  | 7/20/2011 1:26:20 PM |
| Surr: Phenol-d5                | 46.4   | 13.7-82.2 | %REC       | 1  | 7/20/2011 1:26:20 PM |
| EPA METHOD 8260B: VOLATILES    |        |           |            |    | Analyst: MMS         |
| Benzene                        | ND     | 1.0       | μg/L       | 1  | 7/19/2011 1:39:48 AM |
| Toluene                        | 2.4    | 1.0       | µg/L       | 1  | 7/19/2011 1:39:48 AM |
| Ethylbenzene                   | ND     | 1.0       | μg/L       | 1  | 7/19/2011 1:39:48 AM |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0       | μg/L       | 1  | 7/19/2011 1:39:48 AM |
| 1,2,4-Trimethylbenzene         | 1.4    | 1.0       | μg/L       | 1  | 7/19/2011 1:39:48 AM |
| 1,3,5-Trimethylbenzene         | ND     | 1.0       | μg/L       | 1  | 7/19/2011 1:39:48 AM |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0       | h8∖r       | 1  | 7/19/2011 1:39:48 AM |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0       | μg/L       | 1  | 7/19/2011 1:39:48 AM |
| Naphthalene                    | ND     | 2.0       | μg/L       | 1  | 7/19/2011 1:39:48 AM |
| 1-Methylnaphthalene            | ND     | 4.0       | µg/L       | 1  | 7/19/2011 1:39:48 AM |
| 2-Methylnaphthalene            | ND     | 4.0       | µg/L       | 1  | 7/19/2011 1:39:48 AM |
| Acetone                        | 330    | 50        | µg/L       | 5  | 7/19/2011 1:18:51 PM |
| Bromobenzene                   | ND     | 1.0       | µg/L       | t  | 7/19/2011 1:39:48 AM |
| Bromodichloromethane           | ND     | 1.0       | μg/L       | 1  | 7/19/2011 1:39:48 AM |
| Bromoform                      | ND     | 1.0       | μg/L       | 1  | 7/19/2011 1:39:48 AM |
| Bromomethane                   | ND     | 3.0       | µg/L       | 1  | 7/19/2011 1:39:48 AM |
| 2-Butanone                     | ND     | 10        | μg/L       | 1  | 7/19/2011 1:39:48 AM |
| Carbon disulfide               | ND     | 10        | μg/L       | 1  | 7/19/2011 1:39:48 AM |
| Carbon Tetrachloride           | ND     | 1.0       | µg/L       | 1  | 7/19/2011 1:39:48 AM |
| Chlorobenzene                  | ND     | 1.0       | µg/L       | 1  | 7/19/2011 1:39:48 AM |
| Chloroethane                   | ND     | 2.0       | μg/L       | 1  | 7/19/2011 1:39:48 AM |
| Chloroform                     | ND     | 1.0       | μg/L       | 1  | 7/19/2011 1:39:48 AM |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 3 of 7

Date: 27-Jul-11

Analytical Report

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1107575

Project:

Injection Well 3rd Qtr

Lab ID:

1107575-01

Client Sample ID: Injection Well

Collection Date: 7/14/2011 2:10:00 PM

Date Received: 7/15/2011

Matrix: AQUEOUS

| Analyses                    | Result | PQL Qu | al Units      | DF  | Date Analyzed        |
|-----------------------------|--------|--------|---------------|-----|----------------------|
| EPA METHOD 8260B: VOLATILES |        |        |               |     | Analyst: MMS         |
| Chloromethane               | ND     | 3.0    | μ <b>g/L</b>  | . 1 | 7/19/2011 1:39:48 AM |
| 2-Chlorotoluenė             | ND     | 1.0    | µg/L          | 1   | 7/19/2011 1:39:48 AM |
| 4-Chlorotoluene             | ND     | 1.0    | μg/L          | 1   | 7/19/2011 1:39:48 AM |
| cis-1,2-DCE                 | ND     | 1.0    | μg/L          | 1   | 7/19/2011 1:39:48 AM |
| cis-1,3-Dichloropropene     | ND     | 1.0    | μg/L          | 1   | 7/19/2011 1:39:48 AM |
| 1,2-Dibromo-3-chloropropane | ND     | 2.0    | μg/L          | , 1 | 7/19/2011 1:39:48 AM |
| Dibromochloromethane        | , ND   | 1.0    | μg/L          | 1   | 7/19/2011 1:39:48 AM |
| Dibromomethane              | ND     | 1.0    | µg/L          | . 1 | 7/19/2011 1:39:48 AM |
| 1,2-Dichlorobenzene         | ND     | 1.0    | μg/L          | 1   | 7/19/2011 1:39:48 AM |
| 1,3-Dichlorobenzene         | ND     | 1.0    | µg/L          | 1   | 7/19/2011 1:39:48 AM |
| 1,4-Dichlorobenzene         | ND     | 1.0    | µg/L          | 1   | 7/19/2011 1:39:48 AM |
| Dichlorodifluoromethane     | ND     | 1.0    | μg/L          | 1   | 7/19/2011 1:39:48 AM |
| 1,1-Dichloroethane          | ND     | 1.0    | µg/L          | 1   | 7/19/2011 1:39:48 AM |
| 1,1-Dichloroethene          | ND     | 1.0    | μg/L          | 1   | 7/19/2011 1:39:48 AM |
| 1,2-Dichloropropane         | ND     | 1.0    | μg/L          | 1   | 7/19/2011 1:39:48 AM |
| 1,3-Dichloropropane         | ND     | 1.0    | µg/L          | 1   | 7/19/2011 1:39:48 AM |
| 2,2-Dichloropropane         | ND     | 2.0    | μg/L          | 1 · | 7/19/2011 1:39:48 AM |
| 1,1-Dichloropropene         | ND     | 1.0    | μg/L          | 1   | 7/19/2011 1:39:48 AM |
| Hexachlorobutadiene         | ND     | 1.0    | μg/L          | 1   | 7/19/2011 1:39:48 AM |
| 2-Hexanone                  | ND -   | 10     | µg/L          | 1   | 7/19/2011 1:39:48 AM |
| Isopropyibenzene            | ND     | 1.0    | μg/L          | · 1 | 7/19/2011 1:39:48 AM |
| 4-Isopropyltoluene          | ND     | 1:0    | μg/L          | 1   | 7/19/2011 1:39:48 AM |
| 4-Methyl-2-pentanone        | ND     | 10     | μg/L          | 1   | 7/19/2011 1:39:48 AM |
| Methylene Chloride          | ND     | 3.0    | μg/L          | 1   | 7/19/2011 1:39:48 AM |
| n-Butylbenzene              | ND     | 1.0    | μg/L          | 1   | 7/19/2011 1:39:48 AM |
| n-Propylbenzene             | ND     | 1.0    | μg/L          | 1   | 7/19/2011 1:39:48 AM |
| sec-Butylbenzene            | ND     | 1.0    | µg/L          | 1   | 7/19/2011 1:39:48 AM |
| Styrene                     | ND     | 1.0    | μg/L          | 1   | 7/19/2011 1:39:48 AM |
| tert-Butylbenzene           | ND     | 1.0    | µg/L          | 1   | 7/19/2011 1:39:48 AM |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0    | µg/L          | 1   | 7/19/2011 1:39:48 AM |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0    | μg/L          | 1   | 7/19/2011 1:39:48 AM |
| Tetrachloroethene (PCE)     | ND     | 1.0    | µg/L          | 1   | 7/19/2011 1:39:48 AM |
| trans-1,2-DCE               | ND     | 1.0    | µg/L          | 1   | 7/19/2011 1:39:48 AM |
| trans-1;3-Dichloropropene   | ND     | 1.0    | µg/L          | 1   | 7/19/2011 1:39:48 AM |
| 1,2,3-Trichlorobenzene      | ND     | 1.0    | µg/L          | 1   | 7/19/2011 1:39:48 AM |
| 1,2,4-Trichlorobenzene      | ND     | 1.0    | µg/L          | 1   | 7/19/2011 1:39:48 AM |
| 1,1,1-Trichloroethane       | ND     | 1.0    | µg/L          | 1   | 7/19/2011 1:39:48 AM |
| 1,1,2-Trichloroethane       | ND     | 1.0    | µg/L          | 1   | 7/19/2011 1:39:48 AM |
| Trichloroethene (TCE)       | ND     | 1.0    | μ <b>g/L</b>  | 1   | 7/19/2011 1:39:48 AM |
| Trichlorofluoromethane      | ND     | 1.0    | μ <b>g/</b> L | 1   | 7/19/2011 1:39:48 AM |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL. Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
  - S Spike recovery outside accepted recovery limits

Page 4 of 7

Date: 27-Jul-11

Analytical Report

CLIENT: Western Refining Southwest, Inc.

Lab Order:

1107575

Project:

Injection Well 3rd Qtr

Lab ID:

1107575-01

Client Sample ID: Injection Well

Collection Date: 7/14/2011 2:10:00 PM

Date Received: 7/15/2011
Matrix: AQUEOUS

| Analyses                         | Result | PQL      | Qual | Units      | DF | Date Analyzed         |
|----------------------------------|--------|----------|------|------------|----|-----------------------|
| EPA METHOD 8260B: VOLATILES      | i      |          |      |            |    | Analyst: MMS          |
| 1,2,3-Trichloropropane           | . ND   | 2.0      |      | µg/L       | 1  | 7/19/2011 1:39:48 AM  |
| Vinyl chloride                   | ND     | 1.0      |      | µg/L       | 1  | 7/19/2011 1:39:48 AM  |
| Xylenes, Total                   | 6.8    | 1.5      |      | μg/L       | 1  | 7/19/2011 1:39:48 AM  |
| Surr: 1,2-Dichloroethane-d4      | 104    | 65.8-138 |      | %REC       | 1  | 7/19/2011 1:39:48 AM  |
| Surr: 4-Bromofluorobenzene       | 113    | 72.7-128 |      | %REC       | 1  | 7/19/2011 1:39:48 AM  |
| Surr: Dibromofluoromethane       | 110    | 69-135   |      | %REC       | 1  | 7/19/2011 1:39:48 AM  |
| Surr: Toluene-d8                 | 104    | 86.1-134 |      | %REC       | 1  | 7/19/2011 1:39:48 AM  |
| SM 2320B: ALKALINITY             |        | •        |      |            |    | Analyst: LJB          |
| Alkalinity, Total (As CaCO3)     | 150    | 20       |      | mg/L CaCO3 | 1  | 7/19/2011 5:47:00 PM  |
| Carbonate                        | ND     | 2.0      |      | mg/L CaCO3 | 1  | 7/19/2011 5:47:00 PM  |
| Bicarbonate                      | 150    | 20       |      | mg/L CaCO3 | 1  | 7/19/2011 5:47:00 PM  |
| EPA 120.1: SPECIFIC CONDUCTANCE  |        |          |      |            |    | Analyst: LJB          |
| Specific Conductance             | 1000   | 0.010    |      | µmhos/cm   | 1  | 7/15/2011 7:35:00 PM  |
| SM4500-H+B: PH                   |        |          |      |            |    | Analyst: LJB          |
| рН                               | 7.06   | 0.100    | н    | pH units   | 1  | 7/15/2011 7:35:00 PM  |
| SM2540C MOD: TOTAL DISSOLVED SOL | .IDS   |          |      |            |    | Analyst: KS           |
| Total Dissolved Solids           | 700    | 20.0     |      | mg/L       | 1  | 7/19/2011 10:45:00 AM |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded.
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 5 of 7

Date: 27-Jul-11
Analytical Report

CLIENT: W

Western Refining Southwest, Inc.

Client Sample ID: Trip Blank

Lab Order:

1107575

**Collection Date:** 

Project:

Injection Well 3rd Qtr

Date Received: 7/15/2011

Lab ID:

1107575-02

Matrix: TRIP BLANK

| Analyses                       | Result | PQL | Qual Units    | DF  | Date Analyzed        |
|--------------------------------|--------|-----|---------------|-----|----------------------|
| EPA METHOD 8260B: VOLATILES    |        |     | !             |     | Analyst: MMS         |
| Benzane                        | ND     | 1.0 | µg/L          | 1   | 7/19/2011 2:08:01 AM |
| Toluene                        | ND     | 1.0 | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| Ethylbenzene                   | ND     | 1.0 | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0 | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| 1,2,4-Trimethylbenzene         | ND     | 1.0 | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| 1,3,5-Trimethylbenzene         | ND     | 1.0 | µg/L          | 1   | 7/19/2011 2:08:01 AM |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0 | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0 | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| Naphthalene                    | ND     | 2.0 | µg/L          | 1   | 7/19/2011 2:08:01 AM |
| 1-Methylnaphthalene            | ND     | 4.0 | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| 2-Methylnaphthalene            | ND .   | 4.0 | µg/L          | 1   | 7/19/2011 2:08:01 AM |
| Acetone                        | ND     | 10  | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| Bromobenzene                   | ND     | 1.0 | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| Bromodichloromethane           | ND     | 1.0 | µg/L          | 1   | 7/19/2011 2:08:01 AM |
| Bromoform                      | ND     | 1.0 | µg/L          | 1   | 7/19/2011 2:08:01 AM |
| Bromomethane                   | ND     | 3.0 | µg/L          | 1   | 7/19/2011 2:08:01 AM |
| 2-Butanone                     | ND     | 10  | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| Carbon disulfide               | ND     | 10  | µg/L          | 1   | 7/19/2011 2:08:01 AM |
| Carbon Tetrachloride           | ND     | 1.0 | µg/L          | .1  | 7/19/2011 2:08:01 AM |
| Chlorobenzene                  | ND     | 1.0 | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| Chloroethane                   | ND     | 2.0 | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| Chloroform                     | ND     | 1.0 | µg/L          | 1   | 7/19/2011 2:08:01 AM |
| Chloromethane                  | ND     | 3.0 | , -           | 1   | 7/19/2011 2:08:01 AM |
| 2-Chiorotoluene                | ND     | 1.0 | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| 4-Chlorotoluene                | ND     | 1.0 | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| cis-1,2-DCE                    | ND     | 1.0 | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| cis-1,3-Dichloropropene        | ND '   | 1.0 | µ <b>g/</b> L | 1   | 7/19/2011 2:08:01 AM |
| 1,2-Dibromo-3-chloropropane    | ND     | 2.0 | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| Dibromochloromethane           | ND     | 1.0 | µg/L          | 1   | 7/19/2011 2:08:01 AM |
| Dibromomethane                 | ND     | 1.0 | µg/L          | 1   | 7/19/2011 2:08:01 AM |
| 1,2-Dichlorobenzene            | ND     | 1.0 | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| 1,3-Dichlorobenzene            | ND     | 1.0 | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| 1,4-Dichlorobenzene            | ND     | 1.0 | µg/L          | 1   | 7/19/2011 2:08:01 AM |
| Dichlorodifluoromethane        | ND     | 1.0 | µg/L          | 1   | 7/19/2011 2:08:01 AM |
| 1,1-Dichloroethane             | ND     | 1.0 | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| 1,1-Dichloroethene             | ND     | 1.0 | μg/L          | . 1 | 7/19/2011 2:08:01 AM |
| 1,2-Dichloropropane            | ND     | 1.0 | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| 1,3-Dichloropropane            | ND     | 1.0 | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| 2,2-Dichloropropane            | ND     | 2.0 | μg/L          | 1   | 7/19/2011 2:08:01 AM |
| 1,1-Dichloropropene            | ND     | 1.0 | µg/L          | 1   | 7/19/2011 2:08:01 AM |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 6 of 7

Date: 27-Jul-11
Analytical Report

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1107575

Project: Lab ID: Injection Well 3rd Qtr

1107575-02

Client Sample ID: Trip Blank

**Collection Date:** 

**Date Received:** 7/15/2011

Matrix: TRIP BLANK

| Analyses                    | Result | PQL      | Qual 1 | Units                                 | DF         | Date Analyzed        |
|-----------------------------|--------|----------|--------|---------------------------------------|------------|----------------------|
| EPA METHOD 8260B: VOLATILES |        |          |        | · · · · · · · · · · · · · · · · · · · |            | Analyst: MMS         |
| Hexachlorobutadiene         | ND     | 1.0      |        | ug/L                                  | 1          | 7/19/2011 2:08:01 AM |
| 2-Hexanone                  | ND     | 10       | ı      | ug/L                                  | 1          | 7/19/2011 2:08:01 AM |
| Isopropylbenzene            | ND     | 1.0      | ı      | ug/L                                  | 1          | 7/19/2011 2:08:01 AM |
| 4-Isopropyltoluene          | ND     | 1.0      | 3      | ug/L                                  | 1          | 7/19/2011 2:08:01 AM |
| 4-Methyl-2-pentanone        | ND     | 10       | 1      | ug/L                                  | 1          | 7/19/2011 2:08:01 AM |
| Methylene Chloride          | ND     | 3.0      |        | ug/L                                  | 1          | 7/19/2011 2:08:01 AM |
| n-Butylbenzene              | ND     | 1.0      | ,      | ug/L                                  | 1          | 7/19/2011 2:08:01 AM |
| n-Propylbenzene             | ND     | 1.0      | ı      | ug/L                                  | 1          | 7/19/2011 2:08:01 AM |
| sec-Butylbenzene            | ND     | 1.0      | . 1    | ug/L                                  | 1          | 7/19/2011 2:08:01 AM |
| Styrene                     | ND     | 1.0      |        | Jg/L                                  | 1          | 7/19/2011 2:08:01 AM |
| tert-Butylbenzene           | ND     | 1.0      |        | ug/L                                  | 1          | 7/19/2011 2:08:01 AM |
| 1,1,1,2-Tetrachioroethane   | ND     | 1.0      |        | ug/L                                  | 1          | 7/19/2011 2:08:01 AM |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0      |        | ıg/L                                  | 1          | 7/19/2011 2:08:01 AM |
| Tetrachloroethene (PCE)     | ND     | 1.0      |        | Jg/L                                  | 1          | 7/19/2011 2:08:01 AM |
| trans-1,2-DCE               | ND     | 1.0      |        | ug/L                                  | 1          | 7/19/2011 2:08:01 AM |
| trans-1,3-Dichloropropene   | ND     | 1.0      |        | ıg/L                                  | 1          | 7/19/2011 2:08:01 AM |
| 1,2,3-Trichlorobenzene      | ND     | 1.0      |        | ıg/L                                  | 1          | 7/19/2011 2:08:01 AM |
| 1,2,4-Trichlorobenzene      | ND     | 1.0      |        | ıg/L                                  | 1          | 7/19/2011 2:08:01 AM |
| 1,1,1-Trichloroethane       | ND     | 1.0      | -      | ıg/L.                                 | 1          | 7/19/2011 2:08:01 AM |
| 1,1,2-Trichloroethane       | ND     | 1.0      |        | ıg/L                                  | 1          | 7/19/2011 2:08:01 AM |
| Trichloroethene (TCE)       | ND     | 1.0      |        | ıg/L                                  | 1          | 7/19/2011 2:08:01 AM |
| Trichlorofluoromethane      | ND     | 1.0      |        | ıg/L                                  | 1          | 7/19/2011 2:08:01 AM |
| 1,2,3-Trichloropropane      | . ND   | 2.0      |        | ug/L                                  | 1          | 7/19/2011 2:08:01 AM |
| Vinyl chloride              | ND     | 1.0      |        | Jg/L                                  | 1          | 7/19/2011 2:08:01 AM |
| Xylenes, Total              | ND     | 1.5      | -      | ıg/L                                  | 1          | 7/19/2011 2:08:01 AM |
| Surr: 1,2-Dichloroethane-d4 | 107    | 65.8-138 | -      | %REC                                  | , <b>1</b> | 7/19/2011 2:08:01 AM |
| Surr: 4-Bromofluorobenzene  | 104    | 72.7-128 | q      | %REC                                  | 1          | 7/19/2011 2:08:01 AM |
| Surr: Dibromofluoromethane  | 110    | 69-135   | q      | %REC                                  | 1          | 7/19/2011 2:08:01 AM |
| Surr: Toluene-d8            | 105    | 86.1-134 | q      | %REC                                  | 1          | 7/19/2011 2:08:01 AM |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- POL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits



Tax I.D. 62-0814289

Est. 1970

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

L526363-01

YOUR LAB OF CHOICE

REPORT OF ANALYSIS

July 22, 2011

Anne Thorne Hall Environmental Analysis Laborat 4901 Hawkins NE Albuquerque, NM 87109

ESC Sample # :

Date Received Description

July

16, 2011 .

Site ID :

Sample ID

INJECTION WELL

Project # : 1107575

Collected By : Collection Date :

07/14/11 14:10

| Parameter                     | Result        | Det. Limit | Units  | Method     | Date    | e Dil.        |  |
|-------------------------------|---------------|------------|--------|------------|---------|---------------|--|
| Corrosivity                   | Non-Corrosive |            |        | 9045D      | 07/21,  | /11 1         |  |
| Ignitability                  | See Footnote  |            | Deg. F | D93/1010A  | 07/22   | /11 1         |  |
| Reactive CN (SW846 7.3.3.2)   | BDL           | 0.125      | mg/kg  | 9012B      | 07/21   | / <b>11</b> 1 |  |
| Reactive Sulf.(SW846 7.3.4.1) | BDL           | 25.        | mg/kg  | 9034/9030B | . 07/20 | /11 1         |  |

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)
Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC. . Reported: 07/22/11 17:07 Printed: 07/22/11 17:08 L526363-01 (IGNITABILITY) - Did Not Ignite @ 170 F

# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 3rd Qtr

Work Order:

1107575

| Analyte                      | Result | Units        | PQL  | SPK Va SPK | ref | %Rec Lo   | owLlmit Hi | ghLimit %RPD   | RPDLimit Qual         |
|------------------------------|--------|--------------|------|------------|-----|-----------|------------|----------------|-----------------------|
| Method: EPA Method 300.0: A  | nions  |              |      |            |     |           |            |                |                       |
| Sample ID: MB                |        | MBLK         |      |            |     | Batch ID: | R46573     | Analysis Date: | 7/15/2011 11:28:12 AM |
| Chloride                     | ND     | mg/L         | 0.50 |            |     |           |            |                |                       |
| Sulfate                      | ND     | mg/L         | 0.50 | ÷          |     |           |            |                |                       |
| Sample ID: MB                |        | MBLK         |      |            |     | Batch ID: | R46573     | Analysis Date: | 7/15/2011 11:56:49 PM |
| Chloride                     | ND     | mg/L         | 0.50 |            |     |           |            |                |                       |
| Sulfate                      | ND     | mg/L         | 0.50 |            |     |           |            |                | •                     |
| Sample ID: LCS               |        | LCS          | }    |            |     | Batch ID: | R46573     | Analysis Date: | 7/15/2011 11:45:37 AM |
| Chloride                     | 5.098  | mg/L         | 0.50 | 5          | 0   | 102       | 90         | 110            |                       |
| Sulfate                      | 10.31  | mg/L         | 0.50 | 10 -       | 0   | 103       | 90         | 110            |                       |
| Sample ID: LCS               |        | LCS          |      |            |     | Batch ID: | R46573     | Analysis Date: | 7/16/2011 12:14:14 AM |
| Chloride                     | 5.135  | mg/L         | 0.50 | 5          | 0 . | 103       | 90         | 110            |                       |
| Sulfate                      | 10.37  | m <b>g/L</b> | 0.50 | 10         | 0   | 104       | 90         | 110            |                       |
| Method: SM 2320B: Alkalinity |        |              |      | 1 1        |     |           |            |                |                       |
| Sample ID: MB-1              |        | MBLK         |      |            |     | Batch ID: | R46630     | Analysis Date: | 7/19/2011 4:34:00 PM  |
| Alkalinity, Total (As CaCO3) | ND     | mg/L Ca      | 20   |            |     | •         |            |                |                       |
| Carbonate                    | ND     | mg/L Ca      | 2.0  |            |     |           |            |                |                       |
| Bicarbonate                  | ND     | mg/L Ca      | 20   |            |     |           |            |                |                       |
| Sample ID: LCS-1             |        | LCS          | Ì    | •          |     | Batch ID: | R46630     | Analysis Date: | 7/19/2011 4:51:00 PM  |
| Alkalinity, Total (As CaCO3) | 79.08  | mg/L Ca      | 20   | 80         | 0   | 98.9      | 90         | 110            |                       |

| Qua | HI | ers: |
|-----|----|------|

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

# QA/QC SUMMARY REPORT

Cat:

Western Refining Southwest, Inc.

Project: Injection Well 3rd Qtr

Work Order:

1107575

| Analyte                                 | Result    | Units         | PQL | SPK Va SPK ref | %Rec Lo   | owLimit HighLin | nit %RPD     | RPDLimit  | Qual       |
|-----------------------------------------|-----------|---------------|-----|----------------|-----------|-----------------|--------------|-----------|------------|
| Method: EPA Method 8260B:               | VOLATILES |               |     |                | ,         |                 |              |           |            |
| Sample ID: b1                           |           | MBLK          |     |                | Batch ID: | R46597 - Ani    | alysis Date: | 7/18/2011 | 7:36:21 PN |
| Benzene                                 | ND        | μg/L          | 1.0 |                |           |                 | •            |           |            |
| Toluene                                 | ND        | µg/L          | 1.0 |                |           |                 |              | •         |            |
| Ethylbenzene                            | ND        | µg/L          | 1.0 |                |           |                 | ٠            |           |            |
| Methyl tert-butyl ether (MTBE)          | ND        | µg/L          | 1.0 | -              |           |                 |              |           |            |
| 1,2,4-Trimethylbenzene                  | ND        | μg/L          | 1.0 |                |           |                 |              |           |            |
| 1,3,5-Trimethylbenzene                  | ND        | µg/L          | 1.0 |                |           |                 | ·            |           |            |
| 1,2-Dichloroethane (EDC)                | ND        | µg/L          | 1.0 |                |           |                 | •            |           |            |
| 1,2-Dibromoethane (EDB)                 | ND        | μg/L          | 1.0 |                |           |                 |              |           |            |
| Naphthalene                             | ND        | μg/L          | 2.0 |                |           |                 | •            |           |            |
| 1-Methylnaphthalene                     | ND        | µg/L          | 4.0 |                |           |                 |              |           |            |
| 2-Methylnaphthalene                     | ND        | µg/L          | 4.0 | *              |           |                 |              |           |            |
| Acetone                                 | ND        | µg/L          | 10  |                |           |                 |              |           |            |
| Bromobenzene                            | ND        | µg/L          | 1.0 |                |           |                 |              |           |            |
| Bromodichloromethane                    | ND        | μg/L          | 1.0 |                |           |                 |              |           | •          |
| Bromoform                               | ND        | μg/L          | 1.0 |                |           |                 |              |           |            |
| Bromomethane .                          | ND        | μg/L          | 3.0 |                | lı .      |                 |              |           |            |
| 2-Butanone                              | ND        | μg/L          | -10 |                | ,         |                 |              |           |            |
| Carbon disulfide                        | ND        | µg/L          | 10  |                |           |                 |              |           |            |
| Carron Tetrachloride                    | ND        | µg/L          | 1.0 |                |           |                 |              |           |            |
| obenzene                                | ND        | μg/L          | 1.0 |                |           |                 |              |           |            |
| Chloroethane                            | ND        | μg/L          | 2.0 |                |           | • •             |              |           |            |
| Chloroform                              | ND        | µg/L          | 1.0 |                |           |                 |              |           |            |
| Chloromethane                           | ND        | µg/L          | 3.0 |                |           |                 |              |           |            |
| 2-Chiorotoluane                         | ND        | µg/L          | 1.0 |                |           | *               |              |           |            |
| 4-Chlorotoluene                         | ND        | µg/L          | 1.0 |                |           |                 |              | ~         |            |
| cis-1,2-DCE                             | ND        | µg/L          | 1.0 |                |           |                 |              |           |            |
| cis-1,3-Dichloropropene                 | ND        | μg/L          | 1.0 |                |           |                 |              |           |            |
| 1,2-Dibromo-3-chloropropane             | ND        | μg/L          | 2.0 |                |           |                 |              |           |            |
| Dibromochloromethane                    | ND        | µg/L          | 1.0 |                |           |                 |              |           |            |
| Dibromomethane                          | ND        | μg/L          | 1.0 |                |           |                 |              |           |            |
| ,2-Dichlorobenzene                      | ND        | µg/L<br>µg/L  | 1.0 |                |           |                 |              |           |            |
| ,3-Dichlorobenzene                      | ND        | μ <b>g/</b> L | 1.0 |                |           |                 |              |           |            |
| ,4-Dichlorobenzene                      | ND -      | μg/L          | 1.0 |                |           |                 |              |           |            |
| Dichlorodifluoromethane                 | ND        | μg/L<br>μg/L  | 1.0 |                | •         |                 |              |           |            |
| ,1-Dichloroethene                       | ND        | μg/L          | 1.0 |                |           |                 | •            |           |            |
| ,2-Dichloropropane                      | ND        | μg/L          | 1.0 |                |           |                 | •            |           |            |
| ,3-Dichloropropane                      | ND        | μg/L          | 1.0 |                |           |                 |              |           |            |
| ,2-Dichloropropane                      | ND        | µg/L          | 2.0 | , *            |           | * •             |              |           |            |
| ,1-Dichloropropene                      | ND        | μg/L          | 1.0 |                |           |                 |              |           |            |
| lexachiorobutadiene                     | ND        | µg/L          | 1.0 |                |           |                 |              |           |            |
| -Hexanone                               | ND        | hã/r<br>hã/r  | 1.0 | <u>.</u> *.    |           |                 | •            |           |            |
| opropylbenzene                          | ND.       | μg/L<br>μg/L  | 1.0 |                |           |                 |              | •         |            |
|                                         | ND<br>ND  |               | 1.0 |                |           |                 |              |           |            |
| -Isopropyltoluene<br>Mathyl 2 pantanone | ND        | µg/L          | 1.0 |                |           |                 |              |           |            |
| -Methyl-2-pentanone                     | 110       | µg/L          | 10  |                |           |                 |              |           |            |

lifiers:

. J

Estimated value

Analyte detected below quantitation limits

Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 3rd Qtr

Work Order:

1107575

| Analyte                        | Result       | Units   | PQL         | SPK Va SPK ref | %Rec L                                 | owLimit Hi | ghLimit %R    | PD RPDLimit Qual        |
|--------------------------------|--------------|---------|-------------|----------------|----------------------------------------|------------|---------------|-------------------------|
| Method: EPA Method 8260E       | B: VOLATILES | <u></u> |             |                | ······································ |            |               |                         |
| Sample ID: b1                  |              | MBLK    |             |                | Batch ID:                              | R46597     | Analysis Date | e: 7/18/2011 7:36:21 PN |
| Methylene Chloride             | ND           | µg/L    | 3.0         |                |                                        |            |               |                         |
| n-Butylbenzene                 | ND           | μg/L    | 1.0         | ,              |                                        |            |               |                         |
| n-Propylbenzene                | ND           | μg/L    | 1.0         |                |                                        |            |               |                         |
| sec-Butylbenzene               | ND           | µg/L    | 1.0         |                |                                        |            |               |                         |
| Styrene                        | ND           | μg/L    | 1.0         |                |                                        |            |               |                         |
| tert-Butylbenzene              | ND           | μg/L    | 1.0         |                |                                        |            |               |                         |
| Tetrachloroethene (PCE)        | ND           | µg/L    | 1.0         |                |                                        |            |               |                         |
| trans-1,2-DCE                  | ND           | µg/L    | 1.0         |                |                                        |            |               |                         |
| trans-1,3-Dichloropropene      | ND .         | μg/L    | 1.0         |                |                                        |            |               |                         |
| 1,2,3-Trichlorobenzene         | ND           | µg/L    | 1.0         |                |                                        |            |               |                         |
| 1,2,4-Trichlorobenzene         | ND           | µg/L    | 1.0         |                |                                        |            |               |                         |
| Trichloroethene (TCE)          | ND           | µg/L    | 1.0         |                |                                        |            |               |                         |
| Trichlorofluoromethane         | ND           | μg/L    | 1.0         |                |                                        |            |               |                         |
| 1,2,3-Trichloropropane         | ND           | µg/L    | 2.0         |                |                                        |            |               |                         |
| Vinyl chloride                 | ND           | μg/L    | 1.0         |                | •                                      |            |               |                         |
| Xylenes, Total                 | 2.772        | µg/L    | 1.5         |                |                                        |            |               |                         |
| Sample ID: 5ml rb              |              | MBLK    |             |                | Batch ID:                              | R46633     | Analysis Date | : 7/19/2011 10:00:20 AN |
| Benzene                        | ND           | μg/L    | 1.0         |                |                                        |            |               | •                       |
| Toluene                        | ND           | μg/L    | 1.0         |                | •                                      |            |               |                         |
| Ethylbenzene                   | ND           | μg/L    | 1.0         | •              |                                        |            |               | •                       |
| Methyl tert-bulyl ether (MTBE) | ND           | µg/L    | 1.0         | •              |                                        |            |               |                         |
| 1,2,4-Trimethylbenzene         | ND           | μg/L    | 1.0         |                |                                        |            |               |                         |
| 1,3,5-Trimethylbenzene         | ND           | μg/L    | 1.0         |                |                                        |            |               | •                       |
| 1,2-Dichloroethane (EDC)       | ND           | µg/L    | 1.0         |                |                                        |            |               |                         |
| 1,2-Dibromoethane (EDB)        | ND           | μg/L    | 1.0         |                |                                        |            |               |                         |
| Naphthalene                    | · ND         | µg/L    | 2.0         |                |                                        |            |               |                         |
| 1-Methylnaphthalene            | ND           | μg/L    | 4.0         |                |                                        |            |               |                         |
| 2-Methylnaphthalene            | ND           | µg/L    | 4.0         |                |                                        |            |               | ·                       |
| Acetone                        | ND           | µg/L    | 10          |                |                                        |            |               |                         |
| Bromobenzene                   | ND           | μg/L    | 1.0         |                |                                        |            |               |                         |
| Bromodichloromethane           | ND           | µg/L    | 1.0         |                |                                        |            |               |                         |
| Bromoform                      | ND           | μg/L    | 1.0         |                |                                        |            |               |                         |
| Bromomethane                   | ND           | μg/L    | 3.0         |                |                                        |            |               |                         |
| 2-Butanone                     | ND           | µg/L    | 10          |                |                                        |            |               |                         |
| Carbon disulfide               | ND           | μg/L    | 10          |                |                                        |            |               |                         |
| Carbon Tetrachloride           | ND           | µg/L    | 1.0         |                |                                        |            |               |                         |
| Chlorobenzene                  | ND           | µg/L    | 1.0         |                |                                        | •          |               |                         |
| Chloroethane                   | ND           | µg/L    | 2.0         |                |                                        |            |               |                         |
| Chloroform                     | ND           | µg/L    | 1.0         |                |                                        |            |               |                         |
| Chloromethane                  | ND           | μg/L    | 3.0         |                | ٠                                      |            |               | •                       |
| 2-Chlorotoluene                | ND           | μg/L    | 1.0         |                |                                        |            |               |                         |
| 1-Chlorotoluene                | ND           | µg/L    | 1.0         |                | •                                      |            |               |                         |
| cis-1,2-DCE                    | ND           | µg/L    | 1.0         |                |                                        |            |               |                         |
| cis-1,3-Dichloropropene        | ND           | µg/L    | 1.0         |                |                                        |            |               | •                       |
| Qualifiers:                    |              |         | <del></del> |                |                                        | ······     | <del></del>   |                         |

Qualifiers:

Page 3

NC

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

Non-Chlorinated

R RPD outside accepted recovery limits

## **QA/QC SUMMARY REPORT**

Cht:

Western Refining Southwest, Inc.

Project:

Injection Well 3rd Qtr

Work Order:

1107575

| Analyte                     | Result       | Units         | PQL   | SPK Va SPK re | f %Rec    | LowLimit Hig | ghLimit %RP    | D RPDLimit Qual       |
|-----------------------------|--------------|---------------|-------|---------------|-----------|--------------|----------------|-----------------------|
| Method: EPA Method 82608    | 3: VOLATILES |               |       |               |           |              |                |                       |
| Sample ID: 5ml rb           |              | MBLK          |       |               | Batch ID: | R46633       | Analysis Date: | 7/19/2011 10:00:20 AI |
| 1,2-Dibromo-3-chioropropane | ND           | μg/L          | 2.0   | ,             |           | •            |                |                       |
| Dibromochloromethane        | ND           | μg/L          | 1.0   |               |           |              |                |                       |
| Dibromomethane              | ND           | µg/L          | 1.0   |               |           |              |                |                       |
| 1,2-Dichlorobenzene         | ND           | µg/L          | . 1.0 |               |           |              |                |                       |
| 1,3-Dichlorobenzene         | ND           | µg/L          | 1.0   |               |           |              |                |                       |
| 1,4-Dichlorobenzene         | ND           | µg/L          | 1.0   |               | •         |              |                | ·                     |
| Dichlorodifluoromethane     | ND           | μg/L          | 1.0   |               |           |              |                |                       |
| 1,1-Dichloroethane          | ND T         | µg/L          | 1.0   |               | ,         |              |                |                       |
| 1,1-Dichloroethene          | ND           | μg/L          | 1.0   |               |           |              |                |                       |
| 1,2-Dichloropropane         | ND           | µg/L          | 1.0   |               |           |              |                |                       |
| 1,3-Dichloropropane         | ND           | μ <b>g/L</b>  | 1.0   |               |           |              |                |                       |
| 2,2-Dichloropropane         | ND           | µg/L          | 2.0   |               |           |              |                |                       |
| 1,1-Dichloropropene         | ND           | μg/L          | 1.0   |               | **<br>1'  |              |                |                       |
| Hexachlorobutadiene         | ND           | µg/L          | 1.0   |               | •         |              |                |                       |
| 2-Hexanone                  | ND           | µg/L          | 10    |               |           |              |                |                       |
| Isopropyibenzene            | ND           | µg/L          | 1.0   | •             | ·         |              |                |                       |
| 4-isopropyltoluene          | ND           | μg/L          | 1.0   |               |           |              |                |                       |
| 4-Methyl-2-pentanone        | ND           | µg/L          | 10    |               |           |              |                |                       |
| Mathylene Chloride          | ND           | μg/L          | 3.0   |               | 1         | ,            |                |                       |
| ylbenzene                   | ND           | µg/L          | 1.0   |               |           |              |                |                       |
| n-Propylbenzene             | ND           | μg/L          | 1.0   | •             |           |              |                |                       |
| sec-Butylbenzene            | ND           | µg/L          | 1.0   |               |           |              |                | •                     |
| Styrene                     | ND           | μg/L          | 1.0   |               | •         | •            |                |                       |
| tert-Butylbenzene           | ND           | μg/L          | 1.0   |               |           |              |                |                       |
| 1,1,1,2-Tetrachloroethane   | ND           | µg/L          | 1.0   |               |           |              |                |                       |
| 1,1,2,2-Tetrachioroethane   | ND           | µg/L          | 2.0   |               | ś         |              | •              |                       |
| Tetrachloroethene (PCE)     | ND           | hg/r          | 1.0   |               |           |              |                |                       |
| trans-1,2-DCE               | ND           | µg/L          | 1.0   |               | h         |              |                |                       |
| rans-1,3-Dichloropropene    | ND           | µg/L          | 1.0   |               |           |              |                | •                     |
| 1,2,3-Trichlorobenzene      | ND           | μg/L          | 1.0   |               |           |              |                |                       |
| 1,2,4-Trichlorobenzene      | ND           | µg/L          | 1.0   |               |           | •            |                |                       |
| 1,1,1-Trichtoroethane       | ND           | ha\r          | 1.0   |               |           |              |                |                       |
| 1,1,2-Trichloroethane       | ND           | µg/L          | 1.0   |               |           |              |                |                       |
| Frichloroethene (TCE)       | ND           | h8/F          | 1.0   |               |           |              |                |                       |
| Frichlorofluoromethane      | ND           | μg/L          | 1.0   |               |           |              |                |                       |
| 1,2,3-Trichloropropane      | ND           | μg/L          | 2.0   |               |           |              |                |                       |
| /inyl chloride              | ND           | μg/L          | 1.0   | ·             |           |              |                |                       |
| (ylenes, Total              | ND           | μg/L          | 1.5   |               |           |              |                |                       |
| Sample ID: 100ng lcs        | ,,,,         | LCS           | ,     |               | Batch ID: | R46597       | Analysis Date: | 7/18/2011 8:57:07 PM  |
| •                           | 40.50        |               | 4.0   | 20 0          |           |              | _              |                       |
| Benzene .                   | 19.56        | μg/L          | 1.0   | 20 0          | 97.8      |              | 130            |                       |
| oluene                      | 20.65        | µg/L          | 1.0   | 20 0          | 103       |              | 122            |                       |
| Chlorobenzene               | 20.53        | μg/L          | 1.0   | 20 0          | 103       |              | 130            |                       |
| ,1-Dichloroethene           | 19.37        | μ <b>g</b> /L | 1.0   | 20 0          | 96.8      |              | 126            | •                     |
| richloroethene (TCE)        | 20.11        | µg/L          | 1.0   | 20 <b>0</b>   | 101       | 67.4         | 137            |                       |

Estimated value

Analyte detected below quantitation limits

Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 3rd Qtr

Work Order:

1107575

| Analyte                                           | Result    | Units | PQL | SPK Va | SPK ref | %Rec L    | owLimit Hi | ghLlmit %RP    | D RPDLimit Qual       |
|---------------------------------------------------|-----------|-------|-----|--------|---------|-----------|------------|----------------|-----------------------|
| Method: EPA Method 8260B:<br>Sample ID: 100ng Ics | VOLATILES | LCS   |     |        |         | Batch ID: | R46633     | Analysis Date: | 7/19/2011 10:56:54 AM |
| Benzene                                           | 21.29     | μg/L  | 1.0 | 20     | 0       | 106       | 81.1       | 130            |                       |
| Toluene .                                         | 19.95     | μg/L  | 1.0 | 20     | 0       | 99.7      | 82.3       | 122            |                       |
| Chlorobenzene                                     | 19.83     | μg/L  | 1.0 | 20     | 0       | 99.2      | 70         | 130            |                       |
| 1,1-Dichloroethene                                | 21.32     | μg/L  | 1.0 | 20     | 0       | 107       | 83.1       | 126            | •                     |
| Trichloroethene (TCE)                             | 21.22     | µg/L  | 1.0 | 20     | 0       | 106       | 67.4       | 137            |                       |

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits



## **QA/QC SUMMARY REPORT**

Western Refining Southwest, Inc.

Project: Injection Well 3rd Qtr

Work Order:

1107575

| Analyte                     | Result          | Units | PQL | SPK Va SPK ref | %Rec Lo   | wLimit Hig | hLimit %RPD    | RPDLimit Qual        |
|-----------------------------|-----------------|-------|-----|----------------|-----------|------------|----------------|----------------------|
| Method: EPA Method 8270C    | : Semivolatile: | ,     |     |                |           |            |                |                      |
| Sample ID: mb-27628         |                 | MBLK  |     |                | Batch ID: | 27628      | Analysis Date: | 7/19/2011 12:09:09 P |
| Acenaphthene                | ND              | µg/L  | 10  |                |           |            |                |                      |
| Acenaphthylene              | ND              | hg/L  | 10  |                |           |            |                | •                    |
| Anlline                     | ND              | μg/L  | 10  |                |           |            |                |                      |
| Anthracene                  | ND              | µg/L  | 10  |                |           |            |                |                      |
| Azobenzene                  | ND              | µg/L  | 10  |                |           |            |                |                      |
| Benz(a)anthracene           | ND              | µg/L  | 10  |                | 4         |            |                |                      |
| Benzo(a)pyrene              | ND              | μg/L  | 10  |                |           |            |                | •                    |
| Benzo(b)fluoranthene        | ND .            | h@/r  | 10  |                |           |            |                |                      |
| Benzo(g,h,i)perylene        | ND              | μg/L  | 10  |                |           |            |                |                      |
| Benzo(k)fluoranthene        | ND              | μg/L  | 10  |                |           |            |                |                      |
| Benzoic acid                | ND              | μg/L  | 20  |                |           |            |                |                      |
| Benzyl alcohol              | ND              | μg/L  | 10  |                |           |            |                |                      |
| Bis(2-chloroethoxy)methane  | ND              | μg/L  | 10  |                |           |            |                |                      |
| Bis(2-chloroethyl)ether     | · ND            | µg/L  | 10  |                |           |            |                |                      |
| Bis(2-chloroisopropyl)ether | ND              | µg/L  | 10  |                |           |            |                |                      |
| Bis(2-ethylhexyl)phthalate  | ND              | µg/L  | 10  |                |           |            |                |                      |
| 4-Bromophenyl phenyl ether  | ND              | μg/L  | 10  |                |           |            |                |                      |
| Butyl benzyl phthalate      | ND              | μg/L  | 10  |                |           |            |                |                      |
| azole                       | ND              | µg/L  | 10  |                |           |            |                |                      |
| oro-3-methylphenol          | ND              | μg/L  | 10  | •              |           |            |                |                      |
| 4-Chloroaniline             | ND              | μg/L  | 10  |                |           |            |                |                      |
| 2-Chloronaphthalene         | ND              | μg/L  | 10  |                |           |            |                |                      |
| 2-Chlorophenol              | ND              | µg/L  | 10  |                |           |            |                |                      |
| 4-Chlorophenyl phenyl ether | ND              | μg/L  | 10  |                |           |            |                |                      |
| Chrysene                    | ND              | µg/L  | 10  |                | -         |            |                |                      |
| Di-n-butyl phthalate        | ND              | μg/L  | 10  |                |           |            |                |                      |
| Di-n-octyl phthalate        | ND              | μg/L  | 10  |                |           |            | •              |                      |
| Dibenz(a,h)anthracene       | ND              | μg/L  | 10  |                |           |            |                |                      |
| Dibenzofuran                | ND              | μg/L  | 10  |                |           |            |                |                      |
| 1,2-Dichlorobenzene         | ND              | µg/L  | 10  |                | ı         |            |                | 4                    |
| 1,3-Dichlorobenzene         | ND              | μg/L  | 10  |                |           |            | •              |                      |
| I,4-Dichlorobenzene         | ND              | μg/L  | 10  |                |           | •          |                |                      |
| 3,3'-Dichlorobenzidine      | ND              | µg/L  | 10  | •              |           |            |                |                      |
| Diethyl phthalate           | ND              | μg/L  | 10  |                |           |            |                |                      |
| Dimethyl phthalate          | ND              | μg/L  | 10  |                |           |            |                |                      |
| 2,4-Dichlorophenol          | ND              | μg/L  | 20  |                |           |            |                |                      |
| 2,4-Dimethylphenol          | ND              | µg/L  | 10  |                |           |            |                |                      |
| 1,6-Dinitro-2-methylphenol  | ND              | µg/L  | 20  |                |           |            |                |                      |
| 2,4-Dinitrophenol           | ND              | μg/L  | 20  |                |           |            |                |                      |
| 2,4-Dinitrotoluene          | ND              | µg/L  | 10  |                |           |            |                |                      |
| 2,6-Dinitrotoluene          | ND .            | μg/L  | 10  |                |           |            |                |                      |
| luoranthene                 | ND              | µg/L  | 10  |                | t         | •          |                |                      |
| luorene                     | ND              | µg/L  | 10  |                |           |            |                |                      |
| fexachlorobenzene           | ND              | µg/L  | 10  |                |           |            |                | •                    |
| IOVECHIOIOPORTECHIC         | 140             | hã. r | 10  |                |           |            |                |                      |

lifiers:

E Estimated value

Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

RPD outside accepted recovery limits

# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 3rd Qtr

Work Order:

1107575

|                           |                |              |     | <u> </u> |         |           |            |           |           |              | 1107575    |
|---------------------------|----------------|--------------|-----|----------|---------|-----------|------------|-----------|-----------|--------------|------------|
| Analyte                   | Result         | Units        | PQL | SPK Va   | SPK ref | %Rec      | LowLimit F | lighLimit | %RPD      | RPDLimit     | Qual       |
| Method: EPA Method 82700  | : Semivolatile |              |     |          |         | D-4.1.1D  |            |           |           |              |            |
| Sample ID: mb-27628       |                | MBLK         |     |          |         | Batch ID: | 27628      | Analys    | sis Date: | 7/19/2011 1: | 2:09:09 PI |
| Hexachlorobutadiene       | ND             | μg/L         | 10  |          |         |           |            |           |           |              |            |
| Hexachlorocyclopentadiene | ND             | µg/L         | 10  |          |         |           |            |           |           |              |            |
| Hexachloroethane          | ND             | µg/L         | 10  |          |         |           |            |           |           |              |            |
| Indeno(1,2,3-cd)pyrene    | ND             | μg/L         | 10  |          |         |           |            |           |           |              |            |
| Isophorone                | ND             | μg/L         | 10  |          |         |           |            | -         |           |              |            |
| 2-Methylnaphthalene       | ND             | µg/L         | 10  |          |         |           |            |           |           |              |            |
| 2-Methylphenol            | ND             | µg/L         | 10  |          |         |           |            |           |           |              |            |
| 3+4-Methylphenol          | ND             | hB/F         | 10  |          |         |           |            |           |           |              |            |
| N-Nitrosodi-n-propylamine | ND             | µg/L         | 10  |          |         |           |            |           |           |              |            |
| N-Nitrosodimethylamine    | ND             | μg/L         | 10  |          |         |           |            |           |           |              |            |
| N-Nitrosodiphenylamine    | ND             | μg/L         | 10  |          |         |           |            |           |           |              |            |
| Naphthalene               | ND             | µg/L         | 10  |          |         | •         |            |           |           |              |            |
| 2-Nitroaniline            | ND             | µg/∟         | 10  |          |         |           |            |           |           |              |            |
| 3-Nitroaniline            | ND             | µg/L         | 10  | •        |         |           |            |           |           |              |            |
| 4-Nitroaniline            | ND             | μg/L         | 20  |          |         |           |            |           |           |              |            |
| Nitrobenzene              | ND             | μg/L         | 10  |          |         |           |            |           |           |              |            |
| 2-Nitrophenol             | ND             | μg/L         | 10  |          |         |           |            |           |           |              |            |
| 4-Nitrophenol             | ND             | μg/L         | 10  |          |         |           |            |           |           |              | •          |
| Pentachlorophenol         | ND             | µg/L         | 20  |          |         |           |            |           |           |              |            |
| Phenanthrene              | ND             | µg/L         | 10  |          |         |           | -          |           |           |              |            |
| Phenol                    | ND             | µg/L         | 10  |          |         |           |            |           |           |              |            |
| Pyrene                    | ND             | μ <b>g/L</b> | 10  |          |         |           |            |           |           |              |            |
| Pyridine                  | ND             | µg/L         | 10  |          |         |           |            |           |           |              |            |
| 1,2,4-Trichlorobenzene    | ND             | μg/L         | 10  |          |         |           |            |           |           |              |            |
| 2,4,5-Trichlorophenol     | ND             | µg/L         | 10  |          |         |           |            |           |           |              |            |
| 2,4,6-Trichlorophenol     | ND             | µg/L         | 10  |          |         |           |            |           |           |              | •          |
| Sample ID: Ics-27628      |                | LCS          |     |          |         | Batch ID: | 27628      | Analysi   | is Date:  | 7/19/2011 12 | :39:21 PM  |
| Acenaphthene              | 90.66          | µg/L         | 10  | 100      | 0       | 90.7      | 31.7       | 107       |           |              |            |
| 4-Chloro-3-methylphenol   | 158.9          | μg/L         | 10  | 200      | 0       | 79.5      | 24.4.      | 123       |           |              |            |
| 2-Chlorophenol            | 144.6          | µg/L         | 10  | 200      | 0       | 72.3      | 24.7       | 104       |           |              |            |
| 1,4-Dichlorobenzene       | 73.62          | μg/L         | 10  | 100      | 0       | 73.6      | 20.3       | 95        |           |              |            |
| 2,4-Dinitrotoluene        | 91.30          | µg/L         | 10  | 100      | 0       | 91.3      | 22.4       | 106       |           |              |            |
| N-Nitrosodi-n-propylamine | 76.62          | µg/L         | 10  | 100      | 0       | 76.6      | 25.3       | 107       |           |              |            |
| I-Nitrophenol             | 74.30          | hã/ľ         | 10  | 200      | 5.96    | 34.2      | 11.6       | 110       |           |              |            |
| Pentachlorophenol         | 112.3          | µg/L         | 20  | 200      | 0       | 56.1      | 19.5       | 113       |           |              |            |
| Phenol                    | 98.52          | µg/L         | 10  | 200      | 0       | 49.3      | 16.1       | 59.3      |           |              |            |
| yrene                     | 85.04          | μg/L         | 10  | 100      | 0       | 85.0      | 38.3       | 99.3      |           |              |            |
| 2,4-Trichlorobenzene      | 78.98          | <b>ի</b> 8/Ր | 10  | 100      | 0       | 79.0      | 25         | 97.3      |           |              |            |
| Sample ID: Icsd-27628     |                | LCSD         |     |          |         | Batch ID: | 27628      | Analysis  | s Date:   | 7/19/2011 1: | 09:27 PM   |
| cenaphthene               | 93.88          | μg/L         | 10  | 100      | 0       | 93.9      | 31.7       | 107       | 3.49      | 20           |            |
| -Chloro-3-methylphenol    | 155.4          | μg/L         | 10  | 200      | 0       | 77.7      | 24.4       | 123       | 2.25      | 20           |            |
| -Chlorophenol             | 127.0          | μg/L         | 10  | 200      | 0       | 63.5      | 24.7       | 104       | 12.9      | 20           |            |
| ,4-Dichlorobenzene        | 73.80          | μg/L         | 10  | 100      | 0       | 73.8      | 20.3       | 95        | 0.244     | 20           |            |
| ,4-Dinitrotoluene         | 92.78          | µg/L         | 10  | 100      | 0       | 92.8      | 22.4       | 106       | 1.61      | 20           |            |

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

# **QA/QC SUMMARY REPORT**

**O**nt:

Western Refining Southwest, Inc.

Project:

Injection Well 3rd Qtr

Work Order:

1107575

| Method: EPA Method 8270C: Sample ID: Icsd-27628 N-Nitrosodi-n-propylamine 4-Nitrophenol Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene  Method: EPA Method 7470: N | 76.12<br>43.30<br>78.76<br>88.54<br>85.18<br>69.42 | LCSD  pg/L  pg/L  pg/L  pg/L  pg/L  pg/L  pg/L | 10<br>10<br>20<br>10 | 100<br>200<br>200 | 0<br>5.96 | Batch ID: | <b>27628</b><br>25.3 | Analysi:  |             | 7/19/2011    | 1:09:27 PM   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|----------------------|-------------------|-----------|-----------|----------------------|-----------|-------------|--------------|--------------|
| N-Nitrosodi-n-propylamine 4-Nitrophenol Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene                                                                             | 43.30<br>78.76<br>88.54<br>85.18<br>69.42          | µg/L<br>µg/L<br>µg/L<br>µg/L                   | 10<br>20<br>10       | 200               |           |           |                      | _         |             |              | 1:09;27 PI   |
| 4-Nitrophenol Pentachiorophenol Phenol Pyrene 1,2,4-Trichlorobenzene                                                                                                       | 43.30<br>78.76<br>88.54<br>85.18<br>69.42          | µg/L<br>µg/L<br>µg/L<br>µg/L                   | 10<br>20<br>10       | 200               |           | 76.1      | 25.3                 | 107       |             | ~~           |              |
| Pentachiorophenol Phenol Pyrene 1,2,4-Trichlorobenzene                                                                                                                     | 78.76<br>88.54<br>85.18<br>69.42                   | µg/L<br>µg/L<br>µg/L                           | 20<br>10             |                   | 5.96      |           |                      | 101       | 0.655       | 20           |              |
| Phenol Pyrene 1,2,4-Trichlorobenzene                                                                                                                                       | 88.54<br>85.18<br>69.42                            | µg/L<br>µg/L                                   | 10                   | 200               |           | 18.7      | 11.6                 | 110       | 52.7        | 20           | R            |
| Pyrene<br>1,2,4-Trichlorobenzene                                                                                                                                           | 85.18<br>69.42                                     | µg/L                                           |                      |                   | 0         | 39.4      | 19.5                 | 113       | 35.1        | 20           | R            |
| 1,2,4-Trichlorobenzene                                                                                                                                                     | 69.42                                              |                                                | 40                   | 200               | 0         | 44.3      | 16.1                 | 69.3      | 10.7        | 20           | •            |
|                                                                                                                                                                            |                                                    | μg/L                                           | 10                   | 100               | 0         | 85.2      | 38.3                 | 99.3      | 0.164       | 20           |              |
| Method: EPA Method 7470: N                                                                                                                                                 | lercury                                            |                                                | 10                   | 100               | 0         | 69.4      | 25                   | 97.3      | 12.9        | 20           |              |
|                                                                                                                                                                            |                                                    |                                                |                      |                   |           |           |                      |           |             |              |              |
| Sample ID: MB-27649                                                                                                                                                        |                                                    | MBLK                                           |                      |                   |           | Batch ID: | 27649                | Analysis  | s Date:     | 7/19/2011 :  | 2:43:07 PN   |
| Mercury                                                                                                                                                                    | ND                                                 | mg/L                                           | 0.00020              |                   |           |           |                      |           |             |              |              |
| Sample ID: LCS-27649                                                                                                                                                       |                                                    | LCS                                            |                      |                   |           | Batch ID: | 27649                | Analysis  | s Date:     | 7/19/2011    | 2:44:51 PN   |
| Mercury                                                                                                                                                                    | 0.005013                                           | mg/L                                           | 0.00020              | 0.005             | 2E-05     | 99.9      | 80                   | 120       |             |              |              |
|                                                                                                                                                                            |                                                    |                                                | 0.00020              | 0.000             | 22.00     |           |                      | 120       |             |              | <del></del>  |
| Method: EPA 6010B: Total Re                                                                                                                                                | coverable Met                                      |                                                |                      |                   |           | Batch ID: | 27683                | Analysis  | n Data:     | 7/21/2011    | 7: OA: OA AB |
| Sample ID: MB-27683                                                                                                                                                        | •                                                  | MBLK                                           |                      |                   |           | Daton ID. | 2/003                | Milalysis | b Date.     | 112112011    | ',24.U4 MN   |
| Arsenic                                                                                                                                                                    | ND                                                 | mg/L                                           | 0.020                |                   | •         |           |                      |           |             |              |              |
| Barium                                                                                                                                                                     | ND                                                 | mg/L                                           | 0.020                |                   |           |           |                      |           |             |              |              |
| Cadmium                                                                                                                                                                    | ND                                                 | mg/L                                           | 0.0020               |                   |           |           |                      |           |             |              |              |
| Calcium                                                                                                                                                                    | ND ·                                               | mg/L                                           | 1.0                  |                   |           |           |                      |           |             |              |              |
| nium                                                                                                                                                                       | ND                                                 | mg/L                                           | 0.0060               | •                 | •         |           |                      |           |             | •            |              |
| Lead                                                                                                                                                                       | ND                                                 | mg/L                                           | 0.0050               |                   |           |           |                      |           |             |              |              |
| Magnesium                                                                                                                                                                  | ND                                                 | mg/L                                           | 1.0                  |                   |           |           |                      |           |             |              |              |
| Potassium                                                                                                                                                                  | ND                                                 | mg/L                                           | 1.0                  |                   |           |           |                      |           |             |              |              |
| Selenium<br>-                                                                                                                                                              | ND                                                 | mg/L                                           | 0.050                |                   |           |           |                      |           |             |              |              |
| Silver                                                                                                                                                                     | ND                                                 | mg/L                                           | 0.0050               |                   |           |           |                      |           |             |              | •            |
| Sodium                                                                                                                                                                     | ND                                                 | mg/L                                           | 1.0                  |                   |           | D 4 6 1D. |                      | A 1       | <b>D</b> 4  | 7/04/0044    |              |
| Sample ID: LCS-27683                                                                                                                                                       |                                                    | LCS                                            | •                    |                   |           | Batch ID: | 27683                | Analysis  | B Date:     | 7/21/2011 7  | :26:11 AN    |
| Arsenic                                                                                                                                                                    | 0.5225                                             | mg/L                                           | 0.020                | 0.5               | 0         | 104       | 08                   | 120       |             |              |              |
| Barium                                                                                                                                                                     | 0.4948                                             | mg/L                                           | 0.020                | 0.5               | 0         | 99.0      | 80                   | 120       |             |              |              |
| Cadmium                                                                                                                                                                    | 0.4885                                             | mg/L                                           | 0.0020               | 0.5               | 0         | 97.7      | 80                   | 120       |             |              |              |
| Calcium                                                                                                                                                                    | 50.66                                              | mg/L                                           | 1.0                  | 50                | 0         | 101       | 80                   | 120       |             |              |              |
| Chromium                                                                                                                                                                   | 0.5178                                             | mg/L                                           | 0.0060               | 0.5               | 0         | 104       | 80                   | 120       |             |              | •            |
| Lead                                                                                                                                                                       | 0.4830                                             | mg/L                                           | 0.0050               | 0.5               | 0         | 96.6      | 80                   | 120       |             |              |              |
| Magnesium                                                                                                                                                                  | 50.52                                              | mg/L                                           | 1.0                  | 50                | 0         | 101       | 80                   | 120       |             |              |              |
| Potassium                                                                                                                                                                  | 48.58                                              | mg/L                                           | 1.0                  | 50                | . 0       | 97.2      | 80                   | 120       |             |              |              |
| Selenium                                                                                                                                                                   | 0.5014                                             | mg/L                                           | 0.050                | 0.5               | 0         | 100       | 80                   | 120       |             |              |              |
| Silver                                                                                                                                                                     | 0.1015                                             | mg/L                                           | 0.0050               | 0.1               | 0         | 102       | 80                   | 120       |             |              |              |
| Sodium                                                                                                                                                                     | 49.79                                              | mg/L                                           | 1.0                  | 50                | 0         | 99.6      | 80                   | 120       | <del></del> |              |              |
| Method: SM2540C MOD: Total                                                                                                                                                 | Dissolved So                                       | lids                                           |                      |                   |           |           |                      |           |             |              |              |
| Sample ID: MB-27616                                                                                                                                                        |                                                    | MBLK                                           |                      |                   |           | Batch ID: | 27616                | Analysis  | Date:       | 7/19/2011 10 | :45:00 AM    |
| Total Dissolved Solids                                                                                                                                                     | ND                                                 | mg/L                                           | 20.0                 |                   |           |           |                      |           |             |              |              |
| Sample ID: LCS-27616                                                                                                                                                       |                                                    | LCS                                            |                      |                   |           | Batch ID: | 27616                | Analysis  | Date:       | 7/19/2011 10 | 45:00 AM     |
| Total Dissolved Solids                                                                                                                                                     | 1014                                               | mg/L                                           | 20.0                 | 1000              | 0         | 101       | 80                   | 120       |             |              |              |

រេញ

lifiers: Estimated value

Analyte detected below quantitation limits

Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

### Sample Receipt Checklist

| Client Name WESTERN REFINING SOUT                       |                 | Date Receive        | d:              | 7/15/2011                           |
|---------------------------------------------------------|-----------------|---------------------|-----------------|-------------------------------------|
| Work Order Number 1107575                               |                 | Received by         | : LNM           | 1                                   |
| Checklist completed by:                                 | 7//5            | Sample ID le        | ibels checked t | by: Inilials                        |
| Matrix: Carrier n                                       | ame: <u>UPS</u> |                     |                 |                                     |
| Shipping container/cooler in good condition?            | Yes 🗹           | . No 🗀              | Not Present     |                                     |
| Custody seals intact on shipping container/cooler?      | Yes 🗹           | No 🗆                | Not Present     | ☐ Not Shipped ☐                     |
| Custody seals intact on sample bottles?                 | Yes 🗌           | No 🗆                | N/A             | <b>☑</b>                            |
| Chain of custody present?                               | Yes 🗹           | No 🗀                |                 |                                     |
| Chain of custody signed when relinquished and received? | Yes 🗹           | No 🗆                |                 |                                     |
| Chain of custody agrees with sample labels?             | Yes 🗹           | No 🗆                |                 |                                     |
| Samples in proper container/bottle?                     | Yes 🗹           | No 🗆                |                 |                                     |
| Sample containers intact?                               | Yes 🗹           | . No 🗆              |                 | ,                                   |
| Sufficient sample volume for indicated test?            | Yes 🗹           | No 🗀                |                 |                                     |
| All samples received within holding time?               | Yes 🗹           | No 🗀                |                 | Number of preserved                 |
| Water - VOA vials have zero headspace? No VOA vials     | submitted       | Yes 🗹               | No 🗌            | bottles checked for pH:             |
| Water - Preservation labels on bottle and cap match?    | Yes 🗹           | No 🗆                | N/A             | 2.2                                 |
| Water - pH acceptable upon receipt?                     | Yes 🗹           | No 🗆                | N/A             | <2) 12 juniess noted                |
| Container/Temp Blank temperature?                       | 5.4°            | <6° C Acceptabl     | 0               | CB/G/OW.                            |
| COMMENTS:                                               |                 | If given sufficient | time to cool.   |                                     |
|                                                         |                 |                     | •               |                                     |
| •                                                       |                 |                     |                 |                                     |
|                                                         | <del> </del>    |                     |                 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |
|                                                         |                 |                     |                 |                                     |
|                                                         |                 |                     |                 | •                                   |
|                                                         |                 |                     |                 |                                     |
| Client contacted Date contacted:                        |                 | Perso               | on contacted    |                                     |
| Contacted by: Regarding:                                |                 |                     |                 |                                     |
|                                                         |                 |                     |                 |                                     |
| Comments:                                               |                 |                     |                 |                                     |
|                                                         |                 |                     |                 |                                     |
|                                                         |                 |                     |                 |                                     |
|                                                         |                 |                     |                 |                                     |
| Occupation Assista                                      | <del></del>     |                     |                 |                                     |
| Corrective Action                                       |                 |                     |                 |                                     |
|                                                         |                 |                     |                 |                                     |
|                                                         | 1               |                     |                 |                                     |

|                        | HALL ENVIRONMENTAL       | AINTEGER ABORATOR | www.hallenvironmental.com   | phodia - Angel Loca | Tel. 505-345-3975 Fax 505-345-4107      | Analysis Request      | (1) (A) (A)                 | seignos        | 7 <b>7</b>                         | ) Ho        | (H)<br>(H)<br>(H)<br>(H)                   | 801<br>1 P Sels (NO) | MTB<br>thod<br>Meta<br>(F,Cl, | 270 (School of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the co | T                             | ×             | <b>X</b> | ×      | X             | <b>X</b>     | **             |                  |  |                               | Time Remarks: | / Time                       |
|------------------------|--------------------------|-------------------|-----------------------------|---------------------|-----------------------------------------|-----------------------|-----------------------------|----------------|------------------------------------|-------------|--------------------------------------------|----------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------|----------|--------|---------------|--------------|----------------|------------------|--|-------------------------------|---------------|------------------------------|
| Turn-Around Time:      | Standard 🗆 Rush          | Project Name:     | Twicelian Well 3st          | , Project #:        | Τ                                       |                       | Project Manager:            |                |                                    | 1           | On 100-100-100-100-100-100-100-100-100-100 | Sample Temberature   |                               | Type and # Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-10A Hel                     | 1-LitzH Amber |          | 1-50ml | 1-350ml H3504 | 1-500ml HNO3 | 1-500 ml Na 04 | 1-5com ZNACETATE |  |                               | Kecewa by.    | Redeffed by: Date            |
| Chen-of-Custody Record | Client: Western R. Gains |                   | Mailing Address: 50 CR 4990 | ìΖ                  | 110000000000000000000000000000000000000 | Phone #: 505-631-4/44 | email or Fax#: 505-632-39// | DA/QC Package: | Standard Eevel 4 (Full Validation) | creditation | □ NELAP □ Other                            | □ EDD (Type)         |                               | Date   Time   Matrix   Sample Request ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14-11 3:10 Has INJECTION WELL |               |          |        |               |              |                |                  |  | Defo. Time. Delinentished her | 11 5:00       | Date: Time: Relinquished by: |



### COVER LETTER

Friday, November 11, 2011

Kelly Robinson
Western Refining Southwest, Inc.
#50 CR 4990
Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Injection Well 4th Qtr

Dear Kelly Robinson:

Order No.: 1110646

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 10/12/2011 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682

Date: 11-Nov-11

| CLIENT:<br>Project:<br>Lab Order: | Western Refining So<br>Injection Well 4th Q<br>1110646 |          | Work Order S                        | er Sample Summary     |  |  |  |
|-----------------------------------|--------------------------------------------------------|----------|-------------------------------------|-----------------------|--|--|--|
| Lab Sample ID                     | Client Sample ID                                       | Batch ID | Test Name                           | Collection Date       |  |  |  |
| 11 <b>10646-01A</b>               | Injection Well                                         | R48569   | EPA Method 8260B: VOLATILES         | 10/11/2011 9:30:00 AM |  |  |  |
| 1110646-01A                       | Injection Well                                         | R48569   | EPA Method 8260B: VOLATILES         | 10/11/2011 9:30:00 AM |  |  |  |
| 1110646-01B                       | Injection Well                                         | 28933    | EPA Method 8270C: Semivolatiles     | 10/11/2011 9:30:00 AM |  |  |  |
| 1110646-01D                       | Injection Well                                         | R48584   | EPA Method 300.0: Anions            | 10/11/2011 9:30:00 AM |  |  |  |
| 1110646-01D                       | Injection Well                                         | 28916    | SM2540C MOD: Total Dissolved Solids | 10/11/2011 9:30:00 AM |  |  |  |
| 1110646-01D                       | Injection Well                                         | R48438   | SM 2320B: Alkalinity                | 10/11/2011 9:30:00 AM |  |  |  |
| 1110646-01D                       | Injection Well                                         | R48438   | EPA 120.1: Specific Conductance     | 10/11/2011 9:30:00 AM |  |  |  |
| 1110646-01D                       | Injection Well                                         | R48438   | SM4500-H+B: pH                      | 10/11/2011 9:30:00 AM |  |  |  |
| 1110646-01D                       | Injection Well                                         | R48414   | EPA Method 300.0: Anions            | 10/11/2011 9:30:00 AM |  |  |  |
| 1110646-01D                       | Injection Well                                         | R48414   | EPA Method 300.0: Anions            | 10/11/2011 9:30:00 AM |  |  |  |
| 1110646-01E                       | Injection Well                                         | 29034    | EPA Method 7470: Mercury            | 10/11/2011 9:30:00 AM |  |  |  |
| 1110646-01E                       | Injection Well                                         | 28889    | EPA 6010B: Total Recoverable Metals | 10/11/2011 9:30:00 AM |  |  |  |
| 1110646-01E                       | Injection Well                                         | 28889    | EPA 6010B: Total Recoverable Metals | 10/11/2011 9:30:00 AM |  |  |  |
| 1110646-01E                       | Injection Well                                         | 28889    | EPA 6010B: Total Recoverable Metals | 10/11/2011 9:30:00 AM |  |  |  |
| 1110646-02A                       | Trip Blank                                             | R48569   | EPA Method 8260B: VOLATILES         |                       |  |  |  |

Date: 11-Nov-11
Analytical Report

CLIENT:

Western Refining Southwest, Inc.

.....

Client Sample ID: Injection Well

Lab Order:

1110646

Collection Date: 10/11/2011 9:30:00 AM

Project:

Injection Well 4th Qtr

**Date Received:** 10/12/2011

Lab ID:

1110646-01

Matrix: AQUEOUS

| Analyses                        | Result | PQL     | Qual Units | D <b>F</b> | Date Analyzed          |
|---------------------------------|--------|---------|------------|------------|------------------------|
| EPA METHOD 300.0: ANIONS        |        | `       | ·          |            | Analyst: SRM           |
| Chloride                        | 550    | . 25    | mg/L       | 50         | 10/22/2011 7:03:43 PM  |
| Sulfate                         | 69     | 10      | mg/L       | 20         | 10/13/2011 12:22:42 PM |
| EPA METHOD 7470: MERCURY        |        | •       |            |            | Analyst: BRM           |
| Mercury                         | ND     | 0.00020 | mg/L       | 1          | 10/24/2011 4:11:38 PM  |
| EPA 6010B: TOTAL RECOVERABLE ME | TALS   |         |            |            | Analyst: RAGS          |
| Arsenic                         | ND     | 0.020   | mg/L       | . 1        | 10/21/2011 9:31:39 AM  |
| Barium                          | 0.19   | 0.020   | mg/L       | 1          | 10/21/2011 9:31:39 AM  |
| Cadmium                         | ND     | 0.0020  | mg/L       | 1          | 10/21/2011 9:31:39 AM  |
| Calcium                         | 150    | 5.0     | mg/L       | 5          | 10/21/2011 9:43:37 AM  |
| Chromium                        | ND     | 0.0060  | mg/L       | . 1        | 10/21/2011 9:31:39 AM  |
| Lead                            | ND     | 0.0050  | mg/L       | . 1        | 10/21/2011 9:31:39 AM  |
| Magnesium                       | 24     | 1.0     | mg/L       | 1          | 10/21/2011 9:31:39 AM  |
| Potassium                       | 6.8    | 1.0     | mg/L       | 1          | 10/21/2011 9:31:39 AM  |
| Selenium                        | ND     | 0.050   | mg/L       | 1          | 10/21/2011 9:31:39 AM  |
| Silver                          | ND     | 0.0050  | mg/L       | 1          | 10/21/2011 9:31:39 AM  |
| Sodium                          | 230    | 5.0     | mg/L       | 5          | 10/21/2011 9:43:37 AM  |
| EPA METHOD 8270C: SEMIVOLATILES |        |         |            |            | Analyst: JDC           |
| Acenaphthene                    | ND     | 10      | μġ/L       | 1          | 10/21/2011 12:42:40.PM |
| Acenaphthylene                  | ND     | 10      | μg/L       | 1          | 10/21/2011 12:42:40 PM |
| Aniline                         | ND     | 10      | μg/L       | 1          | 10/21/2011 12:42:40 PM |
| Anthracene                      | ND `   | 10      | μg/L       | 1          | 10/21/2011 12:42:40 PM |
| Azobenzene                      | ND     | 10      | μg/L       | 1          | 10/21/2011 12:42:40 PM |
| Benz(a)anthracene               | ND     | 10      | μg/L       | 1          | 10/21/2011 12:42:40 PM |
| Benzo(a)pyrene                  | ND     | 10      | μg/L       | · 1        | 10/21/2011 12:42:40 PM |
| Benzo(b)fluoranthene            | ND     | 10      | µģ/L       | 1          | 10/21/2011 12:42:40 PM |
| Benzo(g,h,i)perylene            | ND     | . 10    | μġ/L       | 1          | 10/21/2011 12:42:40 PM |
| Benzo(k)fluoranthene            | ND     | 10      | μġ/L       | 1          | 10/21/2011 12:42:40 PM |
| Benzoic acid                    | ND     | 20      | μg/L       | 1          | 10/21/2011 12:42:40 PM |
| Benzyl alcohol                  | ND     | 10      | μg/Ĺ       | 1          | 10/21/2011 12:42:40 PM |
| Bis(2-chloroethoxy)methane      | ND     | 10      | μġ/L       | 1          | 10/21/2011 12:42:40 PM |
| Bis(2-chloroethyl)ether .       | ND     | 10      | · μġ/L     | 1          | 10/21/2011 12:42:40 PM |
| Bis(2-chlorolsopropyl)ether     | ND     | 10      | µg/L       | . 1        | 10/21/2011 12:42:40 PM |
| Bis(2-ethylhexyl)phthalate      | ND     | 10      | μg/L       | 1          | 10/21/2011 12:42:40 PM |
| 4-Bromophenyl phenyl ether      | ND     | 10      | μg/L       | 1 .        | 10/21/2011 12:42:40 PM |
| Butyl benzyl phthalate          | ND     | 10      | µg/L       | 1          | 10/21/2011 12:42:40 PM |
| Carbazole                       | ND     | 10      | µg/L       | 1          | 10/21/2011 12:42:40 PM |
| 4-Chloro-3-methylphenol         | ND     | 10      | μg/L       | 1          | 10/21/2011 12:42:40 PM |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 1 of 7

Date: 11-Nov-11

Analytical Report

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1110646

Project:

Injection Well 4th Qtr

Lab ID:

1110646-01

Client Sample ID: Injection Well

Collection Date: 10/11/2011 9:30:00 AM

Date Received: 10/12/2011

Matrix: AQUEOUS

| Analyses                               | Result | PQL  | Qual | Units        | DF  | Date Analyzed          |
|----------------------------------------|--------|------|------|--------------|-----|------------------------|
| <b>EPA METHOD 8270C: SEMIVOLATILES</b> |        |      |      |              |     | Analyst: JDC           |
| 4-Chloroaniline                        | ND     | 10   |      | µg/L         | 1   | 10/21/2011 12:42:40 PM |
| 2-Chloronaphthalene                    | ND     | 10   |      | μg/L         | · 1 | 10/21/2011 12:42:40 PM |
| 2-Chlorophenol                         | ND     | 10   |      | μg/L         | 1   | 10/21/2011 12:42:40 PM |
| 4-Chlorophenyl phenyl ether            | ND     | 10   |      | μg/L         | 1   | 10/21/2011 12:42:40 PM |
| Chrysene                               | ND     | 10   |      | μg/L         | 1 ' | 10/21/2011 12:42:40 PM |
| Di-n-butyl phthalate                   | ND     | 10   |      | μg/L         | 1   | 10/21/2011 12:42:40 PM |
| Di-n-octyl phthalate                   | ND     | 10   |      | µg/L         | 1   | 10/21/2011 12:42:40 PM |
| Dibenz(a,h)anthracene                  | ND     | · 10 |      | μg/L         | 1   | 10/21/2011 12:42:40 PM |
| Dibenzofuran                           | ND     | 10   |      | μg/L         | 1   | 10/21/2011 12:42:40 PM |
| 1,2-Dichlorobenzene                    | ND     | 10   |      | μg/L         | 1   | 10/21/2011 12:42:40 PM |
| 1,3-Dichlorobenzene                    | ND     | . 10 |      | µg/L         | 1   | 10/21/2011 12:42:40 PM |
| 1,4-Dichlorobenzene                    | ND     | 10   |      | μg/L         | 1   | 10/21/2011 12:42:40 PM |
| 3,3'-Dichlorobenzidine                 | ND     | 10   |      | μg/L         | 1   | 10/21/2011 12:42:40 PM |
| Diethyl phthalate                      | ND     | 10   |      | µg/L         | 1   | 10/21/2011 12:42:40 PM |
| Dimethyl phthalate                     | ND     | 10   | ٠.   | µg/L         | 1   | 10/21/2011 12:42:40 PM |
| 2,4-Dichlorophenol                     | ND     | 20   |      | μg/L         | 1   | 10/21/2011 12:42:40 PM |
| 2,4-Dimethylphenol                     | ND     | 10   |      | µg/L         | 1   | 10/21/2011 12:42:40 PM |
| 4,6-Dinitro-2-methylphenol             | ND     | 20   |      | µg/L         | 1   | 10/21/2011 12:42:40 PM |
| 2,4-Dinitrophenol                      | ND     | 20   |      | μg/L         | 1   | 10/21/2011 12:42:40 PM |
| 2,4-Dinitrotoluene                     | ND     | 10   |      | μg/L         | 1   | 10/21/2011 12:42:40 PM |
| 2,6-Dinitrotoluene                     | ND     | 10   |      | μg/L         | 1   | 10/21/2011 12:42:40 PM |
| Fluoranthene                           | ND     | 10   |      | μg/L         | 1   | 10/21/2011 12:42:40 PM |
| Fluorene                               | ND     | 10   |      | μg/L         | . 1 | 10/21/2011 12:42:40 PM |
| Hexachlorobenzene                      | ND     | 10   |      | µg/L         | 1   | 10/21/2011 12:42:40 PM |
| Hexachlorobutadiene                    | ND     | 10   |      | µg/L         | 1   | 10/21/2011 12:42:40 PM |
| Hexachlorocyclopentadiene              | ND     | 10   |      | µg/L         | 1   | 10/21/2011 12:42:40 PM |
| Hexachloroethane                       | ND     | 10   |      | μ <b>g/L</b> | · 1 | 10/21/2011 12:42:40 PM |
| Indeno(1,2,3-cd)pyrene                 | ND     | - 10 |      | μg/L         | 1   | 10/21/2011 12:42:40 PM |
| Isophorone                             | ND     | 10   |      | µg/L         | 1   | 10/21/2011 12:42:40 PM |
| 2-Methylnaphthalene                    | ND     | 10   |      | μg/L         | 1   | 10/21/2011 12:42:40 PM |
| 1-Methylnaphthalene                    | ND     | 10   |      | μg/L         | 1   | 10/21/2011 12:42:40 PM |
| 2-Methylphenol                         | ND     | 10   |      | µg/L         | 1   | 10/21/2011 12:42:40 PM |
| 3+4-Methylphenol                       | ND     | 10   |      | μg/L         | 1   | 10/21/2011 12:42:40 PM |
| N-Nitrosodi-n-propylamine              | ND     | 10   |      | µg/L         | 1   | 10/21/2011 12:42:40 PM |
| N-Nitrosodimethylamine                 | ND     | 10   |      | µg/L         | 1   | 10/21/2011 12:42:40 PM |
| N-Nitrosodiphenylamine                 | ND     | 10   |      | µg/L         | 1   | 10/21/2011 12:42:40 PM |
| Naphthalene                            | ND     | 10   |      | µg/L         | 1   | 10/21/2011 12:42:40 PM |
| 2-Nitroaniline                         | ND     | 10   |      | µg/L         | 1   | 10/21/2011 12:42:40 PM |
| 3-Nitroanlline                         | ND     | 10   |      | μg/L         | 1   | 10/21/2011 12:42:40 PM |
| 4-Nitroaniline                         | ND     | 20   |      | µg/L         | 1   | 10/21/2011 12:42:40 PM |

### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 2 of 7

Date: 11-Nov-11 Analytical Report

CLIENT:

Western Refining Southwest, Inc.

Client Sample ID: Injection Well

Lab Order:

1110646

Collection Date: 10/11/2011 9:30:00 AM

Project:

Injection Well 4th Qtr

Date Received: 10/12/2011

Lab ID:

1110646-01

Matrix: AQUEOUS

| Analyses                               | Result | PQL       | Qual | Units         | DF           | Date Analyzed          |
|----------------------------------------|--------|-----------|------|---------------|--------------|------------------------|
| <b>EPA METHOD 8270C: SEMIVOLATILES</b> |        |           |      |               |              | Analyst: JDC           |
| Nitrobenzene                           | ND     | 10        |      | µg/L          | 1            | 10/21/2011 12:42:40 PM |
| 2-Nitrophenol                          | ND     | 10        |      | µg/L          | 1            | 10/21/2011 12:42:40 PM |
| 4-Nitrophenol                          | . ND   | 10        |      | μg/L          | 1            | 10/21/2011 12:42:40 PM |
| Pentachlorophenol                      | ND.    | 20        |      | μg/L          | · 1          | 10/21/2011 12:42:40 PM |
| Phenanthrene                           | ND     | 10        |      | µg/L          | 1 .          | 10/21/2011 12:42:40 PM |
| Phenol                                 | ND     | 10        |      | µg/L          | 1            | 10/21/2011 12:42:40 PM |
| Pyrene                                 | ND     | 10        |      | μg/L          | 1            | 10/21/2011 12:42:40 PM |
| Pyridine                               | ND     | . 10      |      | µg/L          | 1            | 10/21/2011 12:42:40 PM |
| 1,2,4-Trichlorobenzene                 | ND     | 10        |      | μg/L          | 1 .          | 10/21/2011 12:42:40 PM |
| 2,4,5-Trichlorophenoi                  | ND     | 10        |      | μg/L          | . 1          | 10/21/2011 12:42;40 PM |
| 2,4,6-Trichlorophenol                  | ND     | 10        |      | μ <b>g/</b> L | 1            | 10/21/2011 12:42:40 PM |
| Surr: 2,4,6-Tribromophenol             | 71.9   | 18.1-138  |      | %REC          | 1            | 10/21/2011 12:42:40 PM |
| Surr: 2-Fluorobiphenyl                 | 65.6   | 25.9-101  |      | %REC          | 1            | 10/21/2011 12:42:40 PM |
| Surr: 2-Fluorophenol                   | 43.9   | 12.5-93.2 |      | %REC          | 1            | 10/21/2011 12:42:40 PM |
| Surr: 4-Terphenyl-d14                  | 70.3   | 29.5-112  | •    | %REC          | 1            | 10/21/2011 12:42:40 PM |
| Surr: Nitrobenzene-d5                  | 72.8   | 20.5-120  | 1    | %REC          | 1            | 10/21/2011 12:42:40 PM |
| Surr: Phenol-d5                        | 32.5   | 11.3-73.2 | 1    | %REC          | 1            | 10/21/2011 12:42:40 PM |
|                                        |        |           |      | Ì             |              | •                      |
| EPA METHOD 8260B: VOLATILES            |        |           |      |               |              | Analyst: NSB           |
| Benzene                                | ND     | 1.0       |      | µg/L          | 1            | 10/20/2011 11:21:18 AM |
| Toluene                                | ND     | 1.0       | 1    | μg/L          | . 1          | 10/20/2011 11:21:18 AM |
| Ethylbenzene                           | ND     | 1.0       |      | µg/L          | 1            | 10/20/2011 11:21:18 AM |
| Methyl tert-butyl ether (MTBE)         | 1.3    | 1.0       |      | µg/L          | 1            | 10/20/2011 11:21:18 AM |
| 1,2,4-Trimethylbenzene                 | ND     | 1.0       | · I  | μg/L          | 1            | 10/20/2011 11:21:18 AM |
| 1,3,5-Trimethylbenzene                 | ND     | 1.0       | I    | µg/L          | <b>`1</b>    | 10/20/2011 11:21:18 AM |
| 1,2-Dichloroethane (EDC)               | ND     | 1.0       | 4    | µg/L          | 1            | 10/20/2011 11:21:18 AM |
| 1,2-Dibromoethane (EDB)                | ND     | 1.0       | · i  | µg/L          | . , <b>1</b> | 10/20/2011 11:21:18 AM |
| Naphthalene .                          | ND     | 2.0       | ı    | μg/L          | 1            | 10/20/2011 11:21:18 AM |
| 1-Methylnaphthalene                    | ND     | 4.0       |      | µg/L          | 1            | 10/20/2011 11:21:18 AM |
| 2-Methylnaphthalene                    | ND     | 4.0       | 1    | μg/L          | ' 1          | 10/20/2011 11:21:18 AM |
| Acetone                                | 180    |           | -    | µg/L          | 10           | 10/20/2011 3:08:33 PM  |
| Bromobenzene                           | ND     | 1.0       | 1    | μg/L          | 1            | 10/20/2011 11:21:18 AM |
| Bromodichloromethane                   | ND     | 1.0       |      | µg/L          | 1            | 10/20/2011 11:21:18 AM |
| Bromoform                              | ND     | 1.0       | 1    | µg/L          | 1            | 10/20/2011 11:21:18 AM |
| Bromomethane                           | ND     | 3.0       |      | µg/L          | 1            | 10/20/2011 11:21:18 AM |
| 2-Butanone                             | 14     | . 10      |      | µg/L          | 1            | 10/20/2011 11:21:18 AM |
| Carbon disulfide                       | ND     | 10        |      | µg/L          | 1            | 10/20/2011 11:21:18 AM |
| Carbon Tetrachloride                   | ND     | 1.0       |      | µg/L          | 1            | 10/20/2011 11:21:18 AM |
| Chlorobenzene                          | ND     | 1.0       |      | µg/L          | 1            | 10/20/2011 11:21:18 AM |
| Chloroethane                           | ND     | 2.0       | 1    | µg/L          | 1            | 10/20/2011 11:21:18 AM |

### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Estimated value E
- Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- Analyte detected in the associated Method Blank В
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits

Page 3 of 7

Date: 11-Nov-11
Analytical Report

CLIENT:

Lab ID:

Western Refining Southwest, Inc.

Lab Order:

1110646

Project: Injection Well 4th Qtr

1110646-01

Client Sample ID: Injection Well

Collection Date: 10/11/2011 9:30:00 AM

Date Received: 10/12/2011 Matrix: AQUEOUS

Result PQL Qual Units Analyses DF **Date Analyzed EPA METHOD 8260B: VOLATILES** Analyst: NSB ND Chloroform 1.0 μg/L 1 10/20/2011 11:21:18 AM ND μg/L Chloromethane 3.0 1 10/20/2011 11:21:18 AM ND 2-Chlorotoluene 1.0 µg/L 10/20/2011 11:21:18 AM ND 4-Chlorotoluene -1.0 µg/L 10/20/2011 11:21:18 AM cis-1.2-DCE ND 1.0 µg/L 1 10/20/2011 11:21:18 AM 10/20/2011 11:21:18 AM cis-1,3-Dichloropropene ND 1.0 μg/L 1 ND 1 1,2-Dibromo-3-chloropropane 2.0 μg/L 10/20/2011 11:21:18 AM Dibromochloromethane ND 1.0 μg/L 1 10/20/2011 11:21:18 AM ND Dibromomethane 1.0 1 10/20/2011 11:21:18 AM µg/L 1,2-Dichlorobenzene ND 1.0 10/20/2011 11:21:18 AM µg/L ND 1.0 10/20/2011 11:21:18 AM 1,3-Dichlorobenzene μg/L 1 ND 1,4-Dichlorobenzene 1.0 μg/L 1 10/20/2011 11:21:18 AM Dichlorodifluoromethane ND 1.0 μg/L 1 10/20/2011 11:21:18 AM 1,1-Dichloroethane ND 1.0 μg/L 1 10/20/2011 11:21:18 AM 1.1-Dichloroethene ND 1.0 μg/L 1 10/20/2011 11:21:18 AM ND 1,2-Dichloropropane 1.0 1 10/20/2011 11:21:18 AM µg/L 1,3-Dichloropropane ND 1.0 10/20/2011 11:21:18 AM μg/L 1 ND 2,2-Dichloropropane 20 μg/L 1 10/20/2011 11:21:18 AM ND 1,1-Dichloropropene 1.0 μg/L 1 10/20/2011 11:21:18 AM Hexachlorobutadiene ND 1.0 μg/L 1 10/20/2011 11:21:18 AM 2-Hexanone ND 10 1 10/20/2011 11:21:18 AM µg/L Isopropyibenzene ND 1.0 1 10/20/2011 11:21:18 AM µg/L ND 1.0 4-Isopropyitoluene 1 10/20/2011 11:21:18 AM µg/L 4-Methyl-2-pentanone ND 10 μg/L 1 10/20/2011 11:21:18 AM Methylene Chloride ND 3.0 μg/L 1 10/20/2011 11:21:18 AM ND n-Butylbenzene 1.0 1 10/20/2011 11:21:18 AM μg/L n-Propylbenzene ND 1.0 1 10/20/2011 11:21:18 AM µg/L sec-Butylbenzene ND 1.0 1 10/20/2011 11:21:18 AM µg/L Styrene ND 1.0 μg/L 1 10/20/2011 11:21:18 AM tert-Butylbenzene ND 1.0 μg/L 1 10/20/2011 11:21:18 AM 1.1.1.2-Tetrachloroethane ND 1.0 μg/L 1 10/20/2011 11:21:18 AM 1,1,2,2-Tetrachloroethane ND 2.0 μg/L 1 10/20/2011 11:21:18 AM ND Tetrachioroethene (PCE) 1.0 μg/L 1 10/20/2011 11:21:18 AM trans-1,2-DCE ND 1.0 μg/L 1 10/20/2011 11:21:18 AM ND 1.0 trans-1,3-Dichloropropene 1 μg/L 10/20/2011 11:21:18 AM 1,2,3-Trichlorobenzene ND 1.0 10/20/2011 11:21:18 AM µg/L 1 1,2,4-Trichlorobenzene ND 1.0 µg/L 1 10/20/2011 11:21:18 AM 1,1,1-Trichloroethane ND 1.0 ug/L 1 10/20/2011 11:21:18 AM 1,1,2-Trichloroethane ND 1.0 μg/L 10/20/2011 11:21:18 AM 1 Trichloroethene (TCE) ND 1.0 μg/L 1 10/20/2011 11:21:18 AM

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 4 of 7

Date: 11-Nov-11 Analytical Report

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1110646

Client Sample ID: Injection Well

Project:

Injection Well 4th Qtr

Collection Date: 10/11/2011 9:30:00 AM Date Received: 10/12/2011

Lab ID:

1110646-01

Matrix: AQUEOUS

| Analyses                        | Result   | PQL    | Qual | Units      | DF | Date Analyzed          |
|---------------------------------|----------|--------|------|------------|----|------------------------|
| EPA METHOD 8260B: VOLATILES     | <u> </u> |        |      |            | •  | Analyst: NSB           |
| Trichlorofluoromethane          | ND       | 1.0    |      | µg/L       | 1  | 10/20/2011 11:21:18 AM |
| 1,2,3-Trichioropropane          | ND       | 2.0    |      | µg/L       | 1  | 10/20/2011 11:21:18 AM |
| Vinyl chloride                  | ND       | 1.0    |      | µg/L       | 1  | 10/20/2011 11:21:18 AM |
| Xylenes, Total                  | 2.2      | 1.5    |      | µg/L       | 1  | 10/20/2011 11:21:18 AM |
| Sur: 1,2-Dichloroethane-d4      | 96.9     | 70-130 |      | %REC       | 1  | 10/20/2011 11:21:18 AM |
| Surr: 4-Bromofluorobenzene      | 113      | 73-131 |      | %REC       | 1  | 10/20/2011 11:21:18 AM |
| Surr: Dibromofluoromethane      | 95.2     | 70-130 |      | %REC       | 1  | 10/20/2011 11:21:18 AM |
| Surr: Toluene-d8                | 102      | 70-130 |      | %REC       | 1  | 10/20/2011 11:21:18 AM |
| SM 2320B: ALKALINITY            |          |        |      |            |    | Analyst: IC            |
| Alkalinity, Total (As CaCO3)    | 170      | 20     |      | mg/L CaCO3 | 1  | 10/17/2011 7:16:00 PM  |
| Carbonate                       | ND       | 2.0    |      | mg/L CaCO3 | 1  | 10/17/2011 7:16:00 PM  |
| Bicarbonate                     | 170      | 20     | -:.  | mg/L CaCO3 | 1  | 10/17/2011 7:16:00 PM  |
| EPA 120.1: SPECIFIC CONDUCTANCE |          |        |      |            |    | Analyst: IC            |
| Specific Conductance            | 2000     | 0.010  |      | µmhos/cm   | 1  | 10/17/2011 7:16:00 PM  |
| SM4500-H+B: PH                  |          |        |      |            |    | Analyst: IC            |
| рН                              | 7.81     | 0.100  | Н    | pH units   | 1  | 10/17/2011 7:16:00 PM  |
| SM2540C MOD: TOTAL DISSOLVED SC | DLIDS    |        |      | •          |    | Analyst: KS            |
| Total Dissolved Solids          | 1190     | 20.0   |      | mg/L       | 1  | 10/18/2011 1:19:00 PM  |

### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Estimated value E
- Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- ٠В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits

Page 5 of 7

Date: 11-Nov-11
Analytical Report

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1110646

Project:

Injection Well 4th Qtr

Lab ID:

1110646-02

Client Sample ID: Trip Blank

**Collection Date:** 

**Date Received:** 10/12/2011

Matrix: TRIP BLANK

| Analyses                       | Result | PQL Qua | l Units       | DF  | Date Analyzed          |
|--------------------------------|--------|---------|---------------|-----|------------------------|
| EPA METHOD 8260B: VOLATILES    |        |         |               |     | Analyst: NSB           |
| Benzene                        | ND     | 1.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| Toluene                        | ND     | 1.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| Ethylbanzene                   | ND     | 1.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| 1,2,4-Trimethylbenzene         | ND     | 1.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| 1,3,5-Trimethylbenzene         | ND     | 1.0     | µg/L          | 1   | 10/20/2011 12:46:07 PM |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| Naphthalene                    | ND     | 2.0     | µg/L          | 1   | 10/20/2011 12:46:07 PM |
| 1-Methylnaphthalene            | ND     | 4.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| 2-Methylnaphthalene            | ND     | 4.0     | µg/L          | 1   | 10/20/2011 12:46:07 PM |
| Acetone                        | ND     | 10      | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| Bromobenzene                   | ND     | 1.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| Bromodichloromethane           | ND     | 1.0     | µg/L          | 1   | 10/20/2011 12:46:07 PM |
| Bromoform                      | ND     | 1.0     | μ <b>g/</b> L | 1   | 10/20/2011 12:46:07 PM |
| Bromomethane                   | ND     | 3.0     | μ <b>g/L</b>  | 1   | 10/20/2011 12:46:07 PM |
| 2-Butanone                     | ND     | 10      | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| Carbon disulfide               | ND     | 10      | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| Carbon Tetrachloride           | ND     | 1.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| Chlorobenzene                  | ND     | 1.0     | μg/L          | 1   | 10/20/2011 12:48:07 PM |
| Chloroethane                   | ND     | 2.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| Chloroform                     | ND     | 1.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| Chloromethane                  | ND     | 3.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| 2-Chlorotoluene                | ND     | 1.0     | · µg/L        | 1   | 10/20/2011 12:46:07 PM |
| 4-Chiorotoluene                | ND     | 1.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| cls-1,2-DCE                    | ND     | 1.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| cis-1,3-Dichloropropene        | ND     | 1.0     | µg/L          | 1   | 10/20/2011 12:46:07 PM |
| 1,2-Dibromo-3-chloropropane    | ND     | 2.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| Dibromochloromethane           | ND     | 1.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| Dibromomethane                 | ND     | 1.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| 1,2-Dichlorobenzene            | ND     | 1.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| 1,3-Dichlorobenzene            | ND     | 1.0     | µg/L          | 1   | 10/20/2011 12:46:07 PM |
| 1,4-Dichlorobenzene            | ND     | 1.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| Dichlorodifluoromethane        | ND     | 1.0     | μg/L          | · 1 | 10/20/2011 12:46:07 PM |
| 1,1-Dichloroethane             | ND     | 1.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| 1,1-Dichloroethene             | ND     | 1.0     | μg/L          | 1   | 10/20/2011 12:46:07 PM |
| 1,2-Dichloropropane            | ND     | 1.0     | hâ/F          | 1   | 10/20/2011 12:46:07 PM |
| 1,3-Dichloropropane            | ND     | 1.0     | µg/L          | . 1 | 10/20/2011 12:46:07 PM |
| 2,2-Dichloropropane            | ND     | 2.0     | µg/L          | 1   | 10/20/2011 12:46:07 PM |
| 1,1-Dichloropropene            | ND     | 1.0     | µg/L          | 1   | 10/20/2011 12:46:07 PM |

### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 6 of 7

Date: 11-Nov-11
Analytical Report

CLIENT: Lab Order: Western Refining Southwest, Inc.

.

1110646

Project:

Injection Well 4th Qtr

Lab ID:

1110646-02

Client Sample ID: Trip Blank

**Collection Date:** 

**Date Received:** 10/12/2011

Matrix: TRIP BLANK

| Analyses                    | Result      | PQL    | Qual ( | Jnits | DF  | Date Analyzed          |
|-----------------------------|-------------|--------|--------|-------|-----|------------------------|
| EPA METHOD 8260B: VOLATILES | <del></del> |        |        |       |     | Analyst: NSB           |
| Hexachiorobutadiene         | , ND        | 1.0    | μ      | g/L   | 1   | 10/20/2011 12:46:07 PM |
| 2-Hexanone                  | ND          | 10     | μ      | g/L   | 1   | 10/20/2011 12:46:07 PM |
| Isopropylbenzene            | ND          | 1.0    | · µ    | g/L   | 1   | 10/20/2011 12:46:07 PN |
| 4-isopropyitoluene          | ND          | 1.0    | μ      | g/L   | 1   | 10/20/2011 12:46:07 PN |
| 4-Methyl-2-pentanone        | ND          | 10     | μ      | g/L   | 1   | 10/20/2011 12:48:07 PR |
| Methylene Chloride          | ND          | 3.0    | ·μ     | g/L   | . 1 | 10/20/2011 12:46:07 PN |
| n-Butylbenzene              | ND          | 1.0    | μ      | g/L   | 1   | 10/20/2011 12:46:07 PN |
| n-Propyibenzene             | ND          | 1.0    | μ      | g/L   | 1   | 10/20/2011 12:46:07 PN |
| sec-Butylbenzene            | ND          | 1.0    | μ      | g/L   | 1   | 10/20/2011 12:46:07 PN |
| Styrene                     | ND          | 1.0    | μ      | g/L   | 1   | 10/20/2011 12:46:07 PN |
| tert-Butylbenzene           | ND ·        | 1.0    | μ      | g/L   | 1   | 10/20/2011 12:46:07 PN |
| 1,1,1,2-Tetrachloroethane   | ND          | 1.0    | μ      | g/L   | 1   | 10/20/2011 12:46:07 PN |
| 1,1,2,2-Tetrachlorcethane   | ND          | 2.0    | μ      | g/L   | 1   | 10/20/2011 12:46:07 PN |
| Tetrachloroethene (PCE)     | ND          | 1.0    | μ      | g/L   | 1   | 10/20/2011 12:46:07 PN |
| trans-1,2-DCE               | ND          | 1.0    | μ      | g/L   | 1   | 10/20/2011 12:46:07 PN |
| trans-1,3-Dichloropropene   | , ND        | 1.0    | μ      | g/L   | 1   | 10/20/2011 12:46:07 PN |
| 1,2,3-Trichlorobenzene      | · ND        | 1.0    | μ      | g/L   | 1   | 10/20/2011 12:46:07 PN |
| 1,2,4-Trichlorobenzene      | ND ·        | 1.0    | μ      | g/L   | 1   | 10/20/2011 12:46:07 PN |
| 1,1,1-Trichloroethane       | ND          | 1.0    | μ      | g/L   | 1 . | 10/20/2011 12:46:07 PN |
| 1,1,2-Trichloroethane       | ND          | 1.0    | 'n     | g/L   | 1   | 10/20/2011 12:46:07 PM |
| Trichloroethene (TCE)       | ND          | 1.0    | μ      | g/L   | 1   | 10/20/2011 12:46:07 PN |
| Trichlorofluoromethane      | . ND        | 1.0    | μ      | g/L   | 1   | 10/20/2011 12:46:07 PN |
| 1,2,3-Trichloropropane      | ND          | 2.0    | μ      | g/L   | 1   | 10/20/2011 12:46:07 PN |
| Vinyl chloride              | ND          | 1.0    | μ      | g/L   | 1   | 10/20/2011 12:46:07 PM |
| Xylenes, Total              | ND          | 1.5    |        | g/L   | 1   | 10/20/2011 12:46:07 PN |
| Surr: 1,2-Dichloroethane-d4 | 101         | 70-130 | %      | REC   | 1   | 10/20/2011 12:46:07 PM |
| Surr. 4-Bromofluorobenzene  | 111         | 73-131 | %      | REC   | 1   | 10/20/2011 12:46:07 PN |
| Surr: Dibromofluoromethane  | 98.7        | 70-130 | . %    | REC   | 1   | 10/20/2011 12:46:07 PN |
| Surr: Toluene-d8            | 97.9        | 70-130 | %      | REC   | 1   | 10/20/2011 12:46:07 PN |
|                             |             |        |        |       |     |                        |

### Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 7 of 7

# Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email mxscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

**Client:** 

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

111014024

Address:

4901 HAWKINS NE SUITE D

Project Name: 1110646

**ALBUQUERQUE, NM 87109** 

Attn:

**ANDY FREEMAN** 

### **Analytical Results Report**

Sample Number

111014024-001

Sampling Date

10/11/2011 Date/Time Received

10/14/2011 12:40 PM

Client Sample ID

1110646-01C / INJECTION WELL

Sampling Time

9:30 AM

Matrix

Water

Sample Location

Comments

| Parameter          | Result | Units    | PQL | Analysis Date | Analyst | Method    | Qualifier |
|--------------------|--------|----------|-----|---------------|---------|-----------|-----------|
| Cyanide (reactive) | ND     | mg/L     | 1   | 11/3/2011     | CRW     | SW846 CH7 |           |
| Flashpoint         | >200   | ٩F       |     | 10/26/2011    | MAH     | EPA 1010  |           |
| pH                 | 7.15   | ph Units |     | 10/17/2011    | KFG     | EPA 150.1 |           |
| Reactive sulfide   | ND     | mg/L     | .1  | 11/1/2011     | JTT     | SW846 CH7 |           |

**Authorized Signature** 

John Coddington, Lab Manager

MCL

EPA's Maximum Conteminant Level

ND

Not Detected

PQL

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:I000013; AZ:0701; CO:I000013; FL(NELAP):E87883; ID:I000013; IN:C-ID-01; KY:80142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C585; MT:Cert0095

Client:

Western Refining Southwest, Inc.

ect:

Injection Well 4th Qtr

Work Order:

1110646

| Analyte                      | Result | Units   | PQL  | SPK Va | SPK ref | %Rec L    | owLimit Hi | ghLimit %  | RPD   | RPDLimit      | Qual                                  |
|------------------------------|--------|---------|------|--------|---------|-----------|------------|------------|-------|---------------|---------------------------------------|
| Method: EPA Method 300.0:    | Anions |         |      |        |         |           |            |            |       |               | · · · · · · · · · · · · · · · · · · · |
| Sample ID: MB                |        | MBLK    |      |        |         | Batch ID: | R48414     | Analysis D | ate:  | 10/13/2011 10 | 0:55:38 AI                            |
| Chloride                     | ND     | mg/L    | 0.50 |        |         |           |            |            |       |               |                                       |
| Sulfate                      | ND     | mg/L    | 0.50 |        |         |           | •          |            |       | •             |                                       |
| Bample ID: MB                |        | MBLK    |      |        |         | Batch ID: | R48414     | Analysis D | ate:  | 10/14/2011    | 5:12:33 A                             |
| Chloride                     | ND     | mg/L    | 0.50 |        |         |           |            |            |       |               |                                       |
| Sulfate                      | ND     | mg/L    | 0.50 |        |         |           |            | •          |       |               |                                       |
| Sample ID: MB                |        | MBLK    |      |        |         | Batch ID: | R48584     | Analysis D | ate:  | 10/21/2011    | 5:31:40 Pf                            |
| Chloride                     | NĐ     | mg/L    | 0.50 |        |         | :<br>P    |            |            |       | •             |                                       |
| Sulfate                      | ND     | mg/L    | 0.50 |        |         |           |            |            |       |               |                                       |
| Sample ID: MB                |        | MBLK    |      |        |         | Batch ID: | R48584     | Analysis D | )ate: | 10/22/2011    | 9:11:50 Al                            |
| Chloride                     | ND     | mg/L    | 0.50 |        |         | 1         |            |            |       |               |                                       |
| Sulfate                      | ND     | mg/L    | 0.50 |        |         |           |            |            |       | •             |                                       |
| Bample ID: LCS               |        | LCS     |      |        |         | Batch ID: | R48414     | Analysis D | ate:  | 10/13/2011 1  | 1:13:02 AI                            |
| Chloride                     | 5.019  | mg/L    | 0.50 | 5      | 0       | 100       | 90         | 110        |       |               |                                       |
| Sulfate                      | 10.02  | mg/L    | 0.50 | 10     | 0       | 100       | 90         | 110        |       |               |                                       |
| Sample ID: LCS               |        | LCS     |      |        |         | Bátch ID: | R48414     | Analysis D | ate:  | 10/14/2011    | 5:29:58 At                            |
| Chloride                     | 4.812  | mg/L    | 0.50 | 5      | 0       | 96.2      | 90         | 110        |       |               |                                       |
| Sulfate                      | 9.696  | mg/L    | 0.50 | 10     | Ö       | 97.0      | 90         | 110        |       |               |                                       |
| Sample ID: LCS               |        | LCS     |      |        |         | Batch ID: | R48584     | Analysis D | ate:  | 10/21/2011    | 5:49:04 Pf                            |
| Chloride                     | 4.786  | mg/L    | 0.50 | 5      | . 0     | 95.7      | 90         | 110        |       | •             |                                       |
| te                           | 9.736  | mg/L    | 0.50 | 10     | 0       | 97.4      | 90         | 110        |       |               |                                       |
| ple ID: LCS                  | •      | LCS     |      |        |         | Batch iD: | R48584     | Analysis D | ate:  | 10/22/2011 9  | 9:29:15 AF                            |
| Chloride                     | 4.875  | mg/L    | 0.50 | 5.     | . 0     | 97.5      | 90         | 110        |       |               |                                       |
| Sulfate                      | 9.875  | mg/L    | 0.50 | 10     | 0       | 98.7      | 90         | 110        |       |               |                                       |
| Method: SM 2320B: Alkalinit  | y      |         |      |        |         |           |            |            |       |               |                                       |
| Sample ID: MB-1              |        | MBLK    |      |        |         | Batch ID: | R48438     | Analysis D | ate:  | 10/17/2011 10 | 0:01:00 Af                            |
| Alkalinity, Total (As CaCO3) | ND     | mg/L Ca | 20   |        |         |           |            |            |       |               |                                       |
| Carbonate                    | ND     | mg/L Ca | 2.0  |        |         | 1         |            |            |       |               | •                                     |
| Bicarbonate                  | ND     | mg/L Ca | 20   |        |         |           |            |            |       |               |                                       |
| Sample ID: MB-2              |        | MBLK    |      |        |         | Batch ID: | R48438     | Analysis D | ate:  | 10/17/2011 5  | 5:37:00 PA                            |
| Alkalinity, Total (As CaCO3) | ND     | mg/L Ca | 20   |        |         | - #       |            |            |       |               |                                       |
| Carbonate                    | ND     | mg/L Ca | 2.0  |        |         |           | •          |            |       |               |                                       |
| 3icarbonate                  | ND     | mg/L Ca | 20   |        |         |           |            |            |       | , .           |                                       |
| Sample ID: LCS-1             |        | LCS     |      |        |         | Batch ID: | R48438     | Analysis D | ate:  | 10/17/2011 10 | AA 00:80:0                            |
| Alkalinity, Total (As CaCO3) | 79.24  | mg/L Ca | 20   | 80     | 6.32    | 91.2      | 90         | 110        |       |               |                                       |
| Sample ID: LCS-2             |        | LCS     |      | •      |         | Batch ID: | R48438     | Analysis D | ate:  | 10/17/2011 5  | 5:43:00 PN                            |
| Alkalinity, Total (As CaCO3) | 81.48  | mg/L Ca | 20   | 80     | 6.32    | 94.0      | 90 .       | 110        |       |               |                                       |

### Qualifiers:



Analyte detected below quantitation limits Not Detected at the Reporting Limit

Н Holding times for preparation or analysis exceeded NC

Non-Chlorinated R RPD outside accepted recovery limits

Page I

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th Qtr

Work Order:

1110646

| Analyte                        | Result    | Units        | PQL | SPK Va S | PK ref | %Rec L    | owLimit Hi | hLimit | %RPD     | RPDLimit     | Qual       |
|--------------------------------|-----------|--------------|-----|----------|--------|-----------|------------|--------|----------|--------------|------------|
| Method: EPA Method 8260B:      | VOLATILES |              |     |          |        |           | ***        |        |          |              |            |
| Sample ID: 1110646-01a med     |           | MSD          |     |          |        | Batch ID: | R48569     | Analys | is Date: | 10/20/2011 1 | 2:17:44 PM |
| Benzene                        | 18.27     | µg/L         | 1.0 | 20       | 0      | 91.4      | 69.2       | 127    | 7.44     | 18.7         |            |
| Toluene                        | 19.92     | μg/L         | 1.0 | 20       | 0      | 99.6      | 68.2       | 130    | 6.08     | 16.9         |            |
| Chlorobenzene                  | 18.67     | μg/L         | 1.0 | 20       | 0      | 93.3      | 74         | 122    | 6.60     | 13.9         |            |
| 1,1-Dichloroethene             | 17.69     | μg/L         | 1.0 | 20       | 0      | 88.4      | 69.3       | 123    | 7.95     | 16.7         |            |
| Trichloroethene (TCE)          | 18.89     | μg/L         | 1.0 | 20       | 0      | 94.4      | 61.3       | 127    | 10.1     | 18           |            |
| Sample ID: b2                  |           | MBLK         |     |          |        | Batch ID: | R48569     | Analys | is Date: | 10/20/2011   | 9:28:33 AN |
| Benzene                        | ND        | μg/L         | 1.0 | •        |        |           |            |        |          |              |            |
| Toluene                        | ND        | μg/L         | 1.0 |          |        |           |            |        |          |              |            |
| Ethylbenzene                   | ND        | μg/L         | 1.0 |          |        |           |            |        |          |              |            |
| Methyl tert-butyl ether (MTBE) | ND        | μg/L         | 1.0 |          |        |           |            |        |          |              |            |
| 1,2,4-Trimethylbenzene         | ND        | μg/L         | 1.0 |          |        |           |            |        |          |              |            |
| 1,3,5-Trimethylbenzene         | ND        | μg/L         | 1.0 |          |        |           |            |        |          | •            |            |
| 1,2-Dichloroethane (EDC)       | ND        | µg/L         | 1.0 | !        |        |           |            |        |          |              |            |
| 1,2-Dibromoethane (EDB)        | ND        | µg/L         | 1.0 |          |        |           |            |        |          |              |            |
| Naphthalene                    | ND        | µg/L         | 2.0 |          |        |           |            |        |          |              |            |
| 1-Methylnaphthalene            | ND        | µg/L         | 4.0 |          |        |           |            |        |          |              |            |
| 2-Methylnaphthalene            | ND        | µg/L         | 4.0 |          |        |           |            |        |          |              |            |
| Acetone                        | ND        | μg/L         | 10  | ·        |        |           |            |        |          |              |            |
| Bromobenzene                   | ND        | μg/L         | 1.0 |          |        |           |            |        |          |              |            |
| Bromodichloromethane           | ND        | µg/L         | 1.0 |          |        |           |            |        |          |              |            |
| Bromoform                      | ND        | μg/L         | 1.0 |          |        |           |            |        |          |              |            |
| Bromomethane                   | ND        | µg/L         | 3.0 |          |        | •         |            |        |          |              |            |
| 2-Butanone                     | ND        | µg/∟<br>µg/L | 10  |          |        |           |            |        |          |              | •          |
| Carbon disulfide               | ND        | µg/L         | 10  |          |        |           |            |        |          |              |            |
| Carbon Tetrachloride           | ND        | μg/L         | 1.0 |          |        |           |            |        |          |              |            |
| Chlorobenzene                  | ND        | μg/L<br>μg/L | 1.0 |          |        |           |            |        |          |              |            |
| Chloroethane                   | ND        | µg/L         | 2.0 |          |        |           |            |        |          |              |            |
| Chloroform                     | ND        | µg/L         | 1.0 |          |        |           |            |        |          |              |            |
| Chloromethane                  | ND        | ha\r<br>ha\r | 3.0 |          |        |           |            |        |          | •            |            |
| 2-Chlorotoluene                | ND        | µg/L         | 1.0 |          |        |           |            |        |          |              |            |
| 4-Chlorotoluene                | ND        | μg/L         | 1.0 |          |        |           |            |        |          |              |            |
| ds-1,2-DCE                     | ND        | μg/L         | 1.0 |          |        |           |            |        |          |              |            |
| ds-1,3-Dichloropropene         | ND        | µg/∟         | 1.0 |          |        |           |            |        |          |              |            |
| 1,2-Dibromo-3-chloropropane    | ND        | µg/L<br>pg/L | 2.0 |          |        |           |            |        |          |              |            |
| Dibromochloromethane           | ND        | h8/r         | 1.0 |          |        |           |            |        |          |              |            |
| Dibromomethane                 | ND        | μg/L         | 1.0 |          |        |           |            |        |          | •            |            |
| 1,2-Dichlorobenzene            | ND        | μg/L         | 1.0 |          |        |           |            |        |          |              |            |
| 1,3-Dichlorobenzene            | ND        | h8/r         | 1.0 |          |        |           |            | ,      |          |              |            |
| 1,4-Dichlorobenzene            | ND        | μg/L         | 1.0 |          |        | •         |            |        |          |              |            |
| Dichlorodifluoromethane        | ND        | μg/L<br>μg/L | 1.0 |          |        |           |            |        |          |              |            |
| 1,1-Dichloroethane             | ND        | μg/L         | 1.0 |          |        |           |            |        |          |              |            |
| 1,1-Dichloroethene             | ND        | µg/L<br>pg/L | 1.0 |          |        |           |            |        |          |              |            |
| 1,2-Dichloropropane            | ND        |              | 1.0 | •        |        |           |            |        |          |              |            |
| • •                            |           | µg/L         |     |          |        |           |            |        |          |              |            |
| 1,3-Dichloropropane            | ND        | µg/L         | 1.0 | 1        |        |           |            |        |          |              |            |

Estimated value

Analyte detected below quantitation limits J

Not Detected at the Reporting Limit

Н Holding times for preparation or analysis exceeded

NC Non-Chlorinated

RPD outside accepted recovery limits

Client:

Western Refining Southwest, Inc.

ject:

Injection Well 4th Qtr

Not Detected at the Reporting Limit

Work Order:

1110646

Page 3

| Analyte                        | Result          | Units         | PQL | SPK Va SPK ref    | .%Rec Le       | owLimit Hi    | ghLimit %R   | PD RPDLir    | nit Qual      |
|--------------------------------|-----------------|---------------|-----|-------------------|----------------|---------------|--------------|--------------|---------------|
| Method: EPA Method 8260B       | : VOLATILES     |               |     |                   |                |               |              |              |               |
| Sample ID: b2                  |                 | MBLK          |     |                   | Batch ID:      | R48569        | Analysis Dal | e: 10/20/20  | 11 9:28:33 AI |
| 2,2-Dichloropropane            | ND              | μg/L          | 2.0 |                   | 2              |               | •            |              |               |
| 1,1-Dichloropropene            | ND              | μg/L          | 1.0 |                   | r<br>i         |               |              |              | .*            |
| Hexachlorobutadiene            | ND              | μg/L          | 1.0 |                   |                |               |              |              |               |
| 2-Hexanone                     | ND              | μg/L          | 10  | •                 | ,              |               | •            |              |               |
| isopropylbenzene               | ND              | µg/L          | 1.0 |                   |                |               |              |              |               |
| 4-Isopropyitoluene             | ND              | µg/L          | 1.0 |                   |                |               |              |              |               |
| 4-Methyl-2-pentanone           | ND              | μg/L          | 10  |                   | :              |               |              | ·            |               |
| Methylene Chioride             | ND .            | µg/L          | 3.0 |                   | '              |               |              |              |               |
| n-Butyibenzene                 | ND              | µg/L          | 1.0 | • • •             | - · · ·        |               |              |              |               |
| n-Propyibenzene                | ND              | µg/L          | 1.0 | 2 * * *           |                |               |              |              |               |
| sec-Butylbenzene               | ND              | μ <b>g/L</b>  | 1.0 | •                 |                |               |              |              |               |
| Styrene                        | ND              | µg/L          | 1.0 |                   |                |               |              |              |               |
| tert-Butylbenzene              | ND              | μg/L          | 1.0 |                   | k<br>k         |               |              |              | * *           |
| 1,1,1,2-Tetrachioroethane      | ND              | µg/L          | 1.0 |                   |                |               |              |              |               |
| 1,1,2,2-Tetrachioroethane      | ND              | µg/L          | 2.0 |                   | r              |               |              |              |               |
| Tetrachloroethene (PCE)        | ND              | µg/L          | 1.0 |                   | î<br>r         |               |              |              |               |
| trans-1,2-DCE                  | ND              | µg/L          | 1.0 |                   |                |               |              |              |               |
| trans-1,3-Dichloropropene      | ND              | μg/L          | 1.0 |                   |                |               |              |              |               |
| 1,2,3-Trichiorobenzene         | ND              | μg/L          | 1.0 |                   |                |               |              |              |               |
| 1,2,4-Trichlorobenzene         | ND              | µg/L          | 1.0 | •                 |                |               |              |              |               |
| 1-Trichloroethane              | ND              | µg/L          | 1.0 |                   |                |               |              |              |               |
| 2-Trichloroethane              | ND              | µg/L          | 1.0 |                   |                |               |              |              |               |
| Trichlomethene (TCE)           | ND              | μg/L<br>μg/L  | 1.0 |                   |                |               |              |              |               |
| Trichlorofluoromethane         | ND              | μg/L<br>μg/L  | 1.0 |                   |                |               |              |              |               |
| 1,2,3-Trichloropropane         | ND              |               | 2.0 |                   |                | •             |              |              |               |
|                                | ND              | µg/L          |     |                   |                |               |              |              |               |
| Vinyl chloride                 |                 | µg/L          | 1.0 |                   |                |               |              |              | •             |
| Xylenes, Total                 | ND              | µg/L          | 1.5 |                   |                |               |              | - 40/00/004  |               |
| Sample ID: b8                  |                 | MBLK          |     |                   | Batch ID:      | R48569        | Analysis Dat | e: 10/20/201 | 1 10:15:43 Pi |
| Benzene                        | ND              | μg/L          | 1.0 |                   | !              |               |              |              |               |
| Toluane                        | ND              | µg/L          | 1.0 |                   |                |               |              |              |               |
| Ethylbenzene                   | ND              | μg/L          | 1.0 |                   |                |               |              |              |               |
| Methyl tert-butyl ether (MTBE) | ND              | µg/L          | 1.0 |                   | '              |               |              |              |               |
| 1,2,4-Trimethylbenzene         | ND              | µg/L          | 1.0 |                   | à .            |               |              |              |               |
| 1,3,5-Trimethylbenzene         | ND              | µg/L          | 1.0 |                   |                |               |              |              |               |
| 1,2-Dichloroethane (EDC)       | ND              | µg/L          | 1.0 |                   |                |               |              |              |               |
| 1,2-Dibromoethane (EDB)        | ND              | h <b>g</b> /L | 1.0 |                   |                |               |              |              | :             |
| Naphthalene                    | ND              | μg/L          | 2.0 |                   | •              |               |              |              |               |
| 1-Methylnaphthalene            | ND              | µg/L          | 4.0 |                   |                |               |              |              | • .           |
| 2-Methylnaphthalene            | ND              | μg/L          | 4.0 |                   |                |               |              |              |               |
| Acetone                        | ND ·            | µg/L          | 10  |                   |                |               | •            |              |               |
| Bromobenzene                   | ND              | µg/L          | 1.0 |                   |                |               |              |              |               |
| Bromodichloromethane           | ND              | μg/L          | 1.0 |                   |                |               |              |              |               |
| Bromoform                      | ND              | μg/L          | 1.0 |                   |                |               |              |              |               |
| Bromomethane                   | ND              | hg/L          | 3.0 |                   |                |               |              |              |               |
| Qualifiers:                    |                 |               |     |                   | -              |               |              |              |               |
| E Estimated value              |                 |               |     | H Holding times   | for preparatio | n or analysis | s exceeded   |              |               |
| Analyte detected below quar    | titation limits |               |     | NC Non-Chlorinate |                |               |              |              |               |

RPD outside accepted recovery limits

Client:

. **J** 

Analyte detected below quantitation limits

Not Detected at the Reporting Limit

Western Refining Southwest, Inc.

Project:

Injection Well 4th Qtr

Work Order:

1110646

Page 4

| Analyte                     | Result    | Units        | PQL | SPK Va SPK ref    | %Rec Lo        | owLimit Hig   | jhLimit  | %RPD    | RPDLimit     | Qual        |
|-----------------------------|-----------|--------------|-----|-------------------|----------------|---------------|----------|---------|--------------|-------------|
| Method: EPA Method 8260B:   | VOLATILES |              |     |                   |                |               |          |         | <del></del>  | ;           |
| Sample ID: b8               |           | MBLK         |     |                   | Batch ID:      | R48669        | Analysi  | s Date: | 10/20/2011 1 | 10:15:43 PN |
| 2-Butanone                  | ND        | μg/L         | 10  |                   |                |               |          |         |              |             |
| Carbon disulfide            | ND        | µg/L         | 10  |                   |                |               |          |         |              |             |
| Carbon Tetrachloride        | ND        | µg/L         | 1.0 |                   |                |               |          |         |              |             |
| Chlorobenzene               | ND        | µg/L         | 1.0 |                   |                |               |          |         | •            |             |
| Chloroethane                | ND        | μg/L         | 2.0 |                   |                |               |          |         |              |             |
| Chloroform                  | ND        | μg/L         | 1.0 |                   |                |               |          |         |              |             |
| Chloromethane               | ND        | µg/L         | 3.0 |                   |                |               |          |         |              |             |
| 2-Chiorotoluene             | ND        | µg/L         | 1.0 |                   |                |               |          |         |              |             |
| 4-Chlorotoluene             | ND        | μg/L         | 1.0 |                   |                |               |          |         |              |             |
| cis-1,2-DCE                 | ND        | μg/L         | 1.0 |                   |                |               |          |         |              |             |
| cis-1,3-Dichloropropene     | ND        | µg/L         | 1.0 |                   |                |               |          |         |              |             |
| 1,2-Dibromo-3-chloropropane | ND        | µg/L         | 2.0 |                   |                |               |          |         |              |             |
| Dibromochloromethane        | ND        | µg/L         | 1.0 |                   |                |               |          |         |              |             |
| Dibromomethane              | ND        | μg/L         | 1.0 |                   |                |               |          |         |              |             |
| 1.2-Dichlorobenzene         | ND        | µg/L         | 1.0 |                   |                |               |          |         |              |             |
| 1,3-Dichlorobenzene         | ND        | µg/L         | 1.0 |                   |                |               |          |         |              |             |
| 1,4-Dichlorobenzene         | ND        | μg/L         | 1.0 |                   | •              |               |          |         |              |             |
| Dichlorodifluoromethane     | ND        | μg/L         | 1.0 |                   | -              |               |          |         |              |             |
| 1,1-Dichloroethane          | ND        | μg/L         | 1.0 |                   |                | _             |          |         |              |             |
| 1,1-Dichloroethene          | ND        | µg/L         | 1.0 |                   | •              | •             |          |         |              |             |
| 1,2-Dichloropropane         | ND        | µg/L         | 1.0 |                   |                |               |          |         |              |             |
| 1,3-Dichloropropane         | ND        |              |     |                   |                |               |          |         |              |             |
|                             | ND        | µg/L         | 1.0 |                   |                |               |          |         |              |             |
| 2,2-Dichloropropane         |           | μg/L         | 2.0 |                   |                |               |          |         |              |             |
| 1,1-Dichloropropene         | ND        | μ <b>g/L</b> | 1.0 |                   |                |               |          |         |              |             |
| Hexachlorobutadiene         | ND        | μg/L         | 1.0 | •                 |                |               |          |         |              |             |
| 2-Hexanone                  | ND        | μg/L         | 10  |                   |                |               |          |         |              |             |
| Isopropylbenzene            | ND        | μg/L<br>     | 1.0 |                   |                |               |          |         |              |             |
| 4-isopropyltoluene          | ND        | µg/L         | 1.0 |                   |                |               |          |         |              |             |
| 4-Methyl-2-pentanone        | ND        | μg/L         | 10  |                   |                |               |          |         |              |             |
| Methylene Chloride          | ND        | µg/L         | 3.0 |                   |                |               |          |         |              |             |
| n-Butylbenzene              | ND        | μg/L         | 1.0 |                   |                |               |          |         |              |             |
| n-Propylbenzene             | ND        | µg/L         | 1.0 |                   |                |               |          |         |              |             |
| sec-Butylbenzene            | ND        | µg/L         | 1.0 |                   |                |               |          |         |              |             |
| Styrene<br>tort Butulhonnan | ND<br>ND  | µg/L         | 1.0 |                   |                |               |          |         |              |             |
| tert-Butylbenzene           | ND        | µg/L         | 1.0 |                   |                |               | •        |         |              |             |
| 1,1,1,2-Tetrachloroethane   | ND        | μg/L         | 1.0 |                   |                |               |          |         | •            |             |
| 1,1,2,2-Tetrachioroethane   | ND        | µg/L         | 2.0 |                   |                |               |          |         |              |             |
| Tetrachloroethene (PCE)     | ND        | µg/L         | 1.0 |                   |                |               |          |         |              |             |
| trans-1,2-DCE               | ND        | µg/L         | 1.0 |                   |                |               |          |         | •            |             |
| trans-1;3-Dichloropropene   | ND        | μg/L         | 1.0 |                   |                |               |          |         |              |             |
| 1,2,3-Trichlorobenzene      | ND        | µg/L         | 1.0 |                   |                |               |          |         |              |             |
| 1,2,4-Trichlorobenzene      | ND        | µg/L         | 1.0 |                   |                |               |          |         |              |             |
| 1,1,1-Trichloroethane       | ND        | µg/L         | 1.0 |                   |                |               |          |         |              |             |
| 1,1,2-Trichloroethane       | ND        | µg/L         | 1.0 |                   |                |               |          |         |              |             |
| Qualifiers:                 |           |              |     |                   |                |               |          |         | ·            |             |
| E Estimated value           |           |              | {   | H Holding times f | or preparation | n or analysis | exceeded |         |              |             |

Non-Chlorinated

RPD outside accepted recovery limits

NC

Client:

Western Refining Southwest, Inc.

piect:

Injection Well 4th Qtr

Work Order:

1110646

| Analyte                   | Result    | Units        | PQL | SPK Va 8 | SPK ref | %Rec L    | owLimit Hip | ghLimit %RPD   | O RPDLimit Qual        |
|---------------------------|-----------|--------------|-----|----------|---------|-----------|-------------|----------------|------------------------|
| Method: EPA Method 8260B: | VOLATILES | <del>-</del> |     |          |         | F         |             |                |                        |
| Sample ID: b8             |           | MBLK         |     |          |         | Batch ID: | R48569      | Analysis Date: | 10/20/2011 10:15:43 PM |
| Trichloroethene (TCE)     | ND        | μg/L         | 1.0 |          | •       |           |             | •              |                        |
| Trichiorofluoromethane    | ND        | µg/L         | 1.0 |          |         |           |             |                |                        |
| 1,2,3-Trichloropropane    | ND        | µg/L         | 2.0 |          |         |           | •           |                |                        |
| Vinyl chloride            | ND        | µg/L         | 1.0 |          |         |           |             |                | •                      |
| Xylenes, Total            | ND        | μg/L         | 1.5 |          |         |           |             |                |                        |
| Sample ID: 100ng Ics      |           | LCS          |     |          |         | Batch ID: | R48569      | Analysis Date: | 10/20/2011 10:25:00 AM |
| Benzene                   | 19.47     | μg/L         | 1.0 | 20       | 0       | 97.3      | 81.1        | 130            |                        |
| Toluene                   | 20.89     | µg/L         | 1.0 | 20 .     | 0 .     | 104       | 82.3        | 122            | •                      |
| Chlorobenzene             | 20.13     | µg/L         | 1.0 | 20       | O       | 101       | 70          | 130            |                        |
| 1,1-Dichloroethene        | 19.44     | µg/L         | 1.0 | 20       | 0       | 97.2      | 83.1        | 126            | •                      |
| Trichloroethene (TCE)     | 20.06     | μg/L         | 1.0 | 20       | . 0     | 100       | 67.4        | 137            |                        |
| Sample ID: 100ng lcs-II   | •         | LCS          |     |          |         | Batch ID: | R48569      | Analysis Date: | 10/20/2011 9:47:10 PM  |
| Benzene                   | 18.47     | µg/L         | 1.0 | 20       | Ó       | 92.3      | 81.1        | 130            |                        |
| Toluene                   | 20.78     | μg/L         | 1.0 | 20       | 0       | 104       | 82.3        | 122            |                        |
| Chlorobenzene             | 19.52     | μg/Ł         | 1.0 | 20       | 0       | 97.6      | 70          | 130            |                        |
| 1.1-Dichloroethene        | 18.75     | μg/L         | 1.0 | 20       | 0 -     | 93.7      | 83.1        | 126            |                        |
| Trichloroethene (TCE)     | 20.29     | μg/L         | 1.0 | 20       | 0       | 101       | 67.4        | 137            |                        |
| Sample ID: 1110646-01a ms |           | MS           |     |          |         | Batch ID: | R48569      | Analysis Date: | 10/20/2011 11:49:28 AM |
| Benzene                   | 16.96     | µg/L         | 1.0 | 20       | 0       | 84.8      | 69.2        | 127            |                        |
| Feluene                   | 18.75     | µg/L         | 1.0 | 20       | 0       | 93.7      | 68.2        | 130            |                        |
| robenzene                 | 17.47     | µg/L         | 1.0 | 20       | 0       | 87.4      | 74          | 122            |                        |
| 1,1-Dichloroethene        | 16.33     | µg/L         | 1.0 | 20       | 0       | 81.7      | 69.3        | 123            |                        |
| Trichlorcethene (TCE)     | 17.07     | μg/L         | 1.0 | 20       | 0       | 85.3      | 61.3        | 127            |                        |

#### Qualifiers:



Estimated value

Analyte detected below quantitation limits

Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Client:

Western Refining Southwest, Inc.

**Project:** 

Injection Well 4th Qtr

Work Order:

1110646

| Analyte                        | Result           | Units                                 | PQL | SPK Va SPK ref    | %Rec Lo        | wLimit Hig     | ghLimit    | %RPD  | RPDLimi    | t Qual      |
|--------------------------------|------------------|---------------------------------------|-----|-------------------|----------------|----------------|------------|-------|------------|-------------|
| Method: EPA Method 82700       | : Semivolatiles  |                                       |     |                   | _              |                |            |       |            |             |
| Sample ID: mb-28933            |                  | MBLK                                  |     |                   | Batch ID:      | 28933          | Analysis   | Date: | 10/21/2011 | 11:14:08 AN |
| Acenaphthene                   | ND               | µg/L                                  | 10  |                   |                |                |            |       |            |             |
| Acenaphthylene                 | ND               | µg/Ľ                                  | 10  |                   |                |                |            |       | •          |             |
| Aniline                        | ND               | μg/L                                  | 10  |                   |                |                |            |       |            |             |
| Anthracene                     | ND               | µg/L                                  | 10  |                   |                |                |            |       |            |             |
| Azobenzene                     | ND               | µg/L                                  | 10  |                   |                |                |            |       |            |             |
| Benz(a)anthracene              | ND               | µg/L                                  | 10  |                   |                |                |            |       |            |             |
| Benzo(a)pyrene                 | . ND             | μg/L                                  | 10  |                   |                |                |            |       |            |             |
| Benzo(b)fluoranthene           | ND               | µg/L                                  | 10  |                   |                |                |            |       |            |             |
| Benzo(g,h,l)perylene           | ND               | µg/L                                  | 10  |                   |                |                |            |       |            |             |
| Benzo(k)fluoranthene           | ND               | µg/L                                  | 10  |                   |                |                |            |       |            |             |
| Benzoic acid                   | ND               | μg/L                                  | 20  |                   |                |                |            |       |            |             |
| Benzyl alcohol                 | ND               | μg/L                                  | 10  |                   |                |                |            |       |            |             |
| Bls(2-chloroethoxy)methane     | ND               | μg/L                                  | 10  |                   |                |                |            |       |            |             |
| Bis(2-chloroethyl)ether        | ND               | μ <b>g/</b> L                         | 10  |                   |                |                |            |       |            |             |
| Bls(2-chloroisopropyl)ether    | ND               | μg/L                                  | 10  | •                 |                |                |            |       |            |             |
| Bis(2-ethylhexyl)phthalate     | ND               | µg/L                                  | 10  |                   |                |                |            |       |            |             |
| 4-Bromophenyl phenyl ether     | ND               | µg/L                                  | 10  |                   |                |                |            |       |            |             |
| Butyl benzyl phthalate         | ND               | µg/L                                  | 10  |                   |                |                |            |       |            |             |
| Carbazole                      | ND               | µg/L                                  | 10  |                   |                |                |            |       |            |             |
| 4-Chloro-3-methylphenol        | ND               | µg/L                                  | 10  |                   |                |                |            |       |            |             |
| 4-Chloroaniline                | ND               | µg/L                                  | 10  |                   |                |                |            |       |            |             |
| 2-Chloronaphthalene            | ND               | μg/L                                  | 10  |                   |                |                |            |       |            |             |
| 2-Chlorophenol                 | ND               | µg/L                                  | 10  |                   | •              |                |            |       |            |             |
| 4-Chlorophenyl phenyl ether    | ND               | μg/L                                  | 10  |                   |                |                |            |       |            |             |
| Chrysene                       | , ND             | μg/L                                  | 10  |                   |                |                |            |       |            |             |
| Di-n-butyl phthalate           | ND               | μg/L                                  | 10  |                   |                |                |            |       | •          |             |
| Di-n-octyl phthalate           | ND               | μg/L                                  | 10  |                   |                |                |            |       |            |             |
| Dibenz(a,h)anthracene          | ND.              | μg/L                                  | 10  |                   |                |                |            |       |            |             |
| Dibenzofuran                   | ND               | μg/L                                  | 10  |                   |                |                |            |       |            |             |
| 1,2-Dichlorobenzene            | ND               | μg/L                                  | 10  |                   |                |                |            |       |            |             |
| 1,3-Dichlorobenzene            | ND               | μg/L                                  | 10  |                   |                |                |            |       |            |             |
| 1,4-Dichlorobenzene            | ND               | μg/L                                  | 10  |                   |                |                |            |       |            |             |
| 3,3'-Dichlorobenzidine         | ND               | μg/L                                  | 10  |                   |                |                |            |       |            |             |
| Diethyl phthalate              | ND               | μg/L                                  | 10  |                   |                |                |            |       |            |             |
| Dimethyl phthalate             | ND               | · μg/L                                | 10  |                   |                |                |            |       |            |             |
| 2,4-Dichlorophenol             | ND               | μ <b>g/L</b>                          | 20  |                   |                |                |            |       |            |             |
| 2,4-Dimethylphenol             | ND               | μ <b>g/</b> L                         | 10  |                   |                |                |            |       |            |             |
| 4,6-Dinitro-2-methylphenol     | ND               | μ <b>g/</b> L                         | 20  |                   |                |                |            |       |            |             |
| 2,4-Dinitrophenol              | ND               | μg/L                                  | 20  |                   |                |                |            |       |            |             |
| 2,4-Dinitrotoluene             | ND               | μg/L                                  | 10  |                   |                | •              |            |       |            |             |
| 2,6-Dinitrotoluene             | ND               | μg/L                                  | 10  |                   |                |                |            |       |            |             |
| Fluoranthene                   | ND               | µg/L                                  | 10  |                   |                |                |            |       |            |             |
| Fluorene                       | ND               | µg/L                                  | 10  |                   |                |                |            |       |            |             |
| Hexachlorobenzene              | ND               | µg/L                                  | 10  |                   |                |                |            |       |            |             |
| Qualifiers:                    |                  | · · · · · · · · · · · · · · · · · · · |     | !                 |                |                |            |       |            |             |
| E Estimated value              |                  |                                       |     | H Holding times   | for preparatio | n or analvei   | s exceeded |       |            |             |
| J Analyte detected below qua   | ntitation limits |                                       |     | NC Non-Chlorinate |                | vi waaasjot    |            |       |            |             |
| ND Not Detected at the Reporti |                  |                                       |     | R RPD outside a   |                | ages, liveside |            |       |            | Page 6      |

Client:

Western Refining Southwest, Inc.

ject:

Injection Well 4th Qtr

Work Order:

1110646

| Analyte                    | Result         | Units     | PQL  | SPK Va SPK re | f %Recl   | LowLimit Hi | ighLimit 9 | %RPD               | RPDLimit     | Qual       |
|----------------------------|----------------|-----------|------|---------------|-----------|-------------|------------|--------------------|--------------|------------|
| Method: EPA Method 82700   | : Semivolatile | 3         |      |               | ı         |             |            | _                  |              |            |
| Sample ID: mb-28933        |                | MBLK      |      |               | Batch ID: | 28933       | Analysis   | Date:              | 10/21/2011 1 | 1:14:08 A  |
| -texachtorobutadiene       | ND             | µg/L      | 10   |               | h         |             |            |                    |              |            |
| -lexachlorocyclopentadiene | . ND           | µg/L      | 10   |               |           |             |            |                    |              |            |
| texachloroethane           | ND             | µg/L      | 10   |               |           |             |            |                    |              |            |
| ndeno(1,2,3-cd)pyrene      | ND             | μg/L      | 10   |               |           |             |            |                    |              |            |
| sophorone                  | ND             | μg/L      | 10   |               |           |             |            |                    |              |            |
| 2-Methylnaphthalene        | ND             | µg/L      | 10   |               |           | •           |            |                    |              |            |
| I-Methylnaphthalene        | ND             | μg/L      | 10   |               |           | •           |            |                    |              |            |
| 2-Methylphenol             | ND             | μg/L      | 10   |               | *. *      | -           |            |                    |              |            |
| 3+4-Methylphenol           | ND             | µg/L      | 10   |               | Ir        |             | •          |                    |              |            |
| N-Nitrosodi-n-propylamine  | ND             | μg/L      | 10   |               |           |             | -          |                    |              |            |
| N-Nitrosodimethylamine     | ND             | µg/L      | 10   |               |           |             | • •        | •                  |              |            |
| N-Nitrosodiphenylamine     | ND             | μg/L      | 10   | •             | •         |             |            |                    |              |            |
| Naphthalene                | ND             | μg/L      | 10   | . 1           |           |             |            |                    |              |            |
| 2-Nitroaniline             | ND             | μg/L      | 10   |               |           |             |            |                    |              |            |
| 3-Nitroaniline             | ND             | μg/L      | 10   |               |           |             | •          |                    |              |            |
| 4-Nitroaniline             | ND             | μg/L      | 20   |               |           |             |            |                    |              |            |
| Nitrobenzene               | ND             | μg/L      | 10   |               |           |             |            |                    | •            |            |
| 2-Nitrophenol              | ND             | μg/L      | 10   |               |           |             |            |                    |              |            |
| 1-Nitrophenol              | ND             | μg/L      | 10   |               |           | •           |            |                    |              |            |
| Pentachlorophenol          | ND             |           | 20   |               |           | _           |            |                    |              |            |
| nanthrene                  | ND             | μg/L      |      |               |           |             |            |                    |              |            |
| noi                        | ND             | µg/L      | . 10 |               |           |             |            |                    |              | ٠.         |
|                            |                | µg/L      | 10   |               |           |             |            |                    |              |            |
| Pyrene<br>Pyridine         | ND             | µg/L      | 10   |               |           |             |            |                    |              | •          |
| -                          | ND             | µg/L      | 10   |               |           |             |            |                    |              | •          |
| 1,2,4-Trichlorobenzene     | ND             | μg/L      | 10   |               |           |             | •          |                    |              |            |
| 2,4,5-Trichlorophenol      | ND             | μg/L      | 10   | 1             | •         |             |            |                    | •            |            |
| 2,4,6-Trichlorophenol      | ND             | μg/L      | 10   |               |           |             |            |                    |              |            |
| Sample ID: lcs-28933       |                | LCS       |      |               | Batch ID: | 28933       | Analysis I | Dat <del>e</del> : | 10/21/2011 1 | 1:43:34 AI |
| Acenaphthene               | 64.96          | µg/L      | 10   | 100 0         | 65.0      | 37.7        | 119        |                    |              |            |
| 4-Chloro-3-methylphenol    | 126.9          | μg/L      | 10   | 200 0         | 63.4      | 48.8        | 104        |                    |              |            |
| 2-Chlorophenol             | 131.8          | µg/L      | 10   | 200 0         | 65.9      | 38.2        | 109        |                    |              |            |
| 1,4-Dichlorobenzene        | 53.14          | · µg/L    | 10   | 100 0         | 53.1      | 33.7        | 99.1       |                    |              |            |
| 2,4-Dinitrotoluene         | 62.82          | µg/L      | 10   | 100 · 0       | 62.8      | 39.9        | 125        |                    |              |            |
| N-Nitrosodi-n-propylamine  | 59.36          | µg/L      | 10   | 100 0         | 59.4      | 43.8        | 95.1       |                    |              |            |
| 4-Nitrophenol              | 65.02          | μg/L      | 10   | 200 0         | 32.5      | 21.7        | 68.6       |                    |              |            |
| Pentachlorophenol          | 81.78          | μg/L      | 20   | 200 0         | 40.9      | 26.7        | 107        |                    |              |            |
| Phenol<br>-                | 73.32          | μg/L      | 10   | 200 0         | 36.7      | 23.9        | 65.8       |                    |              |            |
| Dyrene                     | 59.74          | μg/L<br>- | . 10 | 100 0         | 59.7      | 45.7        | 107        |                    |              |            |
| 1,2,4-Trichlorobenzene     | 54.34          | µg/L      | 10   | 100 0         | 54.3      | 30.8        | 104        |                    |              |            |
| Bample ID: lcsd-28933      |                | LCSD      |      |               | Batch ID: | 28933       | Analysis I | Date:              | 10/21/2011 1 | 2:13:07 PI |
| Acenaphthene               | 69.00          | μg/L      | 10   | 100 0         | 69.0      | 37.7        | 119        | 6.03               | 20           |            |
| 4-Chloro-3-methylphenol    | 143.3          | μg/L      | 10   | 200 0         | 71.7      | 48.8        | 104        | 12.2               | 20           |            |
| 2-Chlorophenol             | 128.1          | μg/L      | 10   | 200 0         | 64.1      | 38.2        | 109        | 2.82               | 20           |            |
| 1,4-Dichlorobenzene        | 53.22          | μg/L      | 10   | 100 0         | 53.2      | 33.7        | 99.1       | 0.150              | 20           |            |





Estimated value

Analyte detected below quantitation limits

Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded : **H** 

Non-Chlorinated NC

RPD outside accepted recovery limits

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th Qtr

Work Order:

1110646

| Analyte                    | Result          | Units | PQL             | SPK Va         | a SPK ref      | %Rec L         | LowLimit Hig | ighLimit | %RPD      | O RPDLimit   | t Qual      |
|----------------------------|-----------------|-------|-----------------|----------------|----------------|----------------|--------------|----------|-----------|--------------|-------------|
| Method: EPA Method 8270C:  | : Semivolatiles |       |                 |                |                |                |              |          |           |              | ,           |
| Sample ID: Icsd-28933      |                 | LCSD  |                 |                |                | Batch ID:      | 28933        | Analys.  | sis Date: | 10/21/2011 1 | 12:13:07 Pi |
| 2,4-Dinitrotoluene         | 71.06           | μg/L  | 10              | 100            | 0              | 71.1           | 39.9         | 125      | 12.3      | 20           | •           |
| N-Nitrosodi-n-propylamine  | 62.78           | μg/L  | 10              | 100            | . 0            | 62.8           | 43.8         | 95.1     | 5.60      | 20           |             |
| I-Nitrophenol              | 74.94           | μg/L  | 10              | 200            | 0              | 37.5           | 21.7         | 68.6     | 14.2      | 20           |             |
| Pentachlorophenol          | 87.60           | µg/L  | 20 <sup>0</sup> | 200            | 0              | 43.8           | 26.7         | 107      | 6.87      | 20           |             |
| Phenol                     | 79.78           | μg/L  | 10              | 200            | 0              | 39.9           | 23.9         | 65.8     | 8.44      | 20           |             |
| Pyrene                     | 66.38           | μg/L  | 10              | 100            | 0              | 66.4           | 45.7         | 107      | 10.5      | 20           |             |
| 1,2,4-Trichlorobenzene     | 52.12           | μg/L  | 10              | 100            | 0              | 52.1           | 30.8         | 104      | 4.17      | 20           |             |
| Method: EPA Method 7470: N | Wercury         |       |                 | _ <del>_</del> | _ <del>_</del> | _ <del>_</del> |              |          |           |              | <del></del> |
| Sample ID: MB-29034        | •               | MBLK  | ļ               |                |                | Batch ID:      | 29034        | Analysi  | sis Date: | 10/24/2011   | 3:48:26 Pi  |
| Mercury                    | ND              | mg/L  | 0.00020         | •              |                |                |              |          |           |              |             |
| sample ID: LCS-29034       | -               | LCS   |                 |                |                | Batch ID:      | 29034        | Analysi  | sis Date: | 10/24/2011   | 3:50:12 Pl  |
| lercury                    | 0.004293        | mg/L  | 0.00020         | 0.005          | 6E-05          | 84.6           | 80           | 120      |           |              |             |

| Qualifia | 16 |
|----------|----|

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

NC Non-Chlorinated

H

R RPD outside accepted recovery limits

Client:

Western Refining Southwest, Inc.

pject:

Injection Well 4th Qtr

Work Order:

1110646

| Analyte<br>               | Result  | Units<br>———— | PQL    | SPK Va | SPK ref | %Rec Lo      | owLimit Hig  | ghLimit | %RPD     | RPDLimit   | Qual       |
|---------------------------|---------|---------------|--------|--------|---------|--------------|--------------|---------|----------|------------|------------|
| Nethod: EPA 6010B: Total  |         |               |        |        |         |              |              |         |          |            |            |
| Sample ID: 1110646-01EMSD | )       | MSD           |        |        |         | Batch ID:    | 28889        | Analysi | s Date:  | 10/21/2011 | 9:41:36 AR |
| Arsenic                   | 0.5551  | mg/L          | 0.020  | 0.5    | . 0     | 111          | <b>7</b> 5 ′ | 125     | 0.386    | 20         |            |
| Barlum                    | 0.6957  | mg/L          | 0.020  | 0.5    | 0.1909  | / <b>101</b> | 75           | 125     | 0.121    | 20         |            |
| Cadmium                   | 0.4991  | mg/L          | 0.0020 | 0.5    | 0       | 99.8         | 75           | 125     | 0.174    | 20         |            |
| Chromium                  | 0.5131  | mg/L          | 0.0060 | 0.5    | 0       | 103          | 75           | 125     | 0.316    | 20         | •          |
| ead                       | 0.5106  | mg/L          | 0.0050 | 0.5    | 0       | 102          | 75           | 125     | 0.409    | 20         |            |
| lagnesium                 | 73.76   | mg/L          | 1.0    | 50     | 23.74   | 100          | 75           | 125     | 1.04     | 20         |            |
| otassium                  | 55.49   | mg/L          | 1.0    | 50     | 6.838   | 97.3         | 75           | 125     | 0.700    | 20         |            |
| elenium                   | 0.4910  | mg/L          | 0.050  | 0.5    | 0       | 98.2         | 75           | 125     | 1.70     | 20         |            |
| ilver                     | 0.08806 | mg/L          | 0.0050 | 0.1    | 0       | 88.1         | 75           | 125     | 0.0529   | 20         |            |
| ample (D: 1110646-01EMSD  | ,       | MSD           |        |        |         | Batch ID:    | 28889        | Analysi | s Date:  | 10/21/2011 | 9:47:51 AF |
| alcium                    | 205.2   | mg/L          | 5.0    | 50     | 146.5   | 117          | 75           | 125     | 3.56     | 20         |            |
| odium                     | 276.7   | mg/L          | 5.0    | 50     | 226.2   | 101          | 75           | 125     | 3.04     | 20         |            |
| ample ID: MB-28889        | •       | MBLK          |        |        |         | Batch ID:    | 28889        | Analysi | is Date: | 10/17/2011 | 8:32:28 AI |
| rsenic                    | ND      | mg/L          | 0.020  |        |         |              |              |         |          |            |            |
| arium                     | ND      | mg/L          | 0.020  |        |         |              |              |         |          |            |            |
| admium                    | ND      | mg/L          | 0.0020 |        |         |              |              |         |          |            | . •        |
| alcium                    | ND      | mg/L          | 1.0    |        |         | . '          |              |         |          | •          |            |
| hromium                   | ND      | mg/L          | 0.0060 | •      |         |              |              |         |          | Ţ          |            |
| ad                        | NĐ      | mg/L          | 0.0050 |        |         |              |              |         |          |            |            |
| agnesium                  | ND      | mg/L          | 1.0    |        |         |              |              |         |          |            |            |
| assium                    | ND      | mg/L          | 1.0    |        |         |              |              |         |          |            |            |
| elenium                   | ND      | mg/L          | 0.050  |        |         |              |              |         |          |            |            |
| ilver                     | ND      | mg/L          | 0.0050 |        |         |              |              |         |          |            |            |
| odium                     | ND      | mg/L          | 1.0    |        |         |              |              |         |          |            |            |
| ample ID: LCS-28889       |         | LCS           |        |        |         | Batch ID:    | 28889        | Analys  | is Date: | 10/17/2011 | 8:34:26 AN |
| rsenic                    | 0.5059  | mg/L          | 0.020  | 0.5    | 0       | 101          | 80           | 120     |          |            |            |
| arium                     | 0.4964  | mg/L          | 0.020  | 0.5    | 0       | 99.3         | 80           | 120     |          |            |            |
| admium                    | 0.4971  | mg/L          | 0.0020 | 0.5    | 0       | 99.4         | 80           | 120     |          |            |            |
| alcium                    | 49.78   | mg/L          | 1.0    | 50     | 0       | 99.6         | 80           | 120     |          |            |            |
| hromlum                   | 0.4936  | mg/L          | 0.0060 | 0.5    | 0       | 98.7         | 80           | 120     |          |            |            |
| ead                       | 0.4993  | mg/L          | 0.0050 | 0.5    | 0       | 99.9         | 80           | 120     |          |            |            |
| agnesium                  | 50.09   | mg/L          | 1.0    | 50     | 0       | 100          | 80           | 120     |          |            |            |
| otassium                  | 48.14   | mg/L          | 1.0    | 50     | 0       | 96.3         | 80 .         | 120     |          |            |            |
| eienium                   | 0.4867  | mg/L          | 0.050  | 0.5    | 0       | 97.3         | 80           | 120     |          |            |            |
| lver                      | 0.08537 | mg/L          | 0.0050 | 0.1    | 0       | 85.4         | 80           | 120     |          |            |            |
| odium                     | 48.85   | mg/L          | 1.0    | 50     | 0       | 97.7         | 80           | 120     |          |            |            |
| ample ID: 1110646-01EMS   | •       | MS            |        |        |         | Batch ID:    | 28889        | Analys  | is Date: | 10/21/2011 | 9:39:32 AN |
| rsenic                    | 0.5530  | mg/L          | 0.020  | 0.5    | 0       | 111          | 75           | 125     |          |            |            |
| arium                     | 0.6949  | mg/L          | 0.020  | 0.5    | 0.1909  | 101          | 75 ·         | 125     |          |            |            |
| admium                    | 0.4999  | mg/L          | 0.0020 | 0.5    | . 0     | 100          | 75           | 125     |          |            |            |
| hromium                   | 0.5147  | mg/L          | 0.0060 | 0.5    | 0       | 103          | 75           | 125     |          |            |            |
| ead                       | 0.5127  | mg/L          | 0.0050 | 0.5    | 0       | 103          | 75           | 125     |          |            |            |
| lagnesium                 | 73.00   | mg/L          | 1.0    | 50     | 23.74   | 98.5         | 75           | 125     |          |            |            |





Estimated value

Analyte detected below quantitation limits.

Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th Qtr

Work Order:

1110646

| Analyte                     | Result       | Units | PQL    | SPK Va | SPK ref | %Rec Lo   | wLimit Hi | ghLimit %RPD   | RPDLimit Qual                         |
|-----------------------------|--------------|-------|--------|--------|---------|-----------|-----------|----------------|---------------------------------------|
| Method: EPA 6010B; Total Re | coverable Me | tals  |        |        |         |           |           |                |                                       |
| Sample ID: 1110646-01EMS    |              | MS    |        |        |         | Batch ID: | 28889     | Analysis Date: | 10/21/2011 9:39:32 AM                 |
| Potassium                   | 55.10        | mg/L  | 1.0    | 50     | 6.838   | 96.5      | 75        | 125            |                                       |
| Selenium                    | 0.4828       | mg/L  | 0.050  | 0.5    | 0       | 96.6      | 75        | 125            |                                       |
| Silver                      | 0.08802      | mg/L  | 0.0050 | 0.1    | . 0     | 88.0      | 75        | 125            |                                       |
| Sample ID: 1110646-01EMS    |              | MS    |        |        |         | Batch ID: | 28889     | Analysis Date: | 10/21/2011 9:45:42 AN                 |
| Calcium                     | 198.0        | mg/L  | 5.0    | 50     | 146.5   | 103       | 75        | 125            |                                       |
| Sodium                      | 268.4        | mg/L  | 5.0    | 50     | 226.2   | 84.4      | 75        | 125            |                                       |
| Method: SM2540C MOD: Tota   | Dissolved S  | able  |        |        |         |           |           |                | · · · · · · · · · · · · · · · · · · · |
| Sample ID: 1110846-01DMSD   |              | MSD   |        |        |         | Batch ID: | 28916     | Analysis Date: | 10/18/2011 1:19:00 PM                 |
| Total Dissolved Solids      | 2210         | mg/L  | 20.0   | 1000   | 1189    | 102       | 80        | 120 0.406      | · 5                                   |
| Sample ID: MB-28916         |              | MBLK  |        |        |         | Batch ID: | 28916     | Analysis Date: | 10/18/2011 1:19:00 PM                 |
| Total Dissolved Solids      | ND           | mg/L  | 20.0   |        |         |           |           |                |                                       |
| Sample ID: LCS-28916        |              | LCS   |        |        |         | Batch ID: | 28916     | Analysis Date: | 10/18/2011 1:19:00 PM                 |
| Total Dissolved Solids      | 1023         | mg/L  | 20.0   | 1000   | 0       | 102       | 80        | 120            |                                       |
| Sample ID: 1110646-01DMS    |              | MS    |        |        |         | Batch ID: | 28916     | Analysis Date: | 10/18/2011 1:19:00 PM                 |
| Total Dissolved Solids      | 2219         | mg/L  | 20.0   | 1000   | 1189    | 103       | 80        | 120            |                                       |

| _  |    |      |      |
|----|----|------|------|
| (1 | ma | Hill | ers: |
|    |    |      |      |

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

# Hall Environmental Analysis Laboratory, Inc.

# Sample Receipt Checklist

| Name WESTERN REFINING SOUT                         |                   | •               | Date Receiv       | /ed:               | 10/12/2011                 |
|----------------------------------------------------|-------------------|-----------------|-------------------|--------------------|----------------------------|
| Veerk Order Number 1110848                         |                   |                 | Received          | by: AMG            |                            |
|                                                    | A .               | 1.1.            | Sample ID         | labels checked by: | A                          |
| Checklist completed by: Signature                  | ~                 | / <i>G</i> //2/ | //                | _                  | Initials                   |
|                                                    |                   |                 | <u>,</u>          |                    | •                          |
| Matrix:                                            | Carrier name:     | <u>UPS</u>      |                   |                    |                            |
| Shipping container/cooler in good condition?       | ٠.                | Yes 🗹           | No 🗆              | Not Present        |                            |
| Custody seals intact on shipping container/cooler? | )                 | Yes 🗹           | No 🗆              | Not Present        | Not Shipped                |
| Custody seals intact on sample bottles?            |                   | Yes 🗆           | No 🗆              | N/A ☑              | •                          |
| Chain of custody present?                          |                   | Yes 🗹           | No 🗆              |                    |                            |
| Chain of custody signed when relinquished and re-  | ceived?           | Yes 🗹           | No 🗆              |                    |                            |
| Chain of custody agrees with sample labels?        | •                 | Yes 🗹           | No 🗆              |                    |                            |
| Samples in proper container/bottle?                |                   | Yes 🗹           | No 🗆              | •                  |                            |
| Sample containers intact?                          | 4                 | Yes 🗹           | No 🗔              |                    |                            |
| Sufficient sample volume for indicated test?       |                   | Yes 🗹           | No 🗆              |                    |                            |
| All samples received within holding time?          |                   | Yes 🗹           | No 🗀              |                    | Number of preserved        |
| Water - VOA vials have zero headspace?             | No VOA vials subn | nitted 🗌        | Yes, 🗹            | No 🗆               | bottles checked for<br>pH: |
| Water - Preservation labels on bottle and cap mate | ch?               | Yes 🗹           | No 🗆              | N/A                | 2 2                        |
| er - pH acceptable upon receipt?                   |                   | Yes 🗹           | No 🗆              | N/A □              | 12 unless noted            |
| Container/Temp Blank temperature?                  |                   | 1.3°            | <6° Ci Accepta    |                    | D <del>O</del> IOW.        |
| COMMENTS:                                          |                   |                 | If given sufficie | ent time to cool.  | • ;                        |
|                                                    |                   |                 | · 1,              |                    |                            |
| •                                                  |                   |                 | ,                 |                    |                            |
|                                                    |                   |                 |                   | •                  |                            |
|                                                    |                   | ·<br>=====      |                   |                    |                            |
|                                                    | =====             | ·<br>=====      |                   | =====              |                            |
| =======================================            | =====             | ·<br>=====      |                   |                    | =                          |
|                                                    | =====             | ·====           |                   | =====              | =======                    |
| Client contacted D                                 | ate contacted:    | ·====           | Pé                | erson contacted    |                            |
|                                                    | ate contacted:    | . = = =         | Pe                | erson contacted    |                            |
| Contacted by:                                      |                   | :====           | Pe                | erson contacted    |                            |
|                                                    |                   |                 | Pe                | erson contacted    |                            |
| Contacted by:                                      |                   |                 | Pe                | erson contacted    |                            |
| Contacted by:                                      |                   |                 | Pe                | erson contacted    |                            |
| Contacted by:                                      |                   |                 | Pe                | erson contacted    |                            |
| Contacted by:                                      |                   |                 | Pe                | erson contacted    |                            |
| Contacted by:                                      |                   |                 | Pe                | erson contacted    |                            |
| Contacted by: R                                    |                   |                 | Pe                | erson contacted    |                            |

| I TO THE PROPERTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY | ANALYSIS LABORATORY | www.hallenvironmental.com | 4901 Hawkins NE - Albuquerque, NM 87109 | Tel. 505-345-3975 Fax 505-345-4107 | Analysis Request       | O <sup>4</sup> )  k          | (Gas o (Gas o (Gas o | 115B (C                       | reference of 60 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or 10 or | BTEX + MT BTEX + MT TPH Methor TPH (Methor TPH (Methor B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B310 (PNA B | X                                | X              | X             |                   | ×             | ×            | ×              | <b>×</b>          |            |  | Remarks:                     |                       |                        | lerves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------|-----------------------------------------|------------------------------------|------------------------|------------------------------|----------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------|---------------|-------------------|---------------|--------------|----------------|-------------------|------------|--|------------------------------|-----------------------|------------------------|---------------------------------------------------------------------------------------------------------|
| Turn-Around Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X Standard □ Rush   | *                         | Injection Well 4th QTR                  | Project #:                         |                        | Project Manager:             |                      | Sampler: Terry<br>Onlow Roles |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Container Preservative Preservation Type and # Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 340A HCL -1                      | 1- Liter Amber | 1-50m/ 1-50m/ | 1-500ml - 1m005-1 | 1-250ml H2504 | 1-500ml HNO3 | 1-500 ml Na DH | 1-500m1 ZN Acatel |            |  | Received by: Date Time       | [:]   e  a            | Received by: Time      |                                                                                                         |
| Chain-of-Custody Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                           | Mailing Address: 50 Road 4990           | (3                                 | Phone #: 505- 632-4135 | email or Fax#: \$05-632-3911 | QA/QC Package:       |                               | □ EDD (Type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample Request ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10-11-11 9:30 H30 Injection Well | ,              |               |                   |               |              |                | 1                 | Trip Blank |  | Date: Time: Relinguished by: | 11 12:3 Votest Kraley | Time: Relinquished by: | If necessary is a subcontracted to the subcontracted to other accredited laboratories.                  |

ή.

# **APPENDIX C**



# **Hall Environmental Analysis Laboratory**

# **QUALITY ASSURANCE PLAN**

Effective Date: July 1st, 2011

**Revision 9.4** 

www.hallenvironmental.com

Control Number: 00000104

Approved By:

Andy Freeman

**Laboratory Manager** 

Date

Approved By:

Carolyn Swanson

4/29/201

Date

Quality Assurance/Quality Control Officer



Approved By:

B. Derek Harmon Date
Organic Manager/Technical Director

Approved By:

lan Cameron

0/29/11

Inorganic Manager/Technical Director

Approved By:

Michael Williams

Microbiology Technical Director

Page 2 of 54 Quality Assurance Plan 9.4 Effective July 1st, 2011

# **Table of Contents**

| Section | Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | <u>Page</u> |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|
| 1.0     | Title Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | 1           |
| 2.0     | Table of Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | <b>3</b> .  |
| 3.0     | Introduction Purpose of Document Objectives Policies                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d                                     | 6           |
| 4.0     | Organization and Responsibility Company Certifications Personnel     Laboratory Director     Laboratory Manager/ Lead Technical Director     Quality Assurance Officer     Business/Project Manager     Section Managers/Technical Directors     Health and Safety/Chemical Hygiene Officer     Analyst I-III     Laboratory Technician     Sample Control Manager     Sample Custodians     Delegations in the Absence of Key Personne     Personnel Qualifications and Training     Organizational Chart | · · · · · · · · · · · · · · · · · · · | 8           |
| 5.0     | Receipt and Handling of Samples Sampling Procedures Containers Preservation Sample Custody Chain of Custody Receiving Samples Logging in Samples and Storage Disposal of Samples                                                                                                                                                                                                                                                                                                                           |                                       | 19          |
| 6.0     | Analytical Procedures List of Procedures Used Criteria for Standard Operating Procedures                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 22          |

| 7.0     | Calibration Thermometers Refrigerators/Freezers Ovens Analytical/Table Top Balance Instrument Calibration pH Meter Other Analytical Instrumenta Standards Reagents                                                                                                                             |                                                                              |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 8.0     | Maintenance                                                                                                                                                                                                                                                                                    | 31                                                                           |
| 9.0     | Data Integrity                                                                                                                                                                                                                                                                                 | 32                                                                           |
| 10.0    | Quality Control Internal Quality Control Checks Precision, Accuracy, Detection Quality Control Parameter Control Mean Standard Deviation Percent Recovery (%R) Confidence Intervals Relative Percent Difference ( Uncertainty Measurements Calibration Calculations Concentration Calculations | alculations                                                                  |
| 11.0    | Data Reduction, Validation, and<br>Data Reduction<br>Validation<br>Reports and Records                                                                                                                                                                                                         | Reporting 46                                                                 |
| 12.0    | Corrective Action                                                                                                                                                                                                                                                                              | 48                                                                           |
| 13.0    | Quality Assurance Audits, Rep<br>Internal/External Systems' A<br>Management Reviews<br>Complaints<br>Internal and External Reports                                                                                                                                                             | udits                                                                        |
| 14.0    | References                                                                                                                                                                                                                                                                                     | 53                                                                           |
| Appendi | x A Personnel List                                                                                                                                                                                                                                                                             | Reserved, available upon request                                             |
| Appendi | ix B ORELAP Accreditation Full list of approved analytes, methods,                                                                                                                                                                                                                             | Reserved, available upon request analytical techniques and fields of testing |

Page 4 of 54
Quality Assurance Plan 9.4
Effective July 1<sup>st</sup>, 2011

Appendix C TCEQ Accreditation

Reserved, available upon request

Full list of approved analytes, methods, analytical techniques and fields of testing

Appendix D ADHS Accreditation

Reserved, available upon request

Full list of approved analytes, methods, analytical techniques and fields of testing

Appendix E NMED-DWB Certification

Reserved, available upon request

Appendix F NM DOH Certification

Reserved, available upon request

**Appendix G Terms, Definitions and Acronym List** 

Reserved, available upon request

**Appendix H Chain of Custody Record** 

Reserved, available upon request

Reserved, available upon request

Appendix I HEAL Forms

Analyst Ethics and Data Integrity Agreement

**IDOC** Certificate

**ADOCP Certificate** 

**Training Forms** 

Corrective Action Report

Administrative SOP List

Page 5 of 54 Quality Assurance Plan 9.4 Effective July 1<sup>st</sup>, 2011

#### 3.0 Introduction

## **Purpose of Document**

The purpose of this Quality Assurance Plan is to formally document the quality assurance policies and procedures of Hall Environmental Analysis Laboratory, Inc. (HEAL), for the benefit of its employees, clients, and accrediting organizations. HEAL continually implements all aspects of this plan as an essential and integral part of laboratory operations in order to ensure that high quality data is produced in an efficient and effective manner.

## **Objectives**

The objective of HEAL is to achieve and maintain excellence in environmental testing. This is accomplished by developing, incorporating and documenting the procedures and policies specified by each of our accrediting authorities and outlined in this plan. These activities are carried out by a laboratory staff that is analytically competent, well-qualified, and highly trained. An experienced management team, knowledgeable in their area of expertise, monitors them. Finally, a comprehensive quality assurance program governs laboratory practices and ensures that the analytical results are valid, defensible, reproducible, reconstructable and of the highest quality.

HEAL establishes and thoroughly documents its activities to ensure that all data generated and processed will be scientifically valid and of known and documented quality. Routine laboratory activities are detailed in method specific standard operating procedures (SOP). All data reported meets the applicable requirements for the specific method that is referenced, ORELAP, TCEQ, EPA, client specific requirements and/or State Bureaus. In the event that these requirements are ever in contention with each other, it is HEAL's policy to always follow the most prudent requirement available. For specific method requirements refer to HEAL's Standard Operating Procedures (SOP's), EPA methods, Standard Methods 20<sup>th</sup> edition, ASTM methods or state specific methods.

HEAL management ensures that this document is correct in terms of required accuracy and data reproducibility, and that the procedures contain proper quality control measures. HEAL management additionally ensures that all equipment is reliable, well-maintained and appropriately calibrated. The procedures and practices of the laboratory are geared towards not only strictly following our regulatory requirements but also allowing the flexibility to conform to client specific specifications. Meticulous records are maintained for all samples and their respective analyses so that results are well-documented and defensible in a court of law.

The HEAL Quality Assurance/Quality Control Officer (QA/QCO) and upper management are responsible for supervising and administering this quality assurance program, and ensuring each individual is responsible for its proper implementation. All HEAL management remains committed to the encouragement of excellence in analytical testing and will continue to provide the necessary resources and environment conducive to its achievement.

### **Policies**

Understanding that quality cannot be mandated, it is the policy of this laboratory to provide an environment that encourages all staff members to take pride in the quality of their work. In addition to furnishing proper equipment and supplies, HEAL stresses the importance of continued training and professional development. Further, HEAL recognizes the time required for data interpretation. Therefore, no analyst should feel pressure to sacrifice data quality for data quantity. Each staff member must perform with the highest level of integrity and professional competence, always being alert to problems that could compromise the quality of their technical work.

Management and senior personnel supervise analysts closely in all operations. Under no circumstance is the willful act or fraudulent manipulation of analytical data condoned. Such acts must be reported immediately to HEAL management. Reported acts will be assessed on an individual basis and resulting actions could result in dismissal. The laboratory staff is encouraged to speak with lab managers or senior management if they feel that there are any undo commercial, financial, or other pressures, which might adversely affect the quality of their work; or in the event that they suspect that data quality has been compromised in any way. HEAL's Quality Assurance/Quality Control Officer is available if any analyst and/or manager wishes to anonymously report any suspected or known breaches in data integrity.

Understanding the importance of meeting customer requirements in addition to the requirements set forth in statutory and regulatory requirements, HEAL shall periodically seek feedback from customers and evaluate the feedback in order to initiate improvements.

All proprietary rights and client information at HEAL (including national security concerns) are considered confidential. No information will be given out without the express verbal or written permission of the client. All reports generated will be held in the strictest of confidence.

HEAL shall continually improve the effectiveness of its management system through the use of the policies and procedures outlined in this Quality Assurance Plan. Quality control results, internal and external audit findings, management reviews, new and continual training and corrective and preventive actions are continually evaluated to identify possible improvements and to ensure that appropriate communication processes are taking place regarding the effectiveness of the management system. HEAL shall ensure that the integrity of the quality system is maintained when changes to the system are planned and implemented.

This is a controlled document. Each copy is assigned a unique tracking number and when released to a client or accrediting agency the QA/QCO keeps the tracking number on file. This document is reviewed on an annual basis to ensure that it is valid and representative of current practices at HEAL.

## 4.0 Organization and Responsibility

## Company

HEAL is accredited in accordance with the 2009 TNI standard (see NELAC accredited analysis list in Appendix B and C), through ORELAP and TCEQ and by the Arizona Department of Health Services. Additionally, HEAL is qualified as defined under the State of New Mexico Water Quality Control Commission regulations and the New Mexico State Drinking Water Bureau. HEAL is a locally owned small business that was established in 1991. HEAL is a full service environmental analysis laboratory with analytical capabilities that include both organic and inorganic methodologies and has performed analyses of soil, water, and air as well as various other matrices for many sites in the region. HEAL's client base includes local, state and federal agencies, private consultants, commercial industries as well as individual homeowners. HEAL has performed as a subcontractor to the state of New Mexico and to the New Mexico Department of Transportation. HEAL has been acclaimed by its customers as producing quality results and as being adaptive to client-specific needs.

The laboratory is divided into an organic section and an inorganic section. Each section has a designated manager/technical director. The technical directors report directly to the laboratory manager, who oversees all operations.

#### Certifications

ORELAP - NELAC Oregon Primary accrediting authority.

TCEQ – NELAC Texas Secondary accrediting authority.

The Arizona Department of Health Services

The New Mexico Drinking Water Bureau

The New Mexico Department of Health

See Appendix B-F for copies of current licenses and licensed parameters, or refer to our current list of certifications online at <a href="https://www.hallenvironmental.com">www.hallenvironmental.com</a>.

In the event of a certification being revoked or suspended, HEAL will notify, in writing, those clients that require the affected certification.

#### Personnel

HEAL management ensures the competence of all who operate equipment, perform environmental tests, evaluate results, and sign test reports. Personnel performing specific tasks shall be qualified on the basis of appropriate education, training, experience and /or demonstrated skills.

HEAL ensures that all personnel are aware of the relevance and importance of their activities and how each employee contributes to the achievement of the objectives defined throughout this document.

All personnel shall be responsible for complying with HEAL's quality assurance/quality control requirements that pertain to their technical function. Each technical staff member must have a combination of experience and education to adequately demonstrate specific knowledge of their particular function and a general knowledge of laboratory operations, test methods, quality assurance/quality control procedures, and records management.

All employees' training certificates and diplomas are kept on file with demonstrations of capability for each method they perform. An Organizational Chart can be found at the end of this section and a personnel list is available in Appendix A.

## **Laboratory Director**

The Laboratory Director is responsible for overall technical direction and business leadership of HEAL. The Laboratory Manager, the Project Manager and Quality Assurance/Quality Control Officer report directly to the Laboratory Director. Someone with a minimum of 7 years of directly related experience and a bachelor's degree in a scientific or engineering discipline should fill this position.

## **Laboratory Manager/Lead Technical Director**

The Laboratory Manager shall exercise day—to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results. The Laboratory Manager shall be experienced in the fields of accreditation for which the laboratory is approved or seeking accreditation. The Laboratory Manager shall certify that personnel with appropriate educational and/or technical background perform all tests for which HEAL is accredited. Such certification shall be documented.

The Laboratory Manager shall monitor standards of performance in quality control and quality assurance and monitor the validity of the analyses performed and data generated at HEAL to assure reliable data.

The Laboratory Manager is responsible for the daily operations of the laboratory. The Laboratory Manager is the lead technical director of the laboratory and, in conjunction with the section technical directors, is responsible for coordinating activities within the

laboratory with the overall goal of efficiently producing high quality data within a reasonable time frame.

In events where employee scheduling or current workload is such that new work cannot be incorporated, without missing hold times, the Laboratory Manager has authority to modify employee scheduling, re-schedule projects or, when appropriate, allocate the work to approved subcontracting laboratories.

Additionally, the laboratory manager reviews and approves new analytical procedures and methods, and performs a final review of most analytical results. The Laboratory Manager provides technical support to both customers and HEAL staff.

The Laboratory Manager also observes the performance of supervisors to ensure that good laboratory practices and proper techniques are being taught and utilized, and to assist in overall quality control implementation and strategic planning for the future of the company. Other duties include assisting in establishing laboratory policies that lead to the fulfillment of requirements for various certification programs, assuring that all Quality Assurance and Quality Control documents are reviewed and approved, and assisting in conducting Quality Assurance Audits.

The laboratory manager addresses questions or complaints that cannot be answered by the section managers.

The Laboratory Manager shall have a bachelor's degree in a chemical, environmental, biological sciences, physical sciences or engineering field, and at least five years of experience in the environmental analysis of representative inorganic and organic analytes for which the laboratory seeks or maintains accreditation.

# **Quality Assurance Quality Control Officer**

The Quality Assurance/Quality Control Officer (QA/QCO) serves as the focal point for QA/QC and shall be responsible for the oversight and/or review of quality control data. The QA/QCO functions independently from laboratory operations and shall be empowered to halt unsatisfactory work and/or prevent the reporting of results generated from an out-of-control measurement system. The QA/QCO shall objectively evaluate data and perform assessments without any outside/managerial influence. The QA/QCO shall have direct access to the highest level of management at which decisions are made on laboratory policy and/or resources. The QA/QCO shall notify laboratory management of deficiencies in the quality system in periodic, independent reports.

The QA/QCO shall have general knowledge of the analytical test methods for which data review is performed and have documented training and/or experience in QA/QC procedures and in the laboratory's quality system. The QA/QCO will have a minimum of a BS in a scientific or related field and a minimum of three years of related experience.

The QA/QCO shall schedule and conduct internal audits as per the Internal Audit SOP at least annually, monitor and trend Corrective Action Reports as per the Data Validation

SOP, periodically review control charts for out of control conditions, and initiate any appropriate corrective actions.

The QA/QCO shall oversee the analysis of proficiency testing in accordance with our standards and monitor any corrective actions issued as a result of this testing.

The QA/QCO reviews all standard operating procedures and statements of work in order to assure their accuracy and compliance to method and regulatory requirements.

The QA/QCO shall be responsible for maintaining and updating this quality manual.

# **Project Manager**

The role of the project manager is to act as a liaison between HEAL and our clients. The Project Manager updates clients on the status of projects in-house; prepares quotations for new work, and is responsible for HEAL's marketing effort.

All new work is assessed by the Project Manager and reviewed with the other managers so as to not exceed the laboratory's capacity. In events where employee scheduling or current workload is such that new work cannot be incorporated without missing hold times, the Project Manager has authority to re-schedule projects.

It is also the duty of the project manager to work with the Laboratory Manager and QA/QCO to insure that before new work is undertaken, the resources required and accreditations requested are available to meet the client's specific needs.

Additionally, the Project Manager can initiate the review of the need for new analytical procedures and methods, and perform a final review of some analytical results. The Project Manager provides technical support to customers. Someone with a minimum of 2 years of directly related experience and a bachelor's degree in a scientific or engineering discipline should fill this position.

#### **Technical Directors**

Technical Directors are full-time members of the staff at HEAL who exercise day-to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results for their department within HEAL. A Technical Director's duties shall include, but not be limited to, monitoring standards of performance in quality control and quality assurance, monitoring the validity of the analyses performed and the data generated in their sections to ensure reliable data, overseeing training and supervising departmental staff, scheduling incoming work for their sections, and monitoring laboratory personnel to ensure that proper procedures and techniques are being utilized. They supervise and implement new Quality Control procedures as directed by the QA/QCO, update and maintain quality control records including, but not limited to, training forms, IDOCs, ADOCPs, and MDLs, and evaluate laboratory personnel in their Quality Control activities.

In addition, technical directors are responsible for upholding the spirit and intent of HEAL's data integrity procedures.

As Technical Directors of their associated section, they review analytical data to acknowledge that data meets all criteria set forth for good Quality Assurance practices. Someone with a minimum of 2 years of experience in the environmental analysis of representative analytes for which HEAL seeks or maintains accreditation and a bachelor's degree in a scientific or related discipline should fill this position.

## **Section Supervisors**

Section Supervisors are full time members of staff at HEAL who exercise day-to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results for their department within HEAL. Section Supervisors report directly to their technical director. A Section Supervisor's duties shall include, but not be limited to, monitoring standards of performance in quality control and quality assurance, monitoring the validity of the analyses performed and the data generated in their sections to ensure reliable data, overseeing training and supervising departmental staff, scheduling incoming work for their sections, and monitoring laboratory personnel to ensure that proper procedures and techniques are being utilized. They supervise and implement new Quality Control procedures as directed by the QA/QCO, update and maintain quality control records including, but not limited to, training forms, IDOCs, ADOCPs, and MDLs, and evaluate laboratory personnel in their Quality Control activities. In addition, Section Supervisors are responsible for upholding the spirit and intent of HEAL's data integrity procedures. Section Supervisors update their Technical Director on the status and needs of their departments and submit all Quality Control documents to their technical director for their review, approval and signature.

As section supervisors, they review analytical data to acknowledge that data meets all criteria set forth for good Quality Assurance practices. Someone with a minimum of 2 years of experience in the environmental analysis of representative analytes for which HEAL seeks or maintains accreditation and a bachelor's degree, or equivalent experience in a scientific or related discipline should fill this position.

## Health and Safety / Chemical Hygiene Officer

Refer to the most recent version of the Health and Safety and Chemical Hygiene Plans for the roles, responsibilities, and basic requirements of the Health and Safety Officer (H&SO) and the Chemical Hygiene Officer (CHO). These jobs can be executed by the same employee.

### Analyst I, II and III

Analysts are responsible for the analysis of various sample matrices including, but not limited to, solid, aqueous, and air, as well as the generation of high quality data in

accordance with the HEAL SOPs and QA/QC guidelines in a reasonable time as prescribed by standard turnaround schedules or as directed by the Section Manager or Laboratory Manager.

Analysts are responsible for making sure all data generated is entered in the database in the correct manner and the raw data is reviewed, signed and delivered to the appropriate peer for review. An analyst reports daily to the section manager and will inform them as to material needs of the section specifically pertaining to the analyses performed by the analyst. Additional duties may include preparation of samples for analysis, maintenance of lab instruments or equipment, and cleaning and providing technical assistance to lower level laboratory staff.

The senior analyst in the section may be asked to perform supervisory duties as related to operational aspects of the section. The analyst may perform all duties of a lab technician.

The position of Analyst is a full or part time hourly position and is divided into three levels, Analyst I, II, and III. All employees hired into an Analyst position at HEAL must begin as an Analyst I and remain there at a minimum of three months regardless of their education and experience. Analyst I must have a minimum of an AA in a related field or equivalent experience (equivalent experience means years of related experience can be substituted for the education requirement). An Analyst I is responsible for analysis, instrument operation, including calibration and data reduction. Analyst II must have a minimum of an AA in a related field or equivalent experience and must have documented and demonstrated aptitude to perform all functions of an Analyst II. An Analyst II is responsible for the full analysis of their test methods, routine instrument maintenance, purchase of consumables as dictated by their Technical Director, advanced data reduction, and basic data review. Analyst II may also assist Analyst III in method development and, as dictated by their Technical Director, may be responsible for the review and/or revision of their method specific SOPs. Analyst III must have Bachelors degree or equivalent experience and must have documented and demonstrated aptitude to perform all functions of an Analyst III. An Analyst III is responsible for all tasks completed by an Analyst I and II as well as advanced data review, non-routine instrument maintenance, assisting their technical director in basic supervisory duties and method development.

### **Laboratory Technician**

A laboratory technician is responsible for providing support to analysts in the organics, inorganics and disposal departments. Laboratory Technicians can assist analysts in basic sample preparation, general laboratory maintenance, glassware washing, chemical inventories, sample disposal and sample kit preparation. This position can be filled by someone without the education and experience necessary to obtain a position as an analyst.

## Sample Control Manager

The sample control manager is responsible for receiving samples and reviewing the sample login information after it has been entered into the computer. The sample control manager also checks the samples against the chain-of-custody for any sample and/or labeling discrepancies prior to distribution.

The sample control manager is responsible for sending out samples to the sub-contractors along with the review and shipping of field sampling bottle kits. The sample control manager acts as a liaison between the laboratory and field sampling crew to ensure that the appropriate analytical test is assigned. If a discrepancy is noted, the sample control manager or sample custodian will contact the customer to resolve any questions or problems. The sample control manager is an integral part of the customer service team.

This position should be filled by someone with a high school diploma and a minimum of 2 years of related experience and can also be filled by a senior manager.

# Sample Custodians

Sample Custodians work directly under the Sample Control Manager. They are responsible for sample intake into the laboratory and into the LIMS. Sample Custodians take orders from our clients and prepare appropriate bottle kits to meet the clients' needs. Sample Custodians work directly with the clients in properly labeling and identifying samples as well as properly filling out legal COCs. When necessary, Sample Custodians contact clients to resolve any questions or problems associated with their samples. Sample Custodians are responsible for distributing samples throughout the laboratory and are responsible for notifying analysts of special circumstances such as short holding times or improper sample preservation upon receipt.

# Sample Disposal Custodian

The sample disposal custodian is responsible for characterizing and disposing of samples in accordance to the most recent version of the sample disposal SOP. The sample disposal custodian collects waste from the laboratory and transports it to the disposal warehouse for storage and eventual disposal. The sample disposal custodian is responsible for maintaining the disposal warehouse and following the requirements for documentation, integrity, chemical hygiene and health and safety as set forth in the various HEAL administrative SOPs. The sample disposal custodian is responsible for overseeing any laboratory technicians employed at the disposal warehouse.

This position should be filled by someone with a high school diploma and a minimum of 1 year of related experience.

## **Delegations in the Absence of Key Personnel**

Planned absences shall be preceded by notification to the Laboratory Manager. The appropriate staff members shall be informed of the absence. In the case of unplanned absences, the superior shall either assume the responsibilities and duties or delegate the responsibilities and duties to another appropriately qualified employee.

In the event that the Laboratory Manager is absent for a period of time exceeding fifteen consecutive calendar days, another full-time staff member meeting the basic qualifications and competent to temporarily perform this function will be designated. If this absence exceeds thirty-five consecutive calendar days, HEAL will notify ORELAP in writing of the absence and the pertinent qualifications of the temporary laboratory manager.

# **Laboratory Personnel Qualification and Training**

All personnel joining HEAL shall undergo orientation and training. During this period the new personnel shall be introduced to the organization and their responsibilities, as well as the policies and procedures of the company. They shall also undergo on-the-job training and shall work with trained staff. They will be shown required tasks and be observed while performing them.

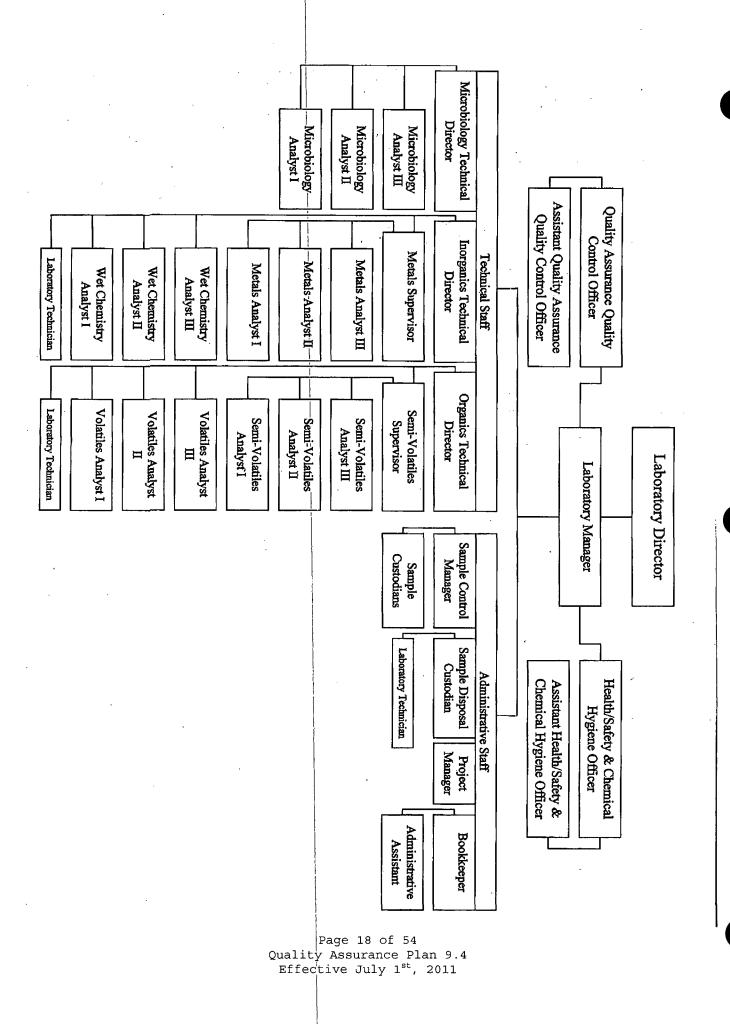
When utilizing staff undergoing training, appropriate supervision shall be dictated and overseen by the appropriate section technical director. Prior to analyzing client samples, a new employee, or an employee new to a procedure, must meet the following basic requirements. The SOP and Method for the analysis must be read and signed by the employee indicating that they read, understand, and intend to comply with the requirements of the documents. The employee must undergo documented training. Training is conducted by a senior analyst familiar with the procedure and overseen by the This training is documented by any means deemed section Technical Director. appropriate by the trainer and section Technical Director, and kept on file in the employees file located in the QA/QCO's office. The employee must perform a successful Initial Demonstration of Proficiency (IDOC). See Appendix I for the training documents and checklists utilized at HEAL to ensure that all of these requirements are met. Once all of the above requirements are met it is incumbent upon the section Technical Director to determine at which point the employee can begin to perform the test unsupervised. Certification to Complete Work Unsupervised (see Appendix I) is then filled out by the employee and technical director.

IDOCs are required for all new analysts and methods prior to sample analysis. IDOCs are also required any time there is a change in the instrument, analyte list or method. If more than twelve months have passed since an analyst performed an IDOC and they have not performed the method and/or have not met the continuing DOC requirements, the analyst must perform an IDOC prior to resuming the test.

All IDOCs shall be documented through the use of the certification form which can be found in Appendix I . IDOCs are performed by analyzing four Laboratory Control Spikes (LCSs). Using the results of the LCSs the mean recovery is calculated in the appropriate

reporting units and the standard deviations of the population sample (n-1) (in the same units) as well as the relative percent difference for each parameter of interest. When it is not possible or pertinent to determine mean and standard deviations HEAL assesses performance against establish and documented criteria dictated in the method SOP. The mean and standard deviation are compared to the corresponding acceptance criteria for precision and accuracy in the test method (if applicable) or in laboratory-generated acceptance criteria. In the event that the HEAL SOP or test method fail to establish the pass/fail criteria the default limits of +/- 20% for calculated recovery and <20% relative percent difference based on the standard deviation will be utilized. If all parameters meet the acceptance criteria, the IDOC is successfully completed. If any one of the parameters do not meet the acceptance criteria, the performance is unacceptable for that parameter and the analyst must either locate and correct the source of the problem and repeat the test for all parameters of interest or repeat the test for all parameters that failed to meet Repeat failure, however, confirms a general problem with the measurement system. If this occurs the source of the problem must be identified and the test repeated for all parameters of interest.

New employees that do not have prior analysis experience will not be allowed to perform analysis until they have demonstrated attention to detail with minimal errors in the assigned tasks. To ensure a sustained level of quality performance among staff members, continuing demonstration of capability shall be performed at least once a year. These are as an Annual Documentation of Continued Proficiency (ADOCP).


At least once per year an ADOCP must be completed. This is achieved by the acceptable performance of a blind sample (typically by using a PT sample, but can be a single blind (to the analyst) sample), by performing another IDOC, or by summarizing the data of four consecutive laboratory control samples with acceptable levels of precision and accuracy (these limits are those currently listed in the LIMS for an LCS using the indicated test method.) ADOCPs are documented using a standard form and are kept on file in each analyst's employee folder.

Each new employee shall be provided with data integrity training as a formal part of their new employee orientation. Each new employee will sign an ethics and data integrity agreement to ensure that they understand that data quality is our main objective. Every HEAL employee recognizes that although turn around time is important, quality is put above any pressure to complete the task expediently. Analysts are not compensated for passing QC parameters nor are incentives given for the quantity of work produced. Data Integrity and Ethics training are performed on an annual basis in order to remind all employees of HEAL's policy on data quality. Employees are required to understand that any infractions of the laboratory data integrity procedures will result in a detailed investigation that could lead to very serious consequences including immediate termination, debarment, or civil/criminal prosecution.

Training for each member of HEAL's technical staff is further established and maintained through documentation that each employee has read, understood, and is using the latest version of this Quality Assurance Manual. Training courses or workshops on specific equipment, analytical techniques, or laboratory procedures are documented through attendance sheets, certificates of attendance, training forms, or quizzes. This training

documentation is located in analyst specific employee folders in the QA/QCO Office. On the front of all methods, SOPs, and procedures for HEAL, there is a signoff sheet that is signed by all pertinent employees, indicating that they have read, understand, and agree to perform the most recent version of the document.

The effectiveness of training will be evaluated during routine data review, annual employee reviews, and internal and external audits. Repetitive errors, complaints and audit findings serve as indicators that training has been ineffective. When training is deemed to have been ineffective a brief review of the training process will be completed and a re-training conducted as soon as possible.



## 5.0 Receipt and Handling of Samples

## Sampling

#### **Procedures**

HEAL does not provide field sampling for any projects. Sample kits are prepared and provided for clients upon request. The sample kits contain the appropriate sampling containers (with a preservative when necessary), labels, blue ice (The use of "blue ice" by anyone except HEAL personnel is discouraged because it generally does not maintain the appropriate temperature of the sample. If blue ice is used, it should be completely frozen at the time of use, the sample should be chilled before packing, and special notice taken at sample receipt to be certain the required temperature has been maintained.), a cooler, chain-of-custody forms, plastic bags, bubble wrap, and any special sampling instructions. Sample kits are reviewed prior to shipment for accuracy and completeness.

#### **Containers**

Containers which are sent out for sampling are purchased by HEAL from a commercial source. Glass containers are certified "EPA Cleaned" QA level 1. Plastic containers are certified clean when required. These containers are received with a Certificate of Analysis verifying that the containers have been cleaned according to the EPA wash procedure. Containers are used once and discarded. If the samples are collected and stored in inappropriate containers the laboratory may not be able to accurately quantify the amount of the desired components. In this case, re-sampling may be required.

#### Preservation

If sampling for analyte(s) requires preservation, the sample custodians fortify the containers prior to shipment to the field, or provide the preservative for the sampler to add in the field. The required preservative is introduced into the vials in uniform amounts and done so rapidly to minimize the risk of contamination. Vials that contain a preservative are labeled appropriately. If the samples are stored with inappropriate preservatives, the laboratory may not be able to accurately quantify the amount of the desired components. In this case re-sampling may be required.

Refer to the current Login SOP and/or the current price book for detailed sample receipt and handling procedures, appropriate preservation and holding time requirements.

# **Sample Custody**

## **Chain-of-Custody Form**

A Chain-of-Custody (COC) form is used to provide a record of sample chronology from the field to receipt at the laboratory. HEAL's COC contains the client's name, address, phone and fax numbers, the project name and number, the project manager's name, and the field sampler's name. It also identifies the date and time of sample collection, sample matrix, field sample ID number, number/volume of sample containers, sample temperature upon receipt, and any sample preservative information.

There is also a space to record the HEAL ID number assigned to samples after they are received. Next to the sample information is a space for the client to indicate the desired analyses to be performed. There is a section for the client to indicate the data package level as well as any accreditation requirements. Finally, there is a section to track the actual custody of the samples. The custody section contains lines for signatures, dates and times when samples are relinquished and received. The COC form also includes a space to record special sample related instructions, sampling anomalies, time constraints, and any sample disposal considerations.

It is paramount that all COCs arrive at HEAL complete and accurate so that the samples can be processed and allocated for testing in a timely and efficient manner. A sample chain-of-custody form can be found in Appendix H or on line at www.hallenvironmental.com.

### **Receiving Samples**

Samples are received by authorized HEAL personnel. Upon arrival, the COC is compared to the respective samples. After the samples and COC have been determined to be complete and accurate, the sampler signs over the COC. The HEAL staff member in turn signs the chain-of-custody, also noting the current date, time, and sample temperature. This relinquishes custody of the samples from the sampler and delegates sample custody to HEAL. The first (white) copy of the COC form is filed in the appropriate sample folder. The second (yellow) copy of the COC form is filed in the COC file in the sample control manger's office. The third (pink) copy of the COC form is given to the person who has relinquished custody of the samples.

# Logging in Samples and Storage

Standard Operating Procedures have been established for the receiving and tracking of all samples (refer to the current HEAL Login SOP). These procedures ensure that samples are received and properly logged into the laboratory and that all associated documentation, including chain of custody forms, is complete and consistent with the samples received. Each sample set is given a unique HEAL tracking ID number.

Individual sample locations within a defined sample set are given a unique sample ID suffix-number. Labels with the HEAL numbers, and tests requested, are generated and placed on their respective containers. The pH of preserved, non-volatile samples is checked and noted if out of compliance. Due to the nature of the samples, the pHs of volatiles samples are checked after analysis. Samples are reviewed prior to being distributed for analysis.

Samples are distributed for analysis based upon the requested tests. In the event that sample volume is limited and different departments at HEAL are required to share the sample, volatile work takes precedence and will always be analyzed first before the sample is sent to any other department for analysis.

All samples that require thermal preservation shall be acceptably stored at a temperature range just above freezing to 6°C.

Each project (sample set) is entered into the Laboratory Information Management System (LIMS) with a unique ID that will be identified on every container. The ID tag includes the Lab ID, Client ID, date and time of collection, and the analysis/analyses to be performed. The LIMS continually updates throughout the lab. Therefore, at any time, an analyst or manager may inquire about a project and/or samples status. For more information about the login procedures, refer to the Sample Login SOP.

## **Disposal of Samples**

Samples are held at HEAL for a minimum of thirty days and then transferred to the HEAL warehouse for disposal. Analytical results are used to characterize their respective sample contamination level(s) so that the proper disposal can be performed. These wastes will be disposed of according to their hazard as well as their type and level of contamination. Refer to the Hall Environmental Analysis Laboratory Chemical Hygiene Plan and current Sample Disposal SOP for details regarding waste disposal.

Waste drums are provided by an outside agency. These drums are removed by the outside agency and disposed of in a proper manner.

The wastes that are determined to be non-hazardous are disposed of as non-hazardous waste in accordance with the Chemical Hygiene Plan and Sample Disposal SOP.

## 6.0 Analytical Procedures

All analytical methods used at HEAL incorporate necessary and sufficient Quality Assurance and Quality Control practices. A Standard Operating Procedure (SOP) is used for each method to provide the necessary criteria to yield acceptable results. These procedures are reviewed at least annually and revised as necessary and are attached as a pdf file in the Laboratory Information Management System (LIMS) for easy access by each analyst. The sample is often consumed or altered during the analytical process. Therefore, it is important that each step in the analytical process be correctly followed in order to yield valid data.

When unforeseen problems arise, the analyst, technical director, and, when necessary, laboratory manager meet to discuss the factors involved. The analytical requirements are evaluated and a suitable corrective action or resolution is established. The client is notified in the case narrative with the final report or before, if the validity of their result is in question.

### **List of Procedures Used**

Typically, the procedures used by HEAL are EPA approved methodologies or 20<sup>th</sup> edition Standard Methods. However, proprietary methods for client specific samples are sometimes used. The following tables list EPA and Standard Methods Method numbers with their corresponding analytes and/or instrument classification.

#### Methods Utilized at HEAL

Drinking Water(DW) Non-Potable Water (NPW) Solids (S)

| Methodology | Matrix         | Title of Method                                                                                                             |
|-------------|----------------|-----------------------------------------------------------------------------------------------------------------------------|
| 120.1       | DW<br>NPW      | "Conductance(Specific Conductance, <i>u</i> ohms at 25 ° C)"                                                                |
| 180.1       | DW<br>NPW      | "Turbidity (Nephelometric)"                                                                                                 |
| 200.2       | DW<br>NPW      | "Sample Preparation Procedure For Spectrochemical Determination of Total Recoverable Elements"                              |
| 200.7       | DW<br>NPW      | "Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry" |
| 200.8       | DW<br>NPW      | "Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry."                     |
| 245.1       | DW<br>NPW      | "Mercury (Manual Cold Vapor Technique)"                                                                                     |
| 300         | DW<br>NPW<br>S | "Determination of Inorganic Anions by Ion Chromatography"                                                                   |

| 413.2                                       | NPW              | "Oil and Grease"                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 418.1                                       | NPW<br>S         | "Petroleum Hydrocarbons (Spectrophotometric, Infrared)"                                                                                                                                                                                                                                                                                                                                                                                                         |
| 504.1                                       | DW               | "EDB, DBCP and 123TCP in Water by Microextraction and Gas Chromatography"                                                                                                                                                                                                                                                                                                                                                                                       |
| 505                                         | DW               | "Analysis of Organohalide Pesticides and Commercial Polychlorinated Biphenyl (PCB) Products in Water by Microextraction and Gas Chromatography"                                                                                                                                                                                                                                                                                                                 |
| 515.1                                       | DW               | "Determination of Chlorinated Acids in Water by Gas<br>Chromatography with an Electron Capture Detector"                                                                                                                                                                                                                                                                                                                                                        |
| 524.2                                       | DW               | "Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry"                                                                                                                                                                                                                                                                                                                                                  |
| 531.1                                       | DW               | "Measurement of N-Methylcarbomoyloximes and N-Methylcarbamates in Water by Direct Aqueous Injection HPLC with Post Column Dervivatization"                                                                                                                                                                                                                                                                                                                      |
| 547                                         | DW               | "Determination of Glyphosate in Drinking Water by Direct-<br>Aqueous Injection HPLC, Post-Column Derivatization, and<br>Fluorescence Detection"                                                                                                                                                                                                                                                                                                                 |
| 552.1                                       | DW               | "Determination of Haloacetic Acids and Dalapon in Drinking<br>Water by Ion-Exchange Liquid-Solid Extraction and Gas<br>Chromatography with an Electron Capture Detector"                                                                                                                                                                                                                                                                                        |
| 624                                         | DW               | Appendix A to Part 136 Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater Method 624-Purgeables"                                                                                                                                                                                                                                                                                                                                      |
| 625                                         | DW               | Appendix A to Part 136 Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater Method 625-Base/Neutrals and Acids"                                                                                                                                                                                                                                                                                                                         |
| 1311                                        | s                | "Toxicity Characteristic Leaching Procedure"                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1311ZHE                                     | s                | "Toxicity Characteristic Leaching Procedure"                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1164A                                       | NPW              | "N-Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated N-Hexane Extractable Material) by Extraction and Gravimetry"                                                                                                                                                                                                                                                                                                                        |
| 3005A                                       | NPW              | "Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by FLAA or ICP Spectroscopy"                                                                                                                                                                                                                                                                                                                                                   |
| 3010A                                       | S                | "Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by FLAA or ICP Spectroscopy"                                                                                                                                                                                                                                                                                                                                                      |
| 3050B                                       | S                | "Acid Digestion of Sediment, Sludge, and Soils"                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3510C                                       | DW<br>NPW        | "Separatory Funnel Liquid-Liquid Extraction"                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1311ZHE<br>1164A<br>3005A<br>3010A<br>3050B | S NPW NPW S S DW | "Toxicity Characteristic Leaching Procedure"  "N-Hexane Extractable Material (HEM; Oil and Grease) ar Silica Gel Treated N-Hexane Extractable Material) by Extraction and Gravimetry"  "Acid Digestion of Waters for Total Recoverable or Dissolv Metals for Analysis by FLAA or ICP Spectroscopy"  "Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by FLAA or ICP Spectroscopy"  "Acid Digestion of Sediment, Sludge, and Soils" |

| 3540          | S         | "Soxhlet Extraction"                                                                                                        |
|---------------|-----------|-----------------------------------------------------------------------------------------------------------------------------|
| 3545          | S         | "Pressurized Fluid Extraction(PFE)"                                                                                         |
| 3665          | NPW<br>S  | "Sulfuric Acid/Permanganate Cleanup"                                                                                        |
| 5030B         | NPW       | "Purge-and-Trap for Aqueous Samples"                                                                                        |
| 5035          | s         | "Closed-System Purge-and-Trap and Extraction for Volatile Organics in Soil and Waste Samples"                               |
| 6010B         | NPW<br>S  | "Inductively Coupled Plasma-Atomic Emission Spectrometry"                                                                   |
| 6020          | NPW<br>S  | "Inductively Coupled Plasma-Mass Spectrometry"                                                                              |
| 7470A         | NPW       | "Mercury in Liquid Waste (Manual Cold-Vapor Technique)"                                                                     |
| 7471A         | s         | "Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)"                                                         |
| 8021B         | NPW<br>S  | "Aromatic and Halogenated Volatiles By Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors" |
| 8015B         | NPW       | "Nonhalogenated Volatile Organics by Gas Chromatography"                                                                    |
| 00100         | s         | (Gasoline Range and Diesel Range Organics)                                                                                  |
| 8015AZ        | s         | "C10-C32 Hydrocarbons in Soil-8015AZ"                                                                                       |
| 8081A         | NPW<br>S  | "Organochlorine Pesticides by Gas Chromatography"                                                                           |
| 8082          | NPW<br>S  | "Polychlorinated Biphenyls (PCBs) by Gas Chromatography"                                                                    |
| 8260B         | NPW<br>S  | "Volatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS)"                                               |
| 8270C         | NPW<br>S  | "Semivolatile Organic Compounds by Gas Chromatography/<br>Mass Spectrometry (GC/MS)"                                        |
| 8310          | NPW<br>S  | "Polynuclear Aromatic Hydrocarbons"                                                                                         |
| 9045C         | S         | "Soil and Waste pH"                                                                                                         |
| 9060          | NPW       | "Total Organic Carbon"                                                                                                      |
| 9067          | NPW<br>S  | "Phenolics (Spectrophotometric, MBTH With Distillation)"                                                                    |
| 9095          | s         | Paint Filter                                                                                                                |
| Walkley/Black | s         | FOC/TOC WB                                                                                                                  |
| SM2320 B      | DW<br>NPW | "Alkalinity"                                                                                                                |
| SM2540 B      | NPW       | "Total Solids Dried at 103-105° C"                                                                                          |

| SM2540 C    | DW  | "Total Dissolved Solids Dried at 180° C"                 |  |  |  |  |
|-------------|-----|----------------------------------------------------------|--|--|--|--|
|             | NPW | Total Biocolvou Collad Bilou de 100                      |  |  |  |  |
| SM2540 D    | NPW | "Total Suspended Solids Dried at 103-105° C"             |  |  |  |  |
| SM4500-CL G | DW  | "Chlorine (Residual) 4500-CL G. DPD Colorimetric Method" |  |  |  |  |
| SM4500-H+B  | DW  | "pH Value"                                               |  |  |  |  |
| 3W4300-H+B  | NPW | pri value                                                |  |  |  |  |
| SM4500-NH3  | NPW | "4500-NH3" Ammonia                                       |  |  |  |  |
| С           | s   | 4500-NIIS AMMONIA                                        |  |  |  |  |
| SM4500-Norg | NPW | "4500 Norg" Total Kieldehl Nitrogen (TKN)                |  |  |  |  |
| C           | s   | "4500-Norg" Total Kjeldahl Nitrogen (TKN)                |  |  |  |  |
| SM5210 B    | NPW | "5210 B. 5-day BOD Test"                                 |  |  |  |  |
| SM5310 B    | DW  | "5310" Total Organic Carbon (TOC)                        |  |  |  |  |
| 8000B       | NPW | "Determinative Chromatographic Separations"              |  |  |  |  |
|             | s   | Determinative Chromatographic Separations                |  |  |  |  |
| 8000C       | NPW | "Data was in a time Channel and his Consulting "         |  |  |  |  |
| 00000       | s   | "Determinative Chromatographic Separations"              |  |  |  |  |
|             |     |                                                          |  |  |  |  |

## **Criteria for Standard Operating Procedures**

HEAL has Standard Operating Procedures (SOPs) for each of the test methods listed above. These SOPs are based upon the listed methods and detail the specific procedure and equipment utilized as well as the quality requirements necessary to prove the integrity of the data. SOPs are reviewed or revised every twelve months or sooner if necessary. The review/revision is documented in the Master SOP Logbook filed in the QA/QC Office. All SOPs are available in the LIMS linked under the specific test method. Administrative SOPs, which are not linked in the LIMS, are available on desktops throughout the laboratory in the link to administrative SOPs folder.

Hand written corrections or alterations to SOPs are not permitted. In the event that a correction is needed and a revision is not immediately possible, a corrective action report will be generated documenting the correction or alteration, signed by the section Technical Director and the QA/QC Officer and will be scanned into the current SOP and will document the change until a new revision is possible.

Each HEAL test method SOP shall include or reference the following topics where applicable:

Identification of the test method;

Applicable matrix or matrices;

Limits of detection and quantitation;

Scope and application, including parameters to be analyzed;

Summary of the test method;

Definitions:

Interferences;

Safety:

Equipment and supplies;

Reagents and standards;

Sample collection, preservation, shipment and storage;

Quality control parameters:

Calibration and standardization;

Procedure;

Data analysis and calculations;

Method performance:

Pollution prevention;

Data assessment and acceptance criteria for quality control measures;

Corrective actions for out-of-control data:

Contingencies for handling out-of-control or unacceptable data;

Waste management;

References; and

Any tables, diagrams, flowcharts and validation data.

#### 7.0 Calibration

All equipment and instrumentation used at HEAL are operated, maintained and calibrated according to manufacturers' guidelines, as well as criteria set forth in applicable analytical methodology. Personnel who have been properly trained in their procedures perform the operation and calibration. Brief descriptions of the calibration processes for our major laboratory equipment and instruments are found below.

#### **Thermometers**

The thermometers in the laboratory are used to measure the temperatures of the refrigerators/freezers, ovens, water baths, hot blocks, ambient laboratory conditions, TCLP Extractions, digestion blocks, and samples at the time of log-in. All NIST traceable thermometers are either removed from use upon their documented expiration date or they are checked annually with a NIST-certified thermometer and a correction factor is noted on each thermometer log. See the most current Login SOP for detailed procedures on this calibration procedure.

Dickson Data Loggers are used to record sample and standard storage refrigerators over the weekend when the appropriate staff is not available to record the temperatures. These data loggers are shipped back to the manufacturer once a year to be re-calibrated.

# Refrigerators/Freezers

Each laboratory refrigerator or freezer contains a thermometer capable of measuring to a minimum precision of 0.1°C. The thermometers are kept with the bulb immersed in liquid. Each day of use, the temperatures of the refrigerators are recorded to insure that the refrigerators are within the required designated range. Samples are stored separately from the standards to reduce the risk of contamination.

See the current Catastrophic Failure SOP for the procedure regarding how to handle failed refrigerators or freezers.

#### **Ovens**

The ovens contain thermometers graduated by 1° C. The ovens are calibrated quarterly against NIST thermometers and checked each day of use as required and in whatever way is dictated by or appropriate for the method in use.

## **Analytical and Table Top Balances**

The table top balances are capable of weighing to a minimum precision of 0.01 grams. The analytical balances are capable of weighing to a minimum precision of 0.0001 grams. Records are kept of daily calibration checks for the balances in use. Working weights are used in these checks. The balances are annually certified by an outside source and the certifications are on file with the QA/QCO.

Balances, unless otherwise indicated by method specific SOPs, will be checked each day of use with at least two weights that will bracket the working range of the balance for the day. Daily balance checks will be done using working weights that are calibrated annually against Class S weights. Class S weights are calibrated by an external provider as required. The Class S weights are used once a year, or more frequently if required, to assign values to the Working Weights. During the daily balance checks, the working weights are compared to their assigned values and must pass in order to validate the calibration of the balance. The assigned values, as well as the daily checks, for the working weights are recorded in the balance logbook for each balance.

#### Instrument Calibration

An instrument calibration is the relationship between the known concentrations of a set of calibration standards introduced into an analytical instrument and the measured response they produce. Calibration curve standards are a prepared series of aliquots at various known concentration levels from a primary source reference standard. Specific mathematical types of calibration techniques are outlined in SW-846 8000B and/or 8000C. The entire initial calibration must be performed prior to sample analyses.

The lowest standard in the calibration curve must be at or below the required reporting limit.

Refer to the current SOP to determine the minimum requirement for calibration points.

Most compounds tend to be linear and a linear approach should be favored when linearity is suggested by the calibration data. Non-linear calibration should be considered only when a linear approach cannot be applied. It is not acceptable to use an alternate calibration procedure when a compound fails to perform in the usual manner. When this occurs, it is indicative of instrument issues or operator error.

If a non-linear calibration curve fit is employed, a minimum of six calibration levels must be used for second-order (quadratic) curves.

When more than 5 levels of standards are analyzed in anticipation of using second-order calibration curves, all calibration points MUST be used regardless of the calibration option employed. The highest or lowest calibration point may be excluded for the purpose of

narrowing the calibration range and meeting the requirements for a specific calibration option. Otherwise, unjustified exclusion of calibration data is expressly forbidden.

Analytical methods vary in QC acceptance criteria. HEAL follows the method specific guidelines for QC acceptance. The specific acceptance criteria are outlined in the analytical methods and their corresponding SOPs.

## pH Meter

The pH meter measures to a precision of 0.01 pH units. The pH calibration logbook contains the calibration before each use, or each day of use, if used more than once per day. It is calibrated using a minimum of 3 certified buffers. Also available with the pH meter is a magnetic stirrer with a temperature sensor. See the current pH SOP (SM4500 H+ B) for specific details regarding calibration of the pH probe.

## Other Analytical Instrumentation and Equipment

The conductivity probe is calibrated as needed and checked daily when in use.

Eppendorf (or equivalent brands) pipettes are checked gravimetrically prior to use.

#### **Standards**

All of the source reference standards used are ordered from a reliable commercial vendor. A Certificate of Analysis (CoA), which verifies the quality of the standard, accompanies the standards from the vendor. The Certificates of Analysis are dated and stored on file by the Technical Directors or their designee. These standards are traceable to the National Institute of Standards (NIST). When salts are purchased and used as standards the certificate of purity must be obtained from the vendor and filed with the CoAs.

All standard solutions, calibration curve preparations, and all other quality control solutions are labeled in a manner that can be traced back to the original source reference standard. All source reference standards are entered into the LIMS with an appropriate description of the standard. Dilutions of the source reference standard (or any mixes of the source standards) are fully tracked in the LIMS. Standards are labeled with the date opened for use and with an expiration date.

As part of the quality assurance procedures at HEAL, analysts strictly adhere to manufacturer recommendations for storage times/expiration dates and policies of analytical standards and quality control solutions.

## Reagents

HEAL ensures that the reagents used are of acceptable quality for their intended purpose. This is accomplished by ordering high quality reagents and adhering to good laboratory practices so as to minimize contamination or chemical degradation. All reagents must meet any specifications noted in the analytical method. Refer to the current Purchase of Consumables SOP for details on how this is accomplished and documented.

Upon receipt, all reagents are assigned a separate ID number, and logged into the LIMS. All reagents shall be labeled with the date received into the laboratory and again with the date opened for use. Recommended shelf life, as defined by the manufacturer, shall be documented and controlled. Dilutions or solutions prepared shall be clearly labeled, dated, and initialed. These solutions are traceable back to their primary reagents and do not extend beyond the expiration date listed for the primary reagent.

All gases used with an instrument shall meet specifications of the manufacturer. All safety requirements that relate to maximum and/or minimum allowed pressure, fitting types, and leak test frequency, shall be followed. When a new tank of gas is placed in use, it shall be checked for leaks and the date put in use will be written in the instrument maintenance logbook.

HEAL continuously monitors the quality of the reagent water and provides the necessary indicators for maintenance of the purification systems in order to assure that the quality of laboratory reagent water meets established criteria for all analytical methods.

Reagent blank samples are also analyzed to ensure that no contamination is present at detectable levels. The frequency of reagent blank analysis is typically the same as calibration verification samples. Refrigerator storage blanks are stored in the volatiles refrigerator for a period of one week and analyzed and replaced once a week.

# 8.0 Maintenance

Maintenance logbooks are kept for each major instrument and all support equipment in order to document all repair and maintenance. In the front of the logbook, the following information is included:

Unique Name of the Item or Equipment
Manufacturer
Type of Instrument
Model Number
Serial Number
Date Received and Date Placed into Service
Location of Instrument
Condition of Instrument Upon Receipt

For routine maintenance, the following information shall be included in the log:

Maintenance Date
Maintenance Description
Maintenance Performed by Initials

A manufacturer service agreement (or equivalent) covers most major instrumentation to assure prompt and reliable response to maintenance needs beyond HEAL instrument operator capabilities.

Refer to the current Maintenance and Troubleshooting SOP for each section in the laboratory for further information.

## 9.0 Data Integrity

For HEAL's policy on ethics and data integrity, see section 3.0 of this document. Upon being hired, and annually there after, all employees at HEAL undergo documented data integrity training. All new employees sign an Ethics and Data Integrity Agreement, documenting their understanding of the high standards of integrity required at HEAL and outlining their responsibilities in regards to ethics and data integrity. See Appendix I for a copy of this agreement.

In instances of ethical concern, analysts are required to report the known or suspected concern to their Technical Director, the Laboratory Manager, or the QA/QCO. This will be done in a confidential and receptive environment, allowing all employees to privately discuss ethical issues or report items of ethical concern.

Once reported and documented, the ethical concern will be immediately elevated to the Laboratory Manager and the need for an investigation, analyst remediation, or termination will be determined on a case-by-case basis.

All reported instances of ethical concern will be thoroughly documented and handled in a manner sufficient to rectify any breaches in data integrity with an emphasis on preventing similar incidences from happening in the future.

## 10.0 Quality Control

## **Internal Quality Control Checks**

HEAL utilizes various internal quality control checks, including duplicates, matrix spikes, matrix spike duplicates, method blanks, laboratory control spikes, laboratory control spike duplicates, surrogates, internal standards, calibration standards, quality control charts, proficiency tests and calculated measurement uncertainty.

Refer to the current method SOP to determine the frequency and requirements of all quality controls. In the event that the frequency of analysis is not indicated in the method specific SOP, duplicate samples, laboratory control spikes (LCS), Method Blanks (MB), and matrix spikes and matrix spike duplicates (MS/MSD) are analyzed for every batch of twenty samples.

When sample volume is limited on a test that requires an MS/MSD an LCSD shall be analyzed to demonstrate precision and accuracy and when possible a sample duplicate will be analyzed.

Duplicates are identical tests repeated for the same sample or matrix spike in order to determine the precision of the test method. A Relative Percent Difference (RPD) is calculated as a measure of this precision. Unless indicated in the SOP, the default acceptance limit is </= 20%.

Matrix Spikes and Matrix Spike Duplicates are spiked samples (MS/MSD) that are evaluated with a known added quantity of a target compound. This is to help determine the accuracy of the analyses and to determine the matrix affects on analyte recovery. A percent recovery is calculated to assess the quality of the accuracy. In the event that the acceptance criteria is not outlined in the SOP, a default limits of 70-130% will be utilized. When an MSD is employed an RPD is calculated and when not indicated in the SOP shall be acceptable at </= 20%.

When appropriate for the method, a Method Blank should be analyzed with each batch of samples processed to assess contamination levels in the laboratory. MBs consist of all the reagents measured and treated as they are with samples, except without the samples. This enables the laboratory to ensure clean reagents and procedures. Guidelines should be in place for accepting or rejecting data based on the level of contamination in the blank. In the event that these guidelines are not dictated by the SOP or in client specific work plans, the MB should be less than the MDL reported for the analyte being reported. Blanks shall be no more negative than the negative of the PQL for that test and instrument unless otherwise stated in the SOP/method. Corrective action must be initiated if negative blanks are out of control.

A Laboratory Control Spike and Laboratory Control Spike Duplicate (LCS/LCSD) are reagent blanks, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes. It is generally used to establish intra-laboratory or analyst-specific precision and bias or to assess the performance of all or a portion of the measurement system. Guidelines are outlined in each SOP for the frequency and pass fail requirements for LCS and LCSDs. These limits can be set utilizing control charts as discussed below.

Surrogates are utilized when dictated by method and are substances with properties that mimic the analytes of interest. The surrogate is an analyte that is unlikely to be found in environmental samples. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for surrogates.

Internal Standards are utilized when dictated by the method and are known amounts of standard added to a test portion of a sample as a reference for evaluating and controlling the precision and bias of the applied analytical method. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for Internal Standards.

Proficiency Test (PT) Samples are samples provided by an unbiased third party. They are typically analyzed twice a year, between five and seven months apart, or at any other interval as defined in the method SOP. They contain a pre-determined concentration of the target compound, which is unknown to HEAL. HEAL's management and all analysts shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance criteria, sequence of analytical steps, number of replicates and other procedures as used when analyzing routine samples. PT results are reported as normal samples, within the working range of the associated calibration curve. In the event an analyte concentration is less than the PQL, the result shall be reported as less than the PQL.

With regards to analyzing PT Samples HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seek accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall not attempt to obtain the assigned value of any PT sample from the PT Provider.

Upon receiving a Not Acceptable PT result for any analyte, a root cause analysis is conducted and the cause of the failure determined and corrected. As defined by TNI, two out of the past three PTs must be acceptable to maintain accreditation for any given analyte. If this requirement is not met a successful history will be reestablished by the analysis of an additional PT sample. For accredited tests, the PT provider will be notified, when the PT is for corrective action purposes. The analysis dates of successive PT samples for the same accredited analyte shall be at least fifteen days apart.

Calibration standards are standards run to calibrate. Once the calibration is established the same standards can be analyzed as Continuing Calibration Verifications (CCV), used to confirm the consistency of the instrumentation. Calibration standards can be utilized at the beginning and end of each batch, or more frequently as required. Typically Continuing Calibration Blanks (CCB) are run in conjunction with CCVs. Refer to the current method SOP for frequency and pass/fail requirements of CCVs and CCBs.

Control Limits are limits of acceptable ranges of the values of quality control checks. The control limits approximate a 99% confidence interval around the mean recovery. Any matrix spike, surrogate, or LCS results outside of the control limits require further evaluation and assessment. This should begin with the comparison of the results from the samples or matrix spike with the LCS results. If the recoveries of the analytes in the LCS are outside of the control limits, then the problem may lie with the application of the extraction, with cleanup procedures, or with the chromatographic procedure. Once the problem has been identified and addressed, corrective action may include reanalysis of samples or reextraction followed by reanalysis. When the LCS results are within the control limits, the issue may be related to the sample matrix or to the use of an inappropriate extraction, cleanup, and/or determinative method for the matrix. If the results are to be used for regulatory compliance monitoring, then steps must be taken to demonstrate that the analytes of concern can be determined in the sample matrix at the levels of interest. Data generated with laboratory control samples that fall outside of the established control limits are judged to be generated during an "out-of-control" situation. These data are considered suspect and shall be repeated or reported with qualifiers.

Control limits are to be updated only by Technical Directors, Section Supervisors or the Quality Assurance Officer. Control limits should be established and updated according to the requirements of the method being utilized. When the method does not specify, and control limits are to be generated or updated for a test, the following guidelines shall be utilized.

Limits should typically be generated utilizing the most recent 20-40 data values. In order to obtain an even distribution across multiple instruments and to include more than a single day's worth of data, surrogate limits should be generated using around 100 data values. The data values used shall not reuse values that were included in the previous Control Limit update. The data values shall also be reviewed by the LIMS for any Grubbs Outliers, and if identified, the outliers must be removed prior to generating new limits. The results used to update control limits should meet all other QC criteria associated with the determinative method. For example, MS/MSD recoveries from a GC/MS procedure should be generated from samples analyzed after a valid tune and a valid initial calibration that includes all analytes of interest. Additionally, no analyte should be reported when it is beyond the working range of the calibration currently in use. MS/MSD and surrogate limits should be generated using the same set of extraction, cleanup, and analysis procedures.

All generated limits should be evaluated for appropriateness. Where limits have been established for MS/MSD samples, the LCS/LCSD limits should fall within those limits, as the LCS/LCSD are prepared in a clean matrix. Surrogate limits should be updated using all

sample types and should be evaluated to ensure that all instruments as well as a reasonable dispersion across days are represented by the data. LCS/LCSD recovery limits should be evaluated to verify that they are neither inappropriately wide nor unreasonably tight. The default LCS/LCSD acceptance limits of 70-130% and RPD of 20% (or those limits specified by the method for LCS/LCSD and/or CCV acceptability), should be used to help make this evaluation. Technical directors may choose to use warning limits when they feel their generated limits are too wide, or default LCS limits when they feel their limits have become arbitrarily tight.

Once new Control Limits have been established and updated in the LIMS, the Control Charts shall be printed and reviewed by the appropriate section supervisor and primary analyst performing the analysis for possible trends and compared to the previous Control Charts. The technical director initials the control charts, indicating that they have been reviewed and that the updated Limits have been determined to be accurate and appropriate. Any manual alterations to the limits will be documented and justified on the printed control chart. These initialed charts are then filed in the QA/QCO office.

Once established, control limits should be reviewed after every 20-30 data values and updated at least every six months, provided that there are sufficient points to do so. The limits used to evaluate results shall be those in place at the time that the sample was analyzed. Once limits are updated, those limits apply to all subsequent analyses.

When updating surrogate control limits, all data, regardless of sample/QC type, shall be updated together and assigned one set of limits for the same method/matrix.

In the event that there are insufficient data points to update limits that are over a year old, the default limits, as established in the method or SOP, shall be re-instated. Refer to the requirements in SW-846 method 8000B and 8000C for further guidance on generating control limits.

Calculated Measurement Uncertainty is calculated annually using LCSs in order to determine the laboratory specific uncertainty associated with each test method. These uncertainty values are available to our clients upon request and are utilized as a trending tool internally to determine the effectiveness of new variables introduced into the procedure over time.

# Precision, Accuracy, Detection Levels

#### Precision

The laboratory uses sample duplicates, laboratory control spike duplicates, and matrix spike duplicates to assess precision in terms of relative percent difference (RPD). HEAL requires the RPD to fall within the 99% confidence interval of established control charts or an RPD of less than 30% if control charts are not

available. RPD's greater than these limits are considered out-of-control and require an appropriate response.

RPD = 2 x (Sample Result – Duplicate Result) X 100 (Sample Result + Duplicate Result)

#### Accuracy

The accuracy of an analysis refers to the difference between the calculated value and the actual value of a measurement. The accuracy of a laboratory result is evaluated by comparing the measured amount of QC reference material recovered from a sample and the known amount added. Control limits can be established for each analytical method and sample matrix. Recoveries are assessed to determine the method efficiency and/or the matrix effect.

Analytical accuracy is expressed as the Percent Recovery (%R) of an analyte or parameter. A known amount of analyte is added to an environmental sample before the sample is prepared and subsequently analyzed. The equation used to calculate percent recovery is:

%Recovery = {(concentration\* recovered)/(concentration\* added)} X 100

\*or amount

HEAL requires that the Percent Recovery to fall within the 99 % confidence interval of established control limits. A value that falls outside of the confidence interval requires a warning and process evaluation. The confidence intervals are calculated by determining the mean and sample standard deviation. If control limits are not available, the range of 80 to 120% is used unless the specific method dictates otherwise. Percent Recoveries outside of this range mandate additional action such as analyses by Method of Standard Additions, additional sample preparation(s) where applicable, method changes, and out-of-control action or data qualification.

#### **Detection Limit**

Current practices at HEAL define the Detection Limit (DL) as the smallest amount that can be detected above the baseline noise in a procedure within a stated confidence level.

HEAL presently utilizes an Instrument Detection Limit (IDL), a Method Detection Limit (MDL), and a Practical Quantitation Limit (PQL). The relationship between these levels is approximately

IDL: MDL: PQL = 1:5:5.

The IDL is a measure of the sensitivity of an analytical instrument. The IDL is the amount which, when injected, produces a detectable signal in 99% of the analyses at that concentration. An IDL can be considered the minimum level of analyte concentration that is detectable above random baseline noise.

The MDL is a measure of the sensitivity of an analytical method. MDL studies are required annually for each quality system matrix, technology and analyte, unless indicated otherwise in the referenced method. An MDL determination (as required in 40CFR part 136 Appendix B) consists of replicate spiked samples carried through all necessary preparation steps. The spike concentration is three times the standard deviation of three replicates of spikes. At least seven replicates are spiked and analyzed and their standard deviation(s) calculated. Routine variability is critical in passing the 10 times rule and is best achieved by running the MDLs over different days and when possible over several calibration events. The Manual for the Certification of Laboratories Analyzing Drinking Water, 5<sup>th</sup> edition Chapter IV section 7.2.11 recommends that MDLs be performed over a period of at least three days in order to include the day to day variations. The method detection limit (MDL) can be calculated using the standard deviation according to the formula:

where t (99%) is the Student's t-value for the 99% confidence interval. The t-value depends on the number of trials used in calculating the sample standard deviation, so choose the appropriate value according to the number of trials.

| Number of Trials | t(99%) |
|------------------|--------|
| 6                | 3.36   |
| 7                | 3.14   |
| 8                | 3.00   |
| 9                | 2.90   |

The calculated MDL must not be less than 10 times the spiked amount or the study must be performed again with a lower concentration.

Where there are multiple MDL values for the same test method in the LIMS the highest MDL value is utilized.

The PQL is significant because different laboratories can produce different MDLs although they may employ the same analytical procedures, instruments and sample matrices. The PQL is about two to five times the MDL and represents a practical, and routinely achievable, reporting level with a good certainty that the reported value is reliable. It is often determined by regulatory limits. The reported PQL for a sample is dependent on the dilution factor utilized during sample analysis.

In the event that an analyte will not be reported less than the PQL, an MDL study is not required and a PQL check shall be done, at least annually, in place of the MDL

Page 38 of 54 Quality Assurance Plan 9.4 Effective July 1st, 2010 study. The PQL check shall consist of a QC sample spiked at or below the PQL. All sample-processing and analysis steps of the analytical method shall be included in the PQL check and shall be done for each quality system matrix, technology, and analyte. A successful check is one where the recovery of each analyte is within the established method acceptance criteria. When this criterion is not defined by the method or SOP, a default limit of +/-50% shall be utilized.

#### **Quality Control Parameter Calculations**

#### Mean

The sample mean is also known as the arithmetic average. It can be calculated by adding all of the appropriate values together, and dividing this sum by the number of values.

Average = 
$$(\Sigma x_l) / n$$

 $x_l$  = the value x in the  $l^{th}$  trial n = the number of trials

#### Standard Deviation

The sample standard deviation, represented by s, is a measure of dispersion. The dispersion is considered to be the difference between the average and each of the values  $x_i$ . The variance,  $s^2$ , can be calculated by summing the squares of the differences and dividing by the number of differences. The sample standard deviation, s, can be found by taking the square root of the variance.

Standard deviation = s =  $\left[\sum (x_{\parallel} - average)^{2}/(n-1)\right]^{\frac{1}{2}}$ 

# Percent Recovery (LCS and LCSD)

Percent Recovery = (Spike Sample Result) X100 (Spike Added)

#### Percent Recovery (MS, MSD)

Percent Recovery = (Spike Sample Result – Sample Result) X100 (Spike Added)

Page 39 of 54 Quality Assurance Plan 9.4 Effective July 1<sup>st</sup>, 2010

#### **Control Limits**

Control Limits are calculated by the LIMS using the average percent recovery (x), and the standard deviation (s).

Upper Control Limit = x + 3sLower Control Limit = x - 3s

These control limits approximate a 99% confidence interval around the mean recovery.

## **RPD (Relative Percent Difference)**

Analytical precision is expressed as a percentage of the difference between the results of duplicate samples for a given analyst. Relative percent difference (RPD) is calculated as follows:

RPD = 2 x (Sample Result + Duplicate Result) X 100 (Sample Result + Duplicate Result)

## **Uncertainty Measurements**

Uncertainty, as defined by ISO, is the parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurement. Ultimately, uncertainty measurements are used to state how good a test result is and to allow the end user of the data to properly interpret their reported data. All procedures allow for some uncertainty. For most analyses, the components and estimates of uncertainty are reduced by following well-established test methods. To further reduce uncertainty, results generally are not reported below the lowest calibration point (PQL) or above the highest calibration point (UQL). Understanding that there are many influential quantities affecting a measurement result, so many in fact that it is impossible to identify all of them, HEAL calculates measurement uncertainty at least annually using LCSs. These estimations of measurement uncertainty are kept on file in the method folders in the QA/QC office.

Measurement Uncertainty contributors are those that may be determined statistically. These shall be generated by estimating the overall uncertainty in the entire analytical process by measuring the dispersion of values obtained from laboratory control samples over time. At least 20 of the most recent LCS data points are gathered.

Page 40 of 54 Quality Assurance Plan 9.4 Effective July 1st, 2010 The standard deviation(s) is calculated using these LCS data points. Since it can be assumed that the possible estimated values of the spikes are approximately normally distributed with approximate standard deviation(s), the unknown value of the spike is believed to lie in 95% confidence interval, corresponding to an uncertainty range of +/- 2(s).

Calculate standard deviation (s) and 95% confidence interval according to the following formulae:

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{(n-1)}}$$

Where: s = standard deviation

x = number in series

 $\bar{x}$  = calculated mean of series n = number of samples taken

95%  $confidence = 2 \times s$ 

Example: Assuming that after gathering 20 of the most recent LCS results for Bromide, we have calculated the standard deviations of the values and achieved a result of 0.0326, our measurement uncertainty for Bromide (at 95% confidence =  $2 \times s$ ) is 0.0652.

#### **Total Nitrogen**

Total nitrogen is calculated as follows:

#### **Calibration Calculations**

1. Response Factor or Calibration Factor:

$$RF = ((A_x)(C_{is}))/((A_{is})(C_x))$$
  $CF = (A_x)/(C_x)$ 

a. Average RF or CF

$$RF_{AVF} = \Sigma RF_i / n$$

b. Standard Deviation  $s = SQRT \{ [ \Sigma (RF_i - RF_{AVE})^2 ] / (n-1) \}$ 

#### c. Relative Standard Deviation

Where:

 $A_x$  = Area of the compound

 $C_x$  = Concentration of the compound

A<sub>is</sub> = Area of the internal standard

C<sub>is</sub> = Concentration of the internal standard

n = number of pairs of data

RF<sub>i</sub> = Response Factor (or other determined value)

RF<sub>AVE</sub> = Average of all the response factors

 $\Sigma$  = the sum of all the individual values

# 2. Linear Regression

a. Slope (m)

$$\mathbf{m} = (\mathbf{n} \Sigma \mathbf{x}_i \mathbf{y}_i - (\mathbf{n} \Sigma \mathbf{x}_i)^* (\mathbf{n} \Sigma \mathbf{y}_i)) / (\mathbf{n} \Sigma \mathbf{x}_i^2 - (\Sigma \mathbf{x}_i)^2)$$

b. Intercept (b)

$$b = y_{AVE} - m^*(x_{AVE})$$

c. Correlation Coefficient (cc)

$$\begin{array}{l} \text{CC (r) =} \{ \ \Sigma((x_i - x_{ave})^*(y_i - y_{ave})) \ \} \ / \ \{ \ \text{SQRT}((\Sigma(x_i - x_{ave})^2)^*(\Sigma(y_i - y_{ave})^2)) \ \} \\ \text{Or} \\ \text{CC (r) =} [(\Sigma w \ ^* \Sigma wxy) \ ^+ (\Sigma wx \ ^* \Sigma wy)] \ / \ (\text{sqrt}(\ (\ [(\Sigma w \ ^* \Sigma wx^2) \ - (\Sigma wx \ ^* \Sigma wx)] \ ^* \ [(\Sigma w \ ^* \Sigma wy^2) \ - (\Sigma wy \ ^* \Sigma wy)])))] \\ \end{array}$$

d. Coefficient of Determination

$$COD(r^2) = CC*CC$$

Where:

y = Response (Area) Ratio  $A_x/A_{is}$ 

 $x = Concentration Ratio C_x/C_{is}$ 

m = slope

b = intercept

n = number of replicate x,y pairs

 $x_i$  = individual values for independent variable

y<sub>i</sub> = individual values for dependent variable

 $\Sigma$  = the sum of all the individual values

 $x_{ave}$  = average of the x values

yave = average of the y values

w = weighting factor, for equal weighting w=1

## 3. Quadratic Regression

$$y = ax^2 + bx + c$$

#### a. Coefficient of Determination

COD (r<sup>2</sup>) =( 
$$\Sigma(y_i-y_{ave})^2 - \{[(n-1)/(n-p)] * [\Sigma(y_i-Y_i)^2]\} ) / \Sigma(y_i-y_{ave})^2$$

#### Where:

y = Response (Area) Ratio  $A_x/A_{is}$ 

 $x = Concentration Ratio C_x/C_{is}$ 

 $a = x^2$  coefficient

b = x coefficient

c = intercept

y<sub>i</sub> = individual values for each dependent variable

 $x_i$  = individual values for each independent variable

 $y_{ave}$  = average of the y values

n = number of pairs of data

p = number of parameters in the polynomial equation (I.e., 3 for third order, 2 for second order)

$$Yi = ((2*a*(C_x/C_{is})^2)-b^2+b+(4*a*c))/(4a)$$

# b. Coefficients (a,b,c) of a Quadratic Regression

$$a = S_{(x2y)}S_{(xx)}-S_{(xy)}S_{(xx2)} / S_{(xx)}S_{(x2x2)}-[S_{(xx2)}]^2$$

$$b = S_{(xy)}S_{(x2x2)} - S_{(x2y)}S_{(xx2)} / S_{(xx)}S_{(x2x2)} - [S_{(xx2)}]^2$$

$$c = [(\Sigma yw)/n] - b^*[(\Sigma xw)/n] - a^*[\Sigma(x^2w)/n]$$

#### Where:

n = number of replicate x,y pairs

x = x values

y = y values

 $w = S^{-2} / (\Sigma S^{-2}/n)$ 

$$S_{(xx)} = (\Sigma x^2 w) - [(\Sigma x w)^2 / n]$$

Page 43 of 54
Quality Assurance Plan 9.4
Effective July 1<sup>st</sup>, 2010

 $S_{(xy)} = (\Sigma xyw) - [(\Sigma xw)^*(\Sigma yw) / n]$   $S_{(xx2)} = (\Sigma x^3w) - [(\Sigma xw)^*(\Sigma x^2w) / n]$   $S_{(x2y)} = (\Sigma x^2yw) - [(\Sigma x_1^2w)^*(\Sigma yw) / n]$   $S_{(x2x2)} = (\Sigma x^4w) - [(\Sigma x_1^2w)^2 / n]$ Or If unweighted calibration, w=1  $S(xx) = (Sx2) - [(Sx)^2 / n]$   $S(xy) = (Sxy) - [(Sx)^*(Sy) / n]$   $S(xx2) = (Sx3) - [(Sx)^*(Sx2) / n]$   $S(x2y) = (Sx2y) - [(Sx2)^*(Sy) / n]$   $S(x2x2) = (Sx4) - [(Sx2)^2 / n]$ 

#### **Concentration Calculations**

#### On-Column Concentration for Average RRF Calibration using Internal Standard

On-Column Concentration  $C_x = ((A_x)(C_{is}))/((A_{is})(RF_{AVE}))$ 

#### On-Column Concentration for Average CF Calibration using External Standard

On-Column Concentration  $C_x = (A_x)/(CF_{AVE})$ 

#### **On-Column Concentration for Linear Calibration**

If determining an external standard, then exclude the  $A_{is}$  and  $C_{is}$  for internal standards On-Column Concentration  $C_x = ((Absolute\{[(A_x)/(A_{is})] - b\})/m) * C_{is}$ 

Where: m = slope b = intercept

 $A_x$  = Area of the Sample

C<sub>is</sub> = Concentration of the Internal Standard

Ais = Area of the Internal Standard

#### On-Column Concentration for Quadratic Calibration

If determining an external standard, then exclude the A<sub>is</sub> and C<sub>is</sub> for internal standards On-Column Concentration =[(+SQRT(b²-(4\*a\*(c-y)))-b)/(2\*a)] \* C<sub>is</sub>

Where:  $a = x^2$  coefficient

b = x coefficient

c = intercept

 $y = Area Ratio = A_x/A_{is}$ 

C<sub>is</sub> = Concentration of the Internal Standard

#### **Final Concentration (Wet Weight)**

Concentration for Extracted Samples = (On-Column Conc)(Dilution)(Final Volume)

(Initial Amount)(Injection Volume)

Concentration for Purged Samples = (On-Column Conc)(Purged Amount)(Dilution)
(Purged Amount)

#### **Dry Weight Concentration**

Dry Weight Concentration Final Concentration Wet Weight

**Total Solids** 

Page 44 of 54

Quality Assurance Plan 9.4

Effective July 1st, 2010

#### **Percent Difference**

% Difference= Absolute(Continuing Calibration RRF - Average RRF) \* 100
Average RRF

#### **Percent Drift**

% Drift= Absolute(Calculated Concentration - Theoretical Concentration) \* 100
Theoretical Concentration

#### **Dilution Factor**

Dilution Factor =(Volume of Solvent + Solute) / Volume of Solute

#### **Relative Retention Time**

RRT =RT of Compound / RT of ISTD

#### **Breakdown Percent**

Breakdown = <u>Area of DDD + Area of DDE</u> Average (DDT, DDE and DDD)

-or-

<u>Area of Endrin Ketone + Area of Endrin Aldehyde</u> Average (Endrin, Endrin Ketone, Endrin Aldehyde)

### 11.0 Data Reduction, Validation, Reporting, and Record Keeping

All data reported must be of the highest possible accuracy and quality. During the processes of data reduction, validation, and report generation, all work is thoroughly checked to insure that error is minimized.

#### **Data Reduction**

The analyst who generated the data usually performs the data reduction. The calculations include evaluation of surrogate recoveries (where applicable), and other miscellaneous calculations related to the sample quantitation.

If the results are computer generated, then the formulas must be confirmed by hand calculations, at minimum, one per batch.

See the current Data Validation SOP for details regarding data reduction.

#### **Validation**

A senior analyst, most often the section supervisor, validates the data. All data undergoes peer review. If an error is detected, it is brought to the analyst's attention so that he or she can rectify the error, and perform further checks to ensure that all data for that batch is sound. Previous and/or common mistakes are stringently monitored throughout the validation process. Data is reported using appropriate significant figure criteria. In most cases, two significant digits are utilized, but three significant digits can be used in QC calculations. Significant digits are not rounded until after the last step of a sample calculation. All final reports undergo a review by the laboratory manager, the project manager, or their designee, to provide a logical review of all results before they are released to the client.

If data is to be manually transferred between media, the transcribed data is checked by a peer. This includes data typing, computer data entry, chromatographic data transfer, data table inclusion to a cover letter, or when data results are combined with other data fields.

All hand-written data from run logs, analytical standard logbooks, hand-entered data logbooks, or on instrument-generated chromatograms, are systematically archived should the need for future retrieval arise.

See the current Data Validation SOP for details regarding data validation.

#### **Reports and Records**

All records at HEAL are retained and maintained through the procedures outlined in the most recent version of the Records Control SOP.

The reports are compiled by the Laboratory Information Management System (LIMS). Most data is transferred directly from the instruments to the LIMS. After being processed by the analyst and reviewed by a data reviewer, final reports are approved and signed by the senior laboratory management. A comparative analysis of the data is performed at this point. For example, if TKN and NH3 are analyzed on the same sample, the NH3 result should never be greater than the TKN result. Lab results and reports are released only to appropriately designated individuals. Release of the data can be by fax, email, electronic deliverables, or mailed hard copy.

When a project is completed, the final report, chain of custody, any relevant supporting data, and the quality assurance/control worksheets are scanned as a .pdf file onto the main server. Original client folders are kept on file and are arranged by project number. Additionally, all electronic data is backed up routinely on the HEAL main server. The backup includes raw data, chromatograms, and report documents. Hard copies of chromatograms are stored separately according to the instrument and the analysis date. All records and analytical data reports are retained in a secure location as permanent records for a minimum period of five years (unless specified otherwise in a client contract). Access to archived information shall be documented with an access log. Access to archived electronic reports and data will be password protected. In the event that HEAL transfers ownership or terminates business practices, complete records will be maintained or transferred according to the client's instructions.

After issuance, the original report shall remain unchanged. If a correction to the report is necessary, then an additional document shall be issued. This document shall have a title of "Addendum to Test Report or Correction to Original Report", or equivalent. Demonstration of original report integrity comes in two forms. First, the report date is included on each page of the final report. Second, each page is numbered in sequential order, making the addition or omission of any data page(s) readily detectable.

#### 12.0 Corrective Action

Refer to the most recent version of the Data Validation SOP for the procedure utilized in filling out a Corrective Action Report. A blank copy of the corrective action report is available in Appendix I.

The limits that have been defined for data acceptability also form the basis for corrective action initiation. Initiation of corrective action occurs when the data generated from continuing calibration standard, sample surrogate recovery, laboratory control spike, matrix spike, or sample duplicates exceed acceptance criteria. If corrective action is necessary, the analyst or the section supervisor will coordinate to take the following guidelines into consideration in order to determine and correct the measurement system deficiency:

Check all calculations and data measurements systems (Calibrations, reagents, instrument performance checks, etc.).

Assure that proper procedures were followed.

Unforeseen problems that arise during sample preparation and/or sample analysis that lead to treating a sample differently from documented procedures shall be documented with a corrective action report. The section supervisor and laboratory manager shall be made aware of the problem at the time of the occurrence. See the appropriate SOP regarding departures from documented procedures.

Continuing calibration standards below acceptance criteria can not be used for reporting analytical data unless method specific criteria states otherwise.

Continuing calibration standards above acceptance criteria can be used to report data as long as the failure is isolated to a single standard and the corresponding samples are non-detect for the failing analyte.

Samples with non-compliant surrogate recoveries should be reanalyzed, unless deemed unnecessary by the supervisor for matrix, historical data, or other analysis-related anomalies.

Laboratory and Matrix Spike acceptance criteria vary significantly depending on method and matrix. Analysts and supervisors meet and discuss appropriate corrective action measures as spike failures occur.

Sample duplicates with RPD values outside control limits require supervisor evaluation and possible reanalysis.

A second mechanism for initiation of corrective action is that resulting from Quality Assurance performance audits, system audits, inter- and intra-laboratory comparison studies. Corrective Actions initiated through this mechanism will be monitored and coordinated by the laboratory QA/QCO.

All corrective action forms are entered in the LIMS and included with the raw data for peer review, signed by the technical director of the section and included in the case narrative to the client whose samples were affected. All Corrective action forms in the LIMS are reviewed by the QA/QCO.

# 13.0 Quality Assurance Audits, Reports and Complaints

#### Internal/External Systems' Audits, Performance Evaluations, and Complaints

Several procedures are used to assess the effectiveness of the quality control system. One of these methods includes internal performance evaluations, which are conducted by the use of control samples, replicate measurements, and control charts. External performance audits, which are conducted by the use of inter-laboratory checks, such as participation in laboratory evaluation programs and performance evaluation samples available from a NELAC-accredited Proficiency Standard Vendor, are another method.

Proficiency samples will be obtained twice per year from an appropriate vendor for all tests and matrices for which we are accredited and for which PTs are available. HEAL participates in soil, waste water, drinking water, and underground storage tank PT studies. Copies of results are available upon request. HEAL's management and all analysts shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities, and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance criteria, sequence of analytical steps, number of replicates, and other procedures as used when analyzing routine samples.

With regards to analyzing PT Samples, HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seek accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall not attempt to obtain the assigned value of any PT sample from the PT Provider.

Internal Audits are performed annually by the QA/QCO in accordance with the current Internal Audit SOP. The system audit consists of a qualitative inspection of the QA system in the laboratory and an assessment of the adequacy of the physical facilities for sampling, calibration, and measurement. This audit includes a careful evaluation and review of laboratory quality control procedures. Internal audits are performed using the guidelines outlined below, which include, but are not limited to:

- 1. Review of staff qualifications, demonstration of capability, and personnel training programs
- 2. Storage and handling of reagents, standards, and samples
- 3. Standard preparation logbook and LIMS procedures
- 4. Extraction logbooks
- 5. Raw data logbooks
- 6. Analytical logbooks or batch printouts and instrument maintenance logbooks
- 7. Data review procedures .

- 8. Corrective action procedures
- Review of data packages, which is performed regularly by the lab manager/QA Officer.

The QA/QCO will conduct these audits on an annual basis.

#### **Management Reviews**

HEAL management shall periodically, and at least annually, conduct a review of the laboratory's quality system and environmental testing activities to ensure their continuing suitability and effectiveness, and to introduce necessary changes or improvements. The review shall take account of:

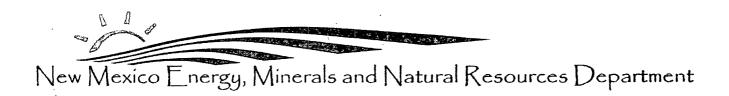
- 1. the suitability and implementation of policies and procedures
- 2. reports from managerial and supervisory personnel
- 3. the outcome of recent internal audits
- 4. corrective and preventive actions
- 5. assessments by external bodies
- 6. the results of inter-laboratory comparisons or proficiency tests
- 7. changes in volume and type of work
- 8. client feed back
- 9. complaints
- 10. other relevant factors, such as laboratory health and safety, QC activities, resources, and staff training.

Findings from management reviews and the actions that arise from them shall be recorded and any corrective actions that arise shall be completed in an appropriate and agreed upon timescale.

#### **Complaints**

Complaints from clients are documented and given to the laboratory manager. The lab manager shall review the information and contact the client. If doubt is raised concerning the laboratory's policies or procedures, then an audit of the section or sections may be performed. All records of complaints and subsequent actions shall be maintained in the client compliant logbook for five years unless otherwise stated.

#### Internal and External Reports


The QA/QCO is responsible for preparation and submission of quality assurance reports to the appropriate management personnel as problems and issues arise. These reports include the assessment of measurement systems, data precision and accuracy, and the results of performance and system audits. Additionally, they include significant QA problems, corrective actions, and recommended resolution measures. Reports of these Quality Assurance Audits describe the particular activities audited, procedures utilized in the examination and evaluation of laboratory records, and data validation procedures. Finally, there are procedures for evaluating the performance of Quality Control and Quality Assurance activities, and laboratory deficiencies and the implementation of corrective actions with the review requirements.

Page 52 of 54
Quality Assurance Plan 9.4
Effective July 1<sup>st</sup>, 2010

# 14.0 References (Analytical Protocols Utilized at HEAL)

- 1. <u>Analytical Chemistry of PCB's</u>. Erickson, Mitchell D., CRC Press, Inc. 1992.
- 2. <u>Diagnosis & Improvement of Saline & Alkali Soils</u>, Agriculture Handbook No. 60, USDA, 1954
- 3. <u>Environmental Perspective on the Emerging Oil Shale Industry</u>, EPA Oil & Shale Research Group.
- 4. <u>Field and Laboratory Methods Applicable to Overburdens and Mine Soils, USEPA, EPA-600/2-78-054, March 1978</u>
- 5. Handbook of Chemistry and Physics, 62nd Edition, CRC Press, Inc. 1981-1982.
- 6. <u>Handbook on Reference Methods for Soil Testing</u>, The Council on Soil Testing & Plant Analysis, 1980 and 1992
- 7. <u>Laboratory Procedures for Analyses of Oilfield Waste.</u> Department of Natural Resources, Office of Conservation, Injection and Mining Division, Louisiana, August 1988
- 8. <u>Manual for the Certification of Laboratories Analyzing Drinking Water, Criteria and procedures Quality Assurance Fifth Edition, U.S. Environmental Protection Agency, January 2005.</u>
- 9. <u>Manual of Operating Procedures for the Analysis of Selected Soil, Water, Plant Tissue and Wastes Chemical and physical Parameter.</u> Soil, Water, and Plant Analysis Laboratory, Dept. of Soil and Water Science, The University of Arizona, August 1989
- 10. The Merck Index, Eleventh Edition, Merck & Co., Inc. 1989.
- 11. <u>Methods for Chemical Analysis of Water and Wastes</u>, USEPA, EPA-600/4-79-020, March 1979 and as amended December, 1982 (EPA-600/4-82-055)
- 12. <u>Methods for the Determination of Metals in Environmental Samples</u>, USEPA, EPA-600/4-91-010, June 1991
- 13. <u>Methods of Soil Analysis</u>: Parts 1 & 2, 2nd Edition, Agronomy Society of America, Monograph 9
- 14. Polycyclic Aromatic Hydrocarbons in Water Systems, CRC Press, Inc.
- 15. <u>Procedures for Collecting Soil Samples and Methods of Analysis for Soil Survey.</u> USDA Soil Conservation Service, SSIR No. 1

- 16. Quality Systems for Analytical Services, Revision 2.2, U.S. Department of Energy, October 2006.
- 17. <u>Sampling Procedures and Chemical Methods in Use at the U.S. Salinity Laboratory for Characterizing Salt-Affected Soils and Water.</u> USDA Salinity Laboratory.
- 18. <u>Soil Survey Laboratory Methods Manual.</u> Soil Survey Laboratory Staff. Soil Survey Investigations Report No. 42, version 2.0, August 1992.
- 19. <u>Soil Testing Methods Used at Colorado State University for the Evaluation of Fertility, Salinity and Trace Element Toxicity</u>, Technical Bulletin LT B88-2 January, 1988
- 20. <u>Standard Methods for the Examination of Water and Wastewater:</u> AOHA, AWWA, and WPCG; 20th Edition, 1999.
- 21. <u>Technical Notes on Drinking Water Methods</u>, U.S. Environmental Protection Agency, October 1994.
- 22. <u>Test Methods for Evaluating Solid Waste: Physical/Chemical Methods</u>, USEPA SW-846, 3rd Edition, Updates I, II, IIA, IIB, III, December, 1996.



Susana Wartinez Governor

John H. Bemis
Cabinet Secretary-Designate

Brett F. Woods, Ph.D. Deputy Cabinet Secretary **Daniel Sanchez**Acting Division Director
Oil Conservation Division



March 22, 2011

Mr. Randy Schmaltz Environmental Manager Western Refining Southwest, Inc. - Bloomfield Refinery P.O. Box 159 Bloomfield, New Mexico 87413

Re: Termination of Discharge Permit UICI-009

Disposal Well No. 1 (API# 30-045-29002) 2010 Fall-Off Test Report and Annual Class I Well Waste Report (UICI-009) January 2011 Western Refining Southwest, Inc. - Bloomfield Refinery

Dear Mr. Schmaltz:

Staff of the Oil Conservation Division's (OCD) Environmental Bureau (EB) and the Engineering and Geological Services Bureau have completed a review of the "2010 Annual Bottom hole Pressure Surveys and Pressure Fall-Off Test (FOT) for the Western Refining Southwest, Inc. (Western) Waste Disposal Well #1" (Report) at the Bloomfield Refinery dated October 12, 2010. In addition, OCD reviewed Western's Annual Report.

The Annual Report indicates that Western believes the disposal well has about 10 more years of life subsequent to two well stimulations and the recent installation of a filtration system. OCD has documented its concerns about Western's Class I Injection Well in discussions with Western. Water Quality Control Commission (WQCC) regulations specify the operating requirements for UIC Class I Non-Hazardous Waste Injection Wells (see 20.6.2.5206(A)(1) NMAC and 20.6.2.5206(B)(1) NMAC). Western's recent FOT Report did not resolve OCD's concerns; therefore, OCD is now considering requiring Western to terminate its discharge permit pursuant to 20.6.2.3109 NMAC and/or 20.6.2.5101(I) NMAC. This letter is to inform Western of OCD's tentative decision and to allow it one final opportunity to resolve OCD's concerns in a technical meeting.



Mr. Schmaltz Western Refining Southwest, Inc. UICI-009 March 22, 2011 Page 2 of 3

One of OCD's primary responsibilities under the Underground Injection Control (UIC) Program is to ensure that the well fractures are not continuing to grow in the injection zone(s) under permitted operating conditions. OCD's letter of April 9, 2010 (see attachment) documented OCD's reasons for requiring a reduction in the maximum surface injection pressure (MSIP) specified in Western's discharge permit, which is pending renewal.

OCD issued a draft discharge permit to Western on February 25, 2010. However, Western objected to the reduced MSIP of 600 psig from 1150 psi. Subsequently, Western requested a hearing in its April 19, 2010 letter to OCD Division Director Mark Fesmire. Director Fesmire was unable to act on Western's hearing request before leaving OCD.

Western conducted another FOT in 2010 which documents, as did the 2008 and 2009 FOTs, that the injection zones are over-pressured. In fact, the formations appear to have achieved maximum capacity with formation(s) pressure build-up observed even at reduced injection rates.

OCD has determined that the 2010 FOT was unsuccessful, as were the 2008 and 2009 FOTs because the minimum pressure differential of 100 psig were not achieved (see FOT Figure 3 "Pressure vs. Time" Chart) as required under the "New Mexico Oil Conservation Division UIC Class I Fall Off Test Guidance" dated December 3, 2007. The requirement to achieve a minimum pressure differential of 100 psig is specified in Western's UIC Class I (non-hazardous) Test Plan, which was approved on June 11, 2008. Also, there has been a steady deterioration of differential pressure, since 2007 that indicates that the reservoir has reached maximum capacity. Consequently, the calculations in the FOT do not reflect the true characteristics of the injection zone(s) or formation(s). OCD hereby concludes that any existing formation fractures will continue to grow as the over-pressured injection intervals continue to propagate or grow even at the current reduced injection rate (see FOT Figure 11 Average Injection Pressure vs. Total Flow).

OCD also has two other issues concerning the Bloomfield Refinery Discharge Permit (GW-001); the nature of the remediation wastes that are disposed of in this Class I (NH) well and whether contaminated and/or treated ground water meets the UIC oilfield disposal criteria now that the facility is idle.

Therefore, in order to evaluate these issues, the OCD requests that Western provide the following information:

- 1. Western should identify the source(s) of fluids (i.e., waste stream, daily injection volumes for each waste type, and percentage of total daily injection volume) injected into the Class I injection well. Please specify the volume from the refinery operations; oilfield "exempt vs. non-exempt" or neither; and the volume from "ground water remediation" in barrels per day.
- 2. Western should identify other RCRA remediation derived waste water treatment and disposition options, i.e., surface treatment of waste water followed by Class V Injection, land



# Bill Richardson

Governor

Jon Goldstein Cabinet Secretary Jim Noel Deputy Cabinet Secretary Mark Fesmire
Division Director
Oil Conservation Division



April 9, 2010

EDMUND H. KENDRICK
Montgomery & Andrews PA
P.O. Box 2307
Santa Fe, NM 87504-2307
Also via email: <a href="mailto:gkendrick@montand.com">gkendrick@montand.com</a>

Re: WESTERN REFINING SOUTHWEST, INC. - (OGRID 037218)

Class I Waste Disposal Well No. 1, API No. 30-045-29002

Discharge Plan Permit Renewal Application for UIC-I-9

Dear Mr. Kendrick.

This is in response to your correspondence dated March 25, 2010 regarding the request made by your client, Western Refining Southwest Inc. (WRSW), that the OCD withdraw public notice issued relating to the proposed Discharge Plan Permit Renewal of UIC-I-9.

In the OCD's view, there are two separate issues raised by the March 25, 2010 letter: the procedural issue of WRSW's notice obligations pursuant to WQCC Rules, and the substantive issue relating to what the appropriate maximum surface injection pressure is for this well should the permit be renewed by the OCD under WQCC Regulations. Vague reference was made to "other" substantive issues with the permit, but these were not specifically identified and are therefore not being addressed at this time. Each of the two issues specified in the March 25<sup>th</sup> letter is addressed in further detail, below.

#### **PUBLIC NOTICE ISSUE:**

As WRSW notes in its March 25<sup>th</sup> letter, WQCC Regulations require operators to provide public notice within 30 days of the OCD deeming an application for discharge permit renewal "administratively complete." 20.6.2.3108(C) NMAC. As you are aware, the OCD deemed WRSW's application for renewal of UIC-I-9 "administratively complete" on February 25, 2010, meaning WRSW's deadline to provide public notice was March 27, 2010. The OCD notes that WRSW waited until two days prior to its deadline to raise concerns regarding the notice.

WRSW's statement that it would be "impossible" to provide public notice in this case is incorrect. Despite WRSR's assertion to the contrary, WRSW is not required to specify a maximum surface injection pressure in the public notice made pursuant to WQCC Rules 20.6.2.3108(C) and (F). The Rules require only that it include the following:

- (1) the name and address of the proposed discharger;
- (2) the location of the discharge, including a street address, if available, and sufficient information to locate the facility with respect to surrounding landmarks;



Mr. Schmaltz Western Refining Southwest, Inc. UICI-009 March 22, 2011 Page 3 of 3

discharge, and/or other proposed remedial processes need to be considered and proposed by the operator.

OCD has discussed the possibility of Western installing a new well since 2008 when the Environmental Protection Agency reviewed the 2008 FOT and also determined that the injection zones were over-pressured. Western may wish to consider the feasibility of a replacement Class I Injection Well? Western should also consider the two other issues specified above to ensure that its RCRA corrective action program is not disrupted by an alternative disposition than use of the Class I well at the facility.

To schedule a meeting (Tuesdays/Wednesdays), please contact Carl Chavez by COB April 1, 2011. If Western chooses not to meet with OCD, then OCD will move forward with the termination of Western's Class I Injection Well discharge permit. Please contact Mr. Carl Chavez of my staff at (505) 476-3490 or <u>Carl J. Chavez@state.nm.us</u> to schedule a meeting or if you have questions.

Sincerely,

Daniel Sanchez

UIC Director & Acting OCD Division Director

DJS/cjc

Attachment: OCD Letter of April 9, 2010

xc: Carl Chavez, UIC Quality Assurance Officer

Richard Ezeanyim, Engineering and Geological Services Bureau Chief

Will Jones, Engineering and Geological Services Bureau Glenn von Gonten, Acting Environmental Bureau Chief

Charlie Perrin, Aztec District Supervisor

David Cobrain, NMED- Hazardous Waste Bureau

- (3) a brief description of the activities that produce the discharge described in the application;
- (4) a brief description of the expected quality and volume of the discharge;
- (5) the depth to and total dissolved solids concentration of the ground water most likely to be affected by the discharge;
- (6) the address and phone number within the department by which interested persons may obtain information, submit comments, and request to be placed on a facility-specific mailing list for future notices; and
- (7) a statement that the department will accept comments and statements of interest regarding the application and will create a facility-specific mailing list for persons who wish to receive future notices.

See 20.6.2.3108(F) NMAC. Public notice made by the applicant does not need to "match" that made by the department. Indeed, the notice provided by the department is required by the WQCC Regulations to be more detailed as, when it is made in the way it was in this case, it constitutes *combined public notice* for purposes of Subsections "E" and "H" as provided by 20.6.2.3108(J) NMAC. While Subsection "E" only requires the department to provide the same above-enumerated information that the applicant is required to provide in its notice (as set out in Subsection "F"), Subsection "H" imposes an additional obligation on the department to provide more detailed and technically specific public notice than that required by Subsection "E" (or that which is required of the applicant) because the department must also make available a draft of the proposed permit. In this context, the department chooses to make the substance of its notice more technically detailed and specific than the minimum required by Subsection "F," and therefore, the public notice provided in this case by the department for WRSW's waste disposal well was technically detailed and included specifications such as the maximum surface injection pressure. In contrast, WRSW can (and could have) issue(d) public notice in this case without specifying the maximum surface injection pressure and will still meet the requirements of 20.6.2.3108(C) and (F) NMAC.

#### **SUBSTANTIVE PERMIT ISSUES:**

The March 25, 2010 correspondence goes into great detail regarding WRSW's objection to the reduction of the pressure limit for this well. As you know, the increased pressure of the reservoir is an issue of which WRSW has been aware since before the 2007 fall-off test (FOT), and which was specifically brought to the attention of WRSW by the OCD after the 2007 FOT. The OCD was assisted in the FOT data software evaluation by the EPA at the OCD's request in October of 2008. Further discussions continued into 2009 between the WRSW and OCD with the OCD discussing with WRSW the concerns of the OCD and the EPA regarding propagation of existing fractures and potential for new fractures at the current discharge permit limit. WRSW will recall that in June of 2009 a telephone conference call was conducted between WRSW and the OCD at which time this issue was specifically discussed. At that time WRSW informed the OCD that it felt that the pressure increase was due to a well bore "skin effect" problem and that it would like an opportunity to attempt stimulation of the well to address and overcome the "skin effect." The OCD advised WRSW at that time that neither it nor the EPA felt the problem was attributable to a wellbore "skin effect" as the FOT results were representative of the formation outward, away from the wellbore. However, the OCD agreed to give WRSW an opportunity to at least try the acid stimulation approach to see if it would be successful in remedying the situation. Also, during the June 2009 conference call with the OCD, WRSW acknowledged that if the acid stimulation was not successful it would then have to consider drilling another well for disposal.

In an email on June 18, 2009, the OCD further informed WRSW regarding additional concerns it had discussed with the EPA, and options for addressing those concerns. Also at that time the OCD informed WRSW that it appeared that WRSW was operating in violation of the conditions of its permit because, by continuing to inject at 1150 psig, <u>WRSW was causing existing fractures to increase or actively inducing new fractures</u> to grow or develop (a violation of the permit).

It appears that WRSW first attempted an acid stimulation in July 2009, which WRSW deemed unsuccessful, and that a second acid stimulation was then performed in September 2009. Our understanding is that the acid stimulation(s) yielded at best a short-lived and/or marginal improvement in the reduction of pressure and increase in injection rate, and that as of early February 2010, even at a reduced 50% rate of injection due to what WRSW has referred to as "idling of the facility," (which occurred in December of 2009) the well was again operating at a pressure approaching the maximum discharge permit limit. In fact, OCD reviewed the pressure, flow rate v. time chart from 1995 to 2010 and noticed that the operating pressure was approaching the 1150 psig discharge permit limit regardless of what the injection rate into the well was, indicating the formation was over-pressured or filled up. The radioactive survey and fall-off testing were conducted in September and October, 2009 with the FOT report being completed on November 18, 2009. An annual report was provided to the OCD by WRSW on January 29, 2010.

The OCD reviewed the FOT report results and annual report and concluded that the concerns regarding pressure were not assuaged by the data presented therein. On February 3, 2010 the OCD advised WRSW by email that it would be calculating the maximum allowable surface injection pressure for this well for purposes of the permit renewal by using the *pressure*, *flow rate v. time chart* from 1995 to 2010 for the history of the well operations and the FOT data completed in 2009, and requested some additional data from WRSW for purposes of performing these calculations. At that time, the OCD specifically informed WRSW that the new limit was likely to be significantly less than the current assigned limit. WRSW responded to the email by providing some of the requested materials for the calculations (the OCD was able to obtain the rest from OCD files), but at no time did WRSW comment regarding either the OCD's means for calculating the new maximum surface injection pressure limit or the fact that it was anticipated to be significantly less than before.

On February 22, 2010 the OCD informed WRSW via email that the OCD anticipated having a draft permit ready for dissemination later in the week and that it had completed the calculations for the maximum allowable surface injection pressure. The OCD advised that the new injection pressure limit for the UIC-I-9 renewal "...has been reduced to 600 psig in the discharge permit in order to prevent the half-fractures from growing in the present injection formation." On February 23, 2010, the OCD spoke with WRSW by telephone to further discuss the reduction in maximum surface injection pressure limit. The OCD advised WRSW regarding how the OCD arrived at the 600 psig figure and referred to and discussed a previously issued order under which WRSW was required to monitor and report fracturing, a step-rate test and a historical flow-rate, pressure v. time chart for the well, as well as the OCD's persisting concerns (including the concerns regarding fracturing). The OCD advised WRSW that the 600 psig was a final determination and that if WRSW disagreed, it could request a hearing on the matter.

Discharge permits for Class I nonhazardous waste disposal wells are issued and, when appropriate, renewed pursuant to Sections 20.6.2.3000-3999 (addressing discharge permits, generally) as well as

Sections 20.6.2.5000-5299 (addressing underground injection wells, specifically) of the WQCC Regulations, and must comply with both. Section 20.6.2.3109 NMAC sets out the basic framework for the approval, disapproval, renewal, modification and termination of discharge permits, and provides that "[t]he secretary shall, within 30 days after the administrative record is complete and all required information is available, approve, approve with conditions or disapprove the proposed discharge permit, modification or renewal based on the administrative record." Emphasis added. In order to be approved, in addition to meeting all other requirements, an operator seeking renewal of a Class I permit must establish in its application for renewal that "neither a hazard to public health nor undue risk to property will result" if approved. Id. at (C). Emphasis added. Subsection "H" specifically prohibits the approval of a discharge plan renewal which "may result in a hazard to public health." Id. at (H).

Indeed, even where an operator's permit is not on review for renewal, the department has the authority – and the duty – to require a modification of the permit (or if that is not adequate, to *terminate* that permit), where data submitted to the department reveals that the WQCC discharge permit regulations are being violated, or that continued operation under the current permit conditions may result in a hazard to public health or undue risk to property. Subsection "E" of Section 20.6.2.3109 NMAC provides in relevant part:

If data submitted pursuant to any monitoring requirements specified in the discharge permit or other information available to the secretary <u>indicates that this part is being or may be violated</u> ....

(3) The secretary may require modification, or may terminate a discharge permit for a class I non-hazardous waste injection well, ...pursuant to the requirements of Subsection I of 20.6.2.5101 NMAC.

20.6.2.3109(E) NMAC. Emphasis added.

Subsection I of 20.6.2.5101, referenced above, provides in relevant part:

If data submitted pursuant to any monitoring requirements specified in the discharge permit or other information available to the secretary <u>indicate that this Part are being or may be violated</u>, the secretary may require modification or, if it is determined by the secretary that the modification may not be adequate, may terminate a discharge permit for a Class I non-hazardous waste injection Well, or Class III well or well field, that was approved pursuant to the requirements of this under Sections 20.6.2.5000 through 20.6.2.5299 NMAC for the following causes:

- (1) Noncompliance by the discharger with any condition of the discharge permit; or
- (2) The discharger's failure in the discharge permit application or during the discharge permit review process to disclose fully all relevant facts, or the discharger's misrepresentation of any relevant facts at any time; or
- (3) A determination that the permitted activity may cause a hazard to public health or undue risk to property and can only be regulated to acceptable levels by discharge permit modification or termination.

20.6.2.5101(I) NMAC. Emphasis added. Section 20.6.2.5206(A)(1) provides that "the maximum injection pressure at the wellhead shall not initiate new fractures or propagate existing fractures in the confining zone...," and Section 20.6.2.5206(B)(1) provides that "[e]xcept during well stimulation, the maximum

injection pressure shall not initiate new fractures or propagate existing fractures in the injection zone." Section 20.6.2.5206(A)(1) and (B)(1) NMAC.

The regulatory duties of the department include ensuring that any discharge permit issued or renewed meets the specific requirements set out in the WQCC regulations. This includes ensuring that any permit issued or renewed will not create a hazard to public health or an undue risk to property. If such circumstances exist with regard to a currently in-force permit, these duties include the duty to impose modifications – or if appropriate, to terminate the permitted activity - in order to "regulate the risk to acceptable levels." *Id.* 

In this case, with regard to the application for renewal of UIC-I-9, the record reflects that WRSW is in fact violating Part 2 of the WQCC regulations. Specifically, the maximum injection pressure being used at the wellhead at this well (the 1150 psig for which it is currently permitted) is initiating new fractures and/or propagating existing fractures in the confining and/or injection zones at this location. Further, this poses a concern to all wells within one mile of the injection well that lack cement in the injection zone(s). WRSW was advised long ago that this was an issue and of concern for both the EPA and the OCD, and WRSW was given an opportunity to see if could remedy the pressure issue through well stimulation. The OCD has reviewed the most recent FOT data and has concluded that continued surface injection pressure greater than 637 psig may create a hazard to public health and/or an undue risk to property because continued injection at a rate above this parameter will result in continued fracturing, fracture growth, and possibly vertical fracturing to occur upward into regional aquifer systems, protectable ground water, and possibly even surface water discharges along the San Juan River. This continued fracturing will also constitute an ongoing violation of WQCC Section 20.6.2.5206 NMAC, as well as of the conditions of the discharge permit (which also prohibit injection at a rate that results in fracture creation or propagation).

The OCD has reviewed the current and historical data for this well and, applying a reasonable safety factor range to the upper-threshold determination of 637 psig as noted above, has determined that a safe surface injection pressure for this well would 600 psig or less, such that the risk of fracture propagation/creation would be cease if maintained at or below this level, but would be unacceptable above this pressure limit. This modification to the permit draft was made pursuant to the OCD's regulatory obligations and authority, and WRSW's request for a renewal of its permit was approved with conditions pursuant to Section 20.6.2.3109 NMAC. The OCD notes that based upon the most recent data for this well and the fact that WRSW is currently operating in violation of Section 20.6.2.5206 NMAC, even if the permit were not on review for renewal at this time, the department would be requiring a permit modification or termination pursuant to Sections 20.6.2.3109(E) and 20.6.2.5101(I) for the purpose of regulating this well to acceptable levels (such that the growth/creation of new fractures has ceased and the potential for a hazard to public health and/or undue risk to property has been minimized).

WRSW has proposed that the OCD withdraw the notice issued on February 25, 2010 so that it and the OCD can "meet and discuss any issues concerning an appropriate maximum injection pressure." However, it is important to recognize that, as discussed above, discharge permits are issued pursuant to this agency's regulatory authority and obligations. Permits are not contractual agreements between operators and the department, and do not represent the memorialization of a compromise between two parties. Rather, the OCD is obliged to review data and information submitted by parties within very specifically defined

parameters, to apply specific standards to that information, and to issue, decline to issue or issue modified versions of permits or even terminate the permit accordingly. Thus we respectfully decline WRSW's suggestion to meet to further discuss this matter.

That being said, the OCD feels that the matter has already been discussed in full between it and WRSW over the course of the past year, that it understands WRSW's position with regard to its perception that a higher injection pressure is justified, and, as the OCD has already advised WRSW, the OCD disagrees with the findings and conclusions of WRSW regarding this well. As you know, the OCD issued public notice regarding the draft permit. The public notice not only invited comments from interested parties, but also included a statement that interested parties could request a hearing regarding the proposed permit, and specification that such requests should be submitted in writing and should specify the basis for the request.

At this time, if WRSW feels that it would like to further address the contents of the proposed permit renewal for UIC-I-9, the appropriate course of action would be for WRSW to submit a written request for hearing as provided in the OCD's public notice. If WRSW has data or expert testimony it feels that the OCD has not considered or has failed to consider adequately in its review of the application for permit renewal, it can present such evidence at the hearing. WRSW also mentioned in the 3/25/10 letter, although not with any specificity, that there are "other" issues of concern with the permit draft. A hearing would also allow WRSW to address those concerns. Of course, WRSW will be required to take immediate steps to provide the public notice for which it has already technically missed the deadline.

If upon further reflection WRSW opts not to request a hearing, and prefers to simply allow the permit renewal process to proceed, if WRSW immediately remedies the applicant notice issue, the OCD will recalculate the public notice time period accordingly and proceed with issuance of the final permit thereafter. Conversely, if WRSW does not request a hearing and continues to refuse to fulfill its obligations for public notice, and if no public notice has been provided by WRSW by Friday April 16, 2010, the OCD will consider the application for renewal withdrawn, and the current permit, UIC-I-9, expired.

If WRSW is still concerned regarding meeting its obligations under the notice regulations and would like the OCD to review its public notice prior to publication, the OCD would be happy to review a draft and provide feedback regarding whether it appears to meet the requirements of the WQCC regulations. Please let us know if this is something with which WRSW would like assistance.

Sincerely,

Mikal Altomare OCD Attorney

40 C

EC:

Carl Chavez, <u>carl.chavez@state.nm.us</u>
William Jones, <u>William.v.jones@state.nm.us</u>
Gail MacQuesten, <u>Gail.macquesten@state.nm.us</u>
Glenn von Gonten, <u>glenn.vongonten@state.nm.us</u>
Charlie Perrin, Charlie perrin@state.nm.us

#### Chavez, Carl J, EMNRD

From:

Chavez, Carl J, EMNRD

Sent:

Tuesday, January 25, 2011 2:44 PM

To:

Schmaltz, Randy

Subject:

API# 30-45-29002 (UICI-009) Annual Class I Well Report

Randy:

The OCD is in receipt of Western Refining SW, Inc.'s Waste Disposal Well #1 Annual Well Report.

OCD will contact you if we have questions or need additional information.

Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: <u>CarlJ.Chavez@state.nm.us</u>

Website: <a href="http://www.emnrd.state.nm.us/ocd/">http://www.emnrd.state.nm.us/ocd/</a> index.htm (Pollution Prevention Guidance is under "Publications")

Carl Chavez
New Mexico Oil Conservation Division
Environmental Bureau
1220 South St. Francis Dr
Santa Fe, NM 87505

Certified Mail: 7010 1870 0000 0709 4549

January 24, 2011

RE: Western Refining Southwest, Inc. - Bloomfield Refinery 2010 Annual Class I Well Report Non-Hazardous Injection Well Permit # - UIC-CL-009 API # - 30- 45-29002

Mr. Chavez,

Bloomfield Refinery submits the *Annual Class I Well Report January – December 2010* as requested in the September 25, 2009 e-mail from NMOCD – Santa Fe. The well is located in the NE/4, SE/4 of Section 27, Township 29 North, Range 11West, NMPM, San Juan County, New Mexico and is operated by Western Refining Southwest, Inc.

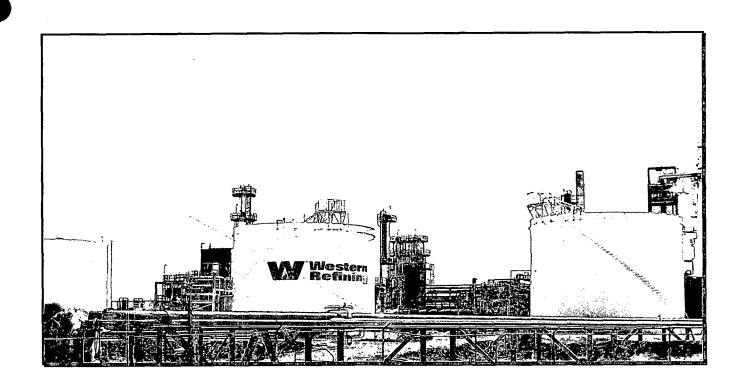
If you need more information, please contact me at (505) 632-4171.

Sincerely,

James R. Schmaltz

**Environmental Manager** 

Western Refining Southwest, Inc. - Bloomfield Refinery


Cc: Kelly G. Roberts – NMOCD Aztec District Office V.R. McDaniel – Bloomfield Refinery Site Manager Allen Hains – Western Refining – El Paso

# ANNUAL CLASS I WELL REPORT

# **Waste Disposal Well #1**January – December 2010

Western Refining Southwest, Inc. Bloomfield Refinery Bloomfield, New Mexico Permit # - UIC-CL1-009 API # - 30-45-29002

January 2011



# ANNUAL CLASS I WELL REPORT

# Waste Disposal Well #1 January – December 2010

Western Refining Southwest, Inc. Bloomfield Refinery Bloomfield, New Mexico Permit # - UIC-CL1-009 API # - 30-45-29002

January 24, 2011

Prepared by:

Cindy Hurtado

**Environmental Coordinator** 

Reviewed by:

James R. Schmaltz

Environmental Manager

# Certification

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

Site Manager

# **Executive Summary**

This report provides a summary of activities conducted throughout 2010 on Waste Disposal Well #1 (WDW-#1) at the Bloomfield Refinery. The following is a summary of conclusions and recommendations developed from well activities performed in 2010.

# Conclusions

**Injection Volume** - The volume injected into the disposal well during 2010 was 18,857,947 gallons. Western Refining suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Due to the reduced water usage caused by this suspension, average injection flow rates have decreased to less than 50% or 60 gpm or less throughout 2010.

**Sampling and Chemical Analyses -** Injection fluid samples were collected on a quarterly basis for chemical analysis. Analytical results did not exhibit characteristics of hazardous waste.

**Maintenance Operations -** During 2010, maintenance operations included a major re-build of the injection pump and fabrication and replacement of discharge piping.

**Mechanical Integrity Tests -** The 2010 well testing program included a high-pressure shutdown test, Bradenhead Test, Mechanical Integrity Test, bottom hole pressure survey and pressure Falloff Test. All tests were successfully completed and results indicate no problems with the mechanical integrity of the well.

**Well Evaluation -** Bloomfield Refinery retained William M. Cobb & Associates, Inc. to evaluate available well information. Fracture treatment of the lower interval is not being considered at this time due to the results of the high-pressure shutdown test, Bradenhead Test, Mechanical Integrity Test, bottom hole pressure survey and pressure Falloff Test.

**Area of Review (AOR) -** No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of Disposal Well #1.

# **Recommendations**

In 2011, Western will continue the routine operating, monitoring, maintenance and testing programs which will include quarterly chemical analysis of injection fluids, annual MIT, Bradenhead testing, and the annual pressure Falloff Test. Western will continue to utilize the maximum operating injection pressure at the wellhead as allowed in the amended Administrative Order SWD-528 in order to optimize potential fluctuations in the dewatering activities associated with groundwater remediation and to accommodate any changes in operation of the facility.

#### **TABLE OF CONTENTS**

| Section | on Title                                                                                                                  | Page |
|---------|---------------------------------------------------------------------------------------------------------------------------|------|
|         | Executive Summary                                                                                                         | 4    |
| 1.0     | Introduction                                                                                                              | 7    |
| 2.0     | Summary of Activities                                                                                                     |      |
| 3.0     | Injection Volume                                                                                                          | 8    |
| 4.0     | Sampling and Chemical Analyses                                                                                            |      |
| 5.0     | Maintenance Operations                                                                                                    | 9    |
| 6.0     | Mechanical Integrity Tests                                                                                                | 9    |
| 7.0     | Well Evaluations                                                                                                          | 10   |
| 8.0     | Conclusions and Recommendations                                                                                           | 11   |
| 9.0     | References                                                                                                                | 12   |
| Apper   | ndix A – Form C-103 Notifications<br>ndix B – Laboratory Analytical Reports<br>ndix C – Laboratory Quality Assurance Plan |      |

#### **LIST OF FIGURES**

Figure 1: Site Location Map

Figure 2: Well Schematic

Figure 3: Disposal Well and Area Wells

#### **LIST OF TABLES**

Table 1: Monthly Injection Well Report Table 2: Area of Review

#### 1.0 Introduction

This report provides a summary of activities conducted during 2010 on Waste Disposal Well #1 (WDW #1). The disposal well is part of the Bloomfield Refinery operations. The refinery is located immediately south of Bloomfield, New Mexico in San Juan County. The well location is depicted in Figure 1. The physical address is #50 Road 4990, Bloomfield, New Mexico 87413.

The Bloomfield Refinery is located on approximately 263 acres. Bordering the facility is a combination of federal and private properties. Public property managed by the Bureau of Land Management lies to the south. The majority of undeveloped land in the vicinity of the facility is used extensively for oil and gas production and, in some instances, grazing. U.S. Highway 44 is located approximately one-half mile west of the facility. The topography of the main portion of the site is generally flat with steep bluffs to the north where the San Juan River intersects Tertiary terrace deposits.

The Waste Disposal Well #1 is owned by San Juan Refining Company, a New Mexico corporation. It is operated by Western Refining Southwest, Inc. formerly known as Giant Industries Arizona, Inc., an Arizona corporation.

#### 1.1 Well Information

Well Name & Number: Waste Disposal Well #1

OCD UIC: UIC-CL1-009

OCD Discharge Plan Permit Number: GW-130

Well Classification: Class I Non-hazardous

API Number: 30-045-29002

Legal Location: 1250 FEL, 2442FSL, I Sec 27 T29S

R11E

Physical Address: #50 Road 4990, Bloomfield, NM 87413

# 2.0 Summary of Activities

The following list of activities was conducted throughout 2010 on Disposal Well #1 at Western's Bloomfield Refinery.

| • | 01/14/10 | 1 <sup>st</sup> Quarterly Sampling Event |
|---|----------|------------------------------------------|
| • | 04/22/10 | 2 <sup>nd</sup> Quarterly Sampling Event |
| • | 05/19/10 | Mechanical Integrity Test                |
|   |          | (See Form C-103 in Appendix A)           |
| • | 07/21/10 | 3 <sup>rd</sup> Quarterly Sampling Event |
| • | 08/29/10 | Pressure Fall-Off Test                   |
|   |          | (See Form C-103 in Appendix A)           |
| • | 10/25/10 | 4 <sup>th</sup> Quarterly Sampling Event |

# 3.0 Injection Volume

The Monthly Injection Well Report summarizing injection volumes and well performance parameters is presented as Table 1.

#### 3.1 Injection Volume

The volume injected into the disposal well during 2010 was 18,857,947 gallons. Western Refining suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Due to the reduced water usage caused by this suspension, average injection flow rates have decreased to less than 50% or 60 gpm or less throughout 2010.

#### 3.2 Injection Well Down-Time

The Injection Well was down a total of 1320 hours in 2010. The down-times are correlated with performing the Annual Falloff Test and maintenance events. The maintenance procedures that contributed to the bulk of the downtime were a major re-build of the pump and fabrication and replacement of discharge piping.

# 4.0 Sampling and Chemical Analyses

Injection fluids samples were collected on a quarterly basis and analyzed for the constituents listed per Item #9 of the *Bloomfield Refinery Class I (Non-Hazardous) Disposal Well UIC-CL1-009 (GW-130) Discharge Permit Renewal* dated March 23, 2004. First quarter samples were collected on January 14, 2010, second quarter samples were collected April 22, 2010, third quarter samples were obtained July 21, 2010, and fourth quarter samples were taken October 25, 2010. Laboratory Analytical Reports and Laboratory Quality Assurance Plan are presented in Appendices B and C, respectively.

Analytical results did not exhibit characteristics of hazardous waste.

# 5.0 Maintenance Operations

During 2010, maintenance operations included a major re-build (crank end, plungers, packings, O-rings, bearings, belts, and gaskets) of the injection pump, fabrication and replacement of discharge piping, replacing a cracked plunger in the pump, and filter cartridge change out.

# 6.0 Mechanical Integrity Tests

The 2010 well testing program included a high-pressure shutdown test, Bradenhead test, mechanical integrity test, bottom hole pressure survey and pressure falloff test. The testing is discussed below.

#### 6.1 Annual Mechanical Integrity Test

Bloomfield Refinery performed the annual High Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrity Test (MIT) on May 19, 2010. All tests were witnessed by Monica Kuehling of NMOCD-Aztec. The MIT held at 580 psi for 30 minutes, therefore confirming the integrity of the well.

#### 6.2 Annual Pressure Fall-Off Test

Bloomfield Refinery retained William M. Cobb & Associates, Inc. to perform the annual bottom hole pressure survey and pressure Falloff Test on WDW #1. The well tests were conducted in accordance with United States Environmental Protection Agency (USEPA) 40 CFR 146.13 and the State of New Mexico Falloff Test Guidelines, December 3, 2007. The 2010 pressure falloff test procedure was conducted in accordance with the USEPA's Region 6 "Pressure Falloff Testing Guidelines, Third Revision", dated August 8, 2002, and required by the State of New Mexico as of December 3, 2007. The pressure falloff test and bottom hole pressure survey performed on Waste Disposal Well No. 1 also met the NMOCD requirements for such testing.

The falloff testing for Western's Waste Disposal Well # 1 (WDW #1) was conducted with tandem bottom hole pressure memory gauges with a pre-flow period beginning at 9:28 AM on August 29, 2010 and ending at 8:52 AM on September 9, 2010. The average flow rate for the 72-hour period prior to the beginning of the falloff test was 29.5 GPM with a final flowing rate of 21.5 GPM. On the morning of August 29, 2010, tandem bottom hole pressure memory gauges were lowered into the well and allowed to stabilize. The well was shut-in for 191 hours ending at 8:02 AM on September 9, 2010. Field data and charts are included in Appendix E of the 2010 Annual Bottomhole Pressure Surveys

and Pressure Falloff Tests for Waste Disposal Well #1Report (Cobb and Associates, 2010) that was submitted to NMOCD – Santa Fe on October 14, 2010.

Geologic assessment indicates the WDW #1 is in a confined low permeability sand interval and historically is not capable of producing a bottom hole 100 psi pressure drop. Records show that WDW #1 was hydraulically fractured after it was drilled. The 2006, 2008 and 2009 falloff test data confirm this with a linear flow regime observed after the end of storage effects.

The 2010 Falloff Test data showed no unexpected pressure changes. The pressure dropped quickly during the first few minutes of the test due to wellbore storage effects and then continued to decline as the pressure in the reservoir adjusted to the no-flow period. The Falloff Test data show linear flow for the duration of the test with no indication of end of linear flow or reservoir boundary effects. There does not appear to be any reservoir response to injection other than that which would be expected from normal growth of the injected volume.

All test data and conclusions are presented in the 2010 Annual Bottomhole Pressure Surveys and Pressure Falloff Tests for Waste Disposal Well #1Report (Cobb and Associates, 2010) that was submitted to NMOCD – Santa Fe on October 14, 2010.

#### 7.0 Well Evaluations

#### 7.1 Well Evaluation

Bloomfield Refinery retained William M. Cobb & Associates, Inc. to evaluate available well information and present recommendations to improve the injectivity of the injection well. A report, *Evaluation of Disposal Well #1 Bloomfield Refinery* (Cobb and Associates, 2009a), was prepared by William M. Cobb & Associates, Inc. for Bloomfield Refinery and submitted to NMOCD – Santa Fe on October 7, 2009. In the report, William M Cobb & Associates, Inc stated "with the current injection pressure limit of 1,150 psig at the wellhead and at rates of under 100 gpm, the well should serve for an additional ten years."

In 2009, Bloomfield Refinery followed the recommendations to clean out/stimulate/acidize the well and to filter the injection fluids. Western believes that the well stimulation procedures were successful as indicated by the results of the 2009 Radioactive Tracer Test and the 2009 and 2010 Falloff Test; therefore fracture treatment of the lower interval is not being considered at this time.

Western Refining suspended refining operations at the Bloomfield Refinery on November 23, 2009. Due to the reduced water usage caused by this suspension, injection flow rates have decreased to less than 60 gpm. With proper

operation of the filtration system and with the decreased flow rates, WDW #1 should operate for more than ten years.

#### 7.2 Area of Review (AOR)

The Area of Review data from the 2009 Falloff test report was reviewed and updated in 2010 Annual Bottomhole Pressure Surveys and Pressure Falloff Tests for Waste Disposal Well #1Report (Cobb & Associates, 2010) that was submitted to NMOCD – Santa Fe on October 14, 2010.

Fifty-eight wells were found within a one-mile radius of WDW #1, which injects water into the Mesaverde formation. The wells and status are spotted on an area map, Figure 3, with a well number listed with the well data in Table 2. Of these wells, 15 have been plugged and abandoned. Four wells are classified as dry holes and believed to be plugged and abandoned. Twenty-four wells produce petroleum from shallow zones. One well is an Entrada injection well. Fourteen wells produce petroleum from the Dakota and Gallup zones, which are deeper than the Mesaverde interval used for injection purposes.

Twenty-four of the 59 wells have penetrated the injection zone. Of these, three have been plugged. Five wells are currently producing from shallow zones and 14 wells produce from deep zones. There are two injection wells including WDW #1 and Ashcroft SWD #1 well.

No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of Disposal Well #1.

### 8.0 Conclusions and Recommendations

The following is a summary of conclusions and recommendations developed from well activities in 2010.

#### 8.1 Conclusions

**Injection Volume** - The volume injected into the disposal well during 2010 was 18,857,947 gallons. Western Refining suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Due to the reduced water usage caused by this suspension, average injection flow rates have decreased by 50% 60 gpm or less throughout 2010.

**Sampling and Chemical Analyses -** Injection fluids samples were collected on a quarterly basis for chemical analysis. Analytical results did not exhibit characteristics of hazardous waste.

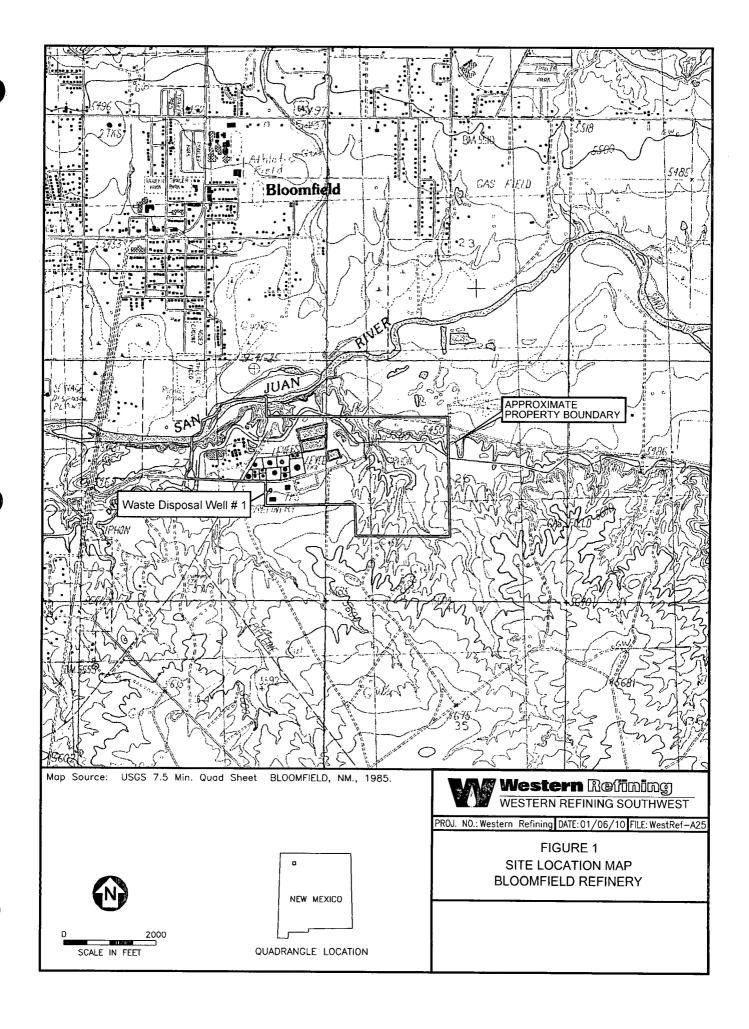
**Maintenance Operations -** During 2010, maintenance operations included a major re-build of the injection pump and fabrication and replacement of discharge piping.

**Mechanical Integrity Tests -** The 2010 well testing program included a high-pressure shutdown test, Bradenhead Test, Mechanical Integrity Test, bottom hole pressure survey and pressure Falloff Test. Results of these tests prove that the operational integrity of the well is sound.

**Well Evaluation** – In 2009, Bloomfield Refinery followed the recommendations of William M. Cobb & Associates, Inc. to clean out/stimulate/acidize the well and to filter the injection fluids in order to improve the injectivity of the injection well. Western believes that the well stimulation procedures were successful as indicated by the results of the 2009 Radioactive Tracer Test and the 2009 and 2010 Falloff Tesst; therefore fracture treatment of the lower interval is not being considered at this time.

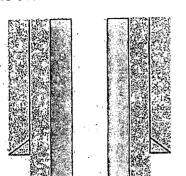
**Area of Review (AOR) -** No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of WDW #1.

#### 8.2 Recommendations


In 2011, Western will continue the routine operating, monitoring, maintenance and testing programs which include quarterly chemical analysis of injection fluids, annual MIT, Bradenhead testing, and the annual pressure Falloff Test. Western will continue to utilize the maximum operating injection pressure at the wellhead as allowed in the amended Administrative Order SWD-528 in order to optimize potential fluctuations in the dewatering activities associated with groundwater remediation and to accommodate any changes in operation of the facility.

# 9.0 References

Cobb & Associates, 2009a, Evaluation of Disposal Well #1 Bloomfield Refinery, August 26, 2009.


Cobb & Associates, 2010, 2010 Annual Bottomhole Pressure Surveys and Pressure Falloff Tests for Waste Disposal Well #1Report October 12, 2010.

Bloomfield Refinery Class I (Non-Hazardous) Disposal Well UIC-CL1-009 (GW-130) Discharge Permit Renewal dated March 23, 2004.



# WESTERN REFINING DISPOSAL WELL #1 V. SW SECTION 26, T29N, R11W

NO.: 30-045-29002





# FIGURE 2 DISPOSAL WELL #1 WELL SCHEMATIC Western Refining Inc. Bloomfield, NM

| 1 | Date:     | 4/26/2006 | Approved By: | rte | Job No.: | 70F5830 |
|---|-----------|-----------|--------------|-----|----------|---------|
| - | Drawn'By: | ria       | Checked By:  |     | Scale:   | N/A     |

8-5/8", 48#/ft, Surface Casing @ 830'

TOC: Surface Hole Size: 11.0"

Tubing: 2-7/8", Acid Resistant Fluoroline Cement Lined

Wt of Tubing: 6.5 #/ft

Wt of Tubing Lined: 7.55 #/ft

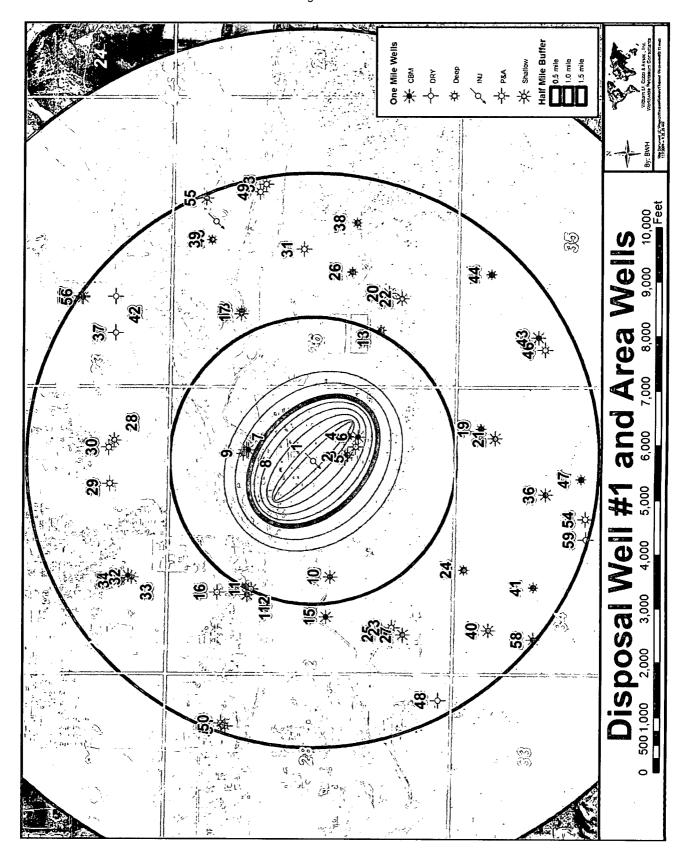
Tubing ID: 2.128"
Tubing Drift ID: 2.000"

Minimum ID @ Packer: ~1.87" estimated

Packer: Unknown Packer Type @ 3221'
Could be a Guiberson or similar model Uni-6

Perforations: 3276' - 3408' 4JSPF 0.5 EHD Top of the Cliff House Formation: 3276'

Fill was cleaned out of well on 4/20/06 Fill was orginally tagged at 3325'


Perforations: 3435' - 3460' 4JSPF 0.5 EHD Top of the Menefee Formation: 3400'

RBP: 3520'

5-1/2", 15.5#/ft, Production Casing @3600'

TOC: Surface Hole Size: 7-7/8"

Figure 3





|                        |              |                        |   |                                                        |                                    |                                |           |                    | AVG        | (GPM)     |        | 55        | 55        | 63        | 09        | 40        | 41        | 43        | 42        | 32        | 34        | 28        | 29        |   |                                                    |  |
|------------------------|--------------|------------------------|---|--------------------------------------------------------|------------------------------------|--------------------------------|-----------|--------------------|------------|-----------|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---|----------------------------------------------------|--|
|                        |              |                        |   |                                                        |                                    |                                | NE        | RATES              | MIN        | (GPM)     | l<br>l | 19        | 58        | 51        | 22        | 20        | 19        | 12        | 11        | 17        | 20        | 19        | 17        |   |                                                    |  |
|                        |              |                        |   |                                                        |                                    |                                | ON-LINE   | FLOW RATES         | MAX        | (GPM)     |        | 72        | 65        | 0.69      | 89        | 98        | 89        | 80        | 55        | 45        | 55        | 53        | 90        |   |                                                    |  |
| IERY                   |              |                        |   |                                                        |                                    |                                |           |                    | AVG        | (PSIA)    |        | 123       | 133       | 138       | 125       | 138       | 169       | 177       | 153       | 140       | 141       | 120       | 158       |   |                                                    |  |
| LD REFINERY            |              |                        |   |                                                        |                                    |                                |           | RESSURE            | NIM        | (PSIA)    |        | 85        | 131       | 118       | 7.1       | 29_       | 151       | 151       | 124       | 95        | 93        | 88        | 136       |   |                                                    |  |
| BLOOMFIELD             |              | 87413                  | J | PORT                                                   | 211W                               | MEXICO                         |           | ANNULAR PRESSURE   | MAX        | (PSIA)    |        | 148       | 136       | 168       | 168       | 201       | 210       | 209       | 208       | 196       | 199       | 163       | 179       |   |                                                    |  |
| INC BL                 | 159          | MEXICO                 |   | WELL REIN GW-130                                       | 27, T29N, F                        | M, SAN JUAN COUNTY, NEW MEXICO |           |                    | AVG        | (PSIA)    |        | 1066      | 1126      | 1117      | 1093      | 066       | 1066      | 972       | 991       | 926       | 951       | 921       | 944       |   |                                                    |  |
| G SOUTHWEST,           | P.O. BOX 159 | LD, NEW                |   | THLY INJECTION WELL RE<br>DISCHARGE PLAN GW-130        | SECTION                            | UAN COUN                       |           | RESSURE            | NIM        | (PSIA)    |        | 915       | 1114      | 1043.0    | 982       | 864       | 900       | 912       | 891       | 902       | 897       | 892       | 900       |   |                                                    |  |
|                        |              | BLOOMFIELD, NEW MEXICO |   | MONTHLY INJECTION WELL REPORT<br>DISCHARGE PLAN GW-130 | NE1/4 SE1/4 SECTION 27, T29N, R11W | IPM, SAN J                     |           | INJECTION PRESSURE | MAX        | (PSIA)    |        | 1141      | 1137      | 1141      | 1140      | 1080      | 1097      | 1130      | 1087      | 994       | 1065      | 1023      | 1054      |   |                                                    |  |
| N REFINI               |              | 18                     |   |                                                        |                                    | NMP                            |           | -NWOQ              | TIME       | (HRS)     |        | 0         | 0         | 0         | 36        | 144       | 0         | 0         | 240       | 624       | 192       | 84        | 0         |   |                                                    |  |
| <b>WESTERN REFININ</b> |              |                        |   |                                                        |                                    |                                | TOTALIZER | AMOUNT             | INJECTED   | (GALLONS) |        | 2,373,484 | 2,566,818 | 2,815,393 | 2,196,140 | 1,220,962 | 1,709,684 | 1,477,024 | 900,337   | 210,489   | 1,078,275 | 1,024,311 | 1,285,030 | - | 7 gallons                                          |  |
|                        |              |                        |   |                                                        |                                    |                                | AMOUNT    | TO SOLAR           | EVAP PONDS | (GALLONS) |        | 2,404,000 | 2,288,000 | 2,183,000 | 1,721,000 | 1,700,000 | 2,307,000 | 3,376,000 | 4,778,000 | 2,361,000 | 1,867,000 | 1,238,000 | 1,274,000 |   | Total Amount Injected in 2010 - 18,857,947 gallons |  |
|                        |              |                        |   |                                                        |                                    |                                | AMOUNT    | OF WATER           | FROM RIVER | (GALLONS) |        | 1,395,000 | 2,002,000 |           | 1,447,286 | 1,440,000 | 2,597,000 | 2,307,000 | 3,256,000 | 1,974,000 | 971,000   | 2,174,000 | 1,242,000 |   | nt Injected in 2                                   |  |
|                        |              |                        |   |                                                        |                                    |                                |           |                    | PERIOD     | 2010      |        | JAN       | FEB       | MAR       | APR       | MAY       | NOL       | JUL       | AUG       | SEP       | ОСТ       | NOV       | DEC       |   | Total Amour                                        |  |

| Pen.<br>Inj.<br>Zone | Yes              | Yes             | Š               | Yes             | 8<br>S            | Š              | 8<br>S                   | 9<br>2                  | Yes                          | Yes             | 8                           | Yes                     | Yes                     | S<br>S                      | Yes            | S<br>S                  | Yes                      | Yes                          | Yes                     | 8                       | 9<br>2       | o<br>Z       | °N<br>N                 | Yes                  |
|----------------------|------------------|-----------------|-----------------|-----------------|-------------------|----------------|--------------------------|-------------------------|------------------------------|-----------------|-----------------------------|-------------------------|-------------------------|-----------------------------|----------------|-------------------------|--------------------------|------------------------------|-------------------------|-------------------------|--------------|--------------|-------------------------|----------------------|
| Status               | 2                | P&A             | Shallow         | Deep            | P&A               | CBM            | CBM                      | P&A                     | Shallow                      | Shallow         | Shallow                     | Deep                    | Deep                    | Shallow                     | CBM            | P&A                     | CBM                      | Deep                         | Deep                    | CBM                     | Shallow      | Shallow      | P&A                     | Deep                 |
| RESERVOIR            | MESAVERDE        | DAKOTA          | CHACRA          | GALLUP          | PICTURED CLIFFS   | FRUITLAND COAL | FRUITLAND COAL           |                         | CHACRA                       | PICTURED CLIFFS | FRUITLAND SAND              | DAKOTA                  | DAKOTA                  | CHACRA                      | FRUITLAND COAL |                         | FRUITLAND COAL           | DAKOTA                       | GALLUP                  | FRUITLAND COAL          | CHACRA       | CHACRA       | PICTURED CLIFFS         | GALLUP               |
| <u>OPERATOR</u>      | WESTERN REFINING | BP AMERICA      | XTO ENERGY, INC | XTO ENERGY, INC | Pre-Ongard        | HOLCOMB O&G    | H-27-29N-11W HOLCOMB O&G | Pre-Ongard              | H-27-29N-11W XTO ENERGY, INC | Burlington      | F-27-29N-11W MANANA GAS INC | Burlington              | Burlington              | F-27-29N-11W MANANA GAS INC | Burlington     | Pre-Ongard              | F-26-29N-11W HOLCOMB O&G | F-26-29N-11W XTO ENERGY, INC | Burlington              | Burlington              | Burlington   | ENERGEN      | Pre-Ongard              | ENERGEN              |
| ULSTR                | I-27-29N-11W     | I-27-29N-11W    | I-27-29N-11W    | I-27-29N-11W    | I-27-29N-11W      | I-27-29N-11W   | H-27-29N-11W             | H-27-29N-11W Pre-Ongard | H-27-29N-11W                 | K-27-29N-11W    | F-27-29N-11W                | F-27-29N-11W Burlington | M-26-29N-11W Burlington | F-27-29N-11W                | L-27-29N-11W   | C-27-29N-11W Pre-Ongard | F-26-29N-11W             | F-26-29N-11W                 | A-34-29N-11W Burlington | N-26-29N-11W Burlington | A-34-29N-11W | N-26-29N-11W | M-27-29N-11W Pre-Ongard | C-34-29N-11W ENERGEN |
| P&A Date             |                  | 19-Jan-94       |                 |                 | 18-Oct-82         |                |                          | 18-Aug-55               |                              |                 |                             |                         |                         |                             |                | 09-Nov-78               |                          |                              |                         |                         |              |              | 27-Jun-75               |                      |
| Total<br>Depth       | 3514             | 6298            | 2839            | 6177            | 1717              | 1714           | 1689                     | 1800                    | 6262                         | 5808            | 1354                        | 6160                    | 6348                    | 2710                        | 6214           | 800                     | 4030                     | 6242                         | 6148                    | 1760                    | 2857         | 2869         | 1747                    | 5970                 |
| Perf<br>Bottom       | 3514             | 6298            | 2839            | 5646            |                   | 1714           | 1689                     |                         | 2810                         | 1770            | 1354                        | 6160                    | 6348                    | 2710                        | 1661           |                         | 1645                     | 6242                         | 6148                    | 1760                    | 2857         | 2869         | 1747                    | 9269                 |
| Perf                 | 3276             | 6157            | 2827            | 5314            |                   | 1543           | 1483                     |                         | 2701                         | 1680            | 1326                        | 6024                    | 6176                    | 2578                        | 1388           |                         | 1462                     | 9809                         | 6086                    | 1468                    | 2747         | 2746         | 1664                    | 5326                 |
| APINO                | 30-045-29002     | 30-045-07825    | 30-045-23554    | 30-045-30833    | 30-045-07812      | 30-045-34463   | 30-045-34409             | 30-045-07883            | 30-045-24084                 | 30-045-25673    | 30-045-27361                | 30-045-24673            | 30-045-12003            | 30-045-27365                | 30-045-07835   | 30-045-07896            | 30-045-25329             | 30-045-24083                 | 30-045-25657            | 30-045-31118            | 30-045-24574 | 30-045-24572 | 30-045-07903            | 30-045-25707         |
| #1                   | -                | -               | -               | #               | -                 | ₹              | 7                        | . 5                     | 五                            | 18              | -                           | Ή                       | -                       | ~                           | -              | -                       | -                        | 11                           | 16                      | 100                     | 6            | တ            | -                       | 15                   |
| WELLNAME             | DISPOSAL         | DAVIS GAS COM F | DAVIS GAS COM G | DAVIS GAS COM F | Davis Pooled Unit | JACQUE         | JACQUE                   | Davis PU/FB Umbarger    | DAVIS GAS COM F              | CONGRESS        | LAUREN KELLY                | MANGUM                  | CALVIN                  | MARIAN S                    | MANGUM         | Black Diamond           | DAVIS GAS COM J          | SULLIVAN GAS COM D           | CONGRESS                | CALVIN                  | SUMMIT       | CONGRESS     | Garland "B"             | SUMMIT               |
| Miles to             | 0.00             | 0.11            | 0.12            | 0.15            | 0.16              | 0.18           | 0.23                     | 0.23                    | 0.24                         | 0.41            | 0.49                        | 0.49                    | 0.51                    | 0.52                        | 0.55           | 0.56                    | 0.57                     | 0.58                         | 09.0                    | 0.64                    | 0.64         | 0.64         | 0.64                    | 0.65                 |
| Map<br>Seq.          | <b>←</b>         | 2               | က               | 4               | 5                 | 9              | 7                        | ø                       | 6                            | 10              | -                           | 12                      | 5                       | 4                           | 15             | 16                      | 17                       | 18                           | 19                      | 20                      | 21           | 22           | 23                      | 24                   |

| Pen.<br>Ini.<br>Zone | 8<br>S               | Yes              | °Z               | °N                          | o<br>N                      | Yes                         | <sub>o</sub>            | °N                          | 9<br>2                      | Yes                         | 8<br>8                      | 0<br>N                     | °Z                      | Yes             | Yes                   | §                         | Yes                     | S<br>S                  | Yes              | Yes              | Yes                   | o<br>N                     | Yes                     | 8                       |
|----------------------|----------------------|------------------|------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------------|-------------------------|-----------------|-----------------------|---------------------------|-------------------------|-------------------------|------------------|------------------|-----------------------|----------------------------|-------------------------|-------------------------|
| Status               | Shallow              | Deep             | Shallow          | Shallow                     | P&A                         | P&A                         | P&A                     | Shallow                     | CBM                         | Deep                        | Shallow                     | Shallow                    | DRY                     | Deep            | Deep                  | Shallow                   | Deep                    | DRY                     | Shallow          | Deep             | <u>N</u>              | P&A                        | Deep                    | DRY                     |
| RESERVOIR            | CHACRA               | GALLUP           | PICTURED CLIFFS  | CHACRA                      | FRUITLAND SAND              | DAKOTA                      | (N/A)                   | CHACRA                      | FRUITLAND COAL              | DAKOTA                      | FRUITLAND SAND              | PICTURED CLIFFS            | FARMINGTON              | DAKOTA          | DAKOTA                | FARMINGTON, NORTH Shallow | DAKOTA                  | FARMINGTON              | CHACRA           | GALLUP           | MORRISON BLUFF EN     | PICTURED CLIFFS            | DAKOTA                  |                         |
| IR <u>OPERATOR</u>   | M-27-29N-11W ENERGEN | I-11W Burlington | 4-11W Burlington | P-22-29N-11W MANANA GAS INC | O-22-29N-11W JOHN C PICKETT | P-22-29N-11W MANANA GAS INC | M-26-29N-11W Pre-Ongard | N-22-29N-11W MANANA GAS INC | N-22-29N-11W MANANA GAS INC | N-22-29N-11W MANANA GAS INC | N-22-29N-11W MANANA GAS INC | G-34-29N-11W CHAPARRAL O&G | M-23-29N-11W Pre-Ongard | -11W Burlington | 1-11W XTO ENERGY, INC | D-34-29N-11W MCELVAIN O&G | F-34-29N-11W Burlington | O-23-29N-11W Pre-Ongard | I-11W Burlington | J-11W Burlington | I-11W XTO ENERGY, INC | E-35-29N-11W CHAPARRAL O&G | G-34-29N-11W Burlington | P-28-29N-11W Pre-Ongard |
| ULSTR                | M-27-29N             | K-26-29N-11W     | M-27-29N-11W     | P-22-29N                    | O-22-29N                    | P-22-29N                    | M-26-29N                | N-22-29N                    | N-22-29N                    | N-22-29N                    | N-22-29N                    | G-34-29N                   | M-23-29N                | J-26-29N-11W    | B-26-29N-11W          | D-34-29N                  | F-34-29N                | O-23-29N                | E-35-29N-11W     | C-35-29N-11W     | B-26-29N-11W          | E-35-29N                   | G-34-29N                | P-28-29N                |
| P&A Date             |                      |                  |                  |                             | 02-Mar-00                   | 14-Jun-99                   | 11-Nov-58               |                             |                             |                             |                             |                            |                         |                 |                       |                           |                         |                         |                  |                  |                       | 18-Dec-99                  |                         |                         |
| Total<br>Depth       | 2790                 | 5870             | 1678             | 2754                        | 1466                        | 6274                        | 1917                    | 2732                        | 1608                        | 6226                        | 1410                        | 1736                       | 2335                    | 6430            | 6160                  | 1525                      | 6347                    | 2015                    | 6328             | 5943             | 7382                  | 1790                       | 6340                    | 870                     |
| Perf<br>Bottom       | 2790                 | 5870             | 1678             | 2754                        | 1466                        | 6274                        |                         | 2732                        | 1608                        | 6226                        | 1410                        | 1736                       |                         | 6430            | 6160                  | 1064                      | 6347                    |                         | 2906             | 5943             | 7070                  | 1790                       | 6340                    |                         |
| Perf                 | 2668                 | 5295             | 1648             | 2627                        | 1380                        | 6072                        |                         | 2622                        | 1440                        | 6052                        | 1390                        | 1726                       |                         | 6172            | 6047                  | 1060                      | 6202                    |                         | 2784             | 5369             | 6952                  | 1776                       | 6171                    |                         |
| APINO                | 30-045-24573         | 30-045-25612     | 30-045-21732     | 30-045-26721                | 30-045-07959                | 30-045-07961                | 30-045-07776            | 30-045-26731                | 30-045-34312                | 30-045-07940                | 30-045-13089                | 30-045-20755               | 30-545-02123            | 30-045-33093    | 30-045-07733          | 30-045-24834              | 30-045-24835            | 30-545-02124            | 30-045-24837     | 30-045-25675     | 30-045-30788          | 30-045-20752               | 30-045-07672            | 30-045-07751            |
| #1                   | က                    | က                | ₹                | 2                           | ~                           | -                           | -                       | -                           | -                           | ₩.                          | 2                           | 2                          | က                       | 1               | -                     | 11                        | 7E                      | 4                       | 4E               | 15               | Ψ-                    | -                          | 2                       | <del></del>             |
| WELLNAME             | GARLAND              | CALVIN           | GARLAND B        | NANCY HARTMAN               | GRACE PEARCE                | HARTMAN                     | Davis                   | MARY JANE                   | ROYAL FLUSH                 | COOK                        | COOK                        | SHELLY                     | HARE                    | CALVIN          | SULLIVAN GAS COM D    | ELLEDGE FEDERAL 34        | CONGRESS                | HARE                    | CONGRESS         | CONGRESS         | ASHCROFT SWD          | LEA ANN                    | CONGRESS                | Viles EE                |
| Miles to             | 0.65                 | 0.67             | 0.68             | 0.70                        | 0.71                        | 0.72                        | 0.73                    | 0.75                        | 92.0                        | 0.79                        | 0.79                        | 0.82                       | 0.82                    | 0.84            | 0.85                  | 0.85                      | 0.89                    | 06.0                    | 06.0             | 06.0             | 06.0                  | 06.0                       | 0.94                    | 0.94                    |
| Map<br>Seq.          | 25                   | 26               | 27               | 28                          | 29                          | 30                          | 31                      | 32                          | 33                          | 34                          | 35                          | 36                         | 37                      | 38              | 39                    | 40                        | 4                       | 42                      | 43               | 44               | 45                    | 46                         | 47                      | <b>4</b><br>8           |

| 8               | Š                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P&A             | P&A                                                                                     | P&A                                                                                                                                                                                                                                                                                                                                                       | Deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P&A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P&A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Shallow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CBM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P&A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Shallow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PICTURED CLIFFS | PICTURED CLIFFS                                                                         |                                                                                                                                                                                                                                                                                                                                                           | DAKOTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PICTURED CLIFFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PICTURED CLIFFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHACRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FRUITLAND COAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DAKOTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PICTURED CLIFFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FRUITLAND SAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Pre-Ongard      | Pre-Ongard                                                                              | Pre-Ongard                                                                                                                                                                                                                                                                                                                                                | XTO ENERGY, INC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pre-Ongard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pre-Ongard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | XTO ENERGY, INC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HOLCOMB O&G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BP AMERICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHAPARRAL O&G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pre-Ongard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| G-26-29N-11W    | A-28-29N-11W                                                                            | A-28-29N-11W                                                                                                                                                                                                                                                                                                                                              | A-28-29N-11W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G-26-29N-11W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J-34-29N-11W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B-26-29N-11W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | K-23-29N-11W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K-23-29N-11W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E-34-29N-11W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -34-29N-11W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 23-Jun-55       | 05-May-78                                                                               | 05-Jun-78                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31-Aug-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30-Oct-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10-Mar-97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 006             | 1600                                                                                    | 009                                                                                                                                                                                                                                                                                                                                                       | 6125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Frtind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 |                                                                                         |                                                                                                                                                                                                                                                                                                                                                           | 6125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                 |                                                                                         |                                                                                                                                                                                                                                                                                                                                                           | 6023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 30-045-29107    | 30-045-07895                                                                            | 30-045-07762                                                                                                                                                                                                                                                                                                                                              | 30-045-07894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30-045-07870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30-045-07674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30-045-23163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30-045-23550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30-045-07985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30-045-20609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30-545-02151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ×               | 7                                                                                       | က                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sullivan        | 1adsen Selby Pooled Unit                                                                | /asden-Selby                                                                                                                                                                                                                                                                                                                                              | AASDEN GAS COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sullivan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ONGRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ARL B SULLIVAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STATE GAS COM BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 'EARCE GAS COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HAPARRAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CONGRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.95            | 0.97 N                                                                                  | 0.97 N                                                                                                                                                                                                                                                                                                                                                    | 0.97 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.97 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.98 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.98 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.99 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.99 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O.99 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.99 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 49              | 20                                                                                      | 51                                                                                                                                                                                                                                                                                                                                                        | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | 0.95 Sullivan 1X 30-045-29107 900 23-Jun-55 G-26-29N-11W Pre-Ongard PICTURED CLIFFS P&A | 0.95         Sullivan         1X         30-045-29107         900         23-Jun-55         G-26-29N-11W         Pre-Ongard         PICTURED CLIFFS         P&A           0.97         Madsen Selby Pooled Unit         2         30-045-07895         1600         05-May-78         A-28-29N-11W         Pre-Ongard         PICTURED CLIFFS         P&A | 0.95         Sullivan         1X         30-045-29107         900         23-Jun-55         G-26-29N-11W         Pre-Ongard         PICTURED CLIFFS         P&A           0.97         Madsen Selby Pooled Unit         2         30-045-07895         1600         05-May-78         A-28-29N-11W         Pre-Ongard         PICTURED CLIFFS         P&A           0.97         Masclen-Selby         3         30-045-07762         600         05-Jun-78         A-28-29N-11W         Pre-Ongard         PRA         P&A | 0.95         Sullivan         1X         30-045-28107         900         23-Jun-55         G-26-29N-11W         Pre-Ongard         PICTURED CLIFFS         P&A           0.97         Madsen Selby Pooled Unit         2         30-045-07895         1600         05-Jun-78         A-28-29N-11W         Pre-Ongard         PICTURED CLIFFS         P&A           0.97         Masden-Selby         3         30-045-07762         5         600         05-Jun-78         A-28-29N-11W         Pre-Ongard         PAKOTA         P&A           0.97         MASDEN GAS COM         1         30-045-07894         6023         6125         6125         A-28-29N-11W         XTO ENERGY, INC         DAKOTA         Deep | 0.95         Sullivan         1X         30-045-29107         900         23-Jun-55         G-26-29N-11W         Pre-Ongard         PICTURED CLIFFS         P&A           0.97         Madsen Selby Pooled Unit         2         30-045-07895         4.28-29N-11W         Pre-Ongard         PICTURED CLIFFS         P&A           0.97         Masclen-Selby         3         30-045-07762         6.05         5-Jun-78         A-28-29N-11W         Pre-Ongard         PICTURED CLIFFS         P&A           0.97         Masclen-Selby         1         30-045-07894         6125         6125         A-28-29N-11W         Pre-Ongard         PICTURED CLIFFS         Deep           0.97         Sullivan         1         30-045-07870         1420         31-Aug-53         G-26-29N-11W         Pre-Ongard         PICTURED CLIFFS         P&A | 0.95         Sullivan         1X         30-045-29107         900         23-Jun-55         G-26-29N-11W         Pre-Ongard         PICTURED CLIFFS         P&A           0.97         Madsen Selby Pooled Unit         2         30-045-07762         1600         05-May-78         A-28-29N-11W         Pre-Ongard         PICTURED CLIFFS         P&A           0.97         Masden-Selby         3         30-045-07762         5         6125         A-28-29N-11W         Pre-Ongard         PA         PA           0.97         MasDEN GAS COM         1         30-045-07870         6125         6125         A-28-29N-11W         Pre-Ongard         PICTURED CLIFFS         P&A           0.97         Sullivan         1         30-045-07870         PC         7420         31-Aug-53         G-26-29N-11W         Pre-Ongard         PICTURED CLIFFS         P&A           0.98         CONGRESS         1         30-045-07674         PC         30-04-29/14W         Pre-Ongard         PICTURED CLIFFS         P&A | 0.95         Sullivan         1X         30-045-29107         300         23-Jun-55         G-26-29N-11W         Fre-Ongard         PICTURED CLIFFS         P&A           0.97         Madsen Selby Pooled Unit         2         30-045-07762         5         1600         05-May-78         A-28-29N-11W         Fre-Ongard         PICTURED CLIFFS         P&A           0.97         Maschen-Selby         3         30-045-07762         5         6125         6125         A-28-29N-11W         Fre-Ongard         PACTURED CLIFFS         P&A           0.97         MASDEN GAS COM         1         30-045-07894         6023         6125         6125         A-28-29N-11W         Fre-Ongard         PICTURED CLIFFS         P&A           0.97         Sullivan         1         30-045-07874         A-28         31-Aug-53         G-26-29N-11W         Fre-Ongard         PICTURED CLIFFS         P&A           0.98         CONGRESS         1         30-045-07874         FC         30-0ct-53         3-34-29N-11W         Fre-Ongard         PICTURED CLIFFS         P&A           0.98         CONGRESS         1         30-045-23163         2761         2761         2761         A-28-29N-11W         Fre-Ongard         PICTURED CLIFFS         PACTURED CLIFFS  < | 0.95         Sullivan         1X         30-045-29107         3.0         23-Jun-55         G-26-29N-11W         Pre-Ongard         PICTURED CLIFFS         P&A           0.97         Massen Selby Pooled Unit         2         30-045-07862         3.5         1600         05-Jun-78         4-28-29N-11W         Pre-Ongard         PICTURED CLIFFS         P&A           0.97         Maschen-Selby Pooled Unit         3         30-045-07762         3.5         6125         4-28-29N-11W         Pre-Ongard         PAKOTA         P&A           0.97         Maschen-Selby         1         30-045-07897         6125         4-28-29N-11W         Pre-Ongard         PAKOTA         P&A           0.97         Sullivan         1         30-045-07897         1         420         31-Aug-53         6-26-29N-11W         Pre-Ongard         PICTURED CLIFFS         P&A           0.98         CONGRESS         1         30-045-0787         7         7         7         1-3-29N-11W         Pre-Ongard         PICTURED CLIFFS         P&A           0.98         CONGRESS         1         30-045-07867         7         7         1-3         1-3-29N-11W         Pre-Ongard         PICTURED CLIFFS         PA           0.98         STATE GAS COM BS | 0.95         Sullivan         1X         30-045-29107         3-2-Jun-56         6-26-29N-11W         Pre-Ongard         PICTURED CLIFFS         P&A           0.97         Madsen Selby Pooled Unit         2         3-045-07895         7-1600         05-May-78         A-28-29N-11W         Pre-Ongard         PICTURED CLIFFS         P&A           0.97         Masden-Selby Dooled Unit         3         3-045-07862         6.25         6.25         A-28-29N-11W         Pre-Ongard         PictureD CLIFFS         P&A           0.97         Masden-Selby         1         3-045-07870         A-2         1420         A-28-29N-11W         A-28-29N-11W         Pre-Ongard         PictureD CLIFFS         P&A           0.98         Sullivan         1         3-045-07874         A-2         1420         3-24-29N-11W         A-28-29N-11W         Pre-Ongard         PictureD CLIFFS         P&A           0.98         CONGRESS         1         3-045-07674         A-2         1-29N-11W         A-28-29N-11W         A-28-29N-11W | 0.95         Sullivanh         1X         30-045-29107         3.2-Jun-55         6.2-BN-11W         Pre-Ongard         Pre-Ongard         PictURED CLIFFS         P&A           0.97         Madsen Selby Pooled Unit         2         30-045-07895         3.2-Jun-78         4-28-29N-11W         Pre-Ongard         PictURED CLIFFS         P&A           0.97         Masden-Selby         3         30-045-07762         7.2         60.9         5-Jun-78         A-28-29N-11W         Pre-Ongard         PACA         P&A           0.97         Masden-Selby         3         30-045-07784         6.02         6.25-Jun-78         A-28-29N-11W         Pre-Ongard         PACA         P&A           0.97         Sullivan         1         30-045-07894         6.12         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2 |

| Pen Ini. Zone | <u>N</u> | 12  | 4   | 0 | 5   | 14      | 0    | 35    |
|---------------|----------|-----|-----|---|-----|---------|------|-------|
| Pen In        | Yes      | ო   | 0   | 2 | 2   | က       | 4    | 24    |
| Total         | Wells    | 15  | 4   | 2 | 7   | 17      | 4    | 29    |
|               | Status   | P&A | Dry | Z | CBM | Shallow | Deep | Total |

#### Chavez, Carl J, EMNRD

From: Hurtado, Cindy [Cindy.Hurtado@wnr.com]

Sent: Wednesday, May 12, 2010 9:30 AM

To: Chavez, Carl J, ÉMNRD; Roberts, Kelly G, EMNRD; Kuehling, Monica, EMNRD

Cc: Schmaltz, Randy; Robinson, Kelly

Attachments: C103-MIT-2010.pdf

#### Good Morning,

Please find attached Bloomfield Refinery's C103 requesting permission to conduct the annual MIT, Bradenhead Test, and the High Pressure Shut Down Test on our Class I injection well (UICI-009) on May 19, 2010. I have coordinated with Monica Kuehling with Aztec OCD and she is available to witness the event between 8-8:30 AM. Monica is current on her safety training at Bloomfield Refinery. However, any other observers will need to contact me in order to arrange for safety orientation before the testing begins.

Thank You, Cindy

Cindy Hurtado
Environmental Coordinator
Western Refining Southwest, Inc. - Bloomfield Refinery
cindy.hurtado@wnr.com
505-632-4161

| Submit 3 Copies To Appropriate District Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | State of New Me                        | xico                  |                                   | Form C-103          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------|-----------------------------------|---------------------|
| District 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Energy, Minerals and Natu              | ral Resources         |                                   | May 27, 2004        |
| 1625 N. French Dr., Hobbs, NM 88240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                      |                       | WELL API NO.                      |                     |
| District II 1301 W. Grand Ave., Artesia, NM 88210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OIL CONSERVATION                       | DIVISION              | 30-045-29002-00                   |                     |
| District III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1220 South St. Fran                    |                       | 5. Indicate Type of Lease STATE F | EE X                |
| 1000 Rio Brazos Rd., Aztec, NM 87410<br>District IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Santa Fe, NM 87                        |                       | 6. State Oil & Gas Lease          |                     |
| 1220 S. St. Francis Dr., Santa Fe, NM<br>87505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                       | N/A                               |                     |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | CES AND REPORTS ON WELLS               |                       | 7. Lease Name or Unit Ag          | reement Name        |
| (DO NOT USE THIS FORM FOR PROPOSE DIFFERENT RESERVOIR. USE "APPLICATION OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PROPOSE OF THE PR | SALS TO DRILL OR TO DEEPEN OR PLU      | JG BACK TO A          | Disposal                          |                     |
| PROPOSALS.)  1. Type of Well: Oil Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gas Well OtherX (Disposal)             |                       | 8. Well Number #001               |                     |
| 2. Name of Operator Western Refining Southwest, Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - Bloomfeld Retinery                   |                       | 9. OGRID Number 037218            |                     |
| 3. Address of Operator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bloomera Reimery                       |                       | 10. Pool name or Wildcat          |                     |
| #50 Road 4990 Bloomfield, NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 87413                                  |                       | Blanco/Mesa Verde                 |                     |
| 4. Well Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                       |                                   |                     |
| Unit Letter_1: 2442f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eet from the South I                   | ine and1250_fee       | et from theEastline               | en e                |
| Section 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Township 29 Range                      | II NMPN               | A County San Jua                  | ın                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11. Elevation (Show whether DR.        | RKB, RT, GR, etc.     |                                   |                     |
| Pit or Below-grade Tank Application 🔲 o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r Closure [                            |                       |                                   |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aterDistance from nearest fresh w      | ater well Dis         | tance from neurest surface water  |                     |
| Pit Liner Thickness: mil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Below-Grade Tank: Volume               |                       |                                   |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Appropriate Box to Indicate N          |                       |                                   |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • • •                                  | •                     | •                                 |                     |
| NOTICE OF IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                       | SEQUENT REPORT                    |                     |
| PERFORM REMEDIAL WORK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PLUG AND ABANDON                       | REMEDIAL WOR          |                                   | NG CASING 🗆         |
| TEMPORARILY ABANDON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHANGE PLANS                           | COMMENCE DR           |                                   | ٩ ـــا              |
| PULL OR ALTER CASING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MULTIPLE COMPL                         | CASING/CEMEN          | T JOB                             |                     |
| OTHER: MIT/BradenheadTest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | OTHER:                |                                   |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | leted operations. (Clearly state all p | pertinent details, an | d give pertinent dates, includ    | ing estimated date  |
| of starting any proposed wo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ork). SEE RULE 1103. For Multip        |                       |                                   |                     |
| or recompletion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                       |                                   |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                       |                                   |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                       |                                   |                     |
| Bloomfield Refinery requests permis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                       |                                   | echanical Integrity |
| Test on the Class I injection well ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | erenced above on May 19, 2010.         |                       |                                   |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                       |                                   |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                       |                                   |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                       |                                   |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                       |                                   |                     |
| I hereby certify that the information grade tank has been/yill be constructed or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                       |                                   |                     |
| SIGNATURE ( 1/2 A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L /0 TITLE I                           |                       | 1'                                |                     |
| SIGNATURE Condy Ju                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tago IIILE E                           | aivironmental Coo     | rdinatorDATE5/12/201              | U                   |
| Type or print name Cindy Hurtado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E-mail address: cindy.hu               | tado@wnr.com          | Telephone No. (505)632            | 4161                |
| For State Use Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                       |                                   |                     |
| APPROVED BY: Carl,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 11/                                  | r . +                 | Engr DATE                         |                     |
| Conditions of Approval (if any):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Merry TITLE                            | Emmonmenter           | DATE                              | 5/12/20/0           |

## Hurtado, Cindy

From:

Hurtado, Cindy

Sent:

Thursday, May 20, 2010 8:03 AM

To:

'Chavez, Carl J, EMNRD'; 'Roberts, Kelly G, EMNRD'; Kuehling, Monica, EMNRD

Cc:

Schmaltz, Randy

Subject:

Bloomfield Refinery - UICI-009

Attachments: Follow up C103-MIT.pdf

Good Morning Carl,

Please find attached the follow-up C-103 report for the MIT that was conducted on our Injection Well yesterday. Please contact me if you have questions or need more information.

Thanks, Cindy

Cindy Hurtado
Environmental Coordinator
Western Refining Southwest, Inc. - Bloomfield Refinery
cindy.hurtado@wnr.com
505-632-4161

| Submit 3 Copies To Appropriate District Office                                         | State of New Mexico                                                                                          | Form C-103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| District I<br>1625 N. French Dr., Hobbs, NM 88240                                      | Energy, Minerals and Natural Resources                                                                       | May 27, 2004 WELL API NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| District II 1301 W. Grand Avc., Artesia, NM 88210                                      | OIL CONSERVATION DIVISION                                                                                    | 30-045-29002-00 5. Indicate Type of Lease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| District III<br>1000 Rio Brazos Rd., Aztec, NM 87410                                   | 1220 South St. Francis Dr.                                                                                   | STATE FEE X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| District IV<br>1220 S. St. Francis Dr., Santa Fe, NM<br>87505                          | Santa Fe, NM 87505                                                                                           | 6. State Oil & Gas Lease No. N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SUNDRY NOTIC<br>(DO NOT USE THIS FORM FOR PROPOS.<br>DIFFERENT RESERVOIR. USE "APPLICA | CES AND REPORTS ON WELLS ALS TO DRILL OR TO DEEPEN OR PLUG BACK TO A ATION FOR PERMIT" (FORM C-101) FOR SUCH | 7. Lease Name or Unit Agreement Name Disposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PROPOSALS.)  1. Type of Well: Oil Well   (                                             | Gas Well OtherX (Disposal)                                                                                   | 8. Well Number #001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2. Name of Operator                                                                    |                                                                                                              | 9. OGRID Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Western Refining Southwest, Inc. –  3. Address of Operator                             | Bloomfeld Refinery                                                                                           | 037218<br>10. Pool name or Wildcat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| #50 Road 4990 Bloomfield, NM 8                                                         | 7413                                                                                                         | Blanco/Mesa Verde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4. Well Location                                                                       |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unit Letter I : 2442 fe                                                                | et from the South line and 1250 fe                                                                           | eet from theEastline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Section 27                                                                             | Township 29 Range II NMP                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                        | 11. Elevation (Show whether DR, RKB, RT, GR, etc.                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pit or Below-grade Tank Application or                                                 | Closure                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                        | terDistance from nearest fresh water wellDi                                                                  | stance from nearest surface water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Pit Liner Thickness: mil                                                               | Below-Grade Tank: Volume bbls; C                                                                             | Construction Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12. Check A                                                                            | ppropriate Box to Indicate Nature of Notice                                                                  | , Report or Other Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NOTICE OF INT<br>PERFORM REMEDIAL WORK TEMPORARILY ABANDON PULL OR ALTER CASING        | PLUG AND ABANDON   REMEDIAL WO                                                                               | RILLING OPNS. P AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| OTHER:                                                                                 | OTHER: MIT/Br                                                                                                | adenheadTest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                        | eted operations. (Clearly state all pertinent details, a k). SEE RULE 1103. For Multiple Completions: A      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                        | nnual High Pressure Shutdown Test, Bradenhead Tesnica Kuehling of NMOCD-Aztec. The MIT held at S             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                        |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| grade tank has been/will be constructed or c                                           | bove is true and complete to the best of my knowled closed according to NMOCD guidelines , a general permit  | or an (attached) alternative OCD-approved plan .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SIGNATURE (undy Hunt                                                                   | TITLE Environmental Coo                                                                                      | ordinator_DATE5/19/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Type or print name Cindy Hurtado For State Use Only                                    | E-mail address: cindy.hurtado@wnr.com                                                                        | Telephone No. (505)632-4161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| APPROVED BY:                                                                           | TITLE                                                                                                        | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Conditions of Approval (if any):                                                       |                                                                                                              | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |



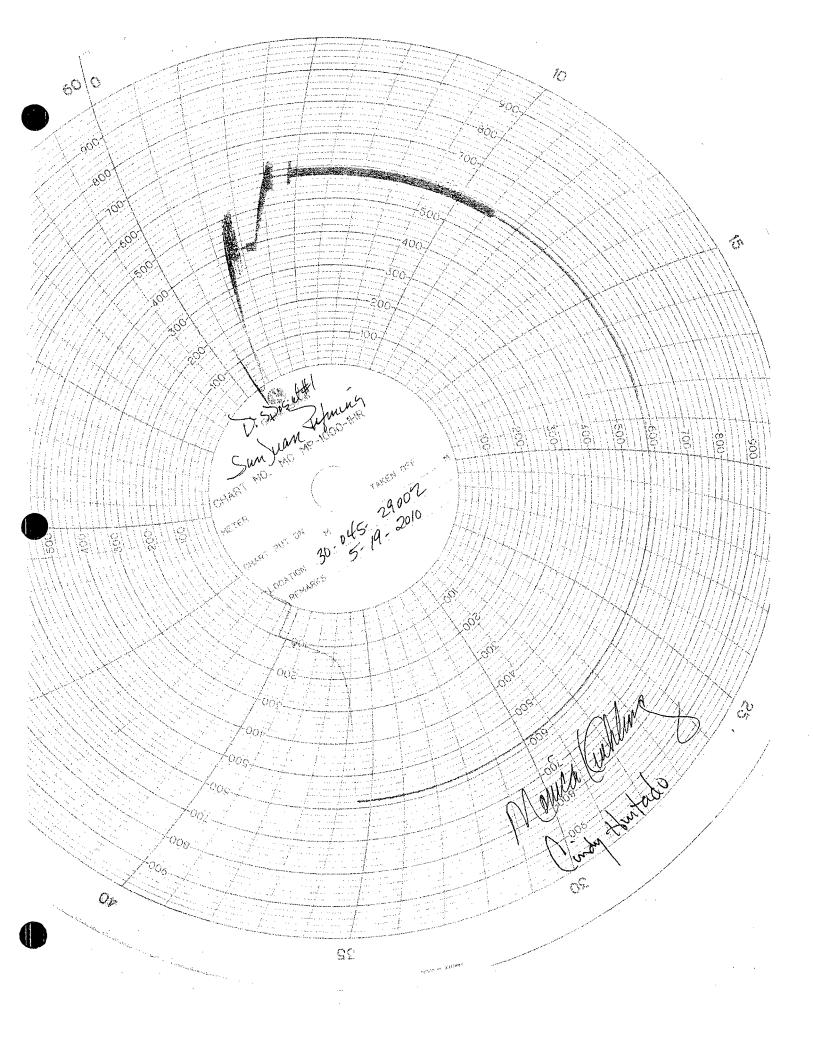
E-mail address

### NEW MEXICO ENERGY, MINERALS & NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION AZTEC DISTRICT OFFICE 1000 RIO BRAZOS ROAD AZTEC NM (7710

(505) 334-6178 FAX: (505) 334-6170 http://emord.state.nm.us/oc/d/District III/3distric.htm

#### BRADENHEAD TEST REPORT


(submit 1 copy to above address) wan Lehning & API #30-0 45 29002 Date of Test 5-19-10 Operator Well No. / Location: Unit \( \overline{\infty} \) Section \( \overline{\infty} \) Township \( \overline{\infty} \) Range \( // \) Property Name Well Status (Shut-In of Producing) Initial PSI: Tubing 918 Intermediate VIA Casing 164 Bradenhead OPEN BRADENHEAD AND INTERMEDIATE TO ATMOSPHERE INDIVIDUALLY FOR 15 MINUTES EACH **PRESSURE** FLOW CHARACTERISTICS Testing Bradenhead **INTERM** BRADENHEAD INTERMEDIATE Csg Int Int Csg TIME Steady Flow 5 min 10 min Surges Down to Nothing 15 min 20 min 25 min 30 min Gas & Water Water If bradenhead flowed water, check all of the descriptions that apply below: FRESH SALTY SULFUR BLACK **5 MINUTE SHUT-IN PRESSURE** 



# NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

# MECHANICAL INTEGRITY TEST REPORT

| (IAOR UIO)                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------|
| Date of Test 5-19-10 Operator San want spring 6. API # 30-0 45-29003                                                                  |
| Property Name 15 7054 Well # Location: Unit \( \overline{L} \) Sec \( \overline{27} \) Twn \( \overline{9} \) Rge \( \overline{17} \) |
| Land Type:  State                                                                                                                     |
| Temporarily Abandoned Well (Y/N): TA Expires:                                                                                         |
| Casing Pres. O Tbg. SI Pres. Max. Inj. Pres. Tbg. Inj. Pres. Tubing Pres. 9/8 Int. Casing Pres. O/A                                   |
| Pressured annulus up to                                                                                                               |
| REMARKS:                                                                                                                              |
| Lacker Det at 3221                                                                                                                    |
|                                                                                                                                       |
| Dudormed Lillcheck Passed                                                                                                             |
| Canview E: 1 Setting on June / Thiorigh Menu                                                                                          |
| By Conductation Witness Mula Lukuno (Operator Representative)  Environmental Coordinators  (Position)  Revised 02-11-02               |



#### Hurtado, Cindy

From: Chavez, Carl J, EMNRD [CarlJ.Chavez@state.nm.us]

**Sent:** Friday, August 20, 2010 11:58 AM

To: Hurtado, Cindy; Roberts, Kelly G, EMNRD

Schmaltz, Randy; Kuehling, Monica, EMNRD

Cc: Schmaltz, Randy; Kuehling, Monica, EMNRD

**Subject:** RE: Bloomfield Refinery - UiCI-009 Fall-Off Test (UICI-009)

Attachments: C-103 Annual FOT 8-20-10.pdf

#### Cindy:

Approved. Please see attachment.

As a reminder, during the steady-state injection period prior to fall-off test (FOT) monitoring, please be sure to include the real-time injection flow rate with pressure and temperature data to verify that a steady-state flow condition was achieved prior to FOT monitoring. Also, an updated historical pressure-flow rate chart should be submitted with the fall-off test package for the disposal well.

Please contact me if you have questions. Thank you.

Please be advised that NMOCD approval of this plan does not relieve Western Refining Southwest, Inc.- Bloomfield Refinery of responsibility should their operations pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve Western Refining Southwest, Inc.- Bloomfield Refinery of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: <a href="http://www.emnrd.state.nm.us/ocd/">http://www.emnrd.state.nm.us/ocd/</a> index.htm (Pollution Prevention Guidance is under "Publications")

**From:** Hurtado, Cindy [mailto:Cindy.Hurtado@wnr.com]

**Sent:** Friday, August 20, 2010 9:31 AM

**To:** Chavez, Carl J, EMNRD; Roberts, Kelly G, EMNRD **Cc:** Schmaltz, Randy; Kuehling, Monica, EMNRD **Subject:** Bloomfield Refinery - UiCI-009 Fall-Off Test

Good Morning Carl,

Please disregard the previous e-mail concerning Bloomfield Refinery's Fall-Off Test. It did not contain the signed C-103 application. This current e-mail contains the signed C-103.

Please find attached the C-103 application for Bloomfield Refinery's Class 1 Injection Well Fall-Off Test to begin on August 29, 2010. Also attached is the Fall-Off Test Plan incorporating your request to install bottom hole gauges at 48 hours before cessation of injection and the Wellbore Diagram.

Monica Kueling with Aztec OCD is available on August 30, 2010 to witness installation of the bottom hole gauges.

A hard copy of this submittal will be mailed to your office.

Thanks, Cindy

Cindy Hurtado
Environmental Coordinator
Western Refining Southwest, Inc. - Bloomfield Refinery
cindy.hurtado@wnr.com
505-632-4161

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient (s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

| Submit 3 Copies To Appropriate District Office                | State of New Me                                                         |                                                     | Form C-103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| District I                                                    | Energy, Minerals and Natur                                              | ral Resources                                       | WELL API NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1625 N. French Dr., Hobbs, NM 88240<br>District II            | OIL CONGERVATION                                                        | DIVIDION                                            | 30-045-29002-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1301 W. Grand Ave., Artesia, NM 88210<br>District III         | OIL CONSERVATION<br>1220 South St. Fran                                 |                                                     | 5. Indicate Type of Lease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1000 Rio Brazos Rd., Aztec, NM 87410                          | Santa Fe, NM 87                                                         |                                                     | STATE FEE X  6. State Oil & Gas Lease No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| District IV<br>1220 S. St. Francis Dr., Santa Fe, NM<br>87505 | Sainta FC, INIVI 67                                                     | 505                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SUNDRY NOTI                                                   | ICES AND REPORTS ON WELLS                                               |                                                     | 7. Lease Name or Unit Agreement Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                               | SALS TO DRILL OR TO DEEPEN OR PLU<br>CATION FOR PERMIT" (FORM C-101) FO |                                                     | Disposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1. Type of Well: Oil Well                                     | Gas Well  OtherX (Disposal)                                             |                                                     | 8. Well Number #001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2. Name of Operator                                           | Disconfield Ballinami                                                   |                                                     | 9. OGRID Number<br>037218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Western Refining Southwest, Inc  3. Address of Operator       | - Bloomied Keinery                                                      |                                                     | 10. Pool name or Wildcat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| #50 Road 4990 Bloomfield, NM                                  | 87413                                                                   |                                                     | Blanco/Mesa Verde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4. Well Location                                              |                                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               | feet from the South 1                                                   |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Section 27                                                    | Township 29 Range                                                       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               | 11. Elevation (Show whether DR,                                         | KKB, KI, GK, etc.,                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pit or Below-grade Tank Application 0                         | r Closure                                                               |                                                     | Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission o |
| Pit typeDepth to Groundw                                      | aterDistance from nearest fresh w                                       | ater well Dist                                      | ance from nearest surface water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pit Liner Thickness: mil                                      | Below-Grade Tank: Volume                                                | bbls; Co                                            | nistruction Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12. Check /                                                   | Appropriate Box to Indicate N                                           | ature of Notice,                                    | Report or Other Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                               |                                                                         | SUB<br>REMEDIAL WOR<br>COMMENCE DRI<br>CASING/CEMEN | ILLING OPNS. P AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| OTHER: Annual Fall-Off Test                                   |                                                                         | OTHER:                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u>^</u>                                                      |                                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               |                                                                         |                                                     | d give pertinent dates, including estimated date tach wellbore diagram of proposed completion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| injection buildup period will begin of                        | on August 29, 2010. After 24 hours of                                   | of stable injection t                               | I injection well referenced above. The he bottom hole pressure memory gauges will well will be shut-in for at least 72 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                               |                                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               |                                                                         |                                                     | e and belief. I further certify that any pit or below-<br>or an (attached) alternative OCD-approved plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SIGNATURE ( undy // 4                                         | ntado TITLE E                                                           | Environmental Coo                                   | rdinator_DATE8/20/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Type or print name Clindy Hurtado                             | E-mail address: cindy hu                                                | rtado@wnr.com                                       | Telephone No. (505)632-4161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

APPROVED BY: Can Charage Conditions of Approval (if any):

TITLE Engineen DATE 8/20/20/0

aud deser American



#### **COVER LETTER**

Wednesday, February 10, 2010

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Injection Well 1st QTR-2010

Dear Cindy Hurtado:

Order No.: 1001206

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 1/15/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001

Texas Lab# T104704424-08-TX



Date: 10-Feb-10

CLIENT:

Western Refining Southwest, Inc.

Project:

Injection Well 1st QTR-2010

Lab Order:

1001206

**CASE NARRATIVE** 

Analytical Comments for METHOD 8260\_W, SAMPLE 1001206-01a: necessary dilution due to foamy nature of sample

Date: 10-Feb-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1001206

Injection Well 1st QTR-2010

Project: Lab ID:

1001206-01

Client Sample ID: Injection Well

Collection Date: 1/14/2010 2:00:00 PM

Date Received: 1/15/2010
Matrix: AQUEOUS

| Analyses                      | Result  | PQL                                   | Qual Units | DF  | Date Analyzed         |
|-------------------------------|---------|---------------------------------------|------------|-----|-----------------------|
| EPA METHOD 300.0: ANIONS      |         | · · · · · · · · · · · · · · · · · · · |            |     | Analyst: LJE          |
| Chloride                      | 3500    | 50                                    | mg/L       | 500 | 2/2/2010 5:32:49 AM   |
| Sulfate                       | 330     | 5.0                                   | mg/L       | 10  | 1/29/2010 4:19:27 AM  |
| EPA METHOD 7470: MERCURY      |         |                                       |            |     | Analyst: SN\          |
| Mercury                       | 0.00039 | 0.00020                               | mg/L       | 1   | 1/21/2010 4:57:49 PM  |
| EPA 6010B: TOTAL RECOVERABLE  | METALS  |                                       |            |     | Analyst: SN\          |
| Arsenic                       | ND      | 0.040                                 | mg/L       | 1   | 1/24/2010 5:28:37 PM  |
| Barium                        | 0.31    | 0.040                                 | mg/L       | 1   | 1/24/2010 5:28:37 PM  |
| Cadmium                       | ND      | 0.0040                                | mg/L       | 1   | 1/24/2010 5:28:37 PM  |
| Calcium                       | 140     | 2.0                                   | mg/L       | 1   | 1/24/2010 5:28:37 PM  |
| Chromium                      | ND      | 0.012                                 | mg/L       | 1   | 1/24/2010 5:28:37 PM  |
| Lead                          | ND      | 0.010                                 | mg/L       | 1   | 1/24/2010 5:28:37 PM  |
| Magnesium                     | 40      | 2.0                                   | mg/L       | 1   | 1/24/2010 5:28:37 PM  |
| Potassium                     | 45      | 2.0                                   | mg/L       | 1   | 1/24/2010 5:28:37 PM  |
| Selenium                      | ND      | 0.10                                  | mg/L       | 1   | 1/24/2010 5:28:37 PM  |
| Silver                        | ND      | 0.010                                 | mg/L       | 1   | 1/24/2010 5:28:37 PM  |
| Sodium                        | 2000    | 100                                   | mg/L       | 50  | 1/24/2010 5:53:47 PM  |
| PA METHOD 8270C: SEMIVOLATILI | =S      |                                       |            |     | Analyst: LBJ          |
| Acenaphthene                  | ND      | 50                                    | μg/L       | 1   | 1/19/2010 11:09:40 PM |
| Acenaphthylene                | ND      | 50                                    | μg/L       | 1   | 1/19/2010 11:09:40 PM |
| Aniline                       | ND      | 50                                    | μg/L       | 1   | 1/19/2010 11:09:40 PM |
| Anthracene                    | ND      | 50                                    | μg/L       | 1   | 1/19/2010 11:09:40 PM |
| Azobenzene                    | ND      | 50                                    | μg/L       | 1   | 1/19/2010 11:09:40 PM |
| Benz(a)anthracene             | ND      | 50                                    | µg/L       | 1   | 1/19/2010 11:09:40 PM |
| Benzo(a)pyrene                | ND      | 50                                    | µg/L       | 1   | 1/19/2010 11:09:40 PM |
| Benzo(b)fluoranthene          | ND      | 50                                    | μg/L       | 1   | 1/19/2010 11:09:40 PM |
| Benzo(g,h,i)perylene          | ND      | 50                                    | µg/L       | . 1 | 1/19/2010 11:09:40 PM |
| Benzo(k)fluoranthene          | ND      | 50                                    | µg/L       | 1   | 1/19/2010 11:09:40 PM |
| Benzoic acid                  | ND      | 100                                   | μg/L       | 1   | 1/19/2010 11:09:40 PM |
| Benzyl alcohol                | ND      | 50                                    | µg/L       | 1   | 1/19/2010 11:09:40 PM |
| Bis(2-chloroethoxy)methane    | ND      | 50                                    | µg/L       | 1   | 1/19/2010 11:09:40 PM |
| Bis(2-chloroethyl)ether       | ND      | 50                                    | μg/L       | 1   | 1/19/2010 11:09:40 PM |
| Bis(2-chlorolsopropyl)ether   | ND      | 50                                    | μg/L       | 1   | 1/19/2010 11:09:40 PM |
| Bis(2-ethylhexyl)phthalate    | ND      | 50                                    | µg/L       | 1   | 1/19/2010 11:09:40 PM |
| 4-Bromophenyl phenyl ether    | , ND    | 50                                    | µg/L       | 1   | 1/19/2010 11:09:40 PM |
| Butyl benzyl phthalate        | ND      | 50                                    | μg/L       | 1   | 1/19/2010 11:09:40 PM |
| Carbazole                     | ND      | 50                                    | μg/L       | 1   | 1/19/2010 11:09:40 PM |
| 4-Chloro-3-methylphenol       | ND      | 50                                    | µg/L       | 1   | 1/19/2010 11:09:40 PM |
| 4-Chloroaniline               | ND      | 50 <sup>-</sup>                       | µg/L       | 1   | 1/19/2010 11:09:40 PM |
| 2-Chloronaphthalene           | ND      | 50                                    | μg/L       | 1   | 1/19/2010 11:09:40 PM |

Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 1 of 7

Date: 10-Feb-10

**CLIENT:** 

Western Refining Southwest, Inc.

Lab Order:

1001206

Injection Well 1st QTR-2010

Project: Lab ID:

1001206-01

Client Sample ID: Injection Well

Collection Date: 1/14/2010 2:00:00 PM

Date Received: 1/15/2010 Matrix: AQUEOUS

| Analyses                      | Result | PQL  | Qual Units    | DF  | Date Analyzed         |
|-------------------------------|--------|------|---------------|-----|-----------------------|
| EPA METHOD 8270C: SEMIVOLATIL | ES     |      |               |     | Analyst: LB.          |
| 2-Chlorophenol                | ND     | 50   | μg/L          | 1   | 1/19/2010 11:09:40 PM |
| 4-Chlorophenyl phenyl ether   | ND     | 50   | μg/L          | . 1 | 1/19/2010 11:09:40 PM |
| Chrysene                      | ND     | 50   | μg/L          | 1   | 1/19/2010 11:09:40 PM |
| Di-n-butyl phthalate          | ND     | 50   | μg/L          | 1   | 1/19/2010 11:09:40 PM |
| Di-n-octyl phthalate          | ND     | 50   | μg/L          | 1   | 1/19/2010 11:09:40 PM |
| Dibenz(a,h)anthracene         | ND     | 50   | μg/L          | , 1 | 1/19/2010 11:09:40 Ph |
| Dibenzofuran                  | ND     | 50   | µg/L          | 1   | 1/19/2010 11:09:40 PM |
| 1,2-Dichlorobenzene           | ND     | 50   | μg/L          | 1   | 1/19/2010 11:09:40 PM |
| 1,3-Dichlorobenzene           | ·ND    | 50   | μg/L          | 1   | 1/19/2010 11:09:40 PM |
| 1,4-Dichlorobenzene           | ND     | 50   | μg/L          | 1   | 1/19/2010 11:09:40 PM |
| 3,3'-Dichloropenzidine        | ND     | 50   | µg/L          | 1   | 1/19/2010 11:09:40 PM |
| Diethyl phthalate             | ND     | 50   | µg/L          | 1   | 1/19/2010 11:09:40 PM |
| Dimethyl phthalate            | ND     | 50   | μg/L          | 1   | 1/19/2010 11:09:40 PM |
| 2,4-Dichlorophenol            | ND     | 100  | μg/L          | 1   | 1/19/2010 11:09:40 PM |
| 2,4-Dimethylphenol            | ND     | 50   | μg/L          | 1 . | 1/19/2010 11:09:40 PM |
| 4,6-Dinitro-2-methylphenol    | ND     | 100  | μg/L          | 1   | 1/19/2010 11:09:40 PM |
| 2,4-Dinitrophenol             | ND     | 100  | μg/L          | 1   | 1/19/2010 11:09:40 PM |
| 2,4-Dinitrotoluene            | ND     | 50   | µg/L          | 1   | 1/19/2010 11:09:40 PM |
| 2,6-Dinitrotoluene            | ND     | 50   | µg/L          | 1   | 1/19/2010 11:09:40 PM |
| Fluoranthene                  | ND     | 50   | μg/L          | 1   | 1/19/2010 11:09:40 PM |
| Fluorene                      | ND     | 50   | μg/L          | 1   | 1/19/2010 11:09:40 PM |
| Hexachlorobenzene             | ND     | 50   | μg/L          | 1   | 1/19/2010 11:09:40 PN |
| Hexachlorobutadiene           | ND     | 50   | μg/L          | 1   | 1/19/2010 11:09:40 PM |
| Hexachlorocyclopentadiene     | ND     | 50   | µg/L          | 1   | 1/19/2010 11:09:40 PN |
| Hexachloroethane              | ND     | 50   | μg/L          | 1   | 1/19/2010 11:09:40 PN |
| Indeno(1,2,3-cd)pyrene        | ND     | 50   | μg/L          | 1   | 1/19/2010 11:09:40 PN |
| Isophorone                    | NĐ     | 50   | µg/L          | 1   | 1/19/2010 11:09:40 PM |
| 2-Methylnaphthalene           | ND     | 50   | μ <b>g/L</b>  | 1   | 1/19/2010 11:09:40 PM |
| 2-Methylphenol                | ND     | 50   | μ <b>g/L</b>  | 1   | 1/19/2010 11:09:40 PN |
| 3+4-Methylphenol              | ND     | 50   | µg/L          | 1   | 1/19/2010 11:09:40 PM |
| N-Nitrosodi-n-propylamine     | ND     | 50   | μg/L          | 1   | 1/19/2010 11:09:40 PN |
| N-Nitrosodimethylamine        | ND     | 50   | μg/L          | 1   | 1/19/2010 11:09:40 PM |
| N-Nitrosodiphenylamine        | ND     | 50   | μg/L          | 1   | 1/19/2010 11:09:40 PM |
| Naphthalene                   | ND     | 50   | μ <b>g/L</b>  | 1   | 1/19/2010 11:09:40 PM |
| 2-Nitroaniline                | ND     | 50   | μ <b>g/</b> L | 1   | 1/19/2010 11:09:40 PN |
| 3-Nitroaniline                | ND     | 50   | μg/L          | 1   | 1/19/2010 11:09:40 PN |
| 4-Nitroaniline                | ND     | 50   | μg/L          | 1   | 1/19/2010 11:09:40 PM |
| Nitrobenzene                  | ND     | 50   | μg/L          | 1   | 1/19/2010 11:09:40 PN |
| 2-Nitrophenol                 | ND     | 50   | hã/ŗ          | 1   | 1/19/2010 11:09:40 PM |
| 4-Nitrophenol                 | ND     | . 50 | μg/L          | 1   | 1/19/2010 11:09:40 PN |
| Pentachlorophenol             | ND     | 100  | μg/L          | 1   | 1/19/2010 11:09:40 PN |
| Phenanthrene                  | 52     | 50   | μg/L          | 1   | 1/19/2010 11:09:40 PN |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- Analyte detected below quantitation limits
- Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit



Date: 10-Feb-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1001206

Injection Well 1st QTR-2010

Project: Lab ID:

1001206-01

Client Sample ID: Injection Well

Collection Date: 1/14/2010 2:00:00 PM

Date Received: 1/15/2010

Matrix: AQUEOUS

| Analyses                       | Result | PQL                                               | Qual Units | DF   | Date Analyzed         |
|--------------------------------|--------|---------------------------------------------------|------------|------|-----------------------|
| EPA METHOD 8270C: SEMIVOLATILE | S      | <del>• • • • • • • • • • • • • • • • • • • </del> |            |      | Analyst: LBJ          |
| Phenol                         | ND     | 50                                                | μg/L       | 1    | 1/19/2010 11:09:40 PM |
| Pyrene                         | ND     | 50                                                | μg/L       | 1    | 1/19/2010 11:09:40 PM |
| Pyridine                       | ND     | 50                                                | μg/L       | 1    | 1/19/2010 11:09:40 PM |
| 1,2,4-Trichlorobenzene         | ND     | 50                                                | µg/L       | 1    | 1/19/2010 11:09:40 PM |
| 2,4,5-Trichlorophenol          | ND     | 50                                                | μg/L       | 1    | 1/19/2010 11:09:40 PM |
| 2,4,6-Trichlorophenol          | ND     | 50                                                | µg/L       | 1    | 1/19/2010 11:09:40 PM |
| Surr: 2,4,6-Tribromophenol     | 60.6   | 16.6-150                                          | %REC       | 1    | 1/19/2010 11:09:40 PM |
| Surr: 2-Fluorobiphenyl         | 41.7   | 19.6-134                                          | %REC       | 1    | 1/19/2010 11:09:40 PM |
| Surr: 2-Fluorophenol           | 34.0   | 9.54-113                                          | %REC       | 1    | 1/19/2010 11:09:40 PM |
| Surr: 4-Terphenyl-d14          | 50.4   | 22.7-145                                          | %REC       | 1    | 1/19/2010 11:09:40 PM |
| Surr: Nitrobenzene-d5          | 48.6   | 14.6-134                                          | %REC       | 1    | 1/19/2010 11:09:40 PM |
| Surr: Phenol-d5                | 29.4   | 10.7-80.3                                         | %REC       | 1    | 1/19/2010 11:09:40 PM |
| EPA METHOD 8260B: VOLATILES    |        |                                                   |            |      | Analyst: DAM          |
| Benzene                        | ND     | 5.0                                               | μg/L       | 10   | 1/18/2010 4:44:21 PM  |
| Toluene                        | ND     | 10                                                | μg/L       | 10   | 1/18/2010 4:44:21 PM  |
| Ethylbenzene                   | ND     | 10                                                | μg/L       | 10   | 1/18/2010 4:44:21 PM  |
| Methyl tert-butyl ether (MTBE) | ND     | 10                                                | µg/L       | 10   | 1/18/2010 4:44:21 PM  |
| 1,2,4-Trimethylbenzene         | ND     | 10                                                | μg/L       | 10   | 1/18/2010 4:44:21 PM  |
| 1,3,5-Trimethylbenzene         | ND     | 10                                                | μg/L       | 10   | 1/18/2010 4:44:21 PM  |
| 1,2-Dichloroethane (EDC)       | ND     | 10                                                | μg/L       | 10   | 1/18/2010 4:44:21 PM  |
| 1,2-Dibromoethane (EDB)        | ND     | 10                                                | μg/L       | . 10 | 1/18/2010 4:44:21 PM  |
| Naphthalene                    | ND     | 20                                                | µg/L       | 10   | 1/18/2010 4:44:21 PM  |
| 1-Methylnaphthalene            | ND     | 40                                                | μg/L       | 10   | 1/18/2010 4:44:21 PM  |
| 2-Methylnaphthalene            | ND     | 40                                                | μg/L       | 10   | 1/18/2010 4:44:21 PM  |
| Acetone                        | 660    | 100                                               | μα/L       | 10   | 1/18/2010 4:44:21 PM  |
| Bromobenzene                   | ND     | 10                                                | µg/L       | 10   | 1/18/2010 4:44:21 PM  |
| Bromodichloromethane           | ND     | 10                                                | µg/L       | 10   | 1/18/2010 4:44:21 PM  |
| Bromoform                      | ND.    | 10                                                | μg/L       | 10   | 1/18/2010 4:44:21 PM  |
| Bromomethane                   | ND     | 10                                                | μg/L       | 10   | 1/18/2010 4:44:21 PM  |
| 2-Butanone                     | ND     | 100                                               | µg/L       | 10   | 1/18/2010 4:44:21 PM  |
| Carbon disulfide               | ND     | 100                                               | μg/L       | 10   | 1/18/2010 4:44;21 PM  |
| Carbon Tetrachloride           | ND     | 10                                                | μg/L       | 10   | 1/18/2010 4:44:21 PM  |
| Chlorobenzene                  | ND     | 10                                                | μg/L       | 10   | 1/18/2010 4:44:21 PM  |
| Chloroethane                   | ND     | 20                                                | μg/L       | 10   | 1/18/2010 4:44:21 PM  |
| Chloroform                     | ND     | 10                                                | μg/L       | 10   | 1/18/2010 4:44:21 PM  |
| Chloromethane                  | ND     | 10                                                | μg/L       | 10   | 1/18/2010 4:44:21 PM  |
| 2-Chlorotoluene                | ND     | 10                                                | μg/L       | 10   | 1/18/2010 4:44:21 PM  |
| 4-Chlorotoluene                | ND     | 10                                                | μg/L       | 10   | 1/18/2010 4:44:21 PM  |
| cis-1,2-DCE                    | ND     | 10                                                | µg/L       | 10   | 1/18/2010 4:44:21 PM  |
| cls-1,3-Dichloropropene        | ND     | 10                                                | μg/L       | 10   | 1/18/2010 4:44:21 PM  |
| 1,2-Dibromo-3-chloropropane    | ND     | 20                                                | μg/L       | 10   | 1/18/2010 4:44:21 PM  |



- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 3 of 7

Date: 10-Feb-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1001206

Injection Well 1st QTR-2010

Project: Lab ID:

1001206-01

Client Sample ID: Injection Well

Collection Date: 1/14/2010 2:00:00 PM

Date Received: 1/15/2010 Matrix: AQUEOUS

| Analyses                    | Result | PQL                                    | Qual Units   | DF | Date Analyzed        |
|-----------------------------|--------|----------------------------------------|--------------|----|----------------------|
| EPA METHOD 8260B: VOLATILES | }      | ************************************** |              |    | Analyst: DAM         |
| Dibromochloromethane        | ND     | 10                                     | μg/L         | 10 | 1/18/2010 4:44:21 PM |
| Dibromomethane              | ND     | 10                                     | μg/L         | 10 | 1/18/2010 4:44:21 PM |
| 1,2-Dichlorobenzene         | ND     | 10                                     | μg/L         | 10 | 1/18/2010 4:44:21 PM |
| 1,3-Dichlorobenzene         | ND     | 10                                     | µg/L         | 10 | 1/18/2010 4:44:21 PM |
| 1,4-Dichlorobenzene         | ND     | 10                                     | μg/L         | 10 | 1/18/2010 4:44:21 PM |
| Dichlorodifluoromethane     | ND     | 10                                     | μg/L         | 10 | 1/18/2010 4:44:21 PM |
| 1,1-Dichloroethane          | · ND   | 10                                     | μg/L         | 10 | 1/18/2010 4:44:21 PM |
| 1,1-Dichloroethene          | ND     | 10                                     | μg/L         | 10 | 1/18/2010 4:44:21 PM |
| 1,2-Dichloropropane         | ND     | 10                                     | μg/L         | 10 | 1/18/2010 4:44:21 PM |
| 1,3-Dichloropropane         | ND     | 10                                     | µg/L         | 10 | 1/18/2010 4:44:21 PM |
| 2,2-Dichloropropane         | ND     | 20                                     | μg/L         | 10 | 1/18/2010 4:44:21 PM |
| 1,1-Dichloropropene         | ND     | 10                                     | µg/L         | 10 | 1/18/2010 4:44:21 PM |
| Hexachlorobutadiene         | ND     | 10                                     | μg/L         | 10 | 1/18/2010 4:44:21 PM |
| 2-Hexanone                  | ND     | 100                                    | µg/L         | 10 | 1/18/2010 4:44:21 PM |
| Isopropylbenzene            | ND     | 10                                     | µg/L         | 10 | 1/18/2010 4:44:21 PM |
| 4-isopropyltoluene          | ND     | 10                                     | μg/L         | 10 | 1/18/2010 4:44:21 PM |
| 4-Methyl-2-pentanone        | ND     | 100                                    | μ <b>g/L</b> | 10 | 1/18/2010 4:44:21 PM |
| Methylene Chloride          | ND     | 30                                     | µg/L         | 10 | 1/18/2010 4:44:21 PM |
| n-Butylbenzene              | ND     | 10                                     | μg/L         | 10 | 1/18/2010 4:44:21 PM |
| n-Propylbenzene             | ND     | 10                                     | µg/L         | 10 | 1/18/2010 4:44:21 PM |
| sec-Butylbenzene            | ND     | 10                                     | μg/L         | 10 | 1/18/2010 4:44:21 PM |
| Styrene                     | ND     | 10                                     | μg/L         | 10 | 1/18/2010 4:44:21 PM |
| tert-Butylbenzene           | ND     | 10                                     | μg/L         | 10 | 1/18/2010 4:44:21 PM |
| 1,1,1,2-Tetrachloroethane   | ND     | 10                                     | μg/L         | 10 | 1/18/2010 4:44:21 PM |
| 1,1,2,2-Tetrachloroethane   | ND     | 20                                     | µg/L         | 10 | 1/18/2010 4:44:21 PM |
| Tetrachloroethene (PCE)     | ND     | 10                                     | μg/L         | 10 | 1/18/2010 4:44:21 PM |
| trans-1,2-DCE               | ND     | 10                                     | µg/L         | 10 | 1/18/2010 4:44:21 PM |
| trans-1,3-Dichloropropene   | ND     | 10                                     | µg/L         | 10 | 1/18/2010 4:44:21 PM |
| 1,2,3-Trichlorobenzene      | ND     | 10                                     | µg/L         | 10 | 1/18/2010 4:44:21 PM |
| 1,2,4-Trichlorobenzene      | ND     | 10                                     | μg/L         | 10 | 1/18/2010 4:44:21 PM |
| 1,1,1-Trichloroethane       | ND     | 10                                     | μg/L         | 10 | 1/18/2010 4:44:21 PM |
| 1,1,2-Trichloroethane       | ND     | 10                                     | µg/L         | 10 | 1/18/2010 4:44:21 PM |
| Frichloroethene (TCE)       | ND     | 10                                     | μg/L         | 10 | 1/18/2010 4:44:21 PM |
| Trichlorofluoromethane      | ND     | 10                                     | µg/L         | 10 | 1/18/2010 4:44:21 PM |
| 1,2,3-Trichloropropane      | ND     | 20                                     | µg/L         | 10 | 1/18/2010 4:44:21 PM |
| /inyl chloride              | ND     | 10                                     | µg/L         | 10 | 1/18/2010 4:44:21 PM |
| (ylenes, Total              | ND     | 15                                     | μg/L         | 10 | 1/18/2010 4:44:21 PM |
| Surr: 1,2-Dichloroethane-d4 | 105    | 54.6-141                               | %REC         | 10 | 1/18/2010 4:44:21 PM |
| Surr: 4-Bromofluorobenzene  | 102    | 60.1-133                               | %REC         | 10 | 1/18/2010 4:44:21 PM |
| Surr: Dibromofluoromethane  | 109    | 78.5-130                               | %REC         | 10 | 1/18/2010 4:44:21 PM |
| Surr: Toluene-d8            | 99.5   | 79.5-126                               | %REC         | 10 | 1/18/2010 4:44:21 PM |

#### Qualiflers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 4 of 7



Date: 10-Feb-10

**CLIENT:** 

Western Refining Southwest, Inc.

Lab Order:

1001206

1001200

Injection Well 1st QTR-2010

Project: Lab ID:

1001206-01

Client Sample ID: Injection Well

Collection Date: 1/14/2010 2:00:00 PM

Date Received: 1/15/2010

Matrix: AQUEOUS

| Analyses                        | ses Result PC |       | Qual Units | DF | Date Analyzed        |  |
|---------------------------------|---------------|-------|------------|----|----------------------|--|
| SM 2320B: ALKALINITY            | <del></del>   |       |            |    | Analyst: NSB         |  |
| Alkalinity, Total (As CaCO3)    | 710           | 20    | mg/L CaCO3 | 1  | 1/18/2010 4:13:00 PM |  |
| Carbonate                       | ND            | 2.0   | mg/L CaCO3 | 1  | 1/18/2010 4:13:00 PM |  |
| Bicarbonate                     | 710           | 20    | mg/L CaCO3 | 1  | 1/18/2010 4:13:00 PM |  |
| EPA 120.1: SPECIFIC CONDUCTANCE |               |       |            |    | Analyst: NSB         |  |
| Specific Conductance            | 8100          | 0.010 | µmhos/cm   | 1  | 1/18/2010 4:13:00 PM |  |
| SM4500-H+B: PH                  |               |       |            |    | Analyst: NSB         |  |
| pH                              | 7.85          | 0.1   | pH units   | 1  | 1/18/2010 4:13:00 PM |  |
| SM2540C MOD: TOTAL DISSOLVED SO | LIDS          |       |            |    | Analyst: MMS         |  |
| Total Dissolved Solids          | 6190          | 200   | mg/L       | 1  | 1/22/2010 8:14:00 AM |  |



Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 5 of 7

Date: 10-Feb-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1001206

Collection Date:

Client Sample ID: Trip Blank

Project:

Injection Well 1st QTR-2010

Date Received: 1/15/2010

Lab ID:

1001206-02

Matrix: TRIP BLANK

| Analyses                       | Result | PQL Qu | al Units     | DF   | Date Analyzed        |
|--------------------------------|--------|--------|--------------|------|----------------------|
| EPA METHOD 8260B: VOLATILES    |        | -      |              | **** | Analyst: DAM         |
| Benzene                        | ND     | 1.0    | μg/L         | 1    | 1/18/2010 5:40:49 PM |
| Toluene                        | ND     | 1.0    | µg/L         | 1    | 1/18/2010 5:40:49 PM |
| Ethylbenzene                   | ND     | 1.0    | µg/L         | 1    | 1/18/2010 5:40:49 PM |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0    | μg/L         | 1    | 1/18/2010 5:40:49 PM |
| 1,2,4-Trimethylbenzene         | ND     | 1.0    | μg/L         | 1    | 1/18/2010 5:40:49 PM |
| 1,3,5-Trimethylbenzene         | ND     | 1.0    | μg/L         | 1    | 1/18/2010 5:40:49 PM |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0    | µg/L         | 1    | 1/18/2010 5:40:49 PM |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0    | µg/L         | 1    | 1/18/2010 5:40:49 PM |
| Naphthalene                    | ND     | 2.0    | µg/L         | 1    | 1/18/2010 5:40:49 PM |
| 1-Methylnaphthalene            | ND     | 4.0    | µg/L         | 1    | 1/18/2010 5:40:49 PM |
| 2-Methylnaphthalene            | ND     | 4.0    | μg/L         | 1    | 1/18/2010 5:40:49 PM |
| Acetone                        | ND     | 10     | μg/L         | 1    | 1/18/2010 5:40:49 PM |
| Bromobenzene                   | ND     | 1.0    | μg/L         | 1    | 1/18/2010 5:40:49 PM |
| Bromodichloromethane           | ND     | 1.0    | µg/L         | 1    | 1/18/2010 5:40:49 PM |
| Bromoform                      | ND     | 1.0    | µg/L         | 1    | 1/18/2010 5:40:49 PM |
| Bromomethane                   | ND     | 1.0    | µg/L         | 1    | 1/18/2010 5:40:49 PM |
| 2-Butanone                     | ND     | 10     | µg/L         | 1    | 1/18/2010 5:40:49 PM |
| Carbon disulfide               | ND     | 10     | μg/L         | 1    | 1/18/2010 5:40:49 PM |
| Carbon Tetrachloride           | ND     | 1.0    | μ <b>g/L</b> | 1    | 1/18/2010 5:40:49 PM |
| Chlorobenzene                  | ND     | 1.0    | μg/L         | 1    | 1/18/2010 5:40:49 PM |
| Chloroethane                   | ND     | 2.0    | µg/L         | 1    | 1/18/2010 5:40:49 PM |
| Chloroform                     | ND     | 1.0    | μg/L         | 1    | 1/18/2010 5:40:49 PM |
| Chloromethane                  | · ND   | 1.0    | μg/L         | 1    | 1/18/2010 5:40:49 PM |
| 2-Chlorotoluene                | ND     | 1.0    | μg/L         | 1    | 1/18/2010 5:40:49 PM |
| 4-Chlorotoluene                | ND     | 1.0    | µg/L         | 1 .  | 1/18/2010 5:40:49 PM |
| cis-1,2-DCE                    | ND     | 1.0    | μg/L         | 1    | 1/18/2010 5:40:49 PM |
| cis-1,3-Dichloropropene        | NĐ     | 1.0    | µg/L         | 1    | 1/18/2010 5:40:49 PM |
| 1,2-Dibromo-3-chloropropane    | ND     | 2.0    | µg/L         | 1    | 1/18/2010 5:40:49 PM |
| Dibromochloromethane           | ND     | 1.0    | µg/L         | 1    | 1/18/2010 5:40:49 PM |
| Dibromomethane                 | ND     | 1.0    | μg/L         | 1    | 1/18/2010 5:40:49 PM |
| 1,2-Dichlorobenzene            | ND     | 1.0    | μg/L         | 1    | 1/18/2010 5:40:49 PM |
| 1,3-Dichlorobenzene            | ND     | 1.0    | μg/L         | 1    | 1/18/2010 5:40:49 PM |
| 1,4-Dichlorobenzene            | ND     | 1.0    | μg/L         | 1    | 1/18/2010 5:40:49 PM |
| Dichlorodifluoromethane        | ND     | 1.0    | µg/L         | 1    | 1/18/2010 5:40:49 PM |
| 1,1-Dichloroethane             | ND     | 1.0    | μg/L         | 1    | 1/18/2010 5:40:49 PM |
| 1,1-Dichloroethene             | ND     | 1.0    | μg/L         | 1 '  | 1/18/2010 5:40:49 PM |
| 1,2-Dichloropropane            | ND     | 1.0    | µg/L         | 1    | 1/18/2010 5:40:49 PM |
| 1,3-Dichloropropane            | ND     | 1.0    | μg/L         | 1    | 1/18/2010 5:40:49 PM |
| 2,2-Dichloropropane            | ND     | 2.0    | µg/L         | 1    | 1/18/2010 5:40:49 PM |
| 1,1-Dichloropropene            | ND     | 1.0    | μg/L         | 1    | 1/18/2010 5:40:49 PM |
| Hexachlorobutadiene            | ND     | 1.0    | µg/L         | 1    | 1/18/2010 5:40:49 PM |
| 2-Hexanone                     | ND     | 10     | μg/L         | 1    | 1/18/2010 5:40:49 PM |

Qualiflers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 6 of 7



Date: 10-Feb-10

**CLIENT:** 

Western Refining Southwest, Inc.

Client Sample ID: Trip Blank

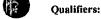
Lab Order:

1001206

**Collection Date:** 

Project:

Injection Well 1st QTR-2010


Date Received: 1/15/2010

Lab ID:

1001206-02

Matrix: TRIP BLANK

| Analyses                    | Result | PQL      | Qual Units    | DF  | Date Analyzed        |
|-----------------------------|--------|----------|---------------|-----|----------------------|
| EPA METHOD 8260B: VOLATILES |        |          |               |     | Analyst: DAM         |
| Isopropylbenzene            | ND     | 1.0      | µg/L          | 1   | 1/18/2010 5:40:49 PM |
| 4-Isopropyltoluene          | ND     | 1.0      | µg/L          | 1   | 1/18/2010 5:40:49 PM |
| 4-Methyl-2-pentanone        | ND     | 10       | μg/L          | 11  | 1/18/2010 5:40:49 PM |
| Methylene Chloride          | ND     | 3.0      | μg/L          | 1   | 1/18/2010 5:40:49 PM |
| n-Butylbenzene              | ND     | 1.0      | μg/L          | 1   | 1/18/2010 5:40:49 PM |
| n-Propylbenzene             | ND     | 1.0      | μ <b>g/</b> L | 1   | 1/18/2010 5:40:49 PM |
| sec-Butylbenzene            | ND     | 1.0      | μg/L          | 1   | 1/18/2010 5:40:49 PM |
| Styrene                     | ND     | 1.0      | µg∕Ļ          | 1   | 1/18/2010 5:40:49 PM |
| tert-Butylbenzene           | ND     | 1.0      | μg/L          | 1   | 1/18/2010 5:40:49 PM |
| 1,1,1,2-Tetrachioroethane   | ND     | 1.0      | μg/L          | 1   | 1/18/2010 5:40:49 PM |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0      | µg/L          | 1   | 1/18/2010 5:40:49 PM |
| Tetrachloroethene (PCE)     | ND     | 1.0      | μg/L          | 1   | 1/18/2010 5:40:49 PM |
| trans-1,2-DCE               | ND     | 1.0      | μg/L          | 1   | 1/18/2010 5:40:49 PM |
| trans-1,3-Dichloropropene   | ND     | 1.0      | μg/L          | 1   | 1/18/2010 5:40:49 PM |
| 1,2,3-Trichlorobenzene      | ND     | 1.0      | μ <b>g/L</b>  | . 1 | 1/18/2010 5:40:49 PM |
| 1,2,4-Trichlorobenzene      | ND     | 1.0      | μg/L          | 1   | 1/18/2010 5:40:49 PM |
| 1,1,1-Trichloroethane       | ND     | 1.0      | μg/L          | 1   | 1/18/2010 5:40:49 PM |
| 1,1,2-Trichloroethane       | ND     | 1.0      | μg/L          | 1   | 1/18/2010 5:40:49 PM |
| Trichloroethene (TCE)       | ND     | 1.0      | μg/L          | 1   | 1/18/2010 5:40:49 PM |
| Trichlorofluoromethane      | ND     | 1.0      | μg/L          | İ   | 1/18/2010 5:40:49 PM |
| 1,2,3-Trichloropropane      | ND     | 2.0      | μg/L          | 1   | 1/18/2010 5:40:49 PM |
| Vinyl chloride              | ND     | 1.0      | μg/L          | 1   | 1/18/2010 5:40:49 PM |
| Xylenes, Total              | ND     | 1.5      | μg/L          | 1   | 1/18/2010 5:40:49 PM |
| Surr: 1,2-Dichloroethane-d4 | 96.4   | 54.6-141 | %REC          | 1   | 1/18/2010 5:40:49 PM |
| Surr: 4-Bromofluorobenzene  | 101    | 60.1-133 | %REC          | 1   | 1/18/2010 5:40:49 PM |
| Surr: Dibromofluoromethane  | 104    | 78.5-130 | %REC          | 1   | 1/18/2010 5:40:49 PM |
| Surr: Toluene-d8            | 101    | 79.5-126 | %REC          | 1   | 1/18/2010 5:40:49 PM |



Value exceeds Maximum Contaminant Level

E Estimated value

Analyte detected below quantitation limits

Not Detected at the Reporting Limit ND

Spike recovery outside accepted recovery-limits

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

Reporting Limit



#### LABORATORY ANALYTICAL REPORT

Client:

Hall Environmental

Project:

1001206

Lab ID:

C10010578-001

Client Sample ID: Injection Well

Report Date: 01/26/10

Collection Date: 01/14/10 14:00

DateReceived: 01/19/10

Matrix: Aqueous

| Analyses                                       | Result    | Units | Qualifier | RL    | MCL/<br>QCL | Method     | Analysis Date / By      |
|------------------------------------------------|-----------|-------|-----------|-------|-------------|------------|-------------------------|
| PHYSICAL PROPERTIES                            |           |       |           |       |             |            |                         |
| Corrosivity - pH                               | 7.93      | 8.u.  |           | 0.01  |             | SW9045C    | 01/20/10 08:20 / mkf    |
| Flash Point (ignitability)                     | > 140     | °F    |           | 60    | 140         | SW1010A    | 01/21/10 14:32 / ph     |
| - Flashpoint has been corrected for barometric | pressure. |       |           |       |             |            |                         |
| REACTIVITY                                     |           |       |           |       |             |            |                         |
| Sulfide, Reactive                              | ND        | mg/kg |           | 20.0  | 500         | SW846 Ch 7 | 01/22/10 11:00 / eli-b1 |
| Cyanide, Reactive                              | ND        | mg/kg |           | 0.050 | 250         | SW846 Ch 7 | 01/22/10 16:00 / ell-b  |

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

MCL - Maximum contaminant level. NO - Not detected at the reporting limit.





#### **QA/QC Summary Report**

Client: Hall Environmental

Report Date: 01/22/10

Project: 1001206

Work Order: C10010578

| Result                   | Units                                                     | RL                                                            | %REC                                                              | Low Limit                                                             | High Limit                                                                                    | RPD                                                                                                                     | RPDLImit                                                                                                                                       | Qual                                                                                                                                                                |
|--------------------------|-----------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                                                           |                                                               |                                                                   |                                                                       |                                                                                               | Batch:                                                                                                                  | 100121A-FL                                                                                                                                     | SHPNT-S                                                                                                                                                             |
| Laboratory Con           | trol Sample                                               |                                                               |                                                                   | Run: PM_F                                                             | LASHPOINT A                                                                                   | _100121                                                                                                                 | 01/21                                                                                                                                          | /10 14:33                                                                                                                                                           |
| 90.8<br>netric pressure. | °F                                                        | 60                                                            | 101                                                               | 96                                                                    | 104                                                                                           | _                                                                                                                       |                                                                                                                                                |                                                                                                                                                                     |
| Method Blank             |                                                           |                                                               |                                                                   | Run: PM_F                                                             | LASHPOINT A                                                                                   | _100121                                                                                                                 | 01/21                                                                                                                                          | /10 14:32                                                                                                                                                           |
| > 140                    | °F                                                        | 60                                                            |                                                                   |                                                                       |                                                                                               |                                                                                                                         |                                                                                                                                                |                                                                                                                                                                     |
|                          | Laboratory Con<br>90.8<br>etric pressure.<br>Method Blank | Laboratory Control Sample 90.8 °F etric pressure Method Blank | Laboratory Control Sample 90.8 °F 60 etric pressure  Method Blank | Laboratory Control Sample 90.8 °F 60 101 stric pressure. Method Blank | Laboratory Control Sample Run: PM_F 90.8 °F 60 101 96 etric pressure.  Method Blank Run: PM_F | Laboratory Control Sample Run: PM_FLASHPOINT A 90.8 °F 60 101 96 104 etric pressure.  Method Blank Run: PM_FLASHPOINT A | Batch:  Laboratory Control Sample Run: PM_FLASHPOINT A_100121 90.8 °F 60 101 96 104  atric pressure.  Method Blank Run: PM_FLASHPOINT A_100121 | Batch: 100121A-FL Laboratory Control Sample Run: PM_FLASHPOINT A_100121 01/21 90.8 °F 60 101 96 104 stric pressure.  Method Blank Run: PM_FLASHPOINT A_100121 01/21 |

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.





#### **QA/QC Summary Report**

Client: Hall Environmental

Report Date: 01/26/10

Project: 1001206

Work Order: C10010578

| Analyte                | Result Units              | RL %REC Low Limit High Limit RPD RPDLimit Qual |
|------------------------|---------------------------|------------------------------------------------|
| Method: SW846 Ch 7     |                           | Batch: B_4402                                  |
| Sample ID: MB-44026    | Method Blank              | Run: SUB-B142181 01/22/10 13:4                 |
| Cyanide, Reactive      | ND mg/kg                  | 0.05                                           |
| Method: SW846 Ch 7     |                           | Batch: B_R14215                                |
| Sample ID: MB-R142154  | Method Blank              | Run: SUB-B142154 01/22/10 11:0                 |
| Sulfide, Reactive      | ND mg/kg                  | 10                                             |
| Sample ID: LCS-R142154 | Laboratory Control Sample | Run: SUB-B142154 01/22/10 11:0                 |
| Sulfide, Reactive      | 34.0 mg/kg                | 20 118 50 150                                  |

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

# **QA/QC SUMMARY REPORT**

Client: Project: Western Refining Southwest, Inc. Injection Well 1st QTR-2010

Work Order:

1001206

| Tiojeet. Mjoetic             |             |         |      |              |           |            | ·<br>    |       | Oruer:    | 1001200    |
|------------------------------|-------------|---------|------|--------------|-----------|------------|----------|-------|-----------|------------|
| Analyte                      | Result      | Units   | PQL  | SPK Va SPK r | f %Rec    | LowLimit H | ighLimit | %RPD  | RPDLimit  | Qual       |
| Method: EPA Method 300       | 0.0: Anions |         |      |              |           |            |          |       |           |            |
| Sample ID: MB                |             | MBLK    |      |              | Batch ID  | : R37163   | Analysis | Date: | 1/28/2010 | 4:08:14 PI |
| Chloride                     | ND          | mg/L    | 0.50 |              |           |            |          |       |           |            |
| Sulfate                      | ND          | mg/L    | 0.50 |              |           |            |          |       |           |            |
| Sample ID: MB                |             | MBLK    | •    |              | Batch ID  | R37188     | Analysis | Date: | 1/29/2010 | 2:36:32 PM |
| Chloride                     | ND          | mg/L    | 0.50 |              |           |            |          |       | •         |            |
| Sulfate                      | ND          | mg/L    | 0.50 |              |           |            |          |       |           |            |
| Sample ID: MB                |             | MBLK    |      |              | Batch (D  | R37206     | Analysis | Date: | 2/1/2010  | 5:04:12 PM |
| Chloride                     | ND          | mg/L    | 0.50 |              |           |            |          |       |           |            |
| Sulfate                      | ND          | mg/L    | 0.50 |              |           |            |          |       |           |            |
| Sample ID: LCS               |             | LCS     |      |              | Batch ID  | R37163     | Analysis | Date: | 1/28/2010 | 4:25:38 PN |
| Chloride                     | 4.866       | mg/L    | 0.50 | 5 0          | 97.3      | 90         | 110      |       |           |            |
| Sulfate                      | 9.848       | mg/L    | 0.50 | 10 0         | 98.5      | 90         | 110      |       |           |            |
| Sample ID: LCS               |             | LCS     |      |              | Batch ID  | R37188     | Analysis | Date: | 1/29/2010 | 2:53:57 PN |
| Chloride                     | 4.865       | mg/L    | 0.50 | 5 0          | 97.3      | 90         | 110      |       |           |            |
| Sulfate                      | 9.687       | mg/L    | 0.50 | 10 0         | 96.9      | 90         | 110      |       |           |            |
| Sample ID: LCS               |             | LCS     |      |              | Batch ID: | R37206     | Analysis | Date: | 2/1/2010  | 5:21:36 PN |
| Chloride                     | 4.804       | mg/L    | 0.50 | 5 0          | 96.1      | 90         | 110      |       |           |            |
| Sulfate                      | 9.712       | mg/L    | 0.50 | 10 0         | 97.1      | 90         | 110      |       | •         |            |
| ethod: SM 2320B: Alkali      | mitu        |         |      |              |           |            |          |       |           |            |
| Sample ID: MB                | incy        | MBLK    |      |              | Batch ID: | R37000     | Analysis | Date: | 1/18/2010 | 3:57:00 PN |
| Alkalinity, Total (As CaCO3) | ND          | mg/L Ca | 20   |              |           |            | -        |       |           |            |
| Carbonate                    | ND          | mg/L Ca | 2.0  |              |           | •          |          |       |           |            |
| Bicarbonate                  | ND          | mg/L Ca | 20   |              |           |            |          |       |           |            |
| Sample ID: 80PPM LCS         |             | LCS     |      |              | Batch ID: | R37000     | Analysis | Date: | 1/18/2010 | 1:03:00 PM |
| Alkalinity, Total (As CaCO3) | 81.36       | mg/L Ca | 20   | 80 0         | 102       | 92.5       | 110      |       |           |            |



E Estimated value

R RPD outside accepted recovery limits

S Spike recovery outside accepted recovery limits

J Analyte detected below quantitation limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

## **QA/QC SUMMARY REPORT**

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1st QTR-2010

Work Order:

1001206

| Analyte                        | Result      | Units        | PQL | SPK Va SPK ref | %Rec Lo   | wLimit Hig | jhLimit | %RPD        | RPDLimit  | Qual       |
|--------------------------------|-------------|--------------|-----|----------------|-----------|------------|---------|-------------|-----------|------------|
| Method: EPA Method 8260B       | : VOLATILES |              |     | 1              |           |            |         | <del></del> |           |            |
| Sample ID: 5ml rb              |             | MBLK         |     |                | Batch ID: | R36998     | Analys  | is Date:    | 1/18/2010 | 9:41:25 AM |
| Benzene                        | ND          | μg/L         | 1.0 |                |           |            |         | •           |           |            |
| Toluene                        | ND          | μg/L         | 1.0 | •              |           |            |         |             |           |            |
| Ethylbenzene                   | ND          | μg/L         | 1.0 |                |           |            |         |             |           |            |
| Methyl tert-butyl ether (MTBE) | ND          | µg/L         | 1.0 |                |           |            |         |             |           |            |
| 1,2,4-Trimethylbenzene         | ND          | µg/L         | 1.0 | 4              | •         |            |         |             |           |            |
| 1,3,5-Trimethylbenzene         | ND          | µg/L         | 1.0 |                |           |            |         |             | •         |            |
| 1,2-Dichloroethane (EDC)       | ND          | μg/L         | 1.0 |                |           |            |         |             |           |            |
| 1,2-Dibromoethane (EDB)        | ND          | μg/L         | 1.0 |                |           |            |         |             |           |            |
| Naphthalene                    | ND          | µg/L         | 2.0 |                |           |            |         |             |           |            |
| 1-Methylnaphthalene            | ND          | µg/L         | 4.0 |                |           |            |         |             |           |            |
| 2-Methylnaphthalene            | ND          | μg/L         | 4.0 |                |           |            |         |             |           |            |
| Acetone                        | ND          | μg/L         | 10  |                |           |            |         |             |           |            |
| Bromobenzene                   | ND          | µg/L         | 1.0 |                |           |            |         |             |           |            |
| Bromodichloromethane           | ND          | μg/L         | 1.0 |                |           |            |         |             |           |            |
| Bromoform                      | ND          | μg/L         | 1.0 |                |           |            |         |             |           |            |
| Bromomethane                   | ND          | μg/L         | 1.0 |                |           |            |         |             |           |            |
| 2-Butanone                     | ND          | μg/L         | 10  |                |           |            |         |             |           |            |
| Carbon disulfide               | ND          | µg/L         | 10  |                |           |            |         |             | •         |            |
| Carbon Tetrachioride           | ND          | µg/L         | 1.0 |                |           |            |         |             | •         |            |
| Chlorobenzene                  | ND          | μg/L         | 1.0 |                | ,         |            |         |             |           | ,          |
| Chloroethane                   | ND          | μg/L         | 2.0 |                |           |            |         |             |           |            |
| Chloroform                     | ND          | μg/L         | 1.0 |                |           |            |         |             |           |            |
| Chloromethane                  | ND          | μg/L         | 1.0 |                |           |            |         |             |           |            |
| 2-Chlorotoluene                | ND          | µg/L         | 1.0 |                |           |            |         |             | •         |            |
| 4-Chlorotoluene                | ND.         | μg/L         | 1.0 |                |           |            |         |             |           |            |
| cis-1,2-DCE                    | ND          | μg/L         | 1.0 |                |           |            |         |             |           |            |
| cis-1,3-Dichloropropene        | ND          | µg/L         | 1.0 |                |           |            |         |             |           |            |
| 1,2-Dibromo-3-chloropropane    | ND          | µg/L         | 2.0 |                |           |            |         |             |           |            |
| Dibromochloromethane           | ND          | μg/L         | 1.0 |                |           |            |         |             |           |            |
| Dibromomethane                 | ND          | µg/L<br>µg/L | 1.0 |                |           |            |         |             |           |            |
| 1,2-Dichlorobenzene            | ND          | μg/L         | 1.0 |                |           |            |         |             |           |            |
| 1,3-Dichlorobenzene            | ND          | µg/L         | 1.0 |                |           |            |         |             |           |            |
| 1,4-Dichlorobenzene            | ND          | µg/L         | 1.0 | •              |           |            |         |             |           |            |
| Dichlorodifluoromethane        | ND          | μg/L         | 1.0 |                |           |            |         |             |           |            |
| 1,1-Dichloroethane             | ND          | μg/L         | 1.0 |                |           |            |         |             |           |            |
| 1,1-Dichloroethene             | ND          | µg/L         | 1.0 |                |           |            |         |             |           |            |
| 1,2-Dichloropropane            | ND          | μg/L         | 1.0 |                |           |            |         |             |           |            |
| 1,3-Dichloropropane            | ND          | μg/L         | 1.0 |                |           |            |         |             |           |            |
| 2,2-Dichloropropane            | ND          | μg/L         | 2.0 |                |           |            |         |             |           |            |
| ,1-Dichloropropene             | ND          | μg/L         | 1.0 |                |           |            |         |             |           |            |
| lexachlorobutadiene            | ND          | μg/L         | 1.0 |                |           |            |         | •           |           |            |
| -Hexanone                      | ND          | μg/L         | 10  |                |           |            |         |             |           |            |
| sopropylbenzene                | ND          | µg/L         | 1.0 |                |           |            |         |             |           |            |
| -isopropyltoluene              | ND          | μg/L<br>μg/L | 1.0 |                |           |            |         |             |           |            |

#### Qualifiers:

- E Estimated value
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
  - S Spike recovery outside accepted recovery limits

## **QA/QC SUMMARY REPORT**

lient:

Western Refining Southwest, Inc.

Project: Injection Well 1st QTR-2010

Work Order:

1001206

| Analyte                   | Result    | Units | PQL | SPK Va SPK re | f %Rec I  | _owLimit H | ighLimit 9 | %RPD  | RPDLimit     | Qual       |
|---------------------------|-----------|-------|-----|---------------|-----------|------------|------------|-------|--------------|------------|
| Method: EPA Method 8260B: | VOLATILES |       |     |               |           |            |            |       |              |            |
| Sample ID: 6ml rb         |           | MBLK  |     |               | Batch ID: | R36998     | Analysis   | Date: | 1/18/2010    | 9:41:25 AN |
| 4-Methyl-2-pentanone      | ND        | µg/L  | 10  |               |           |            |            |       |              |            |
| Methylene Chloride        | ND        | μg/L  | 3.0 |               |           |            |            |       |              |            |
| n-Butylbenzene            | ND        | μg/L  | 1.0 |               |           |            |            |       |              |            |
| n-Propylbenzene           | ND        | µg/L  | 1.0 |               |           |            |            |       |              |            |
| sec-Butylbenzene          | ND        | μg/L  | 1.0 |               |           |            |            |       |              |            |
| Styrene                   | ND        | μg/L  | 1.0 | •             |           |            |            |       |              |            |
| tert-Butylbenzene         | ND        | µg/L  | 1.0 |               |           |            |            |       |              |            |
| 1,1,1,2-Tetrachloroethane | ND        | μg/L  | 1.0 |               |           |            |            |       |              | •          |
| 1,1,2,2-Tetrachloroethane | ND        | μg/L  | 2.0 |               |           |            |            |       | -            |            |
| Tetrachloroethene (PCE)   | ND        | µg/L  | 1.0 |               |           |            |            |       |              |            |
| trans-1,2-DCE             | . ND      | µg/L  | 1.0 |               |           | •          |            |       |              |            |
| trans-1,3-Dichloropropene | ND        | µg/L  | 1.0 |               |           |            |            |       |              |            |
| 1,2,3-Trichlorobenzene    | ND        | μg/L  | 1.0 |               |           |            |            | ,     |              |            |
| 1,2,4-Trichlorobenzene    | ND        | μg/L  | 1.0 |               |           |            |            |       |              |            |
| 1,1,1-Trichloroethane     | ND        | µg/L  | 1.0 |               |           |            |            |       |              |            |
| 1,1,2-Trichloroethane     | ND        | µg/L  | 1.0 |               |           |            |            |       |              |            |
| Trichloroethene (TCE)     | ND        | μg/L  | 1.0 |               |           |            |            |       |              |            |
| Frichlorofluoromethane    | ND        | μg/L  | 1.0 |               |           |            |            |       | •            |            |
| 3-Trichloropropane        | ND        | μg/L  | 2.0 |               |           |            |            |       |              |            |
| nyi chloride              | ND        | μg/L  | 1.0 |               |           |            |            |       |              |            |
| (ylenes, Total            | ND        | µg/L  | 1.5 |               |           |            |            |       |              |            |
| Sample ID: 100ng Ics      |           | LCS   |     |               | Batch ID: | R36998     | Analysis E | Date: | 1/18/2010 11 | 1:06:25 AM |
| Benzene                   | 19.35     | μg/L  | 1.0 | 20 0          | 96.8      | 76.7       | 114        |       |              |            |
| Toluene                   | 20.54     | μg/L  | 1.0 | 20 0          | 103       | 78.4       | 117        |       |              |            |
| Chlorobenzene             | 20.50     | μg/L  | 1.0 | 20 0          | 103       | 80.7       | 127        |       |              |            |
| ,1-Dichloroethene         | 20.84     | µg/L  | 1.0 | 20 0          | 104       | 80.2       | 128        |       |              |            |
| richloroethene (TCE)      | 22.69     | µg/L  | 1.0 | 20 0          | 113       | 77.4       | 115        |       |              |            |



E Estimated value

R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

J Analyte detected below quantitation limits

H Holding times for preparation or analysis exceeded

## **QA/QC SUMMARY REPORT**

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1st QTR-2010

Work Order:

1001206

| Analyte                     | Result          | Units        | PQL | SPK Va SPK ref | %Rec Lov  | wLimit Hig | hLimit | %RPD     | RPDLimit                                | Qual                                  |
|-----------------------------|-----------------|--------------|-----|----------------|-----------|------------|--------|----------|-----------------------------------------|---------------------------------------|
| Method: EPA Method 8270     | C: Semivolatile |              |     |                |           |            |        |          | *************************************** | · · · · · · · · · · · · · · · · · · · |
| Sample ID: mb-21147         |                 | MBLK         |     |                | Batch ID: | 21147      | Analys | is Date: | 1/19/2010                               | 2:56:45 PM                            |
| Acenaphthene                | ND              | μg/L         | 10  |                |           |            |        |          |                                         |                                       |
| Acenaphthylene              | ND              | μg/L         | 10  |                |           |            |        |          |                                         |                                       |
| Aniline                     | ND              | μg/L         | 10  |                |           |            |        |          |                                         |                                       |
| Anthracene                  | ND              | µg/L         | 10  |                |           |            |        |          |                                         |                                       |
| Azobenzene                  | ND              | µg/L         | 10  |                |           |            |        |          |                                         |                                       |
| Benz(a)anthracene           | ND              | µg/L         | 10  |                |           |            |        |          |                                         |                                       |
| Benzo(a)pyrene              | ND              | μg/L         | 10  |                |           |            |        |          |                                         |                                       |
| Benzo(b)fluoranthene        | ND              | µg/L         | 10  |                |           |            |        |          |                                         |                                       |
| Benzo(g,h,i)perylene        | ND              | µg/L         | 10  |                |           |            |        |          |                                         |                                       |
| Benzo(k)fluoranthene        | ND              | μg/L         | 10  |                |           |            |        |          |                                         | •                                     |
| Benzoic acid                | ND              | µg/L         | 20  |                |           |            |        |          |                                         |                                       |
| Benzyl alcohol              | ND              | μg/L         | 10  |                |           |            |        |          |                                         |                                       |
| Bis(2-chloroethoxy)methane  | ND              | μg/L         | 10  |                |           |            |        |          |                                         |                                       |
| Bis(2-chloroethyl)ether     | ND              | μg/L         | 10  |                | -         |            |        |          |                                         |                                       |
| Bis(2-chloroisopropyl)ether | ND              | μg/L         | 10  |                |           |            |        |          |                                         |                                       |
| Bis(2-ethylhexyl)phthalate  | ND              | μg/L         | 10  |                |           |            |        | •        |                                         |                                       |
| 4-Bromophenyl phenyl ether  | ND              | µg/L         | 10  |                |           |            |        |          |                                         |                                       |
| Butyl benzyl phthalate      | ND              | µg/L         | 10  |                |           |            |        |          |                                         |                                       |
| Carbazole                   | ND              | µg/L         | 10  |                |           |            |        |          |                                         |                                       |
| 4-Chloro-3-methylphenol     | ND              | μg/L         | 10  |                |           |            |        |          |                                         |                                       |
| 4-Chloroaniline             | ND              | μg/L         | 10  |                | •         |            |        |          |                                         |                                       |
| 2-Chloronaphthalene         | ND              | µg/L         | 10  |                |           |            |        |          |                                         |                                       |
| 2-Chlorophenol              | ND              | μg/L         | 10  |                |           |            |        |          |                                         |                                       |
| 4-Chlorophenyl phenyl ether | ND              | μg/L         | 10  |                |           |            |        |          |                                         |                                       |
| Chrysene                    | ND              | h8/F         | 10  |                |           |            |        |          |                                         |                                       |
| Di-n-butyl phthalate        | ND              | μg/L         | 10  |                |           |            |        |          |                                         |                                       |
| Di-n-octyl phthalate        | ND              | μg/L         | 10  |                |           |            |        |          |                                         |                                       |
| Dibenz(a,h)anthracene       | ND              | μg/L         | 10  |                |           | •          |        |          |                                         |                                       |
| Dibenzofuran                | ND              | μg/L         | 10  |                |           |            |        |          |                                         |                                       |
| 1,2-Dichlorobenzene         | ND              | μg/L         | 10  |                | •         |            |        |          |                                         |                                       |
| ,3-Dichlorobenzene          | ND              | µg/L         | 10  |                |           |            |        |          |                                         |                                       |
| 4-Dichlorobenzene           | ND              | µg/L         | 10  |                |           |            |        |          |                                         |                                       |
| 3,3'-Dichlorobenzidine      | ND              | µg/L         | 10  |                |           |            |        |          |                                         |                                       |
| Diethyl phthalate           | ND              | μg/L         | 10  |                |           |            |        |          |                                         |                                       |
| Dimethyl phthalate          | ND              | μg/L         | 10  |                |           |            |        |          |                                         |                                       |
| 4,4-Dichlorophenol          | . ND            | μg/L         | 20  |                |           |            |        |          |                                         |                                       |
| ,4-Dimethylphenol           | ND              | µg/L         | 10  |                |           |            |        |          |                                         |                                       |
| ,6-Dinitro-2-methylphenol   | ND              | µg/L         | 20  |                |           |            |        |          |                                         |                                       |
| 4-Dinitrophenol             | ND              | µg/L         | 20  |                |           |            |        |          |                                         |                                       |
| ,4-Dinitrotoluene           | ND              | µg/L         | 10  |                |           |            |        |          |                                         |                                       |
| ,6-Dinitrotoluene           | ND              | µg/L         | 10  |                |           |            |        |          |                                         |                                       |
| luoranthene                 | ND              | μg/L         | 10  |                |           |            |        |          |                                         |                                       |
| luorene                     | ND              | μg/L         | 10  |                |           |            |        |          |                                         |                                       |
| exachlorobenzene            | ND              | h8\r<br>h8\r | 10  |                |           |            |        |          |                                         |                                       |

#### Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

## **QA/QC SUMMARY REPORT**

lient:

Western Refining Southwest, Inc.

Project: Injection Well 1st QTR-2010

Work Order:

1001206

| Analyte                                | Result       | Units        | PQL | SPK Va | SPK ref | %Rec I                   | LowLimit H | ighLimit | %RPD     | RPDLimit    | Qual       |
|----------------------------------------|--------------|--------------|-----|--------|---------|--------------------------|------------|----------|----------|-------------|------------|
| Method: EPA Method 8270C:              | Semivolatile | s            |     |        |         |                          |            |          | -        |             |            |
| Sample ID: mb-21147                    |              | MBLK         |     |        |         | Batch ID:                | 21147      | Analys   | is Date: | 1/19/2010   | 2:56:45 PI |
| Hexachlorobutadiene                    | ND           | μg/L         | 10  |        |         |                          |            |          |          |             |            |
| Hexachlorocyclopentadiene              | ND           | μg/L         | 10  |        |         |                          |            |          |          |             |            |
| Hexachloroethane                       | ND           | µg/L         | 10  |        |         |                          |            |          |          | •           |            |
| Indeno(1,2,3-cd)pyrene                 | ND           | μg/L         | 10  |        |         |                          |            |          |          |             |            |
| sophorone                              | ND           | μg/L         | 10  | -      |         |                          |            |          |          |             |            |
| 2-Methylnaphthalene                    | ND           | µg/L         | 10  |        |         |                          |            |          |          |             |            |
| 2-Methylphenol                         | ND           | μ <b>g/L</b> | 10  |        |         |                          |            |          |          |             |            |
| 3+4-Methylphenol                       | ND           | μg/L         | 10  |        |         |                          |            |          |          |             |            |
| N-Nitrosodi-n-propylamine              | ND           | µg/L         | 10  |        |         |                          |            |          |          |             |            |
| N-Nitrosodimethylamine                 | ND           | µg/L         | 10  |        |         |                          |            |          |          |             |            |
| N-Nitrosodiphenylamine                 | ND           | μg/L         | 10  |        |         |                          |            |          |          |             |            |
| Naphthalene                            | ND           | μg/L         | 10  |        |         |                          | •          |          |          |             |            |
| 2-Nitroaniline                         | ND           | μg/L         | 10  |        |         |                          |            |          |          |             |            |
| 3-Nitroaniline                         | ND           | μg/L         | 10  |        |         |                          |            |          |          |             |            |
| 1-Nitroaniline                         | ND           | μg/L         | 10  |        |         |                          |            |          |          |             |            |
| Vitrobenzene                           | ND           | μg/L         | 10  |        |         |                          |            |          |          |             |            |
| 2-Nitrophenol                          | ND           | μg/L         | 10  |        |         |                          |            |          |          |             |            |
| I-Nitrophenol                          | ND           | μg/L         | 10  |        |         |                          |            |          |          |             |            |
| ntachlorophenol                        | ND           | μg/L         | 20  |        |         |                          |            |          |          |             |            |
| nenanthrene                            | ND           | µg/L         | 10  |        |         |                          |            |          |          |             |            |
| Phenol                                 | ND           | μg/L         | 10  |        |         |                          |            | •        |          |             |            |
| Pyrene                                 | ND           | μg/L         | 10  |        |         |                          |            |          |          |             |            |
| Pyridine                               | ND           | μg/L         | 10  | •      |         |                          |            |          |          |             |            |
| ,2,4-Trichlorobenzene                  | ND           | μg/L         | 10  |        |         |                          |            |          |          |             |            |
| 4,5-Trichlorophenol                    | ND           | μg/L         | 10  |        |         |                          |            |          |          |             |            |
| 4,6-Trichlorophenol                    | ND           | μg/L         | 10  |        |         |                          |            |          |          |             |            |
| sample ID: Ics-21147                   |              | LCS          |     |        |         | Batch ID:                | 21147      | Analysi  | s Date:  | 1/19/2010 3 | 3:26:09 PN |
| Acenaphthene                           | 74.70        | μg/L         | 10  | 100    | 0       | 74.7                     | 33.2       | 88.1     |          | •           |            |
| -Chloro-3-methylphenol                 | 145.8        | µg/L         | 10  | 200    | Ö       | 72.9                     | 26.5       | 101      |          |             |            |
| -Chlorophenol                          | 128.1        | µg/L         | 10  | 200    | Ö       | 64.1                     | 27.5       | 88.7     |          |             |            |
| ,4-Dichlorobenzene                     | 62.32        | μg/L         | 10  | 100    | ō       | 62.3                     | 27.2       | 74.1     |          |             |            |
| .4-Dinitrotoluene                      | 80.44        | µg/L         | 10  | 100    | 0       | 80.4                     | 32.6       | 107      |          |             |            |
| l-Nitrosodi-n-propylamine              | 65.36        | µg/L         | 10  | 100    | 0       | 65.4                     | 27.1       | 96.3     |          |             |            |
| -Nitrophenol                           | 62.50        | μg/L         | 10  | 200    | 0       | 31.3                     | 6.78       | 74.7     |          |             |            |
| Pentachlorophenol                      | 61.14        | µg/L         | 20  | 200    | 3.3     | 28.9                     | 14.8       | 113      |          |             |            |
| Phenol                                 | 79.58        | μg/L         | 10  | 200    | 0       | 39.8                     | 17         | 53.4     |          |             |            |
| vrene                                  | 73.90        | μg/L         | 10  | 100    | 0       | 73.9                     | 27         | 96.3     |          |             |            |
| ,2,4-Trichlorobenzene                  | 69.16        | μg/L         | 10  | 100    | 0       | 69.2                     | 30         | 77.9     |          |             |            |
| ample ID: Icsd-21147                   |              | LCSD         |     |        |         | Batch ID:                | 21147      | Analysis | s Date:  | 1/20/2010 1 | :17:36 PM  |
|                                        | 76.94        | µg/L         | 10  | 100    | 0       | 76.9                     | 33.2       | 88.1     | 2.95     |             | <b>···</b> |
| .cenaphthene<br>-Chloro-3-methylphenol |              |              |     |        | 0       | 76. <del>9</del><br>75.5 |            |          |          | 30.5        |            |
| = :                                    | 150.9        | µg/L         | 10  | 200    |         |                          | 26.5       | 101      | 3.44     | 28.6        |            |
| -Chlorophenol<br>,4-Dichlorobenzene    | 118.6        | μg/L         | 10  | 200    | 0       | 59.3                     | 27.5       | 88.7     | 7.70     | 107         |            |
| MAI III MINTANDUZANA                   | 63.72        | µg/L         | 10  | 100    | 0       | 63.7                     | 27.2       | 74.1     | 2.22     | 62.1        |            |
| Dinitrotoluene                         | 88.76        | μg/L         | 10  | 100    | 0       | 88.8                     | 32.6       | 107      | 9.83     | 14.7        |            |

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

<sup>&#</sup>x27;S Spike recovery outside accepted recovery limits

# **QA/QC SUMMARY REPORT**

Client:

Western Refining Southwest, Inc.

Project: Injection Well 1st QTR-2010

Work Order:

1001206

| Analyte                                           | Result           | Units        | PQL           | SPK Va | SPK ref  | %Rec L    | owLimit Hi | ighLimit | %RPD     | RPDLimit                                | Qual       |
|---------------------------------------------------|------------------|--------------|---------------|--------|----------|-----------|------------|----------|----------|-----------------------------------------|------------|
| Method: EPA Method 8270                           | C: Semivolatiles |              |               |        |          |           |            |          |          |                                         |            |
| Sample ID: lcsd-21147                             |                  | LCSD         |               |        |          | Batch ID: | 21147      | Analys   | is Date: | 1/20/2010                               | 1:17:36 PI |
| N-Nitrosodi-n-propylamine                         | 64.32            | µg/L         | 10            | 100    | 0        | 64.3      | 27.1       | 96.3     | 1.60     | 30.3                                    |            |
| 4-Nitrophenol                                     | 43.70            | µg/L         | 10            | 200    | 0        | 21.9      | 6.78       | 74.7     | 35.4     | 36.3                                    |            |
| Pentachlorophenol                                 | 36.58            | µg/L         | 20            | 200    | 3.3      | 16.6      | 14.8       | 113      | 50.3     | 49                                      | R          |
| Phenol                                            | 76.60            | μg/L         | 10            | 200    | 0        | 38.3      | 17         | 53.4     | 3.82     | 52.4                                    |            |
| Pyrene                                            | 67.32            | μg/L         | 10            | 100    | 0        | 67.3      | 27         | 96.3     | 9.32     | 16.3                                    |            |
| 1,2,4-Trichlorobenzene                            | 73.78            | µg/L         | 10            | 100    | 0        | 73.8      | 30         | 77.9     | 6.46     | 36.4                                    |            |
| Wethod: EPA Method 7470:                          | : Mercury        |              |               |        |          |           |            |          |          |                                         |            |
| Sample ID: MBLK-21186                             | •                | MBLK         |               |        |          | Batch ID: | 21186      | Analys   | is Date: | . 1/21/2010 4                           | 1:14:01 PN |
| Mercury                                           | ND               | mg/L         | 0.00020       |        |          |           |            |          |          |                                         |            |
| Sample ID: LCS1-21186                             |                  | LCS          |               |        |          | Batch ID: | 21186      | Analysi  | is Date: | 1/21/2010 4                             | 1:15:44 PI |
| Mercury                                           | 0.004916         | mg/L         | 0.00020       | 0.005  | 3E-05    | 97.6      | 80         | 120      |          | .,                                      |            |
|                                                   |                  |              | 0.00020       |        | <u> </u> |           |            | 120      |          |                                         |            |
| Wethod: EPA 6010B: Total  <br>Sample ID: MB-21166 | Recoverable Met  | als<br>MBLK  |               |        |          | Batch ID: | 21166      | Δnelvei  | is Date: | 1/19/2010 1                             | ·22·12 DI  |
|                                                   | ND               |              | 0.020         |        |          | Daton ID. | 27100      | , maryo  | o Dato.  | 1710/2010                               |            |
| Arsenic                                           | ND<br>ND         | mg/L         |               |        |          |           |            | •        |          |                                         |            |
| Barium<br>Sadarium                                | ND<br>ND         | mg/L         | 0.020         |        |          |           |            |          |          |                                         |            |
| Cadmium                                           | ND<br>ND         | mg/L         | 0.0020<br>1.0 |        |          |           |            |          |          |                                         |            |
| Calcium<br>Chromium                               | ND               | mg/L<br>mg/L | 0.0060        |        |          |           |            |          |          |                                         |            |
| -ead                                              | ND               | mg/L         | 0.0050        |        |          |           |            |          |          |                                         |            |
| Magnesium                                         | ND               | mg/L         | 1.0           |        |          |           |            |          |          |                                         |            |
| Potassium                                         | ND               | mg/L         | 1.0           |        |          |           |            |          |          |                                         |            |
| Selenium                                          | ND               | mg/L         | 0.050         |        |          |           |            |          |          |                                         |            |
| Silver                                            | ND               | mg/L         | 0.0050        |        |          |           |            |          |          |                                         |            |
| Godium                                            | ND               | mg/L         | 1.0           |        |          |           |            |          |          |                                         |            |
| Sample ID: LCS-21166                              | NO               | LCS          | 1.0           |        |          | Batch ID: | 21166      | Analysi  | s Date:  | 1/19/2010 1                             | ·24·25 PM  |
| Arsenic                                           | 0.5020           | mg/L         | 0.020         | 0.5    | 0        | 100       | 80         | 120      | - u.u.   |                                         |            |
| arium                                             | 0.4952           | mg/L         | 0.020         | 0.5    | 0        | 99.0      | 80         | 120      |          |                                         |            |
| admium                                            | 0.5006           | mg/L         | 0.0020        | 0.5    | 0        | 100       | 80         | 120      |          |                                         |            |
| Calcium                                           | 48.91            | mg/L         | 1.0           | 50     | 0        | 97.8      | 80         | 120      |          |                                         |            |
| Chromium                                          | 0.4962           | mg/L         | 0.0060        | 0.5    | 0        | 99.2      | 80         | 120      |          |                                         |            |
| ead                                               | 0.4919           | mg/L         | 0.0050        | 0.5    | Ö        | 98.4      | 80         | 120      |          |                                         |            |
| lagnesium                                         | 49.28            | mg/L         | 1.0           | 50     | ō        | 98.6      | 80         | 120      |          |                                         |            |
| otassium                                          | 51.47            | mg/L         | 1.0           | 50     | 0        | 103       | 80         | 120      |          |                                         |            |
| elenium                                           | 0.4879           | mg/L         | 0.050         | 0.5    | . 0      | 97.6      | 80         | 120      |          |                                         |            |
| ilver                                             | 0.5098           | mg/L         | 0.0050        | 0.5    | 0        | 102       | 80         | 120      |          |                                         |            |
| odium                                             | 52.39            | mg/L         | 1.0           | 50     | 0        | 105       | 80         | 120      |          |                                         |            |
| ethod: SM2540C MOD: Tot                           | tal Dissolved So | lids         |               |        |          |           |            |          |          | *** *** ******************************* |            |
| ample ID: MBLK-21196                              | 5.0001100 00     | MBLK         |               |        |          | Batch ID: | 21196      | Analysis | Date:    | 1/22/2010 8:                            | 14:00 AM   |
| otal Dissolved Solids                             | ND               | mg/L         | 20.0          |        |          |           |            | ,        |          |                                         |            |
| ample ID: LCS1-21198                              | HD               | LCS          | 20.0          |        |          | Batch ID: | 21196      | Anghreic | Date:    | 1/22/2010 8:                            | 1.4·00 A&  |
|                                                   | 4.4              |              |               | 4055   | _        |           |            | Analysis | Date.    | 1/44/4U IU 0.                           | 14.00 AIV  |
| otal Dissolved Solids                             | 1024             | mg/L         | 20.0          | 1000   | 0        | 102       | 80         | 120      |          |                                         |            |

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

|                                                         | Sample Receipt Cl                       | necklist                       |                                       |
|---------------------------------------------------------|-----------------------------------------|--------------------------------|---------------------------------------|
| Client Name WESTERN REFINING SOUT                       |                                         | Date Received:                 | 1/15/2010                             |
| Work Order Number 1001208                               |                                         | Received by: Al                | RS                                    |
| Checklist completed by:                                 | Date                                    | Sample ID labels chec          | cked by: Initials                     |
| Matrix: Ca                                              | rrier name: <u>UPS</u>                  |                                |                                       |
| Shipping container/cooler in good condition?            | Yes 🗹                                   | No Not Pres                    | sent                                  |
| Custody seals intact on shipping container/cooler?      | Yes 🗹                                   | No Not Pres                    | sent 🗌 Not Shipped 🔲                  |
| Custody seals intact on sample bottles?                 | Yes 🗌                                   | No 🗌 N/A                       | <b>2</b>                              |
| Chain of custody present?                               | Yes 🗹                                   | No 🗌                           |                                       |
| Chain of custody signed when relinquished and received? | Yes 🗹                                   | No 🗔                           |                                       |
| Chain of custody agrees with sample labels?             | Yes 🗹                                   | No 🗆                           | ,                                     |
| Samples in proper container/bottle?                     | Yes 🗹                                   | No 🗀                           |                                       |
| Sample containers intact?                               | Yes 🗹                                   | No 🗌                           |                                       |
| Sufficient sample volume for indicated test?            | Yes 🗹                                   | No 🗆                           |                                       |
| All samples received within holding time?               | Yes 🗹                                   | No 🗀                           | Number of prese                       |
| Water - VOA vials have zero headspace? No VO            | A vials submitted .                     | Yes 🗹 No                       | o ☐ bottles checked for pH: 2 > \2    |
| Water Preservation labels on bottle and cap match?      | Yes 🗹                                   | No ☐ N/A                       |                                       |
| Water - pH acceptable upon receipt?                     | Yes 🗹                                   | No □ N/A                       | <2 >12 unless not below.              |
| Container/Temp Blank temperature?                       | 1.5°                                    | <6° C Acceptable               | ·                                     |
| COMMENTS:                                               |                                         | If given sufficient time to co | ool.                                  |
|                                                         |                                         |                                |                                       |
|                                                         |                                         |                                | :                                     |
|                                                         |                                         |                                |                                       |
| Cilent contacted Date cont                              | acted:                                  | Person contact                 | ted                                   |
| Contacted by: Regarding                                 | <b>3</b> :                              |                                |                                       |
| Comments:                                               |                                         |                                |                                       |
| Outminding.                                             | . , , , , , , , , , , , , , , , , , , , | •                              |                                       |
|                                                         |                                         |                                | A A A A A A A A A A A A A A A A A A A |
|                                                         |                                         |                                |                                       |
|                                                         |                                         | P                              |                                       |
| Corrective Action                                       |                                         |                                |                                       |
|                                                         |                                         |                                |                                       |
|                                                         |                                         |                                | · · · · · · · · · · · · · · · · · · · |

|                                            |                                            |                   |               | _              |                |                             |                       |              |           |                         |              | T            |             |                 |               |          |                                                  |                                                  | т        | ,        |              | <del></del>       |                                               | <del></del>      |          |
|--------------------------------------------|--------------------------------------------|-------------------|---------------|----------------|----------------|-----------------------------|-----------------------|--------------|-----------|-------------------------|--------------|--------------|-------------|-----------------|---------------|----------|--------------------------------------------------|--------------------------------------------------|----------|----------|--------------|-------------------|-----------------------------------------------|------------------|----------|
|                                            |                                            |                   |               |                |                |                             | N                     | JO y         | <u>()</u> | Air Bubbles             |              |              |             |                 |               |          | ,                                                | _                                                | <u> </u> | <u> </u> | ļ_           | 닕                 | 4                                             |                  | ١        |
| 4 %                                        |                                            |                   |               | L              |                |                             | <u>V 11</u>           | <i>y</i> '   | <u>U.</u> | EN OFF                  |              |              |             |                 |               | <u> </u> | X                                                | <u>.</u>                                         |          | <u> </u> | _            | $ldsymbol{f eta}$ | ]                                             |                  | ļ        |
| ₹ ō                                        |                                            |                   |               |                |                |                             |                       |              | 5         | PHIS                    |              |              |             |                 |               | X        |                                                  |                                                  |          |          |              |                   | _                                             |                  |          |
| ENVIRONMENTAL<br>YSIS LABORATOR            |                                            | :                 |               |                |                |                             |                       |              | 1         | toachit;                |              |              |             |                 | X             |          |                                                  | }                                                |          |          |              |                   |                                               |                  | •        |
| # 2                                        | 90                                         |                   |               |                | 1              | 1/1                         | 50110                 | 57           | LY.       | 119211497               | 1            |              |             | X               |               |          |                                                  |                                                  |          |          | Γ.           |                   | 1                                             |                  |          |
| ŽΘ                                         | environmental.com<br>Albuquerque, NM 87109 | 107               |               |                | <del></del>    | <u> </u>                    |                       |              | _         | imə2) 0728              | -            | X            |             |                 |               |          | <del>                                     </del> | <del>                                     </del> |          |          | $\vdash$     | <b> </b>          | 1                                             |                  |          |
| OB                                         | <u>8</u> ₹                                 | <u>₹</u>          | est           |                |                |                             |                       |              |           | OV) 80928               |              | /            |             |                 |               |          |                                                  | ļ                                                |          |          | $\vdash$     | $\vdash$          | }                                             |                  |          |
| ĸ,                                         | ental<br>Jue,                              | <u>က်</u><br>ပွဲပ | Request       | lacksquare     | 8.0            | 24                          | <b>7000</b>           |              |           | oitse9 1808             | <b>!"</b> `  |              |             |                 |               |          |                                                  |                                                  |          |          | -            | $\vdash$          |                                               |                  | İ        |
| <b>5</b> S                                 | nme<br>Ver                                 | 505               |               | _              |                |                             |                       |              |           |                         |              |              |             |                 |               |          |                                                  | <u> </u>                                         |          |          | <u> </u>     | <del> </del>      | 1                                             |                  | I        |
| Z IS                                       | viro<br>bug                                | Fax               | nalysis       | 4.0            | $\frac{1}{2}$  |                             |                       |              |           | D, 4) anoinA            |              |              | -1          |                 |               | -        |                                                  | <u> </u>                                         |          |          | Ŀ            | <u> </u>          |                                               |                  | 1        |
| <b>W</b> >                                 | allen<br>- Aj                              |                   | 1             | 1              | <u> </u>       | <u> </u>                    |                       |              |           | RCRA 8 Me               | ₩            |              | X           |                 |               |          |                                                  | i                                                |          |          |              |                   |                                               |                  |          |
| HALL ENVJ<br>ANALYSIS                      |                                            | 975               |               | L              |                |                             | 4                     |              |           | AU9) 0168               |              |              | İ           |                 |               |          |                                                  | ۰                                                |          |          |              |                   |                                               |                  |          |
| S Z                                        | www.                                       | 5-3               |               | d'i            | nzp            | 246                         | -) (P4                | 09           | po        | EDB-(Moth               |              |              |             |                 |               |          | 7                                                | X                                                |          |          |              |                   | ĺ                                             |                  | İ        |
| - 4                                        | www.h<br>4901 Hawkins NE                   | 505-345-3975      |               | 3              | <del>ر</del> ح | I.                          | - 18                  | 1            | 90        | CHOW) Hall              |              |              |             |                 |               |          | X                                                | í                                                | •        |          | _            |                   |                                               |                  |          |
|                                            | Ţ                                          | . 50              |               | (lə:           | səiC           | ]/se                        | 2B (G                 | 108          | } p       | TPH Metho               |              |              |             |                 |               |          |                                                  |                                                  |          |          |              |                   | 1                                             |                  |          |
|                                            | 490                                        | <u>.</u>          |               | ly)            | uo s           | (Ga:                        | HqT                   | + 3          | IBI       | TM + X3T8               |              | ,            |             |                 |               |          |                                                  |                                                  |          |          |              | $\square$         | arks                                          |                  |          |
|                                            |                                            |                   |               |                |                |                             |                       |              |           | TM + X3T8               | <del> </del> |              |             |                 |               |          | :                                                |                                                  |          |          | <del> </del> |                   | Remarks                                       |                  | }        |
|                                            |                                            | <u> </u>          |               | ┝              |                |                             |                       |              |           | ,                       | -            |              | -           |                 |               | $\vdash$ |                                                  |                                                  |          |          | _            | <del> </del>      | <u> </u>                                      | Ţ                | $\dashv$ |
|                                            | 20                                         |                   |               |                |                |                             |                       |              |           |                         |              |              |             |                 |               |          | ,                                                |                                                  | ,        |          |              |                   |                                               | <u>}</u>         |          |
|                                            | J.12-2010                                  |                   | ,             |                |                |                             | 100                   |              |           | ± 0                     |              |              |             |                 |               |          | : .                                              |                                                  |          |          |              |                   | Time                                          | Line<br>Line     | ١        |
|                                            |                                            |                   |               |                |                |                             |                       |              |           | ₹ <u>©</u>              | _            | _            |             | . 4             |               | -        |                                                  |                                                  | 2        |          |              |                   |                                               | F                | İ        |
| :                                          |                                            |                   |               |                |                |                             |                       |              |           | 5.2                     |              |              |             | ı               |               |          |                                                  |                                                  |          |          |              |                   | Date (3)                                      | age              | Ċ        |
|                                            | 12/                                        |                   |               |                |                |                             |                       |              |           | 11. P                   |              |              |             | ]               |               | •        |                                                  |                                                  |          |          | :            |                   | Date 0:25                                     | 1                | 1        |
| Rush                                       | •                                          |                   |               | İ              |                |                             | 1 1                   |              |           | <u>\$</u>               |              | ,            |             |                 |               |          |                                                  |                                                  |          |          |              | П                 | 2                                             | 1                |          |
| ₹                                          | 3                                          |                   |               |                |                |                             |                       |              | b         | servati<br>Type         | 5            | Ž            | <u></u> حرا | ) .             | 其             | 持        | `                                                | 3                                                | <b>~</b> |          |              |                   |                                               | ]                |          |
|                                            | >                                          |                   |               | ن ا            |                |                             |                       |              | 3         | Preservative<br>Type    | HCC          | Amber        | 3           |                 | 100           | 光        |                                                  | 2                                                |          |          |              |                   | <b>├</b>                                      | 5                |          |
|                                            | ·8.                                        |                   |               | ager           |                |                             | 13                    |              |           |                         | 7            | 7            | $\Box$      |                 | 4             | BB       |                                                  | 72                                               | $\dashv$ |          |              | $\preceq$         |                                               |                  |          |
| Tum-Around Ti<br>Standard<br>Project Name: | Injection Well                             | ÷i.               | ļ             | Project Manag  |                | 6                           | た ) 圏                 | Sample Tomp  | Ď         | Container<br>Type and # | 4            | ٠            | Z           | £               | 8             | 9        | 3                                                | Z.                                               | 1        |          |              |                   |                                               | j.<br>Ž          | 1        |
| Stan                                       | رن<br>ام                                   | 헗                 |               | 껋              |                |                             |                       | ) <u>  1</u> |           | ntai<br>e ar            | 100          | ود           | 1-5 Bond    | Soon            | Ŕ             | ğ        | 1500ml                                           | 1-25sm                                           | l        |          |              | $\triangleleft$   | \$                                            | <b>8</b>         |          |
|                                            | H                                          | Z<br>joj          |               | Ę              |                |                             | Sampler               |              | 5         | လွှင့်<br>န             | 3-104        | 12 ato       | 2           | 1               | 1-scome       | Juag-1   | 15                                               | -                                                |          |          |              |                   | Receive                                       | Received by:     |          |
|                                            |                                            | _                 |               |                |                | <del></del>                 | 7,1%                  | TA LEAS      | <u> </u>  |                         |              |              | $\dashv$    |                 | 7             | 司        |                                                  | -                                                |          |          |              |                   | <u>u.                                    </u> | <u> </u>         |          |
| ا ای                                       |                                            | ~                 |               |                |                | ☐ Level 4 (Full Validation) |                       |              |           | Sample Request ID       | -            | .            |             |                 |               |          |                                                  | f                                                | 6.       | ĺ        |              |                   | 7                                             |                  |          |
| 5                                          |                                            | 87413             | ,             |                |                | alide                       |                       |              |           | sen                     | Well         |              |             |                 |               | I        | -                                                | 4                                                | 걸        |          |              | -                 | ade                                           |                  |          |
| Ö                                          |                                            | ar a              |               |                |                | > <u>`</u>                  |                       |              |           | Çedi                    |              |              |             |                 |               |          |                                                  |                                                  | BM       |          |              |                   |                                               |                  |          |
| 2 y                                        |                                            |                   |               | _              |                | Ē                           |                       |              |           | e<br>T                  | . 8          | $\downarrow$ |             |                 |               |          |                                                  | 7                                                | X        | ĺ        | ·            |                   | 3                                             |                  |          |
|                                            | 18                                         | NM                | 9             | 2              | ĺ              | <u>6</u>                    |                       |              |           | ldn                     | 45           |              |             | $\rightarrow$   |               |          |                                                  | 7                                                |          | }        | }            | †                 | =                                             |                  | ١        |
| ustody R                                   | 12                                         |                   | <u> </u>      | 1              |                | Lev                         |                       |              |           | Sar                     | INSection    |              |             |                 |               | <b>\</b> |                                                  | ŀ                                                | ॱ३       | -        |              |                   | . <del>}</del>                                | _                |          |
| 2   C                                      | 1                                          | ä                 | ٦.            | 3              | ļ              |                             | <u></u>               | !            | L         |                         | H            |              |             |                 |               |          |                                                  |                                                  | 1        |          |              |                   | M Ped b                                       | d by             |          |
| ال ال                                      | 12                                         | CZ                | S. C.         | 4              |                |                             | Other                 |              |           | Ě                       | 0            | ,            |             | Ì               |               |          |                                                  |                                                  | Ĭ        |          |              | ₹                 |                                               | uishe            | 1        |
| 5                                          | 12                                         | Bloombield        | 77            | 505-632-39     |                |                             |                       |              |           | Matrix                  | क्ष          | ſ            | $\neg$      | $\rightarrow$   | $\rightarrow$ |          |                                                  | - {                                              |          |          |              |                   | Relinquished b                                | Relinquished by: |          |
| المراسية المح                              | SS:                                        | 0                 | 1914- 589-585 |                |                |                             |                       | 12           | 卝         |                         |              | 1            |             | $\dashv$        | _             | 十        | +                                                | _                                                | $\dashv$ | $\dashv$ | -            |                   |                                               | œ                | ·        |
|                                            | <u> </u>                                   |                   | ٧٦            | ax#            | ckag           | Ē                           | tion                  | V            | <u> </u>  | ime                     | 6            | Ī            | $\dashv$    | $\dashv$        | $\dashv$      |          |                                                  | ]                                                |          | 1        |              |                   | Sugar<br>Sugar                                | Time:            |          |
| Nes                                        | 용                                          |                   |               |                | ďί             | w                           | بسایج ا               | 19           | -1        | -                       | 10           | - 1          |             | - 1             | - 1           | T        | -                                                | _ [                                              | - 1      | 1        | - 1          | - 1/              | = (1 )                                        | ı.=              | ].       |
| Chain-                                     | ig Add                                     |                   | #             | P              | ů.             | Ĕ                           | \# <u>#</u> ₹         | تِ           | ı۲        |                         |              | 7            |             | $\neg \uparrow$ |               | 十        |                                                  |                                                  | $\dashv$ | $\dashv$ | $\dashv$     | <del> </del> '    |                                               | <u> </u>         | 1 5      |
| Chain-of-Custody Record                    | Malling Address: #50 (12 4990)             |                   | Phone #:      | email or Fax#: | QA/QC Package: | V Standard                  | Accreditation □ NELAP | ☐ EDD (Tvpe) |           | Date                    | 五十五          | 7            | 7           | $\downarrow$    |               |          |                                                  |                                                  |          |          |              | T                 | 8                                             | Date: T          |          |



#### **COVER LETTER**

Tuesday, June 01, 2010

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Injection Well 2nd QTR 4-21-10

Dear Cindy Hurtado:

Order No.: 1004554

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 4/23/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX



Date: 01-Jun-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1004554

Injection Well 2nd QTR 4-21-10

Project:

1004554-01

Client Sample ID: Injection Well

Collection Date: 4/22/2010 11:00:00 AM

Date Received: 4/23/2010

Matrix: AQUEOUS

| Lab ID: 1004554-01            |        |         | 14.        | Idellia, AQUEO | <i>,</i>             |
|-------------------------------|--------|---------|------------|----------------|----------------------|
| Analyses                      | Result | PQL     | Qual Units | DF             | Date Analyzed        |
| EPA METHOD 300.0: ANIONS      |        |         |            |                | Analyst: MMS         |
| Chloride                      | 1200   | 10      | mg/L       | 100            | 5/6/2010 3:11:67 AM  |
| Sulfate                       | 250    | 10      | mg/L       | 20             | 4/23/2010 9:02:08 PM |
| EPA METHOD 7470: MERCURY      |        |         |            |                | Analyst: RAGS        |
| Mercury                       | ND     | 0.00020 | mg/L       | 1              | 5/4/2010 3:47:06 PM  |
| EPA 6010B: TOTAL RECOVERABLE  | METALS |         |            |                | Analyst: SNV         |
| Arsenic                       | ND     | 0.020   | mg/L       | 1              | 5/3/2010 1:06:08 PM  |
| Barium                        | 0.28   | 0.020   | mg/L       | 1              | 5/3/2010 1:06:08 PM  |
| Cadmium                       | ND     | 0.0020  | mg/L       | 1              | 5/3/2010 1:06:08 PM  |
| Calcium                       | 74     | 1.0     | mg/L       | . 1            | 5/3/2010 1:06:08 PM  |
| Chromium                      | 0.0080 | 0.0060  | mg/L       | 1              | 5/3/2010 1:06:08 PM  |
| Lead                          | ND     | 0.0050  | mg/L       | 1              | 5/3/2010 1:06:08 PM  |
| Magnesium                     | 21     | 1.0     | mg/L       | . 1            | 5/3/2010 1:06:08 PM  |
| Potassium                     | 14     | 1.0     | mg/L       | 1              | 5/3/2010 1:06:08 PM  |
| Selenium                      | ND     | 0.050   | mg/L       | 1              | 5/3/2010 1:06:08 PM  |
| Silver                        | ND     | 0.0050  | mg/L       | 1              | 5/3/2010 1:06:08 PM  |
| Sodium                        | 980    | 10      | mg/L       | 10             | 5/3/2010 1:14:50 PM  |
| EPA METHOD 8270C: SEMIVOLATIL | .ES    |         |            |                | Analyst: LBJ         |
| Acenaphthene                  | ND     | 50      | µg/L       | 1              | 5/4/2010 3:46:28 PM  |
| Acenaphthylene                | ND     | 50      | µg/L       | 1              | 5/4/2010 3:46:28 PM  |
| Aniline                       | ND     | 50      | µg/L       | 1              | 5/4/2010 3:46:28 PM  |
| Anthracene                    | ND     | 50      | µg/L       | 1              | 5/4/2010 3:46:28 PM  |
| Azobenzene                    | ND     | 50      | μg/L       | 1              | 5/4/2010 3:46:28 PM  |
| Benz(a)anthracene             | ND     | 50      | µg/L       | 1              | 5/4/2010 3:46:28 PM  |
| Benzo(a)pyrene                | ND     | 50      | µg/L       | 1              | 5/4/2010 3:46:28 PM  |
| Benzo(b)fluoranthene          | ND     | 50      | μg/L       | 1              | 5/4/2010 3:46:28 PM  |
| Benzo(g,h,i)parylene          | ND     | 50      | μg/L       | 1              | 5/4/2010 3:46:28 PM  |
| Benzo(k)fluoranthene          | ND     | 50      | μg/L       | · 1            | 5/4/2010 3:46:28 PM  |
| Benzoic acid                  | ND     | 100     | μg/L       | 1              | 5/4/2010 3:46:28 PM  |
| Benzyl alcohol                | ND     | 50      | μg/L       | 1              | 5/4/2010 3:46:28 PM  |
| Bis(2-chloroethoxy)methane    | ND     | 50      | μg/L       | 1              | 5/4/2010 3:48:28 PM  |
| Bis(2-chloroethyl)ether       | ND     | 50      | µg/L       | . 1            | 5/4/2010 3:46:28 PM  |
| Bis(2-chlorolsopropyl)ether   | ND     | 50      | µg/L       | 1              | 5/4/2010 3:46:28 PM  |
| Bis(2-ethylhexyl)phthalate    | ND     | 50      | µg/L       | 1              | 5/4/2010 3:46:28 PM  |
| 4-Bromophenyl phenyl ether    | ND     | 50      | µg/L       | 1              | 5/4/2010 3:46:28 PM  |
| Butyl benzyl phthalate        | ND     | 50      | μg/L       | 1              | 5/4/2010 3:46:28 PM  |
| Carbazole                     | ND     | 50      | μg/L       | 1              | 5/4/2010 3:46:28 PM  |
| 4-Chloro-3-methylphenol       | ND ·   | 50      | μg/L       | 1              | 5/4/2010 3:46:28 PM  |
| 4-Chloroaniline               | ND     | 50      | μg/L       | 1              | 5/4/2010 3:46:28 PM  |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 1 of 7

Date: 01-Jun-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1004554

Project:

Injection Well 2nd QTR 4-21-10

Lab ID:

1004554-01

Client Sample ID: Injection Well

Collection Date: 4/22/2010 11:00:00 AM

Date Received: 4/23/2010

Matrix: AQUEOUS

| Analyses                      | Result | PQL  | Qual I       | Units           | DF  | Date Analyzed       |
|-------------------------------|--------|------|--------------|-----------------|-----|---------------------|
| EPA METHOD 8270C: SEMIVOLATIL | ES     | **** | <del>,</del> |                 |     | Analyst: LB.        |
| 2-Chloronaphthalene           | ND     | 50   | μ            | ıg/L            | 1   | 5/4/2010 3:46:28 PM |
| 2-Chlorophenol                | ND     | 50   | . μ          | ıg/L            | 1   | 5/4/2010 3:46:28 PM |
| 4-Chlorophenyl phenyl ether   | ND     | 50   | μ            | ig/L            | 1   | 5/4/2010 3:46:28 PM |
| Chrysene                      | ND     | 50   | μ            | ıg/L            | 1   | 5/4/2010 3:46:28 PM |
| Di-n-butyl phthalate          | ND     | 50   | μ            | ıg/L            | 1   | 5/4/2010 3:46:28 PM |
| Di-n-octyl phthalate          | ND     | 50   | μ            | ıg/L            | 1   | 5/4/2010 3:46:28 PM |
| Dibenz(a,h)anthracene         | ND     | 50   | μ            | ıg/L            | 1   | 5/4/2010 3:46:28 PM |
| Dibenzofuran                  | ND     | 50   | μ            | ıg/L            | 1   | 5/4/2010 3:46:28 PM |
| 1,2-Dichlorobenzene           | ND     | 50   | μ            | g/L             | 1   | 5/4/2010 3:46:28 PM |
| 1,3-Dichlorobenzene           | ND     | 50   |              | g/L             | 1   | 5/4/2010 3:46:28 PM |
| 1,4-Dichlorobenzene           | ND     | 50   | μ            | g/L             | 1   | 5/4/2010 3:46:28 PM |
| 3,3'-Dichlorobenzidine        | ND     | 50   | μ            | g/L             | `1  | 5/4/2010 3:46:28 PM |
| Diethyl phthalate             | ND     | 50   |              | g/L             | 1   | 5/4/2010 3:46:28 PM |
| Dimethyl phthalate            | ND     | 50   |              | g/L             | 1   | 5/4/2010 3:46:28 PM |
| 2,4-Dichlorophenol            | ND     | 100  | μ            | g/L             | 1   | 5/4/2010 3:46:28 PM |
| 2,4-Dimethylphenol            | ND     | 50   | μ            | g/L             | 1   | 5/4/2010 3:46:28 PM |
| 4,6-Dinitro-2-methylphenol    | ND     | 100  |              | g/L             | 1   | 5/4/2010 3:46:28 PM |
| 2,4-Dinitrophenol             | ND     | 100  |              | g/L             | 1   | 5/4/2010 3:46:28 PM |
| 2,4-Dinitrotoluene            | ND     | 50   | μι           | g/L             | 1   | 5/4/2010 3:46:28 PM |
| 2,6-Dinitrotoluene            | ND     | 50   |              | g/L             | 1   | 5/4/2010 3:46:28 PM |
| Fluoranthene                  | ND     | 50   | μ            | g/L             | 1   | 5/4/2010 3:46:28 PM |
| Fluorene                      | ND     | 50   |              | g/L             | 1   | 5/4/2010 3:46:28 PM |
| Hexachlorobenzene             | ND     | 50   | μ            | g/L             | 1   | 5/4/2010 3:46:28 PM |
| Hexachlorobutadiene           | ND     | 50   | μ            | g/L             | 1   | 5/4/2010 3:46:28 PM |
| Hexachlorocyclopentadiene     | ND     | 50   |              | g/L             | 1   | 5/4/2010 3:46:28 PM |
| Hexachloroethane              | ND     | 50   | μg           | g/L             | 1   | 5/4/2010 3:46:28 PM |
| Indeno(1,2,3-cd)pyrene        | ND     | 50   |              | g/L             | 1   | 5/4/2010 3:48:28 PM |
| Isophorone                    | ND     | 50   |              | g/L.            | 1   | 5/4/2010 3:46:28 PM |
| 2-Methylnaphthalene           | ND     | 50   |              | 9/L             | 1   | 5/4/2010 3:46:28 PM |
| 2-Methylphenol                | ND     | 50   |              | g/L             | 1   | 5/4/2010 3:46:28 PM |
| 3+4-Methylphenol              | ND     | 50   |              | g/L             | 1   | 5/4/2010 3:46:28 PM |
| N-Nitrosodi-n-propylamine     | ND     | 50   | μ            | g/L             | 1   | 5/4/2010 3:46:28 PM |
| N-Nitrosodimethylamine        | ND     | 50   | μg           | g/L             | 1   | 5/4/2010 3:46:28 PM |
| N-Nitrosodiphenylamine        | ND     | 50   | μg           | J/L             | 1   | 5/4/2010 3:46:28 PM |
| Naphthalene                   | ND     | 50   | μg           | J/L             | 1   | 5/4/2010 3:46:28 PM |
| 2-Nitroaniline                | ND     | 50   | μg           |                 | 1 . | 5/4/2010 3:46:28 PM |
| 3-Nitroanillne                | ND     | 50   | μg           | 3/L             | 1   | 5/4/2010 3:46:28 PM |
| 4-Nitroaniline                | ND     | 50   | μg           | g/L             | 1   | 5/4/2010 3:46:28 PM |
| Nitrobenzene                  | ND     | 50   | рg           | <sub>I</sub> /L | 1   | 5/4/2010 3:46:28 PM |
| 2-Nitrophenol                 | ND     | 50   | μg           |                 | 1   | 5/4/2010 3:46:28 PM |
| 4-Nitrophenol                 | ND     | 50   | μg           |                 | 1   | 5/4/2010 3:46:28 PM |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 2 of 7

Date: 01-Jun-10

**CLIENT:** 

Western Refining Southwest, Inc.

Lab Order:

1004554

Project:

Injection Well 2nd QTR 4-21-10

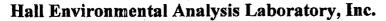
Lab ID:

1004554-01

Client Sample ID: Injection Well

Collection Date: 4/22/2010 11:00:00 AM

Date Received: 4/23/2010
Matrix: AQUEOUS


| Analyses                       | Result | PQL         | Qual Units    | DF  | Date Analyzed        |
|--------------------------------|--------|-------------|---------------|-----|----------------------|
| EPA METHOD 8270C: SEMIVOLATILE | S      | · · · · · · |               |     | Analyst: LB.         |
| Pentachlorophenol              | ND     | 100         | μg/L          | 1   | 5/4/2010 3:46:28 PM  |
| Phenanthrene                   | ND     | 50          | μg/L          | 1   | 5/4/2010 3:46:28 PM  |
| Phenol                         | ND     | 50          | μg/L          | 1   | 5/4/2010 3:46:28 PM  |
| Pyrene                         | ND     | 50          | μg/L          | 1   | 5/4/2010 3:46:28 PM  |
| Pyridine                       | ND     | 50          | μg/L          | 1   | 5/4/2010 3:46:28 PM  |
| 1,2,4-Trichlorobenzene         | ND     | 50          | μg/L          | 1   | 5/4/2010 3:46:28 PM  |
| 2,4,5-Trichlorophenol          | ND     | 50          | μ <b>g/</b> L | 1   | 5/4/2010 3:46:28 PM  |
| 2,4,6-Trichlorophenol          | ND     | 50          | μg/L          | 1   | 5/4/2010 3:46:28 PM  |
| Surr: 2,4,6-Tribromophenol     | 66.8   | 16.6-150    | %REC          | 1   | 5/4/2010 3:46:28 PM  |
| Surr: 2-Fluorobiphenyl         | 68.6   | 19.6-134    | %REC          | 1   | 5/4/2010 3:46:28 PM  |
| Surr: 2-Fluorophenol           | 51.1   | 9.54-113    | %REC          | 1 - | 5/4/2010 3:46:28 PM  |
| Surr: 4-Terphenyl-d14          | 62.6   | 22.7-145    | %REC          | 1   | 5/4/2010 3:46:28 PM  |
| Surr: Nitrobenzene-d5          | 66.5   | 14.6-134    | %REC          | 1   | 5/4/2010 3:46:28 PM  |
| Surr: Phenol-d5                | 36.6   | 10.7-80.3   | %REC          | 1   | 5/4/2010 3:46:28 PM  |
| EPA METHOD 8260B: VOLATILES    |        |             |               |     | Analyst: HL          |
| Benzene                        | ND     | 1.0         | μg/L          | 1   | 4/28/2010 1:44:39 PM |
| Toluene                        | ND     | 1.0         | µg/L          | 1   | 4/28/2010 1:44:39 PM |
| Ethylbenzene                   | ND     | 1.0         | μg/L          | 1   | 4/28/2010 1:44:39 PM |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0         | μg/L          | 1   | 4/28/2010 1:44:39 PM |
| 1,2,4-Trimethylbenzene         | ND     | 1.0         | μg/L          | 1   | 4/28/2010 1:44:39 PM |
| 1,3,5-Trimethylbenzene         | ND     | 1.0         | μg/L          | 1   | 4/28/2010 1:44:39 PM |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0         | µg/L          | 1   | 4/28/2010 1:44:39 PM |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0         | μg/L          | 1   | 4/28/2010 1:44:39 PM |
| Naphthalene                    | ND     | 2.0         | μg/L          | 1   | 4/28/2010 1:44:39 PM |
| 1-Methylnaphthalene            | ND     | 4.0         | μg/L          | 1   | 4/28/2010 1:44:39 PM |
| 2-Methylnaphthalene            | ND     | 4.0         | μg/L          | 1   | 4/28/2010 1:44:39 PM |
| Acetone                        | 410    | 100         | μg/L          | 10  | 4/27/2010 1:13:47 PM |
| Bromobenzene                   | ND     | 1.0         | µg/L          | 1   | 4/28/2010 1:44:39 PM |
| Bromodichloromethane           | ND     | 1.0         | μg/L          | 1   | 4/28/2010 1:44:39 PM |
| Bromoform                      | ND     | 1.0         | μg/L          | 1   | 4/28/2010 1:44:39 PM |
| Bromomethane                   | ND     | 1.0         | μg/L          | 1   | 4/28/2010 1:44:39 PM |
| 2-Butanone                     | 300    | 100         | μg/L          | 10  | 4/27/2010 1:13:47 PM |
| Carbon disulfide               | ND     | 10          | μg/L          | 1   | 4/28/2010 1:44:39 PM |
| Carbon Tetrachloride           | ND     | 1.0         | µg/L          | 1   | 4/28/2010 1:44:39 PM |
| Chlorobenzene                  | ND     | 1.0         | μg/L          | 1   | 4/28/2010 1:44:39 PM |
| Chloroethane                   | ND     | 2.0         | μg/L          | 1   | 4/28/2010 1:44:39 PM |
| Chloroform                     | ND     | 1.0         | µg/L          | 1   | 4/28/2010 1:44:39 PM |
| Chloromethane                  | ND     | 1.0         | μg/L          | 1   | 4/28/2010 1:44:39 PM |
| 2-Chlorotoluene                | ND     | 1.0         | μg/L          | 1   | 4/28/2010 1:44:39 PM |
| 4-Chlorotoluene                | ND     | 1.0         | μg/L          | 1   | 4/28/2010 1:44:39 PM |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 3 of 7



Date: 01-Jun-10

**CLIENT:** 

Western Refining Southwest, Inc.

Lab Order:

1004554

Project: Inject

Injection Well 2nd QTR 4-21-10

Lab ID:

1004554-01

Client Sample ID: Injection Well

Collection Date: 4/22/2010 11:00:00 AM

**Date Received: 4/23/2010** 

Matrix: AQUEOUS

| Analyses                    | Result | PQL (    | Quai Units   | DF  | Date Analyzed        |
|-----------------------------|--------|----------|--------------|-----|----------------------|
| EPA METHOD 8260B: VOLATILES |        |          |              |     | Analyst: HL          |
| cis-1,2-DCE                 | ·ND    | 1.0      | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| cis-1,3-Dichloropropene     | ND     | 1.0      | µg/L         | 1 - | 4/28/2010 1:44:39 PM |
| 1,2-Dibromo-3-chloropropane | ND     | 2.0      | µg/L         | 1   | 4/28/2010 1:44:39 PM |
| Dibromochloromethane        | ND     | 1.0      | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| Dibromomethane              | ND     | 1.0      | µg/L         | 1   | 4/28/2010 1:44:39 PM |
| 1,2-Dichlorobenzene         | ND     | 1.0      | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| 1,3-Dichlorobenzene         | ND     | 1.0      | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| 1,4-Dichlorobenzene         | ND     | 1.0      | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| Dichlorodifluoromethane     | ND     | 1.0      | µg/L         | 1   | 4/28/2010 1:44:39 PM |
| 1,1-Dichloroethane          | ND     | 1.0      | μ <b>g/L</b> | 1   | 4/28/2010 1:44:39 PM |
| 1,1-Dichloraethene          | ND     | 1.0      | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| 1,2-Dichloropropane         | ND     | 1.0      | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| 1,3-Dichloropropane         | ND     | 1.0      | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| 2,2-Dichloropropane         | ND     | 2.0      | µg/L         | 1   | 4/28/2010 1:44:39 PM |
| 1,1-Dichloropropene         | ND     | 1.0      | µg/L         | 1   | 4/28/2010 1:44:39 PM |
| Hexachtorobutadiene         | ND     | 1.0      | - µg/L       | 1   | 4/28/2010 1:44:39 PM |
| 2-Hexanone                  | ND     | 10       | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| Isopropylbenzene            | ND     | 1.0      | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| 4-Isopropyltoluene          | . ND   | 1.0      | µg/L         | 1   | 4/28/2010 1:44:39 PM |
| 4-Methyl-2-pentanone        | ND     | - 10     | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| Methylene Chloride          | ND     | 3.0      | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| n-Butylbenzene              | ND     | 1.0      | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| n-Propylbenzene             | ND     | 1.0      | µg/L         | 1   | 4/28/2010 1:44:39 PM |
| sec-Butylbenzene            | ND     | 1.0      | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| Styrene                     | ND     | 1.0      | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| tert-Butylbenzene           | ND     | 1.0      | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0      | µg/L         | 1   | 4/28/2010 1:44:39 PM |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0      | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| Tetrachloroethene (PCE)     | ND     | 1.0      | µg/L         | 1   | 4/28/2010 1:44:39 PM |
| trans-1,2-DCE               | ND     | 1.0      | µg/L         | 1   | 4/28/2010 1:44:39 PM |
| trans-1,3-Dichloropropene   | ND     | 1.0      | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| 1,2,3-Trichlorobenzene      | ND     | 1.0      | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| 1,2,4-Trichlorobenzene      | ND     | 1.0      | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| 1,1,1-Trichloroethane       | ND     | 1.0      | μg/Ľ         | 1   | 4/28/2010 1:44:39 PM |
| 1,1,2-Trichloroethane       | ND     | 1.0      | µg/L         | 1   | 4/28/2010 1:44:39 PM |
| Trichloroethene (TCE)       | ND     | 1.0      | µg/L         | 1   | 4/28/2010 1:44:39 PM |
| Trichlorofluoromethane      | ND     | 1.0      | µg/L         | 1   | 4/28/2010 1:44:39 PM |
| 1,2,3-Trichloropropane      | ND     | 2.0      | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| Vinyl chloride              | ND     | 1.0      | μg/L         | 1   | 4/28/2010 1:44:39 PM |
| Xylenes, Total              | ND     | 1.5      | µg/L         | 1   | 4/28/2010 1:44:39 PM |
| Surr: 1,2-Dichloroethane-d4 | 105    | 54.6-141 | %REC         | 1   | 4/28/2010 1:44:39 PM |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 4 of 7

Date: 01-Jun-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1004554

Project:

Injection Well 2nd QTR 4-21-10

Lab ID:

1004554-01

Client Sample ID: Injection Well

Collection Date: 4/22/2010 11:00:00 AM

Date Received: 4/23/2010

Matrix: AQUEOUS

| Analyses                         | Result | PQL      | Qual        | Units      | DF | Date Analyzed         |
|----------------------------------|--------|----------|-------------|------------|----|-----------------------|
| EPA METHOD 8260B: VOLATILES      |        |          | <del></del> |            |    | Analyst: HL           |
| Surr: 4-Bromofluorobenzene       | 107    | 60.1-133 |             | %REC       | 1  | 4/28/2010 1:44:39 PM  |
| Surr: Dibromofluoromethane       | 111    | 78.5-130 |             | %REC       | 1  | 4/28/2010 1:44:39 PM  |
| Surr: Toluene-d8                 | 105    | 79.5-126 |             | %REC       | 1  | 4/28/2010 1:44:39 PM  |
| SM 2320B: ALKALINITY             |        |          |             |            |    | Analyst: NSB          |
| Alkalinity, Total (As CaCO3)     | 350    | 20       |             | mg/L CaCO3 | 1  | 4/27/2010 12:38:00 AM |
| Carbonate                        | ND     | 2.0      |             | mg/L CaCO3 | 1  | 4/27/2010 12:38:00 AM |
| Bicarbonate                      | 350    | 20       |             | mg/L CaCO3 | 1  | 4/27/2010 12:38:00 AM |
| EPA 120.1: SPECIFIC CONDUCTANCE  |        |          |             |            |    | Analyst: NSB          |
| Specific Conductance             | 4100   | 0.010    |             | µmhos/cm   | 1  | 4/27/2010 6:51:00 PM  |
| SM4500-H+B: PH                   |        |          |             |            |    | Analyst: NSB          |
| р <b>Н</b>                       | 7.60   | 0.1      |             | pH units   | 1  | 4/27/2010 12:38:00 AM |
| SM2540C MOD: TOTAL DISSOLVED SOI | _ID\$  |          |             |            |    | Analyst: <b>KS</b>    |
| Total Dissolved Solids           | 3060   | 100      |             | mg/L       | 1  | 4/27/2010 3:58:00 PM  |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 5 of 7

Date: 01-Jun-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1004554

Project:

Injection Well 2nd QTR 4-21-10

Lab ID:

1004554-02

Client Sample ID: Trip Blank

**Collection Date:** 

Date Received: 4/23/2010

Matrix: TRIP BLANK

| Analyses                       | Result | PQL Q | ual Units                              | DF  | Date Analyzed        |
|--------------------------------|--------|-------|----------------------------------------|-----|----------------------|
| EPA METHOD 8260B: VOLATILES    |        |       | ······································ |     | Analyst: HL          |
| Benzene                        | ND     | 1.0   | μg/L                                   | · 1 | 4/27/2010 6:42:25 PN |
| Toluene                        | ND     | 1.0   | μg/L·                                  | 1   | 4/27/2010 6:42:25 PN |
| Ethylbenzene                   | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PN |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PN |
| 1,2,4-Trimethylbenzene         | ND `   | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PN |
| 1,3,5-Trimethylbenzene         | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PN |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| Naphthalene                    | ND     | 2.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| 1-Methylnaphthalene            | ND     | 4.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| 2-Methylnaphthalene            | NĎ     | 4.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| Acetone                        | ND     | 10    | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| Bromobenzene                   | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PN |
| Bromodichloromethane           | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| Bromoform                      | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| Bronfomethane                  | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| 2-Butanone                     | ND     | 10    | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| Carbon disulfide               | ND     | 10    | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| Carbon Tetrachloride           | ND     | 1.0   | μg/L                                   | . 1 | 4/27/2010 6:42:25 PN |
| Chlorobenzene                  | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PN |
| Chloroethane                   | ND     | 2.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PN |
| Chloroform                     | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| Chloromethane                  | ND     | 1.0   | μ <b>g/L</b>                           | 1   | 4/27/2010 6:42:25 PM |
| 2-Chlorotoluene                | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| 4-Chlorotoluene .              | ND     | 1.0   | μ <b>g/L</b>                           | 1   | 4/27/2010 6:42:25 PM |
| cis-1,2-DCE                    | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| cis-1,3-Dichloropropene        | ND     | 1.0   | μg/L -                                 | 1   | 4/27/2010 6:42:25 PM |
| 1,2-Dibromo-3-chloropropane    | ND     | 2.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| Dibromochloromethane           | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| Dibromomethane                 | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| 1,2-Dichlorobenzene            | ND     | 1.0   | µg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| 1,3-Dichlorobenzene            | ND     | 1.0   | μ <b>g/L</b>                           | 1   | 4/27/2010 6:42:25 PM |
| 1,4-Dichlorobenzene            | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| Dichlorodifluoromethane        | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| 1,1-Dichloroethane             | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| 1,1-Dichloroethene             | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| 1,2-Dichloropropane            | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| 1,3-Dichloropropane            | ND     | 1.0   | μ <b>g/L</b>                           | 1   | 4/27/2010 6:42:25 PM |
| 2,2-Dichloropropane            | ND     | 2.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| 1,1-Dichloropropene            | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |
| Hexachlorobutadiene            | ND     | 1.0   | μg/L                                   | 1   | 4/27/2010 6:42:25 PM |

#### Qualiflers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 6 of 7

Date: 01-Jun-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1004554

Project:

Injection Well 2nd QTR 4-21-10

Lab ID:

1004554-02

Client Sample ID: Trip Blank

**Collection Date:** 

Date Received: 4/23/2010

Matrix: TRIP BLANK

| Analyses                    | Result | PQL      | Qual Units    | DF  | Date Analyzed        |
|-----------------------------|--------|----------|---------------|-----|----------------------|
| EPA METHOD 8260B: VOLATILES |        |          |               |     | Analyst: HL          |
| 2-Hexanone                  | ND     | 10       | µg/L          | 1   | 4/27/2010 6:42:25 PM |
| Isopropylbenzene            | ND     | 1.0      | μ <b>g/L</b>  | 1   | 4/27/2010 6:42:25 PM |
| 4-Isopropyltoluene          | ND     | 1.0      | μg/L          | 1   | 4/27/2010 6:42:25 PM |
| 4-Methyl-2-pentanone        | ND     | 10       | μg/L          | · 1 | 4/27/2010 6:42:25 PM |
| Methylene Chloride          | ND     | 3.0      | µg/L          | 1   | 4/27/2010 6:42:25 PM |
| n-Butylbenzene              | ND     | 1.0      | μg/L          | 1   | 4/27/2010 6:42:25 PM |
| n-Propylbenzene             | ND     | 1.0      | μg/L          | 1   | 4/27/2010 6:42:25 PM |
| sec-Butylbenzene            | ND     | 1.0      | μg/L          | 1   | 4/27/2010 6:42:25 PM |
| Styrene                     | ND     | 1.0      | μg/L          | 1   | 4/27/2010 6:42:25 PM |
| tert-Butylbenzene           | ND     | 1.0      | μg/L          | 1 - | 4/27/2010 6:42:25 PM |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0      | μg/L          | 1   | 4/27/2010 6:42:25 PM |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0      | μ <b>g/</b> L | 1   | 4/27/2010 6:42:25 PM |
| Tetrachloroethene (PCE)     | ND     | 1.0      | μ <b>g/</b> L | 1   | 4/27/2010 6:42:25 PM |
| trans-1,2-DCE               | ND     | 1.0      | μ <b>g/</b> L | 1   | 4/27/2010 6:42:25 PM |
| trans-1,3-Dichloropropene   | ND     | 1.0      | μg/L          | 1   | 4/27/2010 6:42:25 PM |
| 1,2,3-Trichlorobenzene      | ND     | 1.0      | μg/L          | 1   | 4/27/2010 6:42:25 PM |
| 1,2,4-Trichlorobenzene      | ND     | 1.0      | μg/L          | 1   | 4/27/2010 6:42:25 PM |
| 1,1,1-Trichloroethane       | ND     | 1.0      | μg/L          | . 1 | 4/27/2010 6:42:25 PM |
| 1,1,2-Trichloroethane       | . ND   | 1.0      | μg/L          | 1   | 4/27/2010 6:42:25 PM |
| Trichloroethene (TCE)       | ND     | 1.0      | μg/L          | 1   | 4/27/2010 6:42:25 PM |
| Trichlorofluoromethane      | ND     | 1.0      | μg/L          | 1   | 4/27/2010 6:42:25 PM |
| 1,2,3-Trichloropropane      | ND     | 2.0      | µg/L          | 1   | 4/27/2010 6:42:25 PM |
| Vinyl chloride              | ND     | 1.0      | μg/L          | 1   | 4/27/2010 6:42:25 PM |
| Xylenes, Total              | ND     | 1.5      | µg/L          | 1   | 4/27/2010 6:42:25 PM |
| Surr: 1,2-Dichloroethane-d4 | 102    | 54.6-141 | %REC          | 1   | 4/27/2010 6:42:25 PM |
| Surr: 4-Bromofluorobenzene  | 105    | 60.1-133 | %REC          | 1   | 4/27/2010 6:42:25 PM |
| Surr: Dibromofluoromethane  | 111    | 78.5-130 | %REC          | · 1 | 4/27/2010 6:42:25 PM |
| Surr: Toluene-d8            | 106    | 79.5-126 | %REC          | 1   | 4/27/2010 6:42:25 PM |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
  - ND Not Detected at the Reporting Limit
  - S Spike recovery outside accepted recovery limits

Page 7 of 7



YOUR LAB OF CHOICE

12065 Lebanon Rd. 1205 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax 1.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

May 05, 2010

Anne Thorne Hall Environmental Analysis Laborat 4901 Hawkins NE Albuquerque, NM 87109

27, 2010

Date Received Description April 1004554

INJECTION WELL Sample ID

Collected By : Collection Date : 04/22/10 11:00 ESC Sample # : L456130-01

Site ID :

Project # : 1004554

| Parameter ·                    | Result        | Det. Limit | Units | Method     | Date     | Dil. |
|--------------------------------|---------------|------------|-------|------------|----------|------|
| Corrosivity                    | Non-Corrosive |            |       | 9040C      | 04/29/10 | 1    |
| Flashpoint                     | See Footnote  |            | deg F | D93/1010A  | 05/05/10 | 1    |
| Reactive CN (SW846 7.3.3.2)    | BDL           | 0.125      | mg/l  | 9012B      | 04/29/10 | 1    |
| Reactive Sulf. (SW846 7.3.4.1) | BDL           | 25.        | mg/l  | 9034/9030B | 04/28/10 | 1    |

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)
Note:
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 05/05/10 17:03 Printed: 05/05/10 17:03 L456130-01 (FLASHPOINT) - Did Not Flash @ 170 F



YOUR LAB OF CHOICE

Hall Environmental Analysis Laboratory

Anne Thorne 4901 Hawkins NE

Albuquerque, NM 87109

Quality Assurance Report Level II

May 05, 2010

12065 Lebanon Rd. 12053 AEBARON RG. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

L456130

| Analyte                                                         | Result                                               | Mibør<br>Unit            | eboty Black<br>s & r              |                   | mit Ba                                                | tch Date                     | Analyzed             |
|-----------------------------------------------------------------|------------------------------------------------------|--------------------------|-----------------------------------|-------------------|-------------------------------------------------------|------------------------------|----------------------|
| KGAOFIJÆTSULE JEMBUB USALAKAP                                   | FF   TE   E   Z5   E   E   E   E   E   E   E   E   E | n vonce <b>thu</b> al    |                                   |                   | ga ya ila ang ang ang ang ang ang ang ang ang an      | 75496 (04220)                | <b>1</b> 5:1         |
| Corrosivity Reactive CN (SW846 7.3.3.2)                         | 5.10<br>< .125                                       | mg/l                     |                                   |                   | ST#1294 705 P49 475                                   | 175800 04/29<br>175450 04/29 | WET HE               |
| Analyte                                                         | Units                                                | Result                   | uplicate<br>Duplicate             | RPD               | Limit Re                                              | ef Samp                      | Batch                |
| REACHIVE RELIANCE SHOWS AND AND AND AND AND AND AND AND AND AND | A TALEMAN TO                                         | 0.000.000                | iado garteran                     |                   | 200857 - 1 <sup>12</sup> 7   189 <b>2</b>             | 56120401446                  | M097544              |
| Corrosivity Reactive CN (SW846 7.3.3.2)                         | mg/l                                                 | 0                        |                                   |                   |                                                       | 156130-01<br>156130-01       | WG47580<br>WG47545   |
| Glashpoint: 37 to # Facility States                             | BA GAG KAN                                           | 0 7 5                    | 0.75                              | 0.07              |                                                       | 56575401745                  | <b>761</b> 7596      |
| Analyte                                                         | Units                                                | Known Va                 | y/gohtrol/sa)<br>1 R              | DAN<br>esult t    | Rec Lin                                               | ilt                          | Batch                |
| BANGELVEYSULTS.COMERC 25 3 (4 JV) 17 And                        | 77 19 <b>6</b> 4 7                                   |                          | (500 <b>0</b> 0.741 <b>0</b> 2.14 | 0//55777771482    | 0.75%                                                 | 43037146                     | XG47544              |
| Corrosivity<br>Flashpoint                                       | deg F                                                | 6.46<br>82               | 6.40<br>85.0                      | WAXE TO HER       | 11 14 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 |                              | WG475800<br>WG475960 |
| Analyte                                                         | ¦%∑tjä<br>Units R                                    | oovatory Con<br>esult Re | rol sample:                       | oplicate<br>Limit | : RPD                                                 | Limit                        | Batch                |
| ROAVELVESSUITANSWEAF 77.7147.107.655                            |                                                      |                          | 0.775                             |                   | (O.W.)                                                |                              | <br>WG495446         |
| Corrosivity Flashpoint                                          | 6                                                    | .40 6.4<br>2.0 85.       | WARE THE TAXABLE                  |                   | -100.8 0<br>-4 3.59                                   | 10                           | WG475800             |

Batch number /Run number / Sample number cross reference

WG475446: R1199436: L456130-01 WG475800: R1200800: L455130-01 WG475450: R1201654: L456130-01 WG475968: R1206468: L456130-01

 <sup>\*</sup> Calculations are performed prior to rounding of reported values .
 Performance of this Analyte is outside of established criteria.
 For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

## **QA/QC SUMMARY REPORT**

lient: Project: Western Refining Southwest, Inc. Injection Well 2nd QTR 4-21-10

Work Order:

1004554

| Analyte                                        | Result | Units                 | PQL  | SPK Va S | PK ref | %Rec. L   | owLimit Hi     | ighLimit %RPD  | RPDLimit Qual                          |
|------------------------------------------------|--------|-----------------------|------|----------|--------|-----------|----------------|----------------|----------------------------------------|
| fethod: EPA Method 300.0:                      | Anions |                       |      |          |        |           |                |                |                                        |
| sample ID: MB                                  |        | MBLK                  |      |          |        | Batch ID: | R38365         | Analysis Date: | 4/23/2010 12:19:50 Pł                  |
| Chloride                                       | ND     | mg/L                  | 0.50 |          |        |           |                |                | ,                                      |
| Sulfate                                        | ND .   | mg/L                  | 0.50 |          |        |           |                |                |                                        |
| Sample ID: MB                                  |        | MBLK                  |      |          |        | Batch ID: | R38365         | Analysis Date: | 4/24/2010 4:17:21 Af                   |
| Chloride                                       | ND     | mg/L                  | 0.50 |          |        |           |                |                |                                        |
| Sulfate                                        | ND     | mg/L                  | 0.50 |          |        |           |                | •              |                                        |
| iample ID: MB                                  |        | MBLK                  |      |          |        | Batch ID: | R38552         | Analysis Date: | 5/5/2010 3:04:25 PI                    |
| Chloride                                       | ND     | mg/L                  | 0.50 |          |        |           |                |                |                                        |
| Sulfate                                        | ND     | mg/Ł                  | 0.50 | •        |        |           |                |                |                                        |
| iample ID: LCS                                 |        | LCS                   |      |          |        | Baich ID: | R38365         | Analysis Date: | 4/23/2010 12:37:15 PM                  |
| Chloride                                       | 5.126  | mg/L                  | 0.50 | 5        | 0      | 103       | 90             | 110            |                                        |
| Gulfate                                        | 10.36  | mg/L                  | 0.50 | . 10     | 0      | 104       | 90             | 110            |                                        |
| ample ID: LCS                                  |        | LCS                   |      |          |        | Batch ID: | R38365         | Analysis Date: | 4/24/2010 4:34:46 AN                   |
| hloride                                        | 4.958  | mg/L                  | 0.50 | 5        | 0      | 99.2      | 90             | 110            |                                        |
| ulfate                                         | 9.968  | mg/L                  | 0.50 | 10       | 0      | 99.7      | 90             | 110            |                                        |
| ample ID: LCS                                  | 0.000  | LCS                   | 0.90 | . •      | •      | Batch ID: | R38552         | Analysis Date: | 5/5/2010 3:21:50 PM                    |
| Chloride                                       | 4.991  | mg/L                  | 0.50 | 5        | 0      | 99.8      | 90             | 110            |                                        |
| iulfate                                        | 10.33  | mg/L                  | 0.50 | 10       | 0      | 103       | 90             | 110            |                                        |
| lethod: SM 2320B: Alkalinit                    |        | my/L                  |      |          |        |           |                | 710            | ······································ |
| ample ID: MB                                   |        | MBLK                  |      |          |        | Batch ID: | R38393         | Analysis Date: | 4/26/2010 2:53:00 PN                   |
| Ikalinity, Total (As CaCO3)                    | ND     | mg/L Ca               | 20   |          |        |           |                |                |                                        |
| arbonate                                       | ND     | mg/L Ca               | 2.0  | •        |        |           |                |                |                                        |
| Icarbonate                                     | ND     | mg/L Ca               | 20   |          |        |           |                |                | ·                                      |
| ample ID: MB-II                                |        | MBLK                  |      |          |        | Batch ID: | R38393         | Analysis Date: | 4/26/2010 9:33:00 PM                   |
| kalinity, Total (As CaCO3)                     | ND     | mg/L Ca               | 20   | ÷        |        |           |                | •              |                                        |
| arbonate                                       | ND     | mg/L Ca               | 2.0  |          |        |           |                |                |                                        |
| icarbonate                                     | ND     | mg/L Ca               | 20   |          |        |           |                |                |                                        |
| ample ID: MB                                   |        | MBLK                  |      |          |        | Batch ID: | R38419         | Analysis Date: | 4/27/2010 2:22:00 PM                   |
| kalinity, Total (As CaCO3)                     | ND     | mg/L Ca               | 20   |          |        |           |                |                |                                        |
| arbonate                                       | ND     | mg/L Ca               | 2.0  |          |        |           |                |                |                                        |
| icarbonate                                     | ND     | mg/L Ca               | 20   |          |        |           |                |                |                                        |
| ample ID: 80PPM LCS                            |        | LCS                   |      |          |        | Batch ID: | R38393         | Analysis Date: | 4/26/2010 2:58:00 PM                   |
| kalinity, Total (As CaCO3)                     | 79.36  | mg/L Ca               | 20   | 80       | 0      | 99.2      | 96.5           | 104            |                                        |
| ample ID: 80PPM LCS-II                         | , 0.00 | LCS                   |      | ••       | •      | Batch ID: | R38393         | Analysis Date: | 4/26/2010 9:39:00 PM                   |
| -                                              | 70 0k  |                       | 20   | 80       | 0      | 100       | 96.5           | 104            |                                        |
| kalinity, Total (As CaCO3) ample ID: 80PPM LCS | 79.96  | mg/L Ca<br><i>LCS</i> | 20   | ου       | U      | Batch ID: | 96.5<br>R38419 | Analysis Date: | 4/27/2010 2:28:00 PM                   |
| ample ID. OUTTIN LCO                           |        | LUS                   | 20   | 80       |        | 99.7      | 96.5           | 104            | 7121120 10 2.20.00 FIV                 |

| W40.5 |             |  |
|-------|-------------|--|
| 100   | V           |  |
| 4     |             |  |
| _     | A 1147      |  |
| •     | )naliflers: |  |

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

# **QA/QC SUMMARY REPORT**

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd QTR 4-21-10

Work Order:

1004554

| Analyte                        | Result    | Units        | PQL | SPK Va SPK ref | %Rec Lo   | wLimit Hig | ghLimit | %RPD     | RPDLimit  | Qual       |
|--------------------------------|-----------|--------------|-----|----------------|-----------|------------|---------|----------|-----------|------------|
| Method: EPA Method 8260B:      | VOLATILES |              |     |                |           |            |         |          |           |            |
| Sample ID: 5ml rb              |           | MBLK         |     |                | Batch ID: | R38406     | Analys  | is Date: | 4/27/2010 | 9:17:56 AN |
| Benzene                        | ND        | μg/L         | 1.0 |                |           |            |         |          |           |            |
| Toluene                        | ND        | μg/L         | 1.0 |                |           |            |         |          |           |            |
| Ethylbenzene                   | ND        | µg/L         | 1.0 |                |           |            |         |          | •         |            |
| Methyl tert-butyl ether (MTBE) | ND        | µg/Ļ         | 1.0 |                |           |            |         |          |           |            |
| 1,2,4-Trimethylbenzene         | ND        | μg/L         | 1.0 |                |           |            |         |          |           |            |
| 1,3,5-Trimethylbenzene         | ND        | μg/L         | 1.0 |                |           |            |         |          |           |            |
| 1,2-Dichloroethane (EDC)       | ND        | . µg/L       | 1.0 |                |           |            |         |          |           |            |
| 1,2-Dibromoethane (EDB)        | ND        | µg/L         | 1.0 |                |           |            |         |          |           |            |
| Naphthalene                    | ND        | µg/L         | 2.0 |                |           |            |         |          |           |            |
| 1-Methylnaphthalene            | ND        | μg/L         | 4.0 |                |           |            |         |          |           |            |
| 2-Methylnaphthalene            | ND        | µg/L         | 4.0 |                |           |            |         |          |           |            |
| Acetone                        | ND        | µg/L         | 10  |                |           |            |         |          |           |            |
| Bromobenzene                   | ND        | μg/L         | 1.0 | •              |           |            |         |          |           |            |
| Bromodichloromethane           | ND        | μg/L         | 1.0 |                |           |            |         |          |           |            |
| Bromoform                      | ND        | μg/L.        | 1.0 |                |           |            |         |          |           |            |
| Bromomethane                   | ND        | µg/L         | 1.0 |                |           |            |         |          |           |            |
| 2-Butanone                     | ND        | µg/L         | 10  |                |           |            |         |          |           |            |
| Carbon disulfide               | ND        | μg/L         | 10  |                |           |            |         |          |           |            |
| Carbon Tetrachloride           | ND        | μg/L         | 1.0 |                |           |            |         |          |           |            |
| Chlorobenzene                  | ND        | μg/L         | 1.0 |                |           |            |         | •        |           |            |
| Chloroethane                   | ND        | μg/L         | 2.0 |                |           |            |         |          |           |            |
| Chloroform                     | ND        | μg/L         | 1.0 |                |           |            |         |          |           |            |
| Chloromethane                  | ND        | μg/L         | 1.0 |                |           |            |         |          |           |            |
| 2-Chlorotoluene                | ND        | µg/L         | 1.0 |                |           |            |         |          |           |            |
| I-Chlorotoluene                | ND        | µg/L         | 1.0 |                |           |            |         |          |           |            |
| cis-1,2-DCE                    | ND        | μg/L         | 1.0 | •              |           |            |         |          |           |            |
| sis-1,3-Dichloropropene        | ND        | μg/L         | 1.0 |                |           |            |         |          |           |            |
| ,2-Dibromo-3-chloropropane     | ND        | µg/L         | 2.0 |                |           |            |         |          |           |            |
| Dibromochloromethane           | ND        | μ <b>g/L</b> | 1.0 |                |           |            |         |          |           |            |
| Dibromomethane                 | ND        | µg/L         | 1.0 |                |           |            |         |          |           |            |
| ,2-Dichlorobenzene             | ND        | μg/L         | 1.0 |                |           |            |         |          |           |            |
| ,3-Dichlorobenzene             | ND        | μg/L         | 1.0 |                |           |            |         |          |           |            |
| ,4-Dichlorobenzene             | ND        | µg/L         | 1.0 | •              |           |            |         |          |           |            |
| Dichlorodifluoromethane        | ND        | μg/L         | 1.0 |                |           |            |         |          |           |            |
| ,1-Dichloroethane              | ND        | μg/L         | 1.0 |                |           |            |         |          |           |            |
| ,1-Dichloroethene              | ND        | μg/L         | 1.0 |                |           |            |         |          |           |            |
| ,2-Dichloropropane             | ND        | µg/L         | 1.0 |                |           |            |         |          |           |            |
| ,3-Dichloropropane             | ND        | µg/L         | 1.0 |                |           |            |         |          |           |            |
| ,2-Dichloropropane             | ND        | μg/L         | 2.0 |                |           |            |         |          |           |            |
| ,1-Dichloropropene             | ND        | μg/L         | 1.0 |                |           |            |         |          |           |            |
| lexachlorobutadiene            | ND        | μg/L         | 1.0 |                |           |            |         |          |           |            |
| -Hexanone                      | ND        | μg/L         | 10  |                |           |            |         |          |           |            |
| sopropylbenzene                | ŇD        | μg/L         | 1.0 |                |           |            |         |          |           |            |
| -Isopropyltoluene              | ND        | μg/L         | 1.0 |                |           |            |         |          |           |            |

#### Qualiflers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Date: 01-Jun-10

## QA/QC SUMMARY REPORT

Project:

Western Refining Southwest, Inc. Injection Well 2nd QTR 4-21-10

Work Order:

1004554

| Analyte                        | Result      | Units        | PQL | SPK Va SPK ref | %Rec L    | owLimit, Hi | ghLimit  | %RPD     | RPDLimit      | Qual       |
|--------------------------------|-------------|--------------|-----|----------------|-----------|-------------|----------|----------|---------------|------------|
| Method: EPA Method 8260B       | : VOLATILES |              |     |                |           |             |          |          |               |            |
| Sample ID: 5ml rb              |             | MBLK         |     |                | Batch ID: | R38406      | Analys   | is Date: | 4/27/2010 9   | 9:17:56 Af |
| 4-Methyl-2-pentanone           | ND          | μ <b>g/L</b> | 10  |                | •         |             |          |          |               |            |
| Methylene Chloride             | ND          | μg/L         | 3.0 |                |           |             |          |          |               |            |
| n-Butylbenzene                 | ND          | μg/L         | 1.0 |                |           |             |          |          |               |            |
| n-Propylbenzene                | ND          | μg/L         | 1.0 |                |           |             |          |          |               |            |
| sec-Butylbenzene               | ND          | μg/L         | 1.0 |                |           |             |          |          |               |            |
| Styrene                        | ND          | µg/L         | 1.0 |                |           |             |          |          |               |            |
| tert-Butylbenzene              | ND          | h8/L         | 1.0 | X              |           |             |          |          |               |            |
| 1,1,1,2-Tetrachloroethane      | ND          | μ <b>g/L</b> | 1.0 |                |           |             |          |          |               |            |
| 1,1,2,2-Tetrachloroethane      | ND          | µg/L         | 2.0 |                |           |             |          |          |               |            |
| Tetrachioroethene (PCE)        | ND          | µg/L         | 1.0 |                |           |             |          |          |               |            |
| trans-1,2-DCE                  | ND          | µg/L         | 1.0 |                |           |             |          |          |               |            |
| trans-1,3-Dichloropropene      | ND          | μg/L         | 1.0 |                |           |             |          |          |               |            |
| 1,2,3-Trichlorobenzene         | ND          | μg/L         | 1.0 |                |           |             |          |          |               |            |
| 1,2,4-Trichiorobenzene         | ND          | μg/L         | 1.0 |                | •         |             |          |          |               |            |
| 1,1,1-Trichloroethane          | · ND        | µg/L         | 1.0 |                |           |             |          |          |               |            |
| 1,1,2-Trichtoroethane          | ND          | μg/L         | 1.0 |                |           |             |          |          |               |            |
| Trichloroethene (TCE)          | ND          | μg/L         | 1.0 |                |           |             |          |          |               |            |
| Trichlorofluoromethane         | ND          | μg/L         | 1.0 |                |           |             |          |          |               |            |
| 2,3-Trichloropropane           | ND          | μg/L         | 2.0 |                |           |             |          |          |               |            |
| vinyl chloride                 | ND          | μg/L         | 1.0 |                |           |             |          |          |               |            |
| Xylenes, Total                 | ND          | μg/L         | 1.5 |                |           |             |          |          |               |            |
| Sample ID: b8                  |             | MBLK         |     |                | Batch ID: | R38406      | Analysis | s Date:  | 4/27/2010 11: | :35:09 PM  |
| Benzene                        | ND          | μg/L         | 1.0 |                |           |             |          |          |               |            |
| Toluene                        | ND          | µg/L         | 1.0 |                |           |             |          |          |               |            |
| Ethylbenzene                   | ND          | μg/L         | 1.0 |                |           |             |          |          |               |            |
| Methyl tert-butyl ether (MTBE) | ND          | μg/L         | 1.0 |                |           |             |          |          |               |            |
| 1,2,4-Trimethylbenzene         | ND          | µg/L         | 1.0 |                |           |             |          |          |               |            |
| 1,3,5-Trimethylbenzene         | ND          | μg/L         | 1.0 |                |           |             |          |          |               |            |
| i,2-Dichloroethane (EDC)       | ND          | μg/L         | 1.0 |                |           |             |          |          |               |            |
| ,2-Dibromoethane (EDB)         | ND          | μg/L         | 1.0 |                |           |             |          |          |               |            |
| Naphthalene                    | ND          | μg/L         | 2.0 |                |           |             |          |          |               |            |
| -Methylnaphthalene             | ND          | μg/L         | 4.0 |                | •         |             |          |          |               |            |
| -Methylnaphthalene             | ND          | μg/L         | 4.0 |                |           |             |          |          |               |            |
| Acetone                        | ND          | μg/L         | 10  |                |           |             |          |          |               |            |
| Bromobenzene                   | ND          | µg/L         | 1.0 |                |           |             |          |          |               |            |
| Bromodichloromethane           | ND          | μg/L         | 1.0 |                |           |             |          |          |               |            |
| Bromoform                      | ND          | μg/L         | 1.0 |                |           |             |          |          |               |            |
| Bromomethane                   | ND          | µg/L         | 1.0 |                |           |             |          |          |               |            |
| -Butanone                      | ND          | µg/L         | 10  |                |           |             |          |          |               |            |
| Carbon disulfide               | ND          | μg/L         | 10  |                |           |             |          |          |               |            |
| Carbon Tetrachloride           | ND          | μg/L         | 1.0 |                |           |             |          |          |               |            |
| Chlorobenzene                  | ND          | μg/L         | 1.0 |                |           |             |          |          |               |            |
| chloroethane                   | ND          | μg/L         | 2.0 |                |           |             |          |          | *             |            |
| hloroform                      | ND          | µg/L         | 1.0 |                |           |             |          |          |               |            |

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Date: 01-Jun-10

# **QA/QC SUMMARY REPORT**

Client:

Western Refining Southwest, Inc.

Project: Injection Well 2nd QTR 4-21-10

Work Order:

1004554

| Analyte                     | Result      | Units | PQL | SPK Va SPK ref | %Rec L    | owLimit Hi | ghLimit  | %RPD    | RPDLimit Qual |            |
|-----------------------------|-------------|-------|-----|----------------|-----------|------------|----------|---------|---------------|------------|
| Method: EPA Method 8260B    | : VOLATILES |       | _   |                |           |            | : .      |         | 4.00-10-10-1  |            |
| Sample ID: b8               |             | MBLK  |     |                | Batch ID: | R38406     | Analysi  | s Date: | 4/27/2010 1   | 1:35:09 PN |
| Chloromethane               | ND          | µg/L  | 1.0 |                |           |            |          |         |               |            |
| 2-Chlorotoluene             | ND          | μg/L  | 1.0 |                |           |            |          |         |               |            |
| 4-Chlorotoluene             | ND          | µg/L  | 1.0 |                |           |            |          |         |               |            |
| cis-1,2-DCE                 | ND          | μg/L  | 1.0 |                |           |            |          |         |               |            |
| cis-1,3-Dichioropropene     | ND          | h8/L  | 1.0 |                |           |            |          |         |               |            |
| 1,2-Dibromo-3-chloropropane | ND          | µg/L  | 2.0 |                |           |            |          |         |               |            |
| Dibromochloromethane        | ND          | μg/L  | 1.0 |                |           |            |          |         |               |            |
| Dibromomethane              | ND          | μg/L  | 1.0 |                |           |            |          |         |               |            |
| 1,2-Dichlorobenzene         | ND          | μg/L  | 1.0 |                |           |            |          |         |               |            |
| 1,3-Dichlorobenzene         | ND          | µg/L  | 1.0 |                |           |            |          |         |               |            |
| 1,4-Dichlorobenzene         | ND          | µg/L  | 1.0 |                |           |            |          |         |               |            |
| Dichlorodifluoromethane     | ND          | µg/L  | 1.0 |                |           |            |          |         |               | -          |
| 1,1-Dichloroethane          | ND          | μg/L  | 1.0 |                |           |            |          |         |               |            |
| 1,1-Dichloroethene          | ND          | μg/L  | 1.0 |                |           |            |          |         |               |            |
| 1,2-Dichloropropane         | ND          | μg/L  | 1.0 |                |           |            |          |         |               |            |
| 1,3-Dichloropropane         | ND          | μg/L  | 1.0 |                |           |            |          |         |               |            |
| 2,2-Dichloropropane         | ND          | µg/L  | 2.0 |                |           |            |          |         |               |            |
| 1,1-Dichloropropene         | ND          | µg/L  | 1.0 |                |           |            |          |         |               |            |
| Hexachlorobutadiene         | ND          | µg/L  | 1.0 |                |           |            |          |         |               |            |
| 2-Hexanone                  | ND          | h8/F  | 10  |                |           |            |          |         |               |            |
| isopropylbenzene            | ND          | μg/L  | 1.0 |                |           |            |          |         |               |            |
| 4-Isopropyltoluene          | ND          | μg/Ľ  | 1.0 |                |           |            |          |         |               |            |
| 4-Methyl-2-pentanone        | ND          | µg/L  | 10  |                |           |            |          |         |               |            |
| Methylene Chloride          | ND          | μg/L  | 3.0 |                |           |            |          |         |               |            |
| n-Butylbenzene              | ND          | μg/L  | 1.0 |                |           |            |          |         |               |            |
| n-Propylbenzene             | ND          | μg/L  | 1.0 |                |           |            |          |         |               |            |
| sec-Butylbenzene            | ND          | μg/L  | 1.0 |                |           |            | •        |         |               |            |
| Styrene                     | ND          | μg/L  | 1.0 |                |           |            |          |         |               |            |
| ert-Butylbenzene            | ND          | μg/L  | 1.0 |                |           |            |          |         |               |            |
| 1,1,1,2-Tetrachloroethane   | ND          | μg/L  | 1.0 |                |           |            |          |         |               |            |
| 1,1,2,2-Tetrachloroethane   | ND          | µg/L  | 2.0 |                |           |            |          |         |               |            |
| Tetrachloroethene (PCE)     | ND          | µg/L  | 1.0 |                |           |            |          |         |               |            |
| rans-1,2-DCE                | ND          | µg/L  | 1.0 |                |           |            |          |         |               |            |
| rans-1,3-Dichloropropene    | ND          | µg/L  | 1.0 |                |           |            |          |         |               |            |
| 1,2,3-Trichlorobenzene      | ND          | µg/L  | 1.0 |                |           |            |          |         |               |            |
| 1,2,4-Trichlorobenzene      | ND          | µg/L  | 1.0 |                |           |            |          |         |               |            |
| 1,1,1-Trichloroethane       | ND          | µg/L  | 1.0 |                |           |            |          |         |               |            |
| ,1,2-Trichloroethane        | ND          | μg/L  | 1.0 |                |           |            |          |         |               |            |
| richloroethene (TCE)        | ND          | µg/L  | 1.0 |                |           |            |          |         |               |            |
| richlorofluoromethane       | ND          | µg/L  | 1.0 |                |           |            |          |         |               |            |
| ,2,3-Trichloropropane       | ND          | μg/L  | 2.0 |                |           |            |          |         |               |            |
| /inyl chloride              | ND          | μg/L  | 1.0 |                |           |            |          |         |               |            |
| (ylenes, Total              | ND          | µg/L  | 1.5 |                |           |            |          |         |               |            |
| iample ID: 6ml rb           |             | MBLK  |     | ŧ              | Batch (D: | R38447     | Analysis | Date:   | 4/28/2010 9:  | 44:36 AM   |

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

## **QA/QC SUMMARY REPORT**

nt:

Western Refining Southwest, Inc.

oject: Injection Well 2nd QTR 4-21-10

Work Order:

1004554

| Analyte                        | Result    | Units        | PQL | SPK Va SPK ref | %Rec L    | owLimit Hig | ghLimit | %RPD    | RPDLimit  | Qual       |
|--------------------------------|-----------|--------------|-----|----------------|-----------|-------------|---------|---------|-----------|------------|
| Method: EPA Method 82608:      | VOLATILES |              |     |                |           |             |         |         |           |            |
| Sample ID: 5ml rb              | ,         | MBLK         |     |                | Batch ID: | R38447      | Analys  | s Date: | 4/28/2010 | 9:44:36 AN |
| Benzene                        | ND        | μg/L         | 1.0 |                |           |             |         |         |           |            |
| Toluene                        | ND        | μg/L         | 1.0 |                |           |             |         |         |           |            |
| Ethylbenzene                   | ND        | µg/L         | 1.0 |                |           |             |         |         |           |            |
| Methyl tert-butyl ether (MTBE) | ND        | µg/L         | 1.0 |                |           |             |         |         |           |            |
| 1,2,4-Trimethylbenzene         | ďИ        | µg/L         | 1.0 |                |           |             |         |         |           |            |
| 1,3,5-Trimethylbenzene         | ND        | µg/L         | 1.0 |                | •         |             | •       |         |           |            |
| 1,2-Dichloroethane (EDC)       | ND        | μg/L         | 1.0 |                |           |             |         |         |           |            |
| 1,2-Dibromoethane (EDB)        | ND        | μg/L         | 1.0 |                |           |             |         |         |           |            |
| Naphthalene                    | ND        | µg/L         | 2.0 |                |           |             |         |         |           |            |
| 1-Methylnaphthalene            | ND        | μg/L         | 4.0 |                |           |             |         |         |           |            |
| 2-Methylnaphthalene            | ND        | µg/L         | 4.0 |                |           |             |         |         |           |            |
| Acetone                        | ND        | μg/L         | 10  |                |           |             |         |         |           |            |
| Bromobenzene                   | ND        | μg/L         | 1.0 |                |           |             |         |         | •         |            |
| Bromodichloromethane           | ND        | μg/L         | 1.0 |                |           |             |         |         |           |            |
| Bromoform                      | ND        | μg/L         | 1.0 |                |           |             |         |         |           |            |
| Bromomethane                   | ND        | μg/L         | 1.0 |                |           |             |         |         |           |            |
| 2-Butanone                     | ND        | µg/L         | 10  |                |           |             |         |         |           |            |
| Carbon disulfide               | ND        | µg/L         | 10  |                |           |             |         |         |           |            |
| pon Tetrachloride              | ND        | µg/L         | 1.0 |                |           |             |         |         | •         |            |
| Sworobenzene                   | ND        | µg/L         | 1.0 |                |           |             |         |         |           |            |
| Chloroethane                   | ND        | μg/L         | 2.0 |                |           |             |         |         |           |            |
| Chloroform                     | ND        | μg/L         | 1.0 |                |           |             |         |         |           |            |
| Chloromethane                  | ND        | µg/L         | 1.0 |                |           |             |         |         |           |            |
| 2-Chlorotoluene                | ND        | μg/L         | 1.0 |                |           |             |         |         |           |            |
| 4-Chlorotoluene                | ND        | μg/L         | 1.0 |                |           |             |         |         |           |            |
| cis-1,2-DCE                    | ND        | μg/L         | 1.0 |                |           |             |         |         |           |            |
| cis-1,3-Dichloropropene        | ND        | µg/L         | 1.0 |                |           |             |         |         |           |            |
| 1,2-Dibromo-3-chloropropane    | ND        | µg/L         | 2.0 |                |           |             |         |         |           |            |
| Dibromochloromethane           | ND        | μg/L         | 1.0 |                |           |             |         |         |           |            |
| Dibromomethane                 | ND        | µg/L         | 1.0 |                |           |             |         |         |           |            |
| 2-Dichlorobenzene              | ND        | µg/L         | 1.0 |                |           |             |         |         |           |            |
| ,3-Dichlorobenzene             | ND        | μg/L         | 1.0 |                |           |             |         |         |           |            |
| ,4-Dichlorobenzene             | ND        | µg/L         | 1.0 | •              |           |             |         |         |           |            |
| Dichlorodifluoromethane        | ND        | μ <b>g/L</b> | 1.0 |                |           | •           |         |         |           |            |
| ,1-Dichloroethane              | ND        | μg/L         | 1.0 |                |           |             |         |         |           |            |
| ,1-Dichloroethene              | ND        | μg/L         | 1.0 |                |           |             |         |         |           |            |
| ,2-Dichloropropane             | ND        | μg/L         | 1.0 |                |           |             |         |         |           |            |
| ,3-Dichloropropane             | ND        | μg/L         | 1.0 |                |           |             |         |         |           |            |
| 2,2-Dichloropropane            | ND        | µg/L         | 2.0 |                |           |             |         |         |           |            |
| ,1-Dichloropropene             | ND        | µg/L         | 1.0 |                |           |             |         |         |           |            |
| lexachtorobutadiene            | ND        | µg/L         | 1.0 |                |           |             |         |         |           |            |
| -Hexanone                      | ND        | μg/L         | 10  |                |           |             |         |         |           |            |
| sopropylbenzene                | ND        | µg/L         | 1.0 |                |           |             |         |         |           |            |
| -isopropyltoluene              | ND        | μg/L         | 1.0 |                |           |             |         |         |           |            |
|                                |           | -            |     |                |           |             |         |         |           |            |

Conclitions

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

# **QA/QC SUMMARY REPORT**

Client:

Western Refining Southwest, Inc.

Project: Injection Well 2nd QTR 4-21-10

Work Order:

1004554

| Analyte                   | Result       | Units        | PQL | SPK Va S | SPK ref | %Rec I    | _owLlmit H | ighLimit %RP   | D RPDLimit Qual       |
|---------------------------|--------------|--------------|-----|----------|---------|-----------|------------|----------------|-----------------------|
| Method: EPA Method 8260   | B: VOLATILES |              |     |          |         |           |            |                |                       |
| Sample ID: 5ml rb         |              | MBLK         |     |          |         | Batch ID: | R38447     | Analysis Date: | 4/28/2010 9:44:36 A   |
| 4-Methyl-2-pentanone      | ND           | µg/L         | 10  |          |         |           |            |                |                       |
| Methylene Chloride        | . ND         | μg/L         | 3.0 |          |         |           |            | •              |                       |
| n-Butylbenzene            | ND           | µg/L         | 1.0 |          |         |           |            |                |                       |
| n-Propylbenzene           | ND           | μg/L         | 1.0 |          |         |           |            |                |                       |
| sec-Butylbenzene          | ND           | μg/L         | 1.0 |          |         |           |            |                |                       |
| Styrene                   | ND           | μ <b>g/L</b> | 1.0 |          |         |           |            |                |                       |
| tert-Butylbenzene         | ND           | µg/L         | 1.0 |          |         |           |            |                |                       |
| 1,1,1,2-Tetrachloroethane | ND           | μ <b>g/L</b> | 1.0 |          |         |           |            |                |                       |
| 1,1,2,2-Tetrachloroethane | ND           | µg/L         | 2.0 |          |         |           |            |                |                       |
| Tetrachloroethene (PCE)   | ND           | µg/L         | 1.0 |          |         |           |            |                |                       |
| trans-1,2-DCE             | ND           | µg/L         | 1.0 |          |         |           |            |                |                       |
| trans-1,3-Dichloropropene | ND.          | µg/Ł         | 1.0 |          |         |           |            |                |                       |
| 1,2,3-Trichlorobenzene    | ND           | µg/L         | 1.0 |          |         | •         |            |                |                       |
| 1,2,4-Trichlorobenzene    | ND           | μg/L         | 1.0 |          |         |           |            |                |                       |
| 1,1,1-Trichloroethane     | ND           | µg/L         | 1.0 |          |         |           |            |                |                       |
| 1,1,2-Trichloroethane     | ND           | μg/L         | 1.0 |          |         |           |            |                |                       |
| Trichloroethene (TCE)     | ND           | μg/L         | 1.0 |          |         |           |            |                |                       |
| Trichlorofluoromethane    | ND           | μg/L         | 1.0 |          |         |           |            |                |                       |
| 1,2,3-Trichloropropane    | ND           | µg/L         | 2.0 |          |         |           |            |                |                       |
| √inyl chloride            | ND           | µg/L         | 1.0 |          |         |           |            |                |                       |
| Kylenes, Total            | ND           | µg/L         | 1.5 |          |         |           |            | •              |                       |
| Sample ID: 100ng Ics      |              | LCS          |     |          |         | Batch ID: | R38406     | Analysis Date: | 4/27/2010 10:46:41 Al |
| Benzene                   | 17.75        | μg/L         | 1.0 | 20       | 0       | 88.7      | 82.4       | 116            |                       |
| Toluene                   | 20.13        | μg/L         | 1.0 | 20       | 0       | 101       | 89.5       | 123            |                       |
| Chlorobenzene             | 21.03        | μg/L         | 1.0 | 20       | 0       | 105       | 87.8       | 120            |                       |
| ,1-Dichloroethene         | 19.05        | μg/L         | 1.0 | 20       | . 0     | 95.2      | 90.3       | 138            |                       |
| richloroethene (TCE)      | 18.02        | μg/L         | 1.0 | 20       | 0       | 90.1      | 64         | 129            |                       |
| Sample ID: 100ng lcs_b    |              | LCS          |     |          |         | Batch ID: | R38406     | Analysis Date: | 4/27/2010 11:05:56 PI |
| Benzene                   | 18.01        | μg/L         | 1.0 | 20       | 0       | 90.0      | 82.4       | 116            |                       |
| oluene                    | 19.75        | μg/L         | 1.0 | 20       | 0       | 98.8      | 89.5       | 123            |                       |
| Chlorobenzene             | 20.97        | µg/L         | 1.0 | 20       | 0       | 105       | 87.8       | 120            |                       |
| ,1-Dichloroethene         | 19.12        | μ <b>g/L</b> | 1.0 | 20       | 0       | 95.6      | 90.3       | 138            |                       |
| richloroethene (TCE)      | 17.50        | µg/L         | 1.0 | 20       | 0       | 87.5      | 64         | 129            |                       |
| Sample ID: 100ng ics      |              | LCS          |     |          |         | Batch ID: | R38447     | Analysis Date: | 4/28/2010 11:18:25 AM |
| Benzene                   | 17.81        | μ <b>g/L</b> | 1.0 | 20       | 0       | 89.0      | 82.4       | 116            |                       |
| oluene                    | 20.00        | µg/L         | 1.0 | 20       | 0       | 100       | 89.5       | 123            |                       |
| Chlorobenzene             | 20.90        | μg/L         | 1.0 | 20       | 0       | 104       | 87.8       | 120            |                       |
| ,1-Dichloroethene         | 18.98        | µg/L         | 1.0 | 20       | 0       | 94.9      | 90.3       | 138            |                       |
| richloroethene (TCE)      | 18.13        | µg/L         | 1.0 | 20       | 0       | 90.7      | 64         | 129            |                       |

| Oug | lif | ere |
|-----|-----|-----|

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Date: 01-Jun-10

## **QA/QC SUMMARY REPORT**

roject:

Western Refining Southwest, Inc. Injection Well 2nd QTR 4-21-10

Work Order:

1004554

| Analyte                     | Result           | Units         | PQL | SPK Va SPK ref | %Rec Lo   | wLimit Hig | hLimit | %RPD     | RPDLimit   | Qual      |
|-----------------------------|------------------|---------------|-----|----------------|-----------|------------|--------|----------|------------|-----------|
| Method: EPA Method 82700    | C: Semivolatites |               |     |                | -         |            |        |          |            |           |
| Sample ID: mb-22099         |                  | MBLK          |     |                | Batch ID: | 22099      | Analys | is Date: | 5/4/2010 1 | 1:39:59 A |
| Acenaphthene                | ND               | μg/L          | 10  |                |           |            |        |          |            |           |
| Acenaphthylene              | ND               | μg/L          | 10  |                |           |            |        |          |            |           |
| Aniline                     | ND               | μg/L          | 10  |                |           |            | ,      |          |            |           |
| Anthracene                  | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| Azobenzene                  | ND               | μg/L          | 10  |                |           |            |        |          |            |           |
| Benz(a)anthracene           | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| Benzo(a)pyrene              | ND               | µg/L          | 10  |                | •         |            |        |          |            |           |
| Benzo(b)fluoranthene        | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| Benzo(g,h,i)perylene        | ND               | µg/L          | 10  |                |           |            |        |          | •          |           |
| Benzo(k)fluoranthene        | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| Benzoic acid                | ND               | μg/L          | 20  |                |           |            |        |          |            |           |
| Benzyl alcohol              | ND               | μg/L          | 10  |                |           |            |        | •        |            |           |
| Bis(2-chloroethoxy)methane  | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| Bis(2-chloroethyl)ether     | ND               | μg/L          | 10  |                |           |            |        |          |            |           |
| Bis(2-chlorolsopropyl)ether | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| 3is(2-ethylhexyl)phthalate  | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| 4-Bromophenyl phenyl ether  | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| Butyl benzyl phthalate      | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| rbazole                     | ND               | μg/L          | 10  |                |           |            |        |          |            |           |
| hloro-3-methylphenol        | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| 1-Chloroanlline             | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| 2-Chloronaphthalene         | ND               | μg/L          | 10  |                |           |            |        |          |            |           |
| 2-Chlorophenol              | ND               | μg/L          | 10  |                |           |            |        |          |            |           |
| I-Chlorophenyl phenyl ether | ND               | μg/L          | 10  |                |           |            |        |          |            |           |
| Chrysene                    | ND               | μ <b>g/</b> L | 10  |                |           |            |        |          | •          |           |
| Di-n-butyl phthalate        | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| Di-n-octyl phthalate        | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| Dibenz(a,h)anthracene       | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| Dibenzofuran                | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| ,2-Dichlorobenzene          | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| ,3-Dichlorobenzene          | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| ,4-Dichlorobenzene          | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| 3'-Dichlorobenzidine        | ND               | μ <b>g/L</b>  | 10  |                |           |            |        |          |            |           |
| Diethyl phthalate           | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| Dimethyl phthalate          | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| ,4-Dichlorophenol           | ND               | µg/L          | 20  |                |           |            |        |          |            |           |
| ,4-Dimethylphenol           | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| ,6-Dinitro-2-methylphenol   | ND               | µg/L          | 20  |                |           |            |        |          |            |           |
| ,4-Dinitrophenol            | ND               | h8/L          | 20  |                |           |            |        |          |            |           |
| 4-Dinitrotoluene            | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| ,6-Dinitrotoluene           | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| luoranthene                 | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| luorene                     | ND               | µg/L          | 10  |                |           |            |        |          |            |           |
| exachlorobenzene            | ND               | µg/L          | 10  |                |           |            |        |          |            |           |

ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits

Н Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

## **QA/QC SUMMARY REPORT**

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd QTR 4-21-10

Work Order:

1004554

| Analyte                   | Result         | Únits         | PQL | SPK Va | SPK ref | %Rec      | LowLimit H | lighLlmit | %RPD      | RPDLimit   | Qual       |
|---------------------------|----------------|---------------|-----|--------|---------|-----------|------------|-----------|-----------|------------|------------|
| Method: EPA Method 82700  | : Semivolatile |               |     |        |         |           |            |           | _         |            |            |
| Sample ID: mb-22099       |                | MBLK          |     |        |         | Batch ID: | 22099      | Analys    | sis Date: | 5/4/2010 1 | 1:39:59 AM |
| Hexachlorobutadiene       | ND             | µg/L          | 10  |        |         |           |            |           |           |            |            |
| Hexachlorocyclopentadiene | ND             | μg/L          | 10  |        |         |           |            |           |           |            |            |
| Hexachloroethane          | ND             | μg/L          | 10  |        |         |           |            |           |           |            |            |
| Indeno(1,2,3-cd)pyrene    | ND             | µg/L          | 10  |        |         |           |            |           |           |            |            |
| Isophorone                | ND             | μg/L          | 10  |        |         |           |            |           | _         |            |            |
| 2-Methylnaphthalene       | ND             | μg/L          | 10  |        |         |           |            | -         |           |            |            |
| 2-Methylphenol            | ND             | μg/L          | 10  |        |         |           |            |           |           |            |            |
| 3+4-Methylphenol          | ND             | μg/L          | 10  |        |         |           |            |           |           |            |            |
| N-Nitrosodi-n-propylamine | ND             | µg/L          | 10  |        |         |           |            |           |           |            | •          |
| N-Nitrosodimethylamine    | ND             | μg/L          | 10  |        |         |           |            |           |           | •          |            |
| N-Nitrosodiphenylamine    | ND             | µg/L          | 10  |        |         |           |            |           |           |            |            |
| Naphthalene               | ND             | µg/L          | 10  |        |         |           |            |           |           |            |            |
| 2-Nitroaniline            | ND             | µg/L          | 10  |        |         |           |            |           |           |            |            |
| 3-Nitroaniline            | ND             | μg/L          | 10  |        |         |           |            |           |           | •          |            |
| 1-Nitroanillne            | ND             | µg/L          | 10  |        |         |           |            |           |           |            |            |
| Nitrobenzene              | ND             | µg/L          | 10  |        |         |           |            |           |           |            |            |
| 2-Nitrophenol             | ND             | µg/L          | 10  | •      |         |           |            |           |           |            |            |
| I-Nitrophenol             | ND             | µg/L          | 10  |        |         |           |            |           |           |            |            |
| Pentachlorophenol         | ND             | µg/L          | 20  |        |         |           |            |           |           |            |            |
| Phenanthrene              | ND             | μg/L          | 10  |        |         |           |            |           |           |            |            |
| Phenol                    | ND             | µg/L          | 10  |        |         |           |            |           |           |            |            |
| Pyrene                    | ND             | µg/L          | 10  |        |         |           |            |           |           |            | •          |
| Pyridine                  | ND             | μg/L          | 10  |        |         |           |            |           |           |            |            |
| ,2,4-Trichlorobenzene     | ND             | µg/L          | 10  |        |         |           |            |           |           |            |            |
| 2,4,5-Trichlorophenol     | ND             | μg/L          | 10  |        |         |           |            |           |           |            |            |
| 2,4,6-Trichlorophenol     | ND             | μg/L          | 10  |        |         |           |            |           |           |            |            |
| Sample ID: Ics-22099      |                | LCS           |     |        |         | Batch ID: | 22099      | Analys    | s Date:   | 5/4/2010 2 | :45:06 PM  |
| cenaphthene               | 50.98          | μg/L          | 10  | 100    | 0       | 51.0      | 33.2       | 88.1      |           |            |            |
| -Chloro-3-methylphenol    | 80.56          | μg/L          | 10  | 200    | 0       | 40.3      | 26.5       | 101       |           |            |            |
| -Chlorophenol             | 80.68          | μ <b>g/L</b>  | 10  | 200    | 0       | 40.3      | 27.5       | 88.7      |           |            |            |
| ,4-Dichlorobenzene        | 37.40          | μg/L          | 10  | 100    | 0       | 37.4      | 27.2       | 74.1      |           |            |            |
| ,4-Dinitrotoluene         | 42.14          | μg/L          | 10  | 100    | 0       | 42.1      | 32.6       | 107       |           |            | ,          |
| l-Nitrosodi-n-propylamine | 42.06          | μg/L          | 10  | 100    | 0       | 42.1      | 27.1       | 96.3      |           |            |            |
| -Nitrophenol              | 50.10          | μg/L          | 10  | 200    | 0       | 25.1      | 6.78       | 74.7      |           |            |            |
| entachiorophenoi          | 69.66          | μg/L          | 20  | 200    | 3.92    | 32.9      | 14.8       | 113       |           |            |            |
| henol                     | 53.62          | µg/L          | 10  | 200    | 0       | 26.8      | 17         | 53.4      |           |            |            |
| yrene                     | 40.80          | µg/L          | 10  | 100    | 0       | 40.8      | 27         | 96.3      |           |            |            |
| ,2,4-Trichlorobenzene     | 44.66          | µg/L          | 10  | 100    | 0       | 44.7      | 30         | 77.9      |           |            |            |
| ample ID: lcsd-22099      |                | LCSD          |     |        |         | Batch ID: | 22099      | Analysi   | s Date:   | 5/4/2010 3 | :15:46 PM  |
| cenaphthene               | 42.82          | μ <b>g/</b> L | 10  | 100    | 0       | 42.8      | 33.2       | 88.1      | 17.4      | 30.5       |            |
| -Chloro-3-methylphenol    | 85.98          | μg/L          | 10  | 200    | 0       | 43.0      | 26.5       | 101       | 6.51      | 28.6       |            |
| -Chlorophenol             | 85.80          | μg/L          | 10  | 200    | 0       | 42.9      | 27.5       | 88.7      | 6.18      | 107        |            |
| 4-Dichlorobenzene         | 35.58          | hã\jr<br>ha   | 10  | 100    | 0       | 35.6      | 27.2       | 74.1      | 4.99      | 62.1       |            |
| 4-Dinitrotoluene          | 43.06          | µg/L          | 10  | 100    | ō       | 43.1      | 32.6       | 107       | 2.16      | 14.7       |            |

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Date: 01-Jun-10

## **QA/QC SUMMARY REPORT**

Project:

Western Refining Southwest, Inc.

Injection Well 2nd QTR 4-21-10

Work Order:

1004554

| Analyte                   | Result Units PQL SPK Va SPK ref |      |         |       | %Rec L | owLimit Hi | RPDLimit | Qual                        |          |            |            |
|---------------------------|---------------------------------|------|---------|-------|--------|------------|----------|-----------------------------|----------|------------|------------|
| Method: EPA Method 82700  | : Semivolatiles                 |      |         |       |        |            |          |                             |          |            |            |
| Sample ID: lcsd-22099     |                                 | LCSD |         |       |        | Batch ID:  | 22099    | <ul> <li>Analysi</li> </ul> | is Date: | 5/4/2010   | 3:15:46 PN |
| N-Nitrosodi-n-propylamine | 44.76                           | µg/L | 10      | 100   | 0      | 44.8       | 27.1     | 96.3                        | 6.22     | 30.3       |            |
| 4-Nitrophenol             | 75.52                           | μg/L | 10      | 200   | 0      | 37.8       | 6.78     | 74.7                        | 40.5     | 36.3       | R          |
| Pentachlorophenol         | 97.78                           | µg/L | 20      | 200   | 3.92   | 46.9       | 14.8     | 113                         | 33.6     | 49         |            |
| Phenol                    | 74.60                           | µg/L | 10      | 200   | 0      | 37.3       | 17       | 53.4                        | 32.7     | 52.4       |            |
| Pyrene                    | 34.80                           | μg/L | 10      | 100   | 0      | 34.8       | 27       | 96.3                        | 15.9     | 16.3       |            |
| 1,2,4-Trichlorobenzene    | 37,92                           | µg/L | 10      | 100   | 0      | 37.9       | 30       | 77.9                        | 16.3     | 36.4       |            |
| Method: EPA Method 7470:  | Mercury                         |      |         |       |        |            | •        |                             |          |            |            |
| Sample ID: MB-22150       |                                 | MBLK |         |       | •      | Batch ID:  | 22150    | Analysi                     | s Date:  | 5/4/2010 3 | :28:56 PM  |
| Mercury                   | ND                              | mg/L | 0.00020 |       |        |            |          |                             |          | •          |            |
| Sample ID: LCS-22150      |                                 | LCS  |         |       | •      | Batch ID:  | 22150    | Analysi                     | s Date:  | 5/4/2010 3 | :30:44 PM  |
| Mercury                   | 0.005465                        | mg/L | 0.00020 | 0.005 | 0      | 109        | 80       | 120                         |          |            |            |
| Sample ID: LCS-22150      |                                 | LCS  |         |       |        | Batch ID:  | 22150    | Analysi                     | s Date:  | 5/4/2010 3 | :32:33 PM  |
| Mercury                   | 0.005593                        | mg/L | 0.00020 | 0.005 | 0      | 112        | 80       | 120                         | 2.32     | 0          |            |



E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

## **QA/QC SUMMARY REPORT**

Client:

Western Refining Southwest, Inc.

Project: Injection Well 2nd QTR 4-21-10

Work Order:

1004554

| Analyte                                         | Result          | Units         | PQL    | SPK V | a SPK ref | %Rec L    | owLimit Hi | ghLimit %RI    | PD RPDLimit Qual        |
|-------------------------------------------------|-----------------|---------------|--------|-------|-----------|-----------|------------|----------------|-------------------------|
| Method: EPA 6010B: Total<br>Sample ID: MB-22113 | Recoverable M   | etals<br>MBLK |        |       |           | Batch ID: | 22113      | Analysis Date  | ə: 5/3/2010 12:15:43 P  |
| Arsenic                                         | ND              | mg/L          | 0.020  |       |           | Date: 10, | 11.10      | . maryon ban   | , popular (2.10.701)    |
| Aiseriic<br>Barlum                              | ND              | -             | 0.020  |       |           |           |            |                |                         |
| Cadmium                                         | ND              | mg/L          | 0.020  |       |           |           |            |                |                         |
| Calcium                                         | ND              | mg/L          | 1.0    |       |           |           |            | •              |                         |
| Chromium                                        | ND              | mg/L          | 0.0060 |       |           |           |            |                |                         |
| Lead                                            | ND              | mg/L          | 0.0050 |       | •         |           |            |                |                         |
| Magnesium                                       | ND              | mg/L<br>mg/L  | 1.0    |       | -         |           |            |                |                         |
| Potassium                                       | ND              |               | 1.0    |       |           |           |            |                |                         |
| Selenium                                        | ND              | mg/L<br>mg/L  | 0.050  |       |           |           |            |                |                         |
| Silver                                          | ND              | mg/L          | 0.0050 |       |           |           |            |                |                         |
| Sodium                                          | ND              | mg/L          | 1.0    |       |           |           |            |                |                         |
| Sample ID: LCS-22113                            | ND              | LCS           | 1.0    |       |           | Batch ID: | 22113      | Analysis Date  | e: 5/3/2010 12:18:52 Pi |
| Arsenic                                         | 0.5271          | mg/L          | 0.020  | 0.5   | 0         | 105       | 80         | 120            |                         |
| Barium                                          | 0.4954          | mg/L          | 0.020  | 0.5   | 0         | 99.1.     | 80         | 120            |                         |
| Cadmium                                         | 0.5053          | mg/L          | 0.0020 | 0.5   | 0         | 101       | 80         | 120            |                         |
| Calcium                                         | 51.98           | mg/L          | 1.0    | 50    | 0         | 104       | 80         | 120            |                         |
| Chromium                                        | 0.5065          | mg/L          | 0.0060 | 0.5   | 0         | 101       | 80         | 120            |                         |
| _ead                                            | 0.5081          | mg/L          | 0.0050 | 0.5   | 0         | 102       | 80         | 120            |                         |
| Magnesium                                       | 52.28           | mg/L          | 1.0    | 50    | 0         | 105       | 80         | 120            |                         |
| Potassium                                       | 54.39           | mg/L          | 1.0    | 50    | 0         | 109       | 80         | 120            |                         |
| Selenium                                        | 0.5137          | mg/L          | 0.050  | 0.5   | 0         | 103       | 80         | 120            |                         |
| Silver                                          | 0.5112          | mg/L          | 0.0050 |       | 0.0011    | 102       | 80         | 120            |                         |
| Sodium                                          | 54.84           | mg/L          | 1.0    | 50    | 0.0011    | 110       | 80         | 120            |                         |
| Sample ID: LCS-22113                            | <b>V</b> 1.51   | LCS           | 1.0    |       | •         | Batch ID: | 22113      | Analysis Date  | : 5/3/2010 12:21:69 PM  |
| Arsenic                                         | 0.5309          | mg/L          | 0.020  | 0.5   | 0         | 106       | 80         | 120            |                         |
| Barium                                          | 0.4971          | mg/L          | 0.020  | 0.5   | 0         | 99.4      | 80         | 120            |                         |
| Cadmium                                         | 0.5058          | mg/L          | 0.0020 | 0.5   | 0         | 101       | 80         | 120            |                         |
| Calcium                                         | 52.25           | mg/L          | 1.0    | 50    | 0         | 104       | 80         | 120            |                         |
| Chromium                                        | 0.5088          | mg/L          | 0.0060 | 0.5   | 0         | 102       | 80         | 120            | ·                       |
| ead .                                           | 0.5095          | mg/L          | 0.0050 | 0.5   | 0         | 102       | 80         | 120            |                         |
| Magnesium                                       | 52.41           | mg/L          | 1.0    | 50    | 0         | 105       | 80         | 120            |                         |
| Potassium                                       | 54.58           | mg/L          | 1.0    | 50    | 0         | 109       | 80         | 120            |                         |
| Selenium                                        | 0.5225          | mg/L          | 0.050  | 0.5   | 0         | 105       | 80         | 120            |                         |
| Silver                                          | 0.5118          | mg/L          | 0.0050 |       | 0.0011    | 102       | 80         | 120            |                         |
| Sodium                                          | 54.90           | mg/L          | 1.0    | 50    | 0         | 110       | 80         | 120            |                         |
|                                                 | -,,             |               |        |       |           |           |            |                |                         |
| Method: SM2540C MOD: To                         | tal Dissolved S |               |        |       |           | Datah ID- | 22007      | Analysis Mate  | . A19719040 9.50.00 DA  |
| Sample ID: MB-22067                             |                 | MBĽK          |        |       |           | Batch ID: | 22067      | Analysis Date: | ; 4/27/2010 3:58:00 PN  |
| otal Dissolved Solids                           | ND              | mg/L          | 20.0   |       |           |           |            |                |                         |
| sample ID: LCS-22067                            |                 | LCS           |        |       |           | Batch ID: | 22067      | Analysis Date: | 4/27/2010 3:58:00 PN    |
| otal Dissolved Solids                           | 1032            | mg/L          | 20.0   | 1000  | 0         | 103       | 80         | 120            |                         |

| Qual | fiers |
|------|-------|

E Estimated value

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

J Analyte detected below quantitation limits

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

|                                                 | Sample            | Receipt C  | hecklist           |                                         |                         |
|-------------------------------------------------|-------------------|------------|--------------------|-----------------------------------------|-------------------------|
| Client Name WESTERN REFINING\SOUT               |                   |            | Date Receive       | ad:                                     | 4/23/2010               |
| Work Order Number 1004554                       |                   | }          | Received by        | y: ARS                                  | $\hat{\mathcal{L}}$     |
|                                                 | X)                | 1) 00      | Sample ID          | abels checked by:                       | 05                      |
| Checklist completed by:                         | 44                | Date       | tho                |                                         | Initials                |
|                                                 | <u> </u>          |            |                    |                                         |                         |
| Matrix:                                         | Carrier name:     | <u>UPS</u> |                    |                                         |                         |
| Shipping container/cooler in good condition?    |                   | Yes 🗹      | No 🗀               | Not Present                             |                         |
| Custody seals Intact on shipping container/coo  | oler?             | Yes 🗹      | No 🗌               | Not Present                             | Not Shipped             |
| Custody seals intact on sample bottles?         |                   | Yes 🗌      | No 🗌               | N/A ☑                                   |                         |
| Chain of custody present?                       |                   | Yes 🗹      | No 🗌               |                                         |                         |
| Chain of custody signed when relinquished and   | d received?       | Yes 🗹      | No 🗌               |                                         |                         |
| Chain of custody agrees with sample labels?     |                   | Yes 🗹      | No 🗆               |                                         |                         |
| Samples in proper container/bottle?             |                   | Yes 🗹      | No 🗆               |                                         |                         |
| Sample containers intact?                       | ٠                 | Yes 🗹      | No 🗆               |                                         |                         |
| Sufficient sample volume for indicated test?    |                   | Yes 🗹      | No 🗆               |                                         |                         |
| All samples received within holding time?       | •                 | Yes 🗹      | No 🗔               | •                                       | Number of preserved     |
| Vater - VOA vials have zero headspace?          | No VOA vials subn | nitted     | Yes 🗹              | No 🗌                                    | bottles checked for pH: |
| Water - Preservation labels on bottle and cap n | natch?            | Yes 🗹      | No 🗌               | N/A                                     | 22                      |
| Water - pH acceptable upon receipt?             |                   | Yes 🗹      | No 🗔               | N/A                                     | <2>>12 unless noted     |
| Container/Temp Blank temperature?               |                   | 4.9°       | <6° C Acceptab     |                                         |                         |
| COMMENTS:                                       |                   |            | If given sufficien | t time to cool.                         |                         |
|                                                 |                   |            |                    |                                         |                         |
|                                                 |                   |            |                    |                                         |                         |
|                                                 |                   |            |                    |                                         |                         |
|                                                 |                   |            |                    |                                         |                         |
|                                                 |                   |            |                    |                                         |                         |
|                                                 |                   |            |                    |                                         |                         |
| Client contacted                                | Date contacted:   |            | Pers               | on contacted                            |                         |
| Contacted by:                                   | Regarding:        |            |                    |                                         |                         |
| Comments:                                       |                   |            |                    |                                         |                         |
|                                                 |                   |            |                    |                                         |                         |
|                                                 |                   |            |                    | _                                       |                         |
|                                                 |                   |            |                    |                                         |                         |
|                                                 |                   |            |                    |                                         |                         |
| Corrective Action                               |                   |            |                    |                                         |                         |
|                                                 |                   |            |                    |                                         |                         |
|                                                 |                   |            |                    | , , , , , , , , , , , , , , , , , , , , |                         |

|                         | HALL ENVIRONMENTAL | www.nallenvironmental.com  4901 Hawkins NE - Albuquerque, NM 87109 | Tel. 505-345-3975 Fax 505-345-4107 | Analysis              | <b>~</b> (9) (3)           | selices        | 1004<br>1004<br>1004<br>1004 | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | 115 A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NON<br>YNC<br>YNC<br>YNC<br>YNC<br>YNC<br>YNC<br>YNC<br>YNC<br>YNC<br>YN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MTE  Moth  Moth  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  Work  W | BTEX +  BTEX +  BTEX +  BTEX +  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS2 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 Pe  BOS1 PE | 7 × × × × × × × × × × × × × × × × × × × | ×                | ×       | ×      | X               | <b>X</b>     | <b>X</b> | ×                    |               |   |                               | Kemarks:          | is as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical r |
|-------------------------|--------------------|--------------------------------------------------------------------|------------------------------------|-----------------------|----------------------------|----------------|------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------|---------|--------|-----------------|--------------|----------|----------------------|---------------|---|-------------------------------|-------------------|-------------------------------------------------------------------------------------------------------|
| Tum-Around Time:        | Standard   Rush    | Injection Well "-21-10                                             | Project #:                         |                       | Project Manager:           |                | ,                            | Sampler CAR KMK                         | Onlice with the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and the particular and t | Sample dimension of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Container Preservative Type and # Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3-10A HC 1                              | 1- liter Amber 1 | 1-500ml | 1-50ml | 1- (25mg H2504) | 1-500ml HNO3 |          | 1-500ml Zive Acetate |               | C |                               | Received by: Time | redited laboratories. This                                                                            |
| Chain-of-Custody Record |                    | Mailing Address: # 50 CR 4990                                      |                                    | Phone #: 565-639-4/6/ | email or Fax#: 525-632-37/ | QA/QC Package: | X Standard                   | On                                      | ☐ Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | □ EDD (Type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Time Matrix Sample Request ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 422-10 11AM Had INJECTION Well          |                  |         |        |                 |              |          |                      | Chip Blank 00 |   | Date: Time: Reflectisched hr. | 2                 | If necessary                                                                                          |



#### **COVER LETTER**

Monday, August 09, 2010

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Injection Well 3rd QTR 7/21/10

Dear Cindy Hurtado:

Order No.: 1007798

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 7/22/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely.

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682

ORELAP Lab # NM100001

Texas Lab# T104704424-08-TX



Date: 09-Aug-10

**CLIENT:** 

Western Refining Southwest, Inc.

Lab Order:

1007798

Project:

Injection Well 3rd QTR 7/21/10

Lab ID:

1007798-01

Client Sample ID: Injection Well

Collection Date: 7/21/2010 8:30:00 AM

Date Received: 7/22/2010

Matrix: AQUEOUS

| Analyses                       | Result  | PQL     | Qual Units | DF | Date Analyzed         |
|--------------------------------|---------|---------|------------|----|-----------------------|
| EPA METHOD 300.0: ANIONS       |         |         |            |    | Analyst: LJB          |
| Chloride                       | 220     | 5.0     | mg/L       | 50 | 7/22/2010 10:01:53 PM |
| Sulfate                        | 130     | 5.0     | mg/L       | 10 | 7/22/2010 9:44:28 PM  |
| EPA METHOD 7470: MERCURY       |         |         |            |    | Analyst: SNV          |
| Mercury                        | 0.00095 | 0.00020 | mg/L       | 1  | 7/26/2010 5:37:37 PM  |
| EPA 6010B: TOTAL RECOVERABLE   | METALS  |         |            |    | Analyst: RAGS         |
| Arsenic                        | ND      | 0.020   | mg/L       | 1  | 7/29/2010 4:43:29 PM  |
| Barium                         | 0.24    | 0.020   | mg/L       | 1  | 7/29/2010 4:43:29 PM  |
| Cadmium                        | ND      | 0.0020  | mg/L       | 1  | 7/29/2010 4:43:29 PM  |
| Calcium                        | 76      | 1.0     | mg/L       | 1  | 7/29/2010 4:43:29 PM  |
| Chromlum                       | 0.012   | 0.0060  | mg/L       | 1  | 7/29/2010 4:43:29 PM  |
| Lead                           | 0.0052  | 0.0050  | mg/L       | 1  | 7/29/2010 4:43:29 PM  |
| Magnesium                      | 16      | 1.0     | mg/L       | 1  | 7/29/2010 4:43:29 PM  |
| Potassium                      | 5.3     | 1.0     | mg/L       | 1  | 7/29/2010 4:43:29 PM  |
| Selenium                       | NĐ      | 0.050   | mg/L       | 1  | 7/29/2010 4:43:29 PM  |
| Silver                         | ND      | 0.0050  | mg/L       | 1  | 7/29/2010 4:43:29 PM  |
| Sodium                         | 210     | 5.0     | mg/L       | 5  | 7/29/2010 4:47:20 PM  |
| EPA METHOD 8270C: SEMIVOLATILI | ES      |         |            |    | Analyst: LBJ          |
| Acenaphthene                   | ND      | 50      | μg/L       | 1  | 7/28/2010 3:43:29 PM  |
| Acenaphthylene                 | ND      | 50      | μg/L       | 1  | 7/28/2010 3:43:29 PM  |
| Aniline                        | ND      | 50      | μg/L       | 1  | 7/28/2010 3:43:29 PM  |
| Anthracene                     | ND      | 50      | μg/L       | 1  | 7/28/2010 3:43:29 PM  |
| Azobenzene                     | ND      | 50      | µg/L       | 1  | 7/28/2010 3:43:29 PM  |
| Benz(a)anthracene              | ND      | 50      | μg/L       | 1  | 7/28/2010 3:43:29 PM  |
| Benzo(a)pyrene                 | ND      | 50      | μg/L       | 1  | 7/28/2010 3:43:29 PM  |
| Benzo(b)fluoranthene           | ND      | 50      | µg/L       | 1  | 7/28/2010 3:43:29 PM  |
| Benzo(g,h,i)perylene           | ND      | 50      | μg/L       | 1  | 7/28/2010 3:43:29 PM  |
| Benzo(k)fluoranthene           | ND      | 50      | μg/L       | 1  | 7/28/2010 3:43:29 PM  |
| Benzoic acid                   | ND      | 100     | µg/L       | 1  | 7/28/2010 3:43:29 PM  |
| Benzyl alcohol                 | ND      | 50      | μg/L       | 1  | 7/28/2010 3:43:29 PM  |
| Bis(2-chloroethoxy)methane     | ND      | 50      | μg/L       | 1  | 7/28/2010 3:43:29 PM  |
| Bis(2-chloroethyl)ether        | ND      | 50      | μg/L       | 1  | 7/28/2010 3:43:29 PM  |
| Bis(2-chloroisopropyl)ether    | ND      | 50      | μg/L       | 1  | 7/28/2010 3:43:29 PM  |
| Bis(2-ethylhexyl)phthalate     | ND      | 50      | μg/L       | 1  | 7/28/2010 3:43:29 PM  |
| 4-Bromophenyl phenyl ether     | ND      | 50      | µg/L       | 1  | 7/28/2010 3:43:29 PM  |
| Butyl benzyl phthalate         | ND      | 50      | µg/L       | 1  | 7/28/2010 3:43:29 PM  |
| Carbazole                      | ND      | 50      | μg/L       | 1  | 7/28/2010 3:43:29 PM  |
| 4-Chloro-3-methylphenol        | ND      | 50      | μg/L       | 1  | 7/28/2010 3:43:29 PM  |
| 4-Chloroaniline                | ND      | 50      | μg/L       | 1  | 7/28/2010 3:43:29 PM  |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 1 of 5

Date: 09-Aug-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1007798

Project:

Injection Well 3rd QTR 7/21/10

Lab ID:

1007798-01

Client Sample ID: Injection Well

Collection Date: 7/21/2010 8:30:00 AM

Date Received: 7/22/2010

Matrix: AQUEOUS

| Analyses                    | Result | PQL Q | ual Units | DF  | Date Analyzed        |
|-----------------------------|--------|-------|-----------|-----|----------------------|
| EPA METHOD 8270C: SEMIVOLA  | TILES  |       |           |     | Analyst: LB.         |
| 2-Chloronaphthalene         | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| 2-Chlorophenol              | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| 4-Chlorophenyl phenyl ether | ND     | 50    | µg/L      | 1   | 7/28/2010 3:43:29 PM |
| Chrysene                    | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| Di-n-butyi phthalate        | . ND   | 50    | μg/L      | 1 - | 7/28/2010 3:43:29 PM |
| Di-n-octyl phthalate        | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| Dibenz(a,h)anthracene       | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| Dibenzofuran                | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| 1,2-Dichlorobenzene         | NĐ     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| 1,3-Dichlorobenzene         | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| 1,4-Dichlorobenzene         | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| 3,3'-Dichlorobenzidine      | ND     | 50    | µg/L      | 1   | 7/28/2010 3:43:29 PM |
| Diethyl phthalate           | ND     | 50    | µg/L      | 1   | 7/28/2010 3:43:29 PM |
| Dimethyl phthalate          | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| 2,4-Dichlorophenol          | ND     | 100   | µg/L      | 1   | 7/28/2010 3:43:29 PM |
| 2,4-Dimethylphenol          | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| 4,6-Dinitro-2-methylphenol  | ND     | 100   | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| 2,4-Dinitrophenol           | ND     | 100   | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| 2,4-Dinitrotoluene          | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| 2,6-Dinitrotoluene          | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| Fluoranthene                | ND     | 50    | µg/L      | 1   | 7/28/2010 3:43:29 PM |
| Fluorene                    | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43;29 PM |
| Hexachlorobenzene           | ND     | 50    | μg/L'     | 1   | 7/28/2010 3:43:29 PM |
| Hexachlorobutadiene         | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| Hexachlorocyclopentadiene   | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| Hexachloroethane            | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| Indeno(1,2,3-cd)pyrene      | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| Isophorone                  | · ND   | 50    | µg/L      | 1   | 7/28/2010 3:43:29 PM |
| 2-Methylnaphthalene         | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| 2-Methylphenol              | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| 3+4-Methylphenol            | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| N-Nitrosodi-n-propylamine   | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| N-Nitrosodimethylamine      | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| N-Nitrosodiphenylamine      | ND     | 50    | µg/L      | 1   | 7/28/2010 3:43:29 PM |
| Naphthalene                 | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| 2-Nitroaniline              | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| 3-Nitroaniline              | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| 4-Nitroaniline              | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| Nitrobenzene                | ND     | 50    | µg/L      | 1   | 7/28/2010 3:43:29 PM |
| 2-Nitrophenol               | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |
| 4-Nitrophenol               | ND     | 50    | μg/L      | 1   | 7/28/2010 3:43:29 PM |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 2 of 5

Date: 09-Aug-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1007798

Project:

Injection Well 3rd QTR 7/21/10

Lab ID:

1007798-01

Client Sample ID: Injection Well

Collection Date: 7/21/2010 8:30:00 AM

Date Received: 7/22/2010

Matrix: AQUEOUS

| Analyses                               | Result | PQL Qı    | ıal Units      | DF | Date Analyzed        |
|----------------------------------------|--------|-----------|----------------|----|----------------------|
| <b>EPA METHOD 8270C: SEMIVOLATILES</b> |        |           | T STALL DOZEN. |    | Analyst: LBJ         |
| Pentachlorophenol                      | ND     | 100       | μg/L           | 1  | 7/28/2010 3:43:29 PM |
| Phenanthrene                           | ND     | 50        | μg/L           | 1  | 7/28/2010 3:43:29 PM |
| Phenol                                 | ND     | 50        | µg/L           | 1  | 7/28/2010 3:43:29 PM |
| Pyrene                                 | ND     | 50        | μg/L           | 1  | 7/28/2010 3:43:29 PM |
| Pyridine                               | ND     | 50        | µg/L           | 1  | 7/28/2010 3:43:29 PM |
| 1,2,4-Trichlorobenzene                 | ND     | 50        | μg/L           | 1  | 7/28/2010 3:43:29 PM |
| 2,4,5-Trichlorophenol                  | ND     | 50        | μg/L           | 1  | 7/28/2010 3:43:29 PM |
| 2,4,6-Trichlorophenol                  | ND     | 50        | μg/L           | 1  | 7/28/2010 3:43:29 PM |
| Surr: 2,4,6-Tribromophenol             | 62.3   | 16.6-150  | %REC           | 1  | 7/28/2010 3:43:29 PM |
| Surr: 2-Fluorobiphenyl                 | 50.9   | 19.6-134  | %REC           | 1  | 7/28/2010 3:43:29 PM |
| Surr: 2-Fluorophenol                   | 48.6   | 9.54-113  | %REC           | 1  | 7/28/2010 3:43:29 PM |
| Surr: 4-Terphenyl-d14                  | 61.2   | 22.7-145  | %REC           | 1  | 7/28/2010 3:43:29 PM |
| Surr: Nitrobenzene-d5                  | 48.7   | 14.6-134  | %REC           | 1  | 7/28/2010 3:43:29 PM |
| Surr: Phenol-d5                        | 37.1   | 10.7-80.3 | %REC           | 1  | 7/28/2010 3:43:29 PM |
| EPA METHOD 8260B: VOLATILES            |        |           |                |    | Analyst: HL          |
| Benzene                                | ND     | 1.0       | μg/L           | 1  | 7/26/2010 2:21:43 PM |
| Toluene                                | ND     | 1.0       | μg/L           | 1  | 7/26/2010 2:21:43 PM |
| Ethylbenzene                           | ND     | 1.0       | μg/L           | 1  | 7/26/2010 2:21:43 PM |
| Methyl tert-butyl ether (MTBE)         | ND     | 1.0       | μg/L           | 1  | 7/26/2010 2:21:43 PM |
| 1,2,4-Trimethylbenzene                 | ND     | 1.0       | µg/L           | 1  | 7/26/2010 2:21:43 PM |
| 1,3,5-Trimethylbenzene                 | ND     | 1.0       | μg/L           | 1  | 7/26/2010 2:21:43 PM |
| 1,2-Dichloroethane (EDC)               | ND     | 1.0       | μg/L           | 1  | 7/26/2010 2:21:43 PM |
| 1,2-Dibromoethane (EDB)                | ND     | 1.0       | μg/L           | 1  | 7/26/2010 2:21:43 PM |
| Naphthalene                            | ND     | 2.0       | μg/L           | 1  | 7/26/2010 2:21:43 PM |
| 1-Methylnaphthalene                    | ND     | 4.0       | μg/L           | 1  | 7/26/2010 2:21:43 PM |
| 2-Methylnaphthalene                    | ND     | 4.0       | µg/L           | 1  | 7/26/2010 2:21:43 PM |
| Acetone                                | 21     | 10        | μg/L           | 1  | 7/26/2010 2:21:43 PM |
| Bromobenzene                           | ND     | 1.0       | μg/L           | 1  | 7/26/2010 2:21:43 PM |
| Bromodichloromethane                   | ND     | 1.0       | μg/L           | 1  | 7/26/2010 2:21:43 PM |
| Bromoform                              | ND     | 1.0       | μg/L           | 1  | 7/26/2010 2:21:43 PM |
| Bromomethane                           | ND     | 1.0       | μg/L           | 1  | 7/26/2010 2:21:43 PM |
| 2-Butanone                             | ND     | 10        | μg/L           | 1  | 7/26/2010 2:21:43 PM |
| Carbon disulfide                       | ND     | 10        | µg/L           | 1  | 7/26/2010 2:21:43 PM |
| Carbon Tetrachloride                   | ND     | 1.0       | µg/L           | 1  | 7/28/2010 2:21:43 PM |
| Chlorobenzene                          | ND     | 1.0       | μg/L           | 1  | 7/26/2010 2:21:43 PM |
| Chloroethane                           | ND     | 2.0       | μg/L           | 1  | 7/26/2010 2:21:43 PM |
| Chloroform                             | ND     | 1.0       | µg/L           | 1  | 7/26/2010 2:21:43 PM |
| Chloromethane                          | ND     | 1.0       | μg/L           | 1  | 7/26/2010 2:21:43 PM |
| 2-Chlorotoluene                        | ND     | 1.0       | µg/L           | 1  | 7/26/2010 2:21:43 PM |
| 4-Chlorotoluene                        | ND     | 1.0       | μg/L           | 1  | 7/26/2010 2:21:43 PM |

#### Qualiflers:

- Value exceeds Maximum Contaminant Level
- Estimated value Е
- Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
  - Not Detected at the Reporting Limit
  - Spike recovery outside accepted recovery limits

Page 3 of 5



Date: 09-Aug-10

**CLIENT:** 

Western Refining Southwest, Inc.

Lab Order:

1007798

Injection Well 3rd QTR 7/21/10

Project: Lab ID:

1007798-01

Client Sample ID: Injection Well

Collection Date: 7/21/2010 8:30:00 AM

Date Received: 7/22/2010

Matrix: AQUEOUS

| Analyses                    | Result  | PQL      | Qual Units | DF | Date Analyzed                     |
|-----------------------------|---------|----------|------------|----|-----------------------------------|
| EPA METHOD 8260B: VOLATILES | <u></u> |          |            |    | Analyst: HL                       |
| cis-1,2-DCE                 | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| cis-1,3-Dichloropropene     | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PN              |
| 1,2-Dibromo-3-chloropropane | ND      | 2.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| Dibromochloromethane        | ND      | 1.0      | µg/L       | 1  | 7/26/2010 2:21:43 PN              |
| Dibromomethane              | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| 1,2-Dichlorobenzene         | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| 1,3-Dichlorobenzene         | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| 1,4-Dichlorobenzene         | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| Dichlorodifluoromethane     | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| 1,1-Dichloroethane          | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| 1,1-Dichloroethene          | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| 1,2-Dichloropropane         | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| 1,3-Dichloropropane         | ND      | 1.0      | µg/L       | 1  | 7/26/2010 <sup>-</sup> 2:21:43 PM |
| 2,2-Dichloropropane         | ND      | 2.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| 1,1-Dichloropropene         | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| Hexachlorobutadiene         | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| 2-Hexanone                  | ND      | 10       | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| Isopropylbenzene            | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| 4-isopropyitoluene          | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| 4-Methyl-2-pentanone        | ND      | 10       | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| Methylene Chloride          | ND      | 3.0      | µg/L       | 1  | 7/26/2010 2:21:43 PM              |
| n-Butylbenzene              | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| n-Propylbenzene             | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| sec-Butylbenzene            | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| Styrene                     | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| tert-Butylbenzene           | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| 1,1,1,2-Tetrachloroethane   | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| 1,1,2,2-Tetrachloroethane   | ND      | 2.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| Tetrachloroethene (PCE)     | ND      | .1.0     | µg/L       | 1  | 7/26/2010 2:21:43 PM              |
| trans-1,2-DCE               | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| trans-1,3-Dichloropropene   | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| 1,2,3-Trichlorobenzene      | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| 1,2,4-Trichlorobenzene      | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| 1,1,1-Trichloroethane       | ND      | 1.0      | µg/L       | 1  | 7/26/2010 2:21:43 PM              |
| 1,1,2-Trichloroethane       | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| Trichloroethene (TCE)       | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| Trichlorofluoromethane      | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| 1,2,3-Trichloropropane      | ND      | 2.0      | µg/L       | 1  | 7/26/2010 2:21:43 PM              |
| Vinyl chloride              | ND      | 1.0      | μg/L       | 1  | 7/26/2010 2:21:43 PM              |
| Xylenes, Total              | ND      | 1.5      | μg/L       | 1  | 7/26/2010 2;21:43 PM              |
| Surr: 1,2-Dichloroethane-d4 | 105     | 54.6-141 | %REC       | 1  | 7/26/2010 2:21:43 PM              |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Estimated value
- Analyte detected below quantitation limits J
- Non-Chlorinated
- PQL Practical Quantitation Limit

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded H
- MCL Maximum Contaminant Level
- Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits

Page 4 of 5

Date: 09-Aug-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1007798

Project:

Injection Well 3rd QTR 7/21/10

Lab ID:

1007798-01

Client Sample ID: Injection Well

Collection Date: 7/21/2010 8:30:00 AM

Date Received: 7/22/2010

Matrix: AQUEOUS

| Analyses                           | Result   | PQL (    | Qual | Units      | DF  | Date Analyzed        |
|------------------------------------|----------|----------|------|------------|-----|----------------------|
| EPA METHOD 8260B: VOLATILES        | <u> </u> | *        |      |            |     | Analyst: HL          |
| Surr: 4-Bromofluorobenzene         | 90.3     | 60.1-133 |      | %REC       | - 1 | 7/26/2010 2:21:43 PM |
| Surr: Dibromofluoromethane         | 108      | 78.5-130 |      | %REC       | 1   | 7/26/2010 2:21:43 PM |
| Surr: Toluene-d8                   | 89.0     | 79.5-126 |      | %REC       | 1   | 7/26/2010 2:21:43 PM |
| SM 2320B: ALKALINITY               |          |          |      |            |     | Analyst: MMS         |
| Alkalinity, Total (As CaCO3)       | 230      | 20       |      | mg/L CaCO3 | 1   | 7/29/2010 3:48:29 PM |
| Carbonate                          | ND       | 2.0      |      | mg/L CaCO3 | 1   | 7/29/2010 3:48:29 PM |
| Bicarbonate                        | 230      | 20       |      | mg/L CaCO3 | 1   | 7/29/2010 3:48:29 PM |
| EPA 120.1: SPECIFIC CONDUCTANCE    |          |          |      |            |     | Analyst: MMS         |
| Specific Conductance               | 1400     | 0.010    |      | µmhos/cm   | 1   | 7/29/2010 3:48:29 PM |
| SM4500-H+B: PH                     |          |          |      |            |     | Analyst: MMS         |
| pH ·                               | 7.39     | 0.1      | H    | pH units   | 1   | 7/29/2010 3:48:29 PM |
| SM2540C MOD: TOTAL DISSOLVED SOLID | S        |          |      |            |     | Analyst: KS          |
| Total Dissolved Solids             | 905      | 100      |      | mg/L       | 1   | 7/27/2010 1:27:00 PM |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 5 of 5

#### LABORATORY ANALYTICAL REPORT

Client:

Hall Environmental

Project:

1007798

Lab ID:

B10072234-001

Client Sample ID 1007798-01E Injection Well

Report Date: 08/02/10

Collection Date: 07/21/10 08:30

DateReceived: 07/23/10

Matrix: Aqueous

| Analyses                   | Result | Units | Qualifiers | RL.  | MCL/<br>QCL | Method                                | Analysis Date / By   |
|----------------------------|--------|-------|------------|------|-------------|---------------------------------------|----------------------|
| IGNITABILITY               |        |       |            |      |             | · · · · · · · · · · · · · · · · · · · |                      |
| Flash Point (Ignitability) | >200   | ٩F    |            | 30   |             | SW1010A                               | 07/27/10 10:00 / jh  |
| CORROSIVITY                |        |       |            |      |             | •                                     |                      |
| pH of Liquid Waste         | 7.20   | s.u.  |            | 0.10 |             | SW9040C                               | 07/30/10 13:00 / jh  |
| REACTIVITY                 |        |       |            |      |             |                                       |                      |
| Cyanide, Reactive          | ND     | mg/kg |            | 0.05 | 250         | SW846 Ch 7                            | 07/28/10 15:40 / kjp |
| Sulfide, Reactive          | ND     | mg/kg |            | 20   | 500         | SW846 Ch 7                            | 07/27/10 08:00 / jh  |

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Client:

Western Refining Southwest, Inc.

Project: Injection Well 3rd QTR 7/21/10

Work Order:

1007798

| Analyte                      | Result | Units   | PQL         | SPK Va SPI | K ref | %Rec L    | owLimit Hi | ghLimit %RPD   | RPDLimit Qual         |
|------------------------------|--------|---------|-------------|------------|-------|-----------|------------|----------------|-----------------------|
| Method: EPA Method 300.0:    | Anions |         | · · · · · · |            |       |           |            |                |                       |
| Sample ID: MB                |        | MBLK    |             |            |       | Batch ID: | R39990     | Analysis Date: | 7/22/2010 10:08:01 AN |
| Chloride                     | ND     | mg/L    | 0.50        |            |       |           |            |                |                       |
| Sulfate                      | ND     | mg/L    | 0.50        |            |       |           |            |                |                       |
| Sample ID: LCS               |        | LCS     |             |            |       | Batch ID: | R39990     | Analysis Date: | 7/22/2010 10:25:25 AN |
| Chloride                     | 4.996  | mg/L    | 0.50        | 5          | 0     | 99.9      | 90         | 110            |                       |
| Sulfate                      | 10.30  | mg/L.   | 0.50        | 10         | 0     | 103       | 90         | 110            |                       |
| Method: SM 2320B: Alkalinity | ,      |         |             |            |       |           |            |                |                       |
| Sample ID: MB                |        | MBLK    |             |            |       | Batch ID: | R40069     | Analysis Date: | 7/27/2010 3:06:00 PN  |
| Alkalinity, Total (As CaCO3) | ND     | mg/L Ca | 20          |            |       |           |            |                |                       |
| Carbonate                    | ND     | mg/L Ca | 2.0         |            |       |           |            |                |                       |
| Blcarbonate                  | ND     | mg/L Ca | 20          |            |       |           |            |                |                       |
| Sample ID: MB                |        | MBLK    |             |            |       | Batch ID: | R40101     | Analysis Date: | 7/29/2010 1:44:18 PM  |
| Alkalinity, Total (As CaCO3) | ND     | mg/L Ca | 20          |            |       |           |            |                |                       |
| Carbonate                    | ND     | mg/L Ca | 2.0         | •          |       |           |            |                |                       |
| Bicarbonate                  | ND .   | mg/L Ca | 20          |            |       |           |            |                |                       |
| Sample ID: MB                |        | MBLK    |             |            |       | Batch ID: | R40101     | Analysis Date: | 7/29/2010 7:10:25 PM  |
| Alkalinity, Total (As CaCO3) | ND     | mg/L Ca | 20          |            |       |           |            |                |                       |
| Carbonate                    | ND     | mg/L Ca | 2.0         |            |       |           |            |                |                       |
| Bicarbonate                  | ND     | mg/L Ca | 20          |            |       |           |            |                |                       |
| Sample ID: 80PPM LCS         |        | LCS     |             |            |       | Batch ID: | R40069     | Analysis Date: | 7/27/2010 3:12:00 PM  |
| Alkalinity, Total (As CaCO3) | 79.68  | mg/L Ca | 20          | 80         | 0     | 99.6      | 96.5       | 104            |                       |
| Sample ID: LCS               |        | LCS     |             |            |       | Batch ID: | R40101     | Analysis Date: | 7/29/2010 1:50:25 PM  |
| Alkalinity, Total (As CaCO3) | 79.04  | mg/L Ca | 20          | 80         | 0     | 98.8      | 96.5       | 104            |                       |
| Sample ID: LCS2              |        | LCS     |             |            |       | Batch ID: | R40101     | Analysis Date: | 7/29/2010 7:15:22 PM  |
| Alkalinity, Total (As CaCO3) | 80.04  | mg/L Ca | 20          | 80         | 0     | 100       | 96.5       | 104            |                       |



E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits



lient: Project: Western Refining Southwest, Inc.

Injection Well 3rd QTR 7/21/10

Work Order:

1007798

| Analyte                        | Result    | Units                 | PQL  | SPK Va SI | PK ref | %Rec L    | owLimit Hi | ghLimit | %RPD      | RPDLimi   | t Qual     |
|--------------------------------|-----------|-----------------------|------|-----------|--------|-----------|------------|---------|-----------|-----------|------------|
| Method: EPA Method 8260B:      | VOLATILES |                       |      | •         |        |           |            |         |           |           |            |
| Sample ID: 1007798-01a med     | •         | MSD                   |      |           |        | Batch ID: | R40039     | Analys  | sis Date: | 7/26/2010 | 3:14:17 PN |
| Benzene                        | 20.66     | μg/L                  | 1.0  | 20        | 0      | 103       | 75.7       | 118     | 4.07      | 15        |            |
| Toluene                        | 18.33     | μg/L                  | 1.0  | 20        | 0      | 91.7      | 80.1       | 114     | 11.4      | 15        |            |
| Chlorobenzene                  | 19.79     | μg/L                  | 1.0  | 20        | 0      | 99.0      | 81.5       | 112     | 4.43      | 15        |            |
| 1,1-Dichtoroethene             | 23.26     | μg/L                  | 1.0  | 20        | 0      | 116       | 77.4       | 132     | 8.74      | 17.8      |            |
| Trichloroethene (TCE)          | 19.19     | μg/L                  | 1.0  | 20        | 0      | 95.9      | 61.1       | 121     | 3.92      | 19.8      |            |
| Sample ID: b2                  |           | MBLK                  |      |           |        | Batch ID: | R40039     | Analys  | sis Date: | 7/26/2010 | 9:32:51 AN |
| Benzene                        | ND        | μg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| Toluene                        | ND        | μg/L                  | 1.0  |           |        |           |            |         | •         |           |            |
| Ethylbenzene                   | ND        | μg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| Methyl tert-butyl ether (MTBE) | ND        | µg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| 1,2,4-Trimethylbenzene         | ND        | µg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| 1,3,5-Trimethylbenzene         | ND        | μg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| 1,2-Dichloroethane (EDC)       | ND        | µg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| 1,2-Dibromoethane (EDB)        | ND        | μg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| Naphthalene                    | ND        | µg/L                  | 2.0  |           |        |           |            |         |           |           |            |
| 1-Methylnaphthalene            | ND        | µg/L                  | 4.0  |           |        |           |            |         |           | •         |            |
| 2-Methylnaphthalene            | ND        | μg/L                  | 4.0  |           |        |           |            |         |           |           |            |
| Acetone                        | ND        | μg/L                  | . 10 |           |        |           |            |         |           |           |            |
| Promobenzene                   | ND        | μg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| romodichloromethane            | ND        | μg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| Bromoform                      | ND        | µg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| Bromomethane                   | ND        | μg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| 2-Butanone                     | ND.       | µg/L                  | 10   |           |        |           |            |         | <b>~</b>  |           |            |
| Carbon disulfide               | ND .      | µg/L                  | 10   |           |        |           |            |         |           |           |            |
| Carbon Tetrachloride           | ND        | hâ\r<br>hâ\r          | 1.0  |           |        |           |            |         |           |           |            |
| Chlorobenzene                  | ND        | μg/L<br>μg/L          | 1.0  |           |        |           |            |         |           |           |            |
| Chloroethane                   | ND        |                       | 2.0  |           |        |           |            |         |           |           |            |
| Chloroform                     | ND        | μg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| Chloromethane                  |           | μg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| 2-Chlorotoluene                | ND<br>ND  | μg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| 4-Chiorotoluene                | ND        | μ <b>g/</b> L<br>μg/L | 1.0  |           |        |           |            |         |           |           |            |
| cis-1,2-DCE                    | ND        | μg/L<br>μg/L          | 1.0  |           |        |           |            |         |           |           |            |
| cis-1,3-Dichloropropene        | ND        | μg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| 1,2-Dibromo-3-chloropropane    | ND        | hã/r                  | 2.0  |           |        |           |            |         |           |           |            |
| Dibromochloromethane           | ND        | μg/L<br>μg/L          | 1.0  |           |        |           |            |         |           |           |            |
| Dibromomethane                 | ND        | μg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| 1,2-Dichlorobenzene            | ND        | μg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| 1,3-Dichlorobenzene            | ND        | μg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| 1,4-Dichlorobenzene            | ND        | μg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| Dichlorodifluoromethane        | ND        | μg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| 1,1-Dichloroethane             | ND        | µg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| 1,1-Dichloroethene             | ND        | μg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| 1,2-Dichloropropane            | ND        | µg/L                  | 1.0  |           |        |           |            |         |           |           |            |
| I,3-Dichloropropane            | ND        | μg/L                  | 1.0  |           |        |           |            |         |           |           |            |
|                                | 110       | ha.r                  | 1,0  |           |        |           |            |         |           |           |            |

ualisters:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Client:

Western Refining Southwest, Inc.

Project: Injection Well 3rd QTR 7/21/10

Work Order:

Date: 09-Aug-10

1007798

| Analyte                        | Result      | Units | PQL | SPK Va SPK ref | %Rec L    | owLimit Hi | ghLimit | %RPD     | RPDLimit    | Qual       |
|--------------------------------|-------------|-------|-----|----------------|-----------|------------|---------|----------|-------------|------------|
| Method: EPA Method 8260B       | : VOLATILES |       |     |                |           |            |         |          |             |            |
| Sample ID: b2                  |             | MBLK  |     |                | Batch ID: | R40039     | Analys  | is Date: | 7/26/2010   | 9:32:51 A  |
| 2,2-Dichloropropane            | ND          | µg/L  | 2.0 |                |           |            |         |          |             |            |
| 1,1-Dichloropropene            | ND          | μg/L  | 1.0 |                |           |            |         |          |             |            |
| Hexachlorobutadiene            | ND          | μg/L  | 1.0 |                |           |            |         |          |             |            |
| 2-Hexanone                     | ND          | μg/L  | 10  |                |           |            |         |          |             |            |
| Isopropylbenzene               | ND          | µg/Ľ  | 1.0 |                |           |            |         |          |             |            |
| 4-Isopropyltoluene             | ND          | μg/L  | 1.0 |                |           |            |         |          |             |            |
| 4-Methyl-2-pentanone           | ND          | μg/L  | 10  |                |           |            |         |          |             |            |
| Methylene Chloride             | ND          | μg/L  | 3.0 |                |           |            |         |          |             |            |
| n-Butylbenzene                 | NĐ          | µg/L  | 1.0 |                |           |            |         | *        |             |            |
| n-Propylbenzene                | ND          | μg/L  | 1.0 |                |           |            |         |          |             |            |
| sec-Butylbenzene               | ND          | µg/L  | 1.0 |                |           |            |         |          |             |            |
| Styrene                        | ND          | µg/L  | 1.0 |                |           |            |         |          |             |            |
| tert-Butylbenzene              | ND          | µg/L  | 1.0 |                |           |            |         |          |             |            |
| 1,1,1,2-Tetrachloroethane      | ND          | μg/L  | 1.0 |                |           |            |         |          |             |            |
| 1,1,2,2-Tetrachloroethane      | ND          | µg/L  | 2.0 |                |           |            |         |          |             |            |
| Tetrachloroethene (PCE)        | ND          | μg/L  | 1.0 |                |           |            |         |          |             |            |
| trans-1,2-DCE                  | ND          | µg/L  | 1.0 |                |           |            |         |          |             |            |
| trans-1,3-Dichloropropene      | ND          | μg/L  | 1.0 |                |           |            |         |          | ,           |            |
| 1,2,3-Trichlorobenzene         | ND          | μg/L  | 1.0 |                |           |            |         |          |             |            |
| 1,2,4-Trichlorobenzene         | ND          | µg/L  | 1.0 |                |           |            |         |          |             |            |
| 1,1,1-Trichloroethane          | ND          | μg/L  | 1.0 |                |           |            |         |          |             |            |
| 1,1,2-Trichloroethane          | ND          | µg/L  | 1.0 |                |           |            |         |          |             |            |
| Trichloroethene (TCE)          | ND          | μg/L  | 1.0 |                |           |            |         |          |             |            |
| Trichlorofluoromethane         | ND          | μg/L  | 1.0 |                |           |            |         |          |             |            |
| 1,2,3-Trichioropropane         | ND          | µg/L  | 2.0 |                |           |            |         |          |             |            |
| Vinyl chloride                 | ND          | µg/L  | 1.0 |                |           |            |         |          |             |            |
| Kylenes, Total                 | ND          | μg/L  | 1.5 |                |           |            |         |          |             |            |
| Sample ID: b6                  |             | MBLK  |     |                | Batch ID: | R40039     | Analysi | s Date:  | 7/26/2010 7 | ':37:36 PM |
| 3enzene                        | ND          | µg/L  | 1.0 |                |           |            |         |          |             | *          |
| Toluene                        | ND          | µg/L  | 1.0 |                |           |            |         |          |             |            |
| Ethylbenzene                   | ND          | μg/L  | 1.0 |                |           |            |         |          |             |            |
| Methyl tert-butyl ether (MTBE) | ND          | μg/L  | 1.0 |                |           |            |         |          |             |            |
| 1,2,4-Trimethylbenzene         | ND          | µg/L  | 1.0 |                |           |            |         |          |             |            |
| 1,3,5-Trimethylbenzene         | ND          | µg/L  | 1.0 |                |           |            |         |          |             |            |
| i,2-Dichloroethane (EDC)       | ND          | μg/L  | 1.0 |                |           |            |         |          |             |            |
| ,2-Dibromoethane (EDB)         | ND          | μg/L  | 1.0 |                |           |            |         |          |             |            |
| Naphthalene                    | ND          | μg/L  | 2.0 |                |           |            |         |          |             |            |
| -Methylnaphthalene             | ND          | µg/L  | 4.0 |                |           |            |         |          |             |            |
| -Methylnaphthalene             | ND          | µg/L  | 4.0 |                |           |            |         |          |             |            |
| Acetone                        | ND          | µg/L  | 10  |                |           |            |         |          |             |            |
| Bromobenzene                   | ND          | μg/L  | 1.0 |                |           |            |         |          |             | •          |
| Bromodichloromethane           | ND          | µg/L  | 1.0 |                |           |            |         |          |             |            |
| Bromoform                      | ND          | µg/L  | 1.0 |                |           |            |         |          |             |            |
| Bromomethane                   | ND          | μg/L  | 1.0 |                |           |            |         |          |             |            |

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

## **QA/QC SUMMARY REPORT**

Client: Project: Western Refining Southwest, Inc. Injection Well 3rd QTR 7/21/10

Work Order:

1007798 -

| Analyte                     | Result    | Units | PQL | SPK Va SPK ref | %Rec LowLin  | nit HighLimit | %RPD      | RPDLimit  | Qual       |
|-----------------------------|-----------|-------|-----|----------------|--------------|---------------|-----------|-----------|------------|
| Method: EPA Method 8260B:   | VOLATILES |       |     |                |              |               |           |           |            |
| Sample ID: b6               |           | MBLK  |     |                | Batch ID: R4 | 0039 Analy    | sis Date: | 7/26/2010 | 7:37:36 PI |
| 2-Butanone                  | ND        | μg/L  | 10  |                |              |               |           |           |            |
| Carbon disulfide            | ND        | μg/L  | 10  |                | •            |               |           |           |            |
| Carbon Tetrachloride        | ND        | µg/L  | 1.0 |                |              |               |           |           |            |
| Chlorobenzene               | ND        | µg/L  | 1.0 |                |              |               | •         |           |            |
| Chloroethane                | ND        | µg/L  | 2.0 |                |              |               |           |           |            |
| Chloroform                  | ND        | μg/L  | 1.0 |                |              |               |           |           |            |
| Chloromethane               | ND        | μg/L  | 1.0 |                |              |               |           |           |            |
| 2-Chlorotoluene             | ND        | µg/L  | 1.0 |                |              |               |           |           |            |
| 4-Chlorotoluene             | ND        | µg/L  | 1.0 |                |              |               |           |           |            |
| cis-1,2-DCE                 | - ND      | μg/L  | 1.0 |                | •            |               |           |           |            |
| cis-1,3-Dichloropropene     | ND        | μg/L  | 1.0 |                |              |               |           |           |            |
| 1,2-Dibromo-3-chloropropane | ND        | µg/L  | 2.0 |                |              |               |           |           |            |
| Dibromochloromethane        | ND        | μg/L  | 1.0 |                |              |               |           |           |            |
| Dibromomethane              | ND        | μg/L  | 1.0 |                |              |               |           |           |            |
| 1,2-Dichlorobenzene         | ND        | μg/L  | 1.0 |                |              |               |           |           |            |
| 1,3-Dichlorobenzene         | ND        | μg/L  | 1.0 |                |              |               |           |           |            |
| 1,4-Dichlorobenzene         | ND        | μg/L  | 1.0 |                |              |               |           |           |            |
| Dichlorodifluoromethane     | ND        | μg/L  | 1.0 |                |              |               |           |           |            |
| 1,1-Dichloroethane          | ND        | µg/L  | 1.0 |                |              |               |           |           |            |
| ,1-Dichloroethene           | ND        | μg/L  | 1.0 |                |              |               |           |           |            |
| 1,2-Dichloropropane         | ND        | µg/L  | 1.0 |                |              |               | •         |           |            |
| 1,3-Dichloropropane         | ND        | μg/L  | 1.0 |                |              |               |           |           |            |
| 2,2-Dichloropropane         | ND        | μg/L  | 2.0 |                |              |               |           |           | •          |
| 1,1-Dichloropropene         | ND        | μg/L  | 1.0 |                |              |               |           |           |            |
| Hexachlorobutadiene         | ND        | μg/L  | 1.0 |                |              |               |           |           |            |
| 2-Hexanone                  | ND        | µg/L  | 10  |                |              |               |           |           |            |
| sopropylbenzene             | ND        | μg/L  | 1.0 |                |              |               |           |           |            |
| 1-Isopropyitoluene          | ND        | μg/L  | 1.0 |                |              |               |           |           |            |
| I-Methyl-2-pentanone        | ND        | µg/L  | 10  |                |              |               |           |           |            |
| Methylene Chloride          | ND        | µg/L  | 3.0 |                |              |               |           |           |            |
| n-Butylbenzene              | ND        | µg/L  | 1.0 |                |              |               |           |           |            |
| a-Propylbenzene             | ND        | µg/L  | 1.0 |                |              |               |           |           |            |
| ec-Butylbenzene             | ND        | μg/L  | 1.0 |                |              |               |           |           |            |
| Styrene                     | ND        | μg/L  | 1.0 |                |              |               |           |           |            |
| ert-Butylbenzene            | ND        | µg/L  | 1.0 |                |              |               |           |           |            |
| ,1,1,2-Tetrachloroethane    | ND        | μg/L  | 1.0 |                |              |               |           |           |            |
| ,1,2,2-Tetrachloroethane    | ND        | μg/L  | 2.0 |                |              |               |           |           |            |
| etrachloroethene (PCE)      | ND        | μg/L  | 1.0 |                |              |               |           |           |            |
| ans-1,2-DCE                 | ND        | µg/L  | 1.0 |                |              |               |           |           |            |
| rans-1,3-Dichloropropene    | ND        | µg/L  | 1.0 |                |              |               |           |           |            |
| ,2,3-Trichlorobenzene       | ND        | µg/L  | 1.0 |                |              |               |           |           |            |
| ,2,4-Trichlorobenzene       | ND        | μg/L  | 1.0 |                |              |               |           |           |            |
| ,1,1-Trichloroethane        | ND        | μg/L  | 1.0 |                |              |               |           |           |            |
| ,1,2-Trichloroethane        | ND        | µg/L  | 1.0 |                |              |               |           |           |            |
|                             |           |       |     |                |              |               |           |           |            |

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

## **QA/QC SUMMARY REPORT**

Client:

Western Refining Southwest, Inc.

Project: Injection Well 3rd QTR 7/21/10

Work Order:

1007798

| Analyte                   | Result      | Units | PQL | SPK Va SPK I | ef | %Rec L    | owLimit Hi | ghLimit   | %RPD  | RPDLimit Qual        |
|---------------------------|-------------|-------|-----|--------------|----|-----------|------------|-----------|-------|----------------------|
| Method: EPA Method 8260B  | : VOLATILES | MOUL  |     |              |    | Batch ID: | D40020     | A natuaia | Date  | 7/08/2010 7:27:28 1  |
| Sample ID: b6             |             | MBLK  |     |              |    | Daten ID: | R40039     | Analysis  | Date. | 7/26/2010 7:37:36 F  |
| Trichloroethene (TCE)     | ND          | μg/L  | 1.0 |              |    |           |            |           |       |                      |
| Trichlorofluoromethane    | ND          | μg/L  | 1.0 |              |    | •         |            |           |       |                      |
| 1,2,3-Trichtoropropane    | ND          | μg/L  | 2.0 |              |    |           |            |           |       |                      |
| Vinyl chloride            | ND          | μg/L  | 1.0 |              |    |           |            |           |       |                      |
| Xylenes, Total            | ND          | μg/L  | 1.5 |              |    |           |            |           |       |                      |
| Sample ID: 100ng Ics      |             | LCS   |     |              |    | Batch ID: | R40039     | Analysis  | Date: | 7/26/2010 10:25:19 A |
| Benzene                   | 19.06       | µg/L  | 1.0 | 20 (         | )  | 95.3      | 82.4       | 116       |       |                      |
| Toluene                   | 22.82       | μg/L  | 1.0 | 20 (         | )  | 114       | 89.5       | 123       |       |                      |
| Chlorobenzene             | 21.00       | μg/L  | 1.0 | 20 (         | )  | 105       | 87.8       | 120       |       |                      |
| 1,1-Dichloroethene        | 21.41       | μg/L  | 1.0 | 20 0         | )  | 107       | 90.3       | 138       |       |                      |
| Trichloroethene (TCE)     | 17.98       | μg/Ł  | 1.0 | 20 0         | }  | 89.9      | 64         | 129       |       |                      |
| Sample ID: 1007798-01a ms |             | MS    |     |              |    | Batch ID: | R40039     | Analysis  | Date: | 7/26/2010 2:48:10 F  |
| Benzene                   | 19.84       | μg/L  | 1.0 | 20 0         | 1  | 99.2      | 75.7       | 118       |       |                      |
| Toluene                   | 20.55       | μg/L  | 1.0 | 20 0         | )  | 103       | 80.1       | 114       |       |                      |
| Chlorobenzene             | 20.69       | µg/L  | 1.0 | 20 0         | ì  | 103       | 81.5       | 112       |       |                      |
| 1,1-Dichloroethene        | 21.32       | μg/L  | 1.0 | 20 0         |    | 107       | 77.4       | 132       |       |                      |
| Trichloroethene (TCE)     | 18.45       | μg/L  | 1.0 | 20 0         |    | 92.3      | 61.1       | 121       |       |                      |

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

lient:

Western Refining Southwest, Inc. Injection Well 3rd QTR 7/21/10

Work Order:

1007798

| Analyte                     | Result          | Units | PQL | SPK Va SPK ref | %Rec Lo   | wLimit Hig | ghLimit | %RPD    | RPDLimit    | Qual      |
|-----------------------------|-----------------|-------|-----|----------------|-----------|------------|---------|---------|-------------|-----------|
| Method: EPA Method 8270C    | : Semivolatiles | 3     |     |                |           |            |         |         |             |           |
| Sample ID: mb-23145         | •               | MBLK  |     |                | Batch ID: | 23145      | Analysi | s Date: | 7/28/2010 1 | 2:10:57 P |
| Acenaphthene                | ND              | μg/L  | 10  |                |           |            |         |         |             |           |
| Acenaphthylene              | ND              | μg/L  | 10  |                |           |            |         | •       |             |           |
| Aniline                     | ND              | μg/L  | 10  |                |           | •          |         |         |             |           |
| Anthracene                  | ND              | μg/L  | 10  |                |           |            |         |         |             |           |
| Azobenzene                  | ND              | µg/L  | 10  |                |           |            |         |         |             |           |
| Benz(a)anthracene           | ND              | µg/L  | 10  |                |           |            |         |         | **          |           |
| Benzo(a)pyrene              | ND              | μg/Ł  | 10  |                |           |            |         | -       |             |           |
| Benzo(b)fluoranthene        | ND              | μg/L  | 10  |                |           |            |         |         |             |           |
| Benzo(g,h,i)perylane        | ND              | μg/L  | 10  |                |           |            |         |         |             |           |
| Benzo(k)fluoranthene        | ND              | μg/L  | 10  |                |           |            |         |         |             |           |
| Benzoic acid                | ND              | µg/L  | 20  |                |           |            |         |         |             |           |
| Benzyl alcohol              | ND              | μg/L  | 10  |                |           |            |         |         |             |           |
| Bis(2-chloroethoxy)methane  | NÓ              | μg/L  | 10  |                |           |            |         |         |             |           |
| Bis(2-chloroethyl)ether     | ND              | μg/L  | 10  |                |           |            |         |         |             |           |
| Bis(2-chloroisopropyl)ether | ND              | μg/L  | 10  |                |           |            |         |         |             |           |
| Bis(2-ethylhexyl)phthalate  | ND              | µg/L  | 10  |                |           |            |         |         |             |           |
| 4-Bromophenyl phenyl ether  | ND              | μg/L  | 10  |                |           |            |         |         |             |           |
| Butyl benzyl phthalate      | ND              | μg/L  | 10  |                |           |            |         |         |             |           |
| <u>Carbazole</u>            | ND ·            | μg/L  | 10  |                |           |            |         |         |             |           |
| Chloro-3-methylphenol       | ND.             | μg/L  | 10  |                |           |            |         |         |             |           |
| 4-Chloroaniline             | ND              | µg/L  | 10  |                |           |            |         |         |             |           |
| 2-Chloronaphthalene         | ND:             | µg/L  | 10  |                |           |            |         |         |             |           |
| 2-Chlorophenoi              | ND              | μg/L  | 10  |                |           |            |         |         |             |           |
| 4-Chlorophenyl phenyl ether | ND              | µg/L  | 10  |                |           |            |         |         |             |           |
| Chrysene                    | ND              | μg/L  | 10  |                |           |            |         |         |             |           |
| Di-n-butyl phthalate        | ND              | μg/L  | 10  |                |           |            |         |         |             |           |
| Di-n-octyl phthalate        | ND              | µg/L  | 10  |                |           |            |         |         |             |           |
| Dibenz(a,h)anthracene       | ND              | μg/L  | 10  |                |           |            |         |         |             |           |
| Dibenzofuran                | ND              | μg/L  | 10  |                |           |            |         |         |             |           |
| 1,2-Dichlorobenzene         | ND              | µg/L  | 10  |                |           |            |         |         |             |           |
| 1,3-Dichlorobenzene         | ND              | µg/L  | 10  |                |           |            |         |         |             |           |
| 1,4-Dichlorobenzene         | ND              | µg/L  | 10  |                |           |            |         |         |             |           |
| 3,3´-Dichtorobenzidine      | ND              | μg/L  | 10  |                |           |            |         |         |             |           |
| Diethyl phthalate           | ND              | µg/L  | 10  |                |           |            |         |         |             |           |
| Dimethyl phthalate          | ND              | μg/L  | 10  |                |           |            |         |         |             |           |
| 2,4-Dichlorophenol          | ND              | µg/L  | 20  |                |           |            |         |         |             |           |
| 2,4-Dimethylphenol          | ND              | μg/L  | 10  |                |           |            |         |         |             |           |
| 1,6-Dinitro-2-methylphenol  | ND              | μg/L  | 20  |                |           |            |         |         |             |           |
| 2,4-Dinitrophenol           | ND              | µg/L  | 20  |                |           |            |         |         |             |           |
| 2,4-Dinitrotoluene          | ND              | µg/L  | 10  |                |           |            |         |         |             |           |
| 2,6-Dinitrotoluene          | ND              | µg/L  | 10  |                |           |            |         |         |             |           |
| Fluoranthene                | ND              | μg/L  | 10  |                |           |            |         |         |             |           |
| luorene                     | ND              | μg/L  | 10  |                |           |            |         |         |             |           |
| fexachlorobenzene           | ND              | µg/L  | 10  |                |           |            |         |         |             |           |

alifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

## **QA/QC SUMMARY REPORT**

Client:

Western Refining Southwest, Inc.

Project: Injection Well 3rd QTR 7/21/10

Work Order:

1007798

| Analyte                   | Result         | Units    | PQL | SPK Va SP | K re | %Rec      | LowLimit H | ighLimit | %RPD     | RPDLimit     | Qual       |
|---------------------------|----------------|----------|-----|-----------|------|-----------|------------|----------|----------|--------------|------------|
| Method: EPA Method 82700  | : Semivolatile |          |     |           |      |           |            |          |          |              |            |
| Sample ID: mb-23145       |                | MBLK     |     |           |      | Batch ID: | 23145      | Analys   | is Date: | 7/28/2010 1  | 2:10:57 PN |
| Hexachlorobutadiene       | МÐ             | µg/L     | 10  |           |      |           |            |          |          |              |            |
| Hexachlorocyclopentadiene | ND             | µg/L     | 10  |           |      |           |            |          |          |              |            |
| Hexachloroethane          | ND             | µg/L     | 10  |           |      |           |            |          |          |              |            |
| Indeno(1,2,3-cd)pyrene    | ND             | μg/L     | 10  |           |      |           |            |          |          |              |            |
| Isophorone                | ND             | μg/L     | 10  |           |      |           |            |          |          |              |            |
| 2-Methylnaphthalene       | ND             | μg/L<br> | 10  |           |      |           |            |          |          |              |            |
| 2-Methylphenol            | ND             | μg/L     | 10  |           |      |           |            |          |          |              |            |
| 3+4-Methylphenol          | ND             | µg/L     | 10  |           | -    |           |            |          |          |              |            |
| N-Nitrosodi-n-propylamine | ND             | μg/L<br> | 10  |           | •    |           |            |          |          |              |            |
| N-Nitrosodimethylamine    | ND             | µg/L     | 10  |           |      |           |            |          |          |              |            |
| N-Nitrosodiphenylamine    | ND             | µg/L     | 10  |           |      |           |            |          |          |              |            |
| Naphthalene               | ND             | µg/L     | 10  |           |      |           |            |          |          |              |            |
| 2-Nitroaniline            | ND             | µg/L     | 10  | -         |      |           |            |          |          |              |            |
| 3-Nitroaniline            | ΝD             | μg/L     | 10  |           |      |           |            |          |          |              |            |
| 4-Nitroaniline            | ND             | μg/L     | 10  |           |      |           |            |          |          |              |            |
| Nitrobenzene              | ND             | µg/L     | 10  |           |      |           |            |          |          |              |            |
| 2-Nitrophenol             | ND             | µg/L     | 10  |           |      |           |            |          |          |              |            |
| 4-Nitrophenol             | ND             | µg/L     | 10  |           |      |           |            |          |          |              |            |
| Pentachlorophenol         | ND             | µg/L     | 20  |           |      |           |            |          |          |              |            |
| Phenanthrene              | ND             | µg/L     | 10  |           |      |           |            |          |          | •            |            |
| Phenol                    | ND             | μg/L     | 10  |           |      | •         |            |          |          |              |            |
| Pyrene                    | ND             | µg/L     | 10  |           |      |           |            |          |          |              |            |
| Pyridine                  | ND             | µg/L     | 10  |           |      |           |            |          |          |              |            |
| 1,2,4-Trichiorobenzene    | ND             | µg/L     | 10  |           |      |           |            |          |          |              |            |
| 2,4,5-Trichlorophenol     | ND             | µg/L     | 10  |           |      |           |            |          |          |              |            |
| 2,4,6-Trichlorophenol     | ND             | μg/L     | 10  |           |      |           |            |          |          | •            |            |
| Sample ID: lcs-23145      |                | LCS      |     |           |      | Batch ID: | 23145      | Analysi  | s Date:  | 7/28/2010 12 | 2:41:12 PN |
| Acenaphthene              | 55.44          | µg/L     | 10  | 100       | 0    | 55.4      | 29.3       | 113      |          |              |            |
| 4-Chloro-3-methylphenol   | 145.2          | µg/L     | 10  | 200       | Q    | 72.6      | 23.3       | 123      |          |              |            |
| 2-Chlorophenol            | 107.1          | µg/L     | 10  | 200       | 0    | 53.5      | 23.9       | 112      |          |              |            |
| 1,4-Dichlorobenzene       | 48.70          | μg/L     | 10  | 100       | 0    | 48.7      | 16.5       | 106      |          |              |            |
| 2,4-Dinitrotoluene        | 55.86          | µg/L     | 10  | 100       | 0    | 55.9      | 27.7       | 126      |          |              |            |
| N-Nitrosodi-n-propylamine | 55.72          | µg/L     | 10  | 100       | 0    | 55.7      | 25.9       | 113      |          |              |            |
| 1-Nitrophenol             | 42.36          | μg/L     | 10  | 200       | 0    | 21.2      | 13.2       | 76.7     |          |              |            |
| Pentachlorophenol         | 62.22          | μg/L     | 20  | 200       | 0    | 31.1      | 22.4       | 121      |          |              |            |
| Phenol                    | 75.82          | μg/L     | 10  | 200       | 0    | 37.9      | 15.3       | 68.3     |          |              |            |
| Pyrene                    | 69.98          | μg/L     | 10  | 100       | 0    | 70.0      | 23.5       | 119      |          |              |            |
| ,2,4-Trichlorobenzene     | 55.30          | µg/L     | 10  | 100       | 0    | 55.3      | 23         | 107      |          |              |            |
| Sample ID: lcsd-23145     |                | LCSD     |     |           |      | Batch ID: | 23145      | Analysis | s Date:  | 7/28/2010 1  | :11:30 PM  |
| Acenaphthene              | 67.22          | μg/L     | 10  | 100       | 0    | 67.2      | 29.3       | 113      | 19.2     | 30.5         |            |
| -Chloro-3-methylphenol    | 165.0          | μg/L     | 10  | 200       | 0    | 82.5      | 23.3       | 123      | 12.8     | 28.6         |            |
| -Chlorophenol             | 122.1          | μg/L     | 10  | 200       | 0    | 61.1      | 23.9       | 112      | 13.1     | 107          |            |
| ,4-Dichlorobenzene        | 55.38          | µg/L     | 10  | 100       | 0    | 55.4      | 16.5       | 106      | 12.8     | 62.1         |            |
| ,4-Dinitrotoluene         | 70.84          | µg/L     | 10  | 100       | 0    | 70.8      | 27.7       | 126      | 23.6     | 14.7         | R          |

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

# **QA/QC SUMMARY REPORT**

ient:

Western Refining Southwest, Inc. Injection Well 3rd QTR 7/21/10

Work Order:

1007798

| Analyte                                  | Result           | Units        | PQL              | SPK V     | a SPK re | of %Rec t    | .owLimit Hi | ighLimit   | %RPD    | RPDLimit    | Qual       |
|------------------------------------------|------------------|--------------|------------------|-----------|----------|--------------|-------------|------------|---------|-------------|------------|
| Method: EPA Method 8270                  | C: Semivolatiles |              |                  |           | _        |              |             |            |         |             |            |
| Sample ID: Icsd-23145                    | •                | LCSD         |                  |           |          | Batch ID:    | 23145       | Analysi    | s Date: | 7/28/2010   | 1:11:30 PM |
| N-Nitrosodi-n-propylamine                | 63.60            | μg/L         | 10               | 100       | 0        | 63.6         | 25.9        | 113        | 13.2    | 30.3        |            |
| 4-Nitrophenol                            | 52.54            | μg/L         | 10               | 200       | 0        | 26.3         | 13.2        | 76.7       | 21.5    | 36.3        |            |
| Pentachlorophenol                        | 69.78            | μg/L         | 20               | 200       | ) 0      | 34.9         | 22.4        | 121        | 11.5    | 49          |            |
| Phenol                                   | 86.12            | μg/L         | 10               | 200       | 0        | 43.1         | 15.3        | 68.3       | 12.7    | 52.4        |            |
| Pyrene                                   | 83.48            | μg/L         | 10               | 100       | 0        | 83.5         | 23.5        | 119        | 17.6    | 16.3        | R          |
| 1,2,4-Trichlorobenzene                   | 55.46            | µg/L         | 10               | 100       | 0        | 55.5         | 23          | 107        | 0.289   | 36.4        |            |
| Method: EPA Method 7470:                 | Mercury          |              |                  |           |          |              |             |            |         |             |            |
| Sample ID: MB-23144                      | -                | MBLK         |                  |           |          | Batch ID:    | 23144       | Analysi    | s Date: | 7/26/2010   | 5:21:09 Pl |
| Mercury                                  | ND               | mg/L         | 0.00020          |           |          |              |             |            |         |             |            |
| Sample ID: LCS-23144                     |                  | LCS          |                  |           |          | Batch ID:    | 23144       | Analysi    | s Date: | 7/26/2010   | 5:22:57 PM |
| Mercury                                  | 0.005269         | mg/L         | 0.00020          | 0.005     | . 0      | 105          | 80          | 120        |         |             |            |
| Sample ID: LCS-23144                     | 0.000200         | LCS          | 4.4-424          | 0.000     | •        | Batch ID:    | 23144       | Analysi    | s Date: | 7/26/2010 5 | 5:24:46 PN |
| Mercury                                  | 0.005365         | mg/L         | 0.00020          | 0.005     | 0        | 107          | 80          | 120        | 1.79    | 0           |            |
| A 10 10 10 10 10 10 10 10 10 10 10 10 10 |                  |              | 0.00020          | 0.000     |          |              |             | 120        | 1170    |             |            |
| Method: EPA 6010B: Total F               | Recoverable Met  |              |                  |           |          | D-4-6 (D.    | 20420       | A a b sate | - D-4   | 7/00/0040   |            |
| Sample ID: MB-23130                      |                  | MBLK         |                  |           |          | Batch ID:    | 23130       | Analysis   | s Date: | 7/29/2010 3 | 1:03:07 PR |
| Arsenic                                  | ND               | mg/L         | 0.020            |           |          |              |             |            |         |             |            |
| rium<br>Umium                            | ND               | mg/L         | 0.020            |           |          |              |             |            |         |             |            |
|                                          | ND               | mg/L         | 0.0020           |           |          |              |             |            |         |             |            |
| Calcium                                  | ND               | mg/L         | 1.0              |           |          |              |             |            |         |             |            |
| Chromium                                 | ND               | mg/L         | 0.0060           |           |          |              |             |            |         |             |            |
| _ead                                     | ND               | mg/L         | 0.0050           |           |          |              |             |            |         |             |            |
| Magnesium                                | ND               | mg/L         | 1.0              |           |          |              |             |            |         |             |            |
| Potassium                                | ND               | mg/L         | 1.0              |           |          |              |             |            |         |             |            |
| Selenium                                 | ND               | mg/L         | 0.050            |           |          |              |             |            |         |             |            |
| Silver                                   | ND               | mg/L         | 0.0050           |           |          |              |             |            |         |             |            |
| Sodium                                   | ND               | mg/L         | 1.0              |           |          | Detak ID.    | 00400       | 0 ali rala | Data.   | 7/00/0040 0 | .45.05 DM  |
| Sample ID: LCS-23130                     |                  | LCS          |                  |           |          | Batch ID:    | 23130       | •          | nate:   | 7/29/2010 3 | :15:U5 PW  |
| Arsenic                                  | 0.4835           | mg/L         | 0.020            | 0.5       | 0        | 96.7         | 80          | 120        |         |             |            |
| Barium                                   | 0.4589           | mg/L         | 0.020            | 0.5       | 0        | 91.8         | 80          | 120        |         |             |            |
| Cadmium                                  | 0.4703           | mg/L         | 0.0020           | 0.5       | 0        | 94.1         | 80          | 120        |         |             |            |
| Calcium                                  | 50.30            | mg/L         | 1.0              | 50        | 0        | 101          | 80          | 120        |         |             |            |
| Chromium<br>.ead                         | 0.4661<br>0.4658 | mg/L         | 0.0060<br>0.0050 | 0.5       | 0        | 93.2         | 80<br>80    | 120        |         |             |            |
|                                          | 0.4938<br>52.35  | mg/L<br>mg/l | 1.0              | 0.5<br>50 | 0        | 93.2<br>106  | 80<br>80    | 120        |         |             |            |
| /lagnesium<br>Potassium                  | 52.36<br>55.81   | mg/L<br>mg/L | 1.0              |           | 0.0462   | 105<br>112   | 80          | 120        |         |             |            |
| rotassium<br>Belenium                    | 0.4724           |              |                  | 0.5       | 0.0462   |              | 80<br>80    | 120        |         |             |            |
| ilver                                    | 0.4724           | mg/L<br>mg/L | 0.050<br>0.0050  | 0.5       | 0        | 94.5<br>97.4 | 80<br>80    | 120<br>120 |         |             |            |
| III V CI I                               | U.4012           | 1110/6       | v.0050           | U.0       | U        | 97.4         | ฉบ          | 120        |         |             |            |

| 0 |     | 1  |    |    |     |   |
|---|-----|----|----|----|-----|---|
|   |     |    |    | _  |     |   |
|   |     | ٠. | _  |    |     |   |
| • | -4  | ĸ  | 47 | ^, | 467 |   |
| - | - 4 | и  | 78 | C  | . 3 | ē |
|   |     |    |    |    |     |   |

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

## **QA/QC SUMMARY REPORT**

Client:

Western Refining Southwest, Inc.

Project: Injection Well 3rd QTR 7/21/10

Work Order:

1007798

|                                                |                  |                |      |              |           |            |                |          | 1007120      |
|------------------------------------------------|------------------|----------------|------|--------------|-----------|------------|----------------|----------|--------------|
| Analyte                                        | Result           | Units          | PQL  | SPK Va SPK r | ef %Rec L | owLimit Hi | ghLimit %RPD   | RPDLim   | it Qual      |
| Method: SM2640C MOD: To<br>Sample ID: MB-23142 | otal Dissolved S | Solids<br>MBLK |      |              | Batch ID: | 23142      | Analysis Date: | 7/27/201 | 0 1:27:00 PM |
| Total Dissolved Solids Sample ID: LCS-23142    | ND               | mg/L<br>LCS    | 20.0 |              | Batch ID: | 23142      | Analysis Date: | 7/27/201 | 0 1:27:00 PN |
| Total Dissolved Solids                         | 1014             | mg/L           | 20.0 | 1000 0       | 101       | 80         | 120            |          |              |

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits



## **QA/QC Summary Report**

Client: Hall Environmental

Report Date: 08/02/10

Project: 1007798

Work Order: B10072234

| Analyte                    | Count | Result       | Units         | RL       | %REC | Low Limit | High Limit  | RPD      | RPDLimit | Qual      |
|----------------------------|-------|--------------|---------------|----------|------|-----------|-------------|----------|----------|-----------|
| Method: SW1010A            |       |              |               |          |      |           |             |          | Batch    | R151335   |
| Sample ID: LCS-R151335     | Lab   | oratory Con  | trol Sample   |          |      | Run: PENS | KY MARTEN ( | CLOSED C | 07/27    | /10 10:00 |
| Flash Point (Ignitability) |       | 90.0         | °F            | 30       | 100  | 98        | 102         |          |          |           |
| Sample ID: LCSD-R151335    | Lab   | oratory Coni | troi Sample D | uplicate |      | Run: PENS | KY MARTEN C | CLOSED C | 07/12    | /10 11:00 |
| Flash Point (Ignitability) |       | 90.0         | ۹F            | 30       | 100  | 98        | 102         |          |          |           |



### **QA/QC Summary Report**

Client: Hall Environmental

Report Date: 08/02/10

Project: 1007798

Work Order: B10072234

| Analyte                | Count | Result      | Units       | RL   | %REC | Low Limit  | High Limit    | RPD | RPDLimit | Qual      |
|------------------------|-------|-------------|-------------|------|------|------------|---------------|-----|----------|-----------|
| Method: 8W846 Ch 7     |       |             |             |      |      |            |               |     | Bal      | ch: 47890 |
| Sample ID: MB-47890    | Me    | thod Blank  |             |      |      | Run: AUTO  | AN201-B_10072 | 28B | 07/28    | /10 15:42 |
| Cyanide, Reactive      |       | ND          | mg/kg       | 0.05 |      |            |               |     |          |           |
| Method: SW846 Ch 7     |       |             |             |      |      |            |               |     | Batch    | R151368   |
| Sample ID: MB-R151368  | Me    | thod Blank  |             |      |      | Run: MISC- | HZW_100727B   |     | 07/27    | /10 08:00 |
| Sulfide, Reactive      |       | ND          | mg/kg       | 10   |      |            |               |     |          |           |
| Sample ID: LCS-R151368 | Lab   | oratory Con | trol Sample |      |      | Run: MISC- | HZW_100727B   |     | 07/27    | /10 08:00 |
| Sulfide, Reactive      |       | 24          | mg/kg       | 20   | 82   | 50         | 150           |     |          |           |

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.



### **QA/QC Summary Report**

Client: Hall Environmental

Report Date: 08/02/10

**Project: 1007798** 

Work Order: B10072234

| Analyte                      | Count | Result        | Units          | RL         | %REC | Low Limit  | High Limit   | RPD       | RPDLimit   | Qual      |
|------------------------------|-------|---------------|----------------|------------|------|------------|--------------|-----------|------------|-----------|
| Method: SW9040C              |       |               |                |            |      |            | Analy        | tical Run | : PH METER | _100730B  |
| Sample ID: ICV               | Initi | al Calibratio | n Verification | 1 Standard |      |            |              |           | 07/30      | /10 13:00 |
| pH of Liquid Waste           |       | 4.02          | 8.U.           | 0.10       | 100  | 98         | 102          |           |            |           |
| Method: SW9040C              |       |               |                |            |      |            | •            |           | Batch      | : R151564 |
| Sample ID: B10072075-001ADUP | Sar   | nple Duplica  | te             |            |      | Run: PH MI | ETER_100730B |           | 07/30      | /10 13:00 |
| pH of Liquid Waste           |       | ND            | 8.U.           | 0.10       |      |            |              |           | 10         |           |

### Sample Receipt Checklist

| Client Name WESTERN REFINING SOUT                  | •                 |       |              | Date Receive        | d:            |     | 7/22/2010                  |
|----------------------------------------------------|-------------------|-------|--------------|---------------------|---------------|-----|----------------------------|
| Work Order Number 1007798                          | ٠                 |       |              | Received by         | r: TLS        |     |                            |
| Checklist completed by:                            |                   |       | 7            | 22/10               | abels checked | by: | Initials                   |
| Matrix:                                            | Carrier name:     | UPS   | !            |                     | ·             |     |                            |
| Shipping container/cooler in good condition?       |                   | Yes   | $\square$    | No 🗆                | Not Present   |     |                            |
| Custody seals intact on shipping container/cooler? | •                 | Yes   | ¥            | No 🗀                | Not Present   |     | Not Shipped                |
| Custody seals intact on sample bottles?            | •                 | Yes   | $\checkmark$ | No 🗌                | N/A           |     |                            |
| Chain of custody present?                          |                   | Yes   | V            | No 🗆                |               |     |                            |
| Chain of custody signed when relinquished and re-  | ceived?           | Yes   |              | No 🗆                |               |     |                            |
| Chain of custody agrees with sample labels?        |                   | Yes   |              | No 🗆                |               |     |                            |
| Samples in proper container/bottle?                |                   | Yes   | $\checkmark$ | No 🗌                |               |     |                            |
| Sample containers intact?                          |                   | Yes   | $\checkmark$ | No 🗌                |               |     |                            |
| Sufficient sample volume for indicated test?       |                   | Yes   | V            | No 🗆                |               |     |                            |
| All samples received within holding time?          |                   | Yes   | $\checkmark$ | No 🗌                |               |     | Number of preserved        |
| Water - VOA vials have zero headspace?             | No VOA vials subm | itted |              | Yes 🗹               | No 🗀          |     | bottles checked for<br>pH: |
| Water - Preservation labels on bottle and cap mate | sh?               | Yes   | $\checkmark$ | No 🗆                | N/A □         |     | $\mathcal{V}_{-}$          |
| Water - pH acceptable upon receipt?                |                   | Yes   | $\checkmark$ | No 🗆                | N/A           |     | <2 >12 unless noted        |
| Container/Temp Blank temperature?                  |                   | 3.0   | 6°           | <6° C Acceptab      | le            |     | below.                     |
| COMMENTS:                                          |                   |       |              | If given sufficient | time to cool. |     |                            |
| ·<br>====================================          |                   |       |              |                     |               |     |                            |
| Client contacted De                                | ite contacted:    |       |              | Pers                | on contacted  |     |                            |
| Contacted by:                                      | garding:          |       |              |                     |               |     |                            |
| Comments:                                          |                   |       |              |                     |               |     |                            |
| Corrective Action                                  |                   |       |              |                     |               |     |                            |
|                                                    |                   |       |              |                     |               |     |                            |

| •                       | ر<br>د بر               | <b>Y</b>                              |                              |                      |              |                  |               | · . )                       | (N)                 | 10 X<br>3      | 52, 14, 50,<br>54, 14, 40,<br>54, 14, 40, | /                  |          |          |          |          |          | _      | X            |          |          |               |          |                               |                  |
|-------------------------|-------------------------|---------------------------------------|------------------------------|----------------------|--------------|------------------|---------------|-----------------------------|---------------------|----------------|-------------------------------------------|--------------------|----------|----------|----------|----------|----------|--------|--------------|----------|----------|---------------|----------|-------------------------------|------------------|
|                         | ENVIRONMENTA            | WALTELS LABORATOR                     |                              |                      |              |                  |               |                             |                     | - 1 -          | MeacTiVII                                 | <b></b>            |          |          | X        | <u> </u> |          | ×      | W            |          |          |               | _        | -                             |                  |
|                         |                         | 5                                     | 9                            | )                    |              | ,                | 444           | 50.                         | Corr                | -1             | Filidating I                              | 1                  | -        | ×        |          |          |          |        |              |          |          |               |          |                               |                  |
|                         | 2 3                     | ֪֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞ | - Albridherdie NM 87109      | 4107                 |              |                  |               |                             | ()                  |                | /-imeS) 0728                              | <del></del>        | $\times$ |          |          | -        |          |        |              |          |          |               |          |                               |                  |
|                         | <u>0</u> 5              | INALISIS LADI                         |                              | 505-345-4107         | uest         |                  |               |                             |                     | (              | (AOV) 809S8                               | ×                  |          |          |          |          |          |        |              |          |          |               |          | 1                             |                  |
|                         | HI.                     |                                       |                              | 505                  | Request      |                  | CB,8          | )d 7                        | 808 /               | səj            | 8081 Pesticio                             |                    |          |          |          |          |          |        |              |          |          |               |          |                               |                  |
|                         | 2 5                     |                                       |                              | E A                  | vsis         | (*               | 05,40         | )d'                         | <sup>ε</sup> ON'ε   | ON             | ,IO,∃) anoinA                             | <i>'</i>           |          |          |          |          |          |        |              |          |          |               |          |                               |                  |
|                         | Щ                       |                                       | <b>₹</b>                     | _                    | Ana          | <u> </u>         | 1 34          | . 40                        |                     |                | RCRA 8 Met                                |                    |          |          |          | _        | X        |        |              |          |          |               |          |                               |                  |
|                         | HALL                    | 1                                     | L L                          | 505-345-3975         |              |                  |               | 3174                        |                     |                | <u>~</u>                                  |                    |          |          |          |          |          |        |              |          |          |               |          |                               |                  |
|                         | H                       |                                       | 4901 Hawkins NE              | 245                  |              | дų               |               |                             | ( )                 |                | enem) aga                                 |                    |          |          |          | X        |          |        |              |          |          |               |          |                               |                  |
| _                       |                         | _                                     | Haw                          | 505-                 |              | (10              | <u>\$4</u>    |                             |                     |                |                                           | <u> </u>           |          |          | ×        |          |          |        |              |          |          |               | <u> </u> |                               |                  |
|                         |                         |                                       | 90                           | <u>a</u>             |              |                  |               |                             |                     |                | BTM + X3T8<br>                            | 1                  |          |          |          |          | _        |        |              | _        |          | <del> </del>  |          | ks:                           |                  |
|                         |                         |                                       | 7                            |                      |              | _                |               |                             |                     |                | BTEX + MTB                                | 1                  |          |          |          |          |          |        |              | $\dashv$ |          |               |          | Remarks:                      |                  |
|                         |                         | J                                     |                              | T                    |              |                  |               | ,, - <u>,</u> ,             |                     |                |                                           |                    |          |          |          |          |          |        |              |          |          | $\rightarrow$ | $\dashv$ | <u>Ř</u>                      | 1                |
|                         | <u>ن</u> ے              |                                       | 34 CTR 7-21-10               |                      |              |                  |               |                             |                     |                |                                           |                    | 1        |          | _        | 1        | 1        | -      | 70           |          |          |               |          | Date Time                     | Date Time        |
| Time:                   | □ Rush                  |                                       |                              | 1                    |              | iger:            | )             |                             | 504<br>SOS          | perature &     | Preservative<br>Type                      | Hcl                | Amber    |          | \        | H2SC4    | HNC3     | No CH  | ZINC ACETATE |          |          |               |          | 1/20/                         |                  |
| Tum-Around Time:        | -<br>  X Standard       | Project Name:                         | Injection Vell               | Project #:           |              | Project Manager: | '             |                             | Sampler: E          | Sample Tempera | Container<br>Type and #                   | 3-164              | 1-1:ter  | 1-500ml  | 1-50ch   | 1-125m   | 1-50cm   | 1-50cm | 1-500ml      |          |          |               |          | Received by:                  | Received by:     |
| Chair of-Custody Record | Dient: Western Refining |                                       | Aailing Address: サ50 CR 4990 | Bloomfield, NM 874/3 | 505-632-4161 | ı.<br>J          |               | ☐ Level 4 (Full Validation) | □ Other             |                | Matrix   Sample Request ID                | Hao Injection Well | •        |          |          |          |          |        |              |          |          |               |          | Relinquished by:  The Kinghan | Relinquished by: |
| laito                   | esterk                  |                                       | ddress: #                    | 16(B) 1              | 505          | mail or Fax#: 52 | AVQC Package: | ard                         |                     | Type)          |                                           | 8:30 H             | _        |          |          | -        |          | _      | <del> </del> |          |          |               |          | R                             | Time: Reli       |
| ည်                      | 1t: W.                  |                                       | ng A(                        | Jim'S                | hone #:      | il or F          | C Pa          | Standard                    | occreditation NELAP | EDD (Type)     | ļ                                         | थ                  | $\dashv$ | _        | $\dashv$ | $\dashv$ | $\dashv$ |        | $\dashv$     | $\dashv$ | $\dashv$ | $\dashv$      |          |                               | <u>=</u>         |
|                         | ie                      |                                       | Aaili                        | 区                    | ğ            | E                | ∑             | X<br>S                      | Z CC                |                | Date                                      | 21-16              | -        | $\dashv$ |          | _        |          |        |              |          |          |               | ]        | ate:<br>1}- <i>1</i> \2       | ate:             |



#### **COVER LETTER**

Monday, November 15, 2010

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Injection Well 4th QTR 10-25-10

Dear Cindy Hurtado:

Order No.: 1010B70

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 10/27/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001

Texas Lab# T104704424-08-TX



Date: 15-Nov-10

**CLIENT:** 

Western Refining Southwest, Inc.

Lab Order:

1010B70

Project:

Injection Well 4th QTR 10-25-10

Lab ID:

1010B70-01

Client Sample ID: Injection Well

Collection Date: 10/25/2010 10:20:00 AM

**Date Received:** 10/27/2010

Matrix: AQUEOUS

| Analyses                     | Result   | PQL     | Qual Units                            | DF  | Date Analyzed         |
|------------------------------|----------|---------|---------------------------------------|-----|-----------------------|
| EPA METHOD 300.0: ANIONS     |          |         | · · · · · · · · · · · · · · · · · · · |     | Analyst: SRM          |
| Chloride                     | 240      | 5.0     | mg/L                                  | 50  | 11/3/2010 1:44:46 AM  |
| Sulfate                      | 48       | 5.0     | mg/L                                  | 10  | 11/3/2010 1:27:22 AM  |
| EPA METHOD 7470: MERCURY     |          |         |                                       |     | Analyst: ELS          |
| Mercury                      | 0.00030  | 0.00020 | mg/L                                  | 1   | 11/3/2010 12:38:32 PM |
| EPA 6010B: TOTAL RECOVERABL  | E METALS |         |                                       |     | Analyst: RAGS         |
| Arsenic                      | ND       | 0.020   | mg/L                                  | 1   | 11/2/2010 11:43:19 AM |
| Barium                       | 0.33     | 0.020   | mg/L                                  | 1   | 11/2/2010 11:43:19 AM |
| Cadmium                      | ND       | 0.0020  | mg/L                                  | 1   | 11/2/2010 11:43:19 AM |
| Calcium                      | 97       | 1.0     | mg/L                                  | 1   | 11/2/2010 11:43:19 AM |
| Chromium                     | ND       | 0.0060  | mg/L                                  | 1   | 11/2/2010 11:43:19 AM |
| Lead                         | ND       | 0.0050  | mg/L                                  | 1   | 11/2/2010 11:43:19 AM |
| Magnesium                    | 21       | 1.0     | mg/L                                  | 1   | 11/2/2010 11:43:19 AM |
| Potassium                    | 4.7      | 1.0     | mg/L                                  | 1   | 11/2/2010 11:43:19 AM |
| Selenium                     | ND       | 0.050   | mg/L                                  | 1   | 11/2/2010 11:43:19 AM |
| Silver                       | ND       | 0.0050  | mg/L                                  | 1   | 11/2/2010 11:43:19 AM |
| Sodium                       | 220      | 5.0     | mg/L                                  | 5   | 11/7/2010 1:38:03 PM  |
| EPA METHOD 8270C: SEMIVOLATI | LES      |         |                                       |     | Analyst: JDC          |
| Acenaphthene                 | ND       | 50.0    | μg/L                                  | 1   | 11/1/2010 1:08:54 PM  |
| Acenaphthylene               | ND       | 50.0    | μg/L                                  | 1   | 11/1/2010 1:08:54 PM  |
| Aniline                      | ND       | 50.0    | µg/L                                  | 1   | 11/1/2010 1:08:54 PM  |
| Anthracene                   | ND       | 50.0    | μg/L                                  | 1   | 11/1/2010 1:08:54 PM  |
| Azobenzene                   | ND       | 50.0    | µg/L                                  | 1   | 11/1/2010 1:08:54 PM  |
| Benz(a)anthracene            | ND       | 50.0    | μg/L                                  | 1   | 11/1/2010 1:08:54 PM  |
| Benzo(a)pyrene               | ND       | 50.0    | µg/L                                  | 1   | 11/1/2010 1:08:54 PM  |
| Benzo(b)fluoranthene         | ND       | 50.0    | μg/L                                  | 1   | 11/1/2010 1:08:54 PM  |
| Benzo(g,h,i)perylene         | ND       | 50.0    | µg/L                                  | 1   | 11/1/2010 1:08:54 PM  |
| Benzo(k)fluoranthene         | ND       | 50.0    | μ <b>g/L</b>                          | 1   | 11/1/2010 1:08:54 PM  |
| Benzoic acid                 | ND       | 100     | μg/L                                  | 1   | 11/1/2010 1:08:54 PM  |
| Benzyl alcohol               | ND       | 50.0    | μg/L                                  | 1   | 11/1/2010 1:08:54 PM  |
| Bis(2-chloroethoxy)methane   | ND       | 50.0    | μg/L                                  | 1   | 11/1/2010 1:08:54 PM  |
| Bis(2-chloroethyl)ether      | ND       | 50.0    | μg/L                                  | 1   | 11/1/2010 1:08:54 PM  |
| Bis(2-chloroisopropyl)ether  | ND       | 50.0    | μg/L                                  | 1   | 11/1/2010 1:08:54 PM  |
| Bis(2-ethylhexyl)phthalate   | ND       | 50.0    | µg/L                                  | 1   | 11/1/2010 1:08:54 PM  |
| 4-Bromophenyl phenyl ether   | ND       | 50.0    | μg/L                                  | · 1 | 11/1/2010 1:08:54 PM  |
| Butyl benzyl phthalate       | ND       | 50.0    | μ <b>g/L</b>                          | 1   | 11/1/2010 1:08:54 PM  |
| Carbazole                    | ND       | 50.0    | μg/L                                  | 1   | 11/1/2010 1:08:54 PM  |
| 4-Chloro-3-methylphenol      | ND       | 50.0    | μg/L                                  | 1   | 11/1/2010 1:08:54 PM  |
| 4-Chloroaniline              | ND       | 50.0    | µg/L                                  | 1   | 11/1/2010 1:08:54 PM  |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits

Page 1 of 7

Date: 15-Nov-10

CLIENT: Western Refining Southwest, Inc.

Lab Order:

1010B70

Client Sample ID: Injection Well Collection Date: 10/25/2010 10:20:00 AM

Project:

Injection Well 4th QTR 10-25-10

Date Received: 10/27/2010

Lab ID:

1010B70-01

Matrix: AQUEOUS

| Analyses                    | Result | PQL (   | Qual Units   | DF | Date Analyzed        |
|-----------------------------|--------|---------|--------------|----|----------------------|
| EPA METHOD 8270C: SEMIVOLA  | TILES  | ******* |              |    | Analyst: JDC         |
| 2-Chloronaphthalene         | ND     | 50.0    | μg/L         | 1  | 11/1/2010 1:08:54 PM |
| 2-Chlorophenol              | ND     | 50.0    | μg/L         | 1  | 11/1/2010 1:08:54 PM |
| 4-Chlorophenyl phenyl ether | ND     | 50.0    | µg/L         | 1  | 11/1/2010 1:08:54 PM |
| Chrysene                    | ND     | 50.0    | μg/L         | 1  | 11/1/2010 1:08:54 PM |
| Di-n-butyl phthalate        | ND     | 50.0    | μg/L         | 1  | 11/1/2010 1:08:54 PM |
| Di-n-octyl phthalate        | ND     | 50.0    | µg/L         | 1  | 11/1/2010 1:08:54 PM |
| Dibenz(a,h)anthracene       | ND     | 50.0    | μg/L         | 1  | 11/1/2010 1:08:54 PM |
| Dibenzofuran                | ND     | 50.0    | μg/L         | 1  | 11/1/2010 1:08:54 PM |
| 1,2-Dichlorobenzene         | ND     | 50.0    | µg/L         | 1  | 11/1/2010 1:08:54 PM |
| 1,3-Dichlorobenzene         | ND     | 50.0    | μg/L         | 1  | 11/1/2010 1:08:54 PM |
| 1,4-Dichlorobenzene         | ND     | 50.0    | μg/L         | 1  | 11/1/2010 1:08:54 PM |
| 3,3'-Dichlorobenzidine      | ND     | 50.0    | µg/L         | 1  | 11/1/2010 1:08:54 PM |
| Diethyl phthalate           | ND     | 50.0    | µg/L         | 1  | 11/1/2010 1:08:54 PM |
| Dimethyl phthalate          | ND     | 50.0    | μg/L         | 1  | 11/1/2010 1:08:54 PM |
| 2,4-Dichlorophenol          | ND     | 100     | µg/L         | 1  | 11/1/2010 1:08:54 PM |
| 2,4-Dimethylphenol          | ND     | 50.0    | μg/L         | 1  | 11/1/2010 1:08:54 PM |
| 4,6-Dinitro-2-methylphenol  | ND     | 100     | μg/L         | 1  | 11/1/2010 1:08:54 PM |
| 2,4-Dinitrophenol           | ND     | 100     | µg/L         | 1  | 11/1/2010 1:08:54 PM |
| 2,4-Dinitrotoluene          | ND     | 50.0    | μg/L         | 1  | 11/1/2010 1:08:54 PM |
| 2,6-Dinitrotoluene          | ND     | 50.0    | μg/L         | 1  | 11/1/2010 1:08:54 PM |
| Fluoranthene                | ND     | 50.0    | μg/L         | 1  | 11/1/2010 1:08:54 PM |
| Fluorene                    | ND     | 50.0    | μg/L         | 1  | 11/1/2010 1:08:54 PM |
| Hexachlorobenzene           | ND     | 50.0    | μg/L         | 1  | 11/1/2010 1:08:54 PM |
| Hexachlorobutadiene         | ND     | 50.0    | µg/L         | 1  | 11/1/2010 1:08:54 PM |
| Hexachlorocyclopentadiene   | ND     | 50.0    | µg/∟         | 1  | 11/1/2010 1:08:54 PM |
| Hexachioroethane            | ND     | 50.0    | μg/L         | 1  | 11/1/2010 1:08:54 PM |
| Indenc(1,2,3-cd)pyrene      | ND     | 50.0    | µg/L         | 1  | 11/1/2010 1:08:54 PM |
| Isophorone                  | ND     | 50.0    | µg/L         | 1  | 11/1/2010 1:08:54 PM |
| 2-Methylnaphthalene         | ND     | 50.0    | μg/L         | 1  | 11/1/2010 1:08:54 PM |
| 2-Methylphenol              | ND     | 50.0    | µg/L         | 1  | 11/1/2010 1:08:54 PM |
| 3+4-Methylphenol            | ND     | 50.0    | μg/L         | 1  | 11/1/2010 1:08:54 PM |
| N-Nitrosodi-n-propylamine   | ИD     | 50.0    | μg/L         | 1  | 11/1/2010 1:08:54 PM |
| N-Nitrosodimethylamine      | ND     | 50.0    | µg/L         | 1  | 11/1/2010 1:08:54 PM |
| N-Nitrosodiphenylamine      | ND     | 50.0    | µg/L         | 1  | 11/1/2010 1:08:54 PM |
| Naphthalene                 | ND     | 50.0    | μg/L         | 1  | 11/1/2010 1:08:54 PM |
| 2-Nitroaniline              | ND     | 50.0    | µg/L         | 1  | 11/1/2010 1:08:54 PM |
| 3-Nitroaniline              | ND     | 50.0    | µg/L         | 1  | 11/1/2010 1:08:54 PM |
| 4-Nitroaniline              | ND     | 100     | µ <b>g/L</b> | 1  | 11/1/2010 1:08:54 PM |
| Nitrobenzene                | ND     | 50.0    | µg/L         | 1  | 11/1/2010 1:08:54 PM |
| 2-Nitrophenoi               | ND     | 50.0    | µg/L         | 1  | 11/1/2010 1:08:54 PM |
| 4-Nitrophenol               | ND     | 50.0    | µg/L         | 1  | 11/1/2010 1:08:54 PM |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- Analyte detected below quantitation limits
- Non-Chlorinated NC
- PQL Practical Quantitation Limit

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits

Page 2 of 7

Date: 15-Nov-10

**CLIENT:** 

Western Refining Southwest, Inc.

Lab Order:

1010B70

Client Sample ID: Injection Well

Collection Date: 10/25/2010 10:20:00 AM

Project:

Injection Well 4th QTR 10-25-10

Date Received: 10/27/2010

Lab ID:

1010B70-01

Matrix: AQUEOUS

| Analyses                             | Result | PQL       | Qual Units | DF  | Date Analyzed         |
|--------------------------------------|--------|-----------|------------|-----|-----------------------|
| <b>EPA METHOD 8270C: SEMIVOLATIL</b> | ES     |           |            |     | Analyst: JDC          |
| Pentachlorophenol                    | ND     | 100       | μg/L       | 1   | 11/1/2010 1:08:54 PM  |
| Phenanthrene                         | ND     | 50.0      | μg/L       | 1   | 11/1/2010 1:08:54 PM  |
| Phenol                               | ND     | 50.0      | μg/L       | 1   | 11/1/2010 1:08:54 PM  |
| Pyrene                               | ND     | 50.0      | μg/L       | 1   | 11/1/2010 1:08:54 PM  |
| Pyridine                             | ND     | 50.0      | µg/L       | 1   | 11/1/2010 1:08:54 PM  |
| 1,2,4-Trichlorobenzene               | ND     | 50.0      | μg/L       | 1   | 11/1/2010 1:08:54 PM  |
| 2,4,5-Trichlorophenol                | ND     | 50.0      | μg/L       | 1   | 11/1/2010 1:08:54 PM  |
| 2,4,6-Trichlorophenol                | ND     | 50.0      | μg/L       | 1   | 11/1/2010 1:08:54 PM  |
| Surr: 2,4,6-Tribromophenol           | 53.9   | 17.5-104  | %REC       | 1   | 11/1/2010 1:08:54 PM  |
| Surr: 2-Fluorobiphenyl               | 38.3   | 30.9-98.9 | %REC       | 1   | 11/1/2010 1:08:54 PM  |
| Surr: 2-Fluorophenol                 | 32.0   | 12.4-90.1 | %REC       | · 1 | 11/1/2010 1:08:54 PM  |
| Surr: 4-Terphenyl-d14                | 53.2   | 43.5-91.9 | %REC       | 1   | 11/1/2010 1:08:54 PM  |
| Surr: Nitrobenzene-d5                | 40.6   | 26.2-108  | %REC       | 1   | 11/1/2010 1:08:54 PM  |
| Surr: Phenol-d5                      | 24.9   | 11.8-73.1 | %REC       | 1   | 11/1/2010 1:08:54 PM  |
| EPA METHOD 8260B: VOLATILES          |        |           |            |     | Analyst: MMS          |
| Benzene                              | ND     | 1.0       | μg/L       | 1   | 10/29/2010 5:02:06 PM |
| Toluene                              | ND     | 1.0       | µg/L       | 1   | 10/29/2010 5:02:06 PM |
| Ethylbenzene                         | ND     | 1.0       | μg/L       | 1   | 10/29/2010 5:02:08 PM |
| Methyl tert-butyl ether (MTBE)       | ND     | 1.0       | μg/L       | 1   | 10/29/2010 5:02:06 PM |
| 1,2,4-Trimethy/benzene               | ND     | 1.0       | μg/L       | 1   | 10/29/2010 5:02:06 PM |
| 1,3,5-Trimethylbenzene               | ND     | 1.0       | μg/L       | 1   | 10/29/2010 5:02:06 PM |
| 1,2-Dichloroethane (EDC)             | ND     | 1.0       | µg/L       | 1   | 10/29/2010 5:02:06 PM |
| 1,2-Dibromoethane (EDB)              | ND     | 1.0       | μg/L       | 1   | 10/29/2010 5:02:06 PM |
| Naphthalene                          | ND     | 2.0       | μg/L       | 1   | 10/29/2010 5:02:06 PM |
| 1-Methylnaphthalene                  | ND     | 4.0       | μg/L       | 1   | 10/29/2010 5:02:06 PM |
| 2-Methylnaphthalene                  | ND     | 4.0       | µg/L       | 1   | 10/29/2010 5:02:06 PM |
| Acetone                              | 340    | 50        | μg/L       | 5   | 11/1/2010 8:05:20 PM  |
| Bromobenzene                         | ND.    | 1.0       | μg/L       | 1   | 10/29/2010 5:02:06 PM |
| Bromodichloromethane                 | ND     | 1.0       | μg/L       | 1   | 10/29/2010 5:02:06 PM |
| Bromoform                            | ND     | 1.0       | μg/L       | 1   | 10/29/2010 5:02:06 PM |
| Bromomethane                         | ND     | 3.0       | µg/L       | 1   | 10/29/2010 5:02:06 PM |
| 2-Butanone                           | ND     | 10        | μg/L       | 1   | 10/29/2010 5:02:06 PM |
| Carbon disulfide                     | ND     | 10        | μg/L       | 1   | 10/29/2010 5:02:06 PM |
| Carbon Tetrachloride                 | ND     | 1.0       | μg/L       | 1   | 10/29/2010 5:02:06 PM |
| Chlorobenzene                        | ND     | 1.0       | μg/L       | 1   | 10/29/2010 5:02:06 PM |
| Chloroethane                         | ND     | 2.0       | μg/L       | 1   | 10/29/2010 5:02:06 PM |
| Chloroform                           | ND     | 1.0       | μg/L       | 1   | 10/29/2010 5:02:06 PM |
| Chloromethane                        | ND     | 3.0       | μg/L       | 1   | 10/29/2010 5:02:06 PM |
| 2-Chlorotoluene                      | ND     | 1.0       | μg/L.      | 1   | 10/29/2010 5:02:06 PM |
| 4-Chiorotoluene                      | ND     | 1.0       | µg/L       | 1   | 10/29/2010 5:02:06 PM |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 3 of 7



Date: 15-Nov-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1010B70

Project:

Injection Well 4th QTR 10-25-10

Lab ID:

1010B70-01

Client Sample ID: Injection Well

Collection Date: 10/25/2010 10:20:00 AM

Date Received: 10/27/2010

Matrix: AQUEOUS

| Analyses                    | Result | PQL      | Qual U | Jnits | DF | Date Analyzed         |
|-----------------------------|--------|----------|--------|-------|----|-----------------------|
| EPA METHOD 8260B: VOLATILES |        |          |        |       |    | Analyst: MM           |
| cis-1,2-DCE                 | ND     | 1.0      | μ      | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| cis-1,3-Dichloropropene     | ND     | 1.0      | μ      | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| 1,2-Dibromo-3-chloropropane | ND     | 2.0      | ·μ     | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| Dibromochloromethane        | ND     | 1.0      | μ      | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| Dibromomethane              | ND     | 1.0      | μ      | ıg/L  | 1  | 10/29/2010 5:02:08 PM |
| 1,2-Dichlorobenzene         | ND     | 1.0      | μ      | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| 1,3-Dichlorobenzene         | ND     | 1.0      | μ      | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| 1,4-Dichlorobenzene         | ND     | 1.0      | μ      | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| Dichlorodifluoromethane     | ND     | 1.0      | μ      | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| 1.1-Dichloroethane          | .ND    | 1.0      | μ      | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| 1,1-Dichloroethene          | ND     | 1.0      | μ      | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| 1,2-Dichloropropane         | ND     | 1.0      | μ      | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| 1,3-Dichloropropane         | ND     | 1.0      |        | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| 2,2-Dichloropropane         | ND     | 2.0      | μ      | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| 1,1-Dichioropropene         | ND     | 1.0      |        | ig/L  | 1  | 10/29/2010 5:02:06 PM |
| Hexachlorobutadiene         | ND     | 1.0      |        | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| 2-Hexanone                  | ND     | 10       |        | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| isopropylbenzene            | ND     | 1.0      |        | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| 4-Isopropyltoluene          | ND     | 1.0      | μ      | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| 4-Methyl-2-pentanone        | ND     | 10       |        | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| Methylene Chloride          | ND     | 3.0      | μ      | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| n-Butylbenzene              | ND     | . 1.0    | -      | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| n-Propylbenzene             | ND     | 1.0      |        | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| sec-Butylbenzene            | ND     | 1,0      |        | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| Styrene                     | ND     | 1.0      |        | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| tert-Butylbenzene           | ND     | 1.0      |        | ig/L  | 1  | 10/29/2010 5:02:06 PM |
| 1,1,1,2-Tetrachioroethane   | ND     | 1.0      |        | rg/L  | 1  | 10/29/2010 5:02:06 PM |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0      |        | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| Tetrachloroethene (PCE)     | ND     | 1.0      |        | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| trans-1,2-DCE               | ND     | 1.0      |        | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| trans-1,3-Dichloropropene   | ND     | 1.0      |        | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| 1,2,3-Trichlorobenzene      | ND     | 1.0      |        | ig/L  | 1  | 10/29/2010 5:02:08 PM |
| 1,2,4-Trichlorobenzene      | ND     | 1.0      |        | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| 1,1,1-Trichloroethane       | ND     | 1.0      |        | ig/L  | 1  | 10/29/2010 5:02:06 PM |
| 1.1.2-Trichloroethane       | ND     | 1.0      |        | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| Trichloroethene (TCE)       | ND     | 1.0      |        | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| Trichlorofluoromethane      | ND     | 1.0      |        | ig/L  | 1  | 10/29/2010 5:02:06 PM |
| 1,2,3-Trichloropropane      | ND     | 2.0      |        | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| Vinyl chloride              | ND     | 1.0      |        | ig/L  | 1  | 10/29/2010 5:02:06 PM |
| Xylenes, Total              | ND     | 1.5      |        | ıg/L  | 1  | 10/29/2010 5:02:06 PM |
| Surr: 1,2-Dichloroethane-d4 | 97.5   | 77.7-113 |        | 6REC  | 1  | 10/29/2010 5:02:06 PM |



- Value exceeds Maximum Contaminant Level
- Estimated value E
- Analyte detected below quantitation limits
- NC Non-Chlorinated
- Practical Quantitation Limit

- Analyte detected in the associated Method Blank В
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
  - Spike recovery outside accepted recovery limits

Page 4 of 7

Date: 15-Nov-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

Project:

1010B70

טיי מטנטנ

Injection Well 4th QTR 10-25-10

Lab ID:

1010B70-01

Client Sample ID: Injection Well

Collection Date: 10/25/2010 10:20:00 AM

Date Received: 10/27/2010 Matrix: AQUEOUS

| Analyses                           | Result | PQL      | Qual | Units      | DF | Date Analyzed         |
|------------------------------------|--------|----------|------|------------|----|-----------------------|
| EPA METHOD 8260B: VOLATILES        |        |          |      |            |    | Analyst: MMS          |
| Surr: 4-Bromofluorobenzene         | 92.2   | 76.4-106 | •    | %REC       | 1  | 10/29/2010 5:02:06 PM |
| Surr: Dibromofluoromethane         | 101    | 91.6-125 | 4    | %REC       | 1  | 10/29/2010 5:02:06 PM |
| Surr: Toluene-d8                   | 97.8   | 92.3-107 | •    | %REC       | 1  | 10/29/2010 5:02:06 PM |
| SM 2320B: ALKALINITY               |        |          |      |            |    | Analyst: IC           |
| Alkalinity, Total (As CaCO3)       | 280    | 20       | 1    | mg/L CaCO3 | 1  | 11/3/2010 3:42:00 PM  |
| Carbonate                          | ND     | 2.0      | ı    | mg/L CaCO3 | 1  | 11/3/2010 3:42:00 PM  |
| Bicarbonate                        | 280    | 20       | ľ    | ng/L CaCO3 | 1  | 11/3/2010 3:42:00 PM  |
| EPA 120.1: SPECIFIC CONDUCTANCE    |        |          |      |            | ** | Analyst: IC           |
| Specific Conductance               | 1400   | 0.010    | ŀ    | umhos/cm   | 1  | 11/3/2010 3:42:00 PM  |
| SM4500-H+B: PH                     |        |          |      |            |    | Analyst: IC           |
| pΗ                                 | 7.16   | 0.100    | ŧ    | oH units   | 1  | 11/3/2010 3:42:00 PM  |
| SM2540C MOD: TOTAL DISSOLVED SOLIE | s      |          |      |            |    | Analyst: <b>KS</b>    |
| Total Dissolved Solids             | 982    | 40.0     | r    | ng/L       | 1  | 11/1/2010 7:37:00 AM  |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
  - S Spike recovery outside accepted recovery limits

Page 5 of 7



Date: 15-Nov-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order: Project:

Lab ID:

1010B70

Injection Well 4th QTR 10-25-10

1010B70-02

Collection Date:

Date Received: 10/27/2010

Client Sample ID: Trip Blank

Matrix: TRIP BLANK

| Analyses                       | Result      | PQL Q | ual Units    | DF | Date Analyzed         |
|--------------------------------|-------------|-------|--------------|----|-----------------------|
| EPA METHOD 8260B: VOLATILES    | <del></del> |       |              | ·  | Analyst: BDI          |
| Benzene                        | ND          | 1.0   | μg/L         | 1  | 10/28/2010 4:52:05 PM |
| Toluene                        | ND          | 1.0   | μg/L         | 1  | 10/28/2010 4:52:05 PN |
| Ethylbenzene                   | ND          | 1.0   | μg/L         | 1  | 10/28/2010 4:52:05 PN |
| Methyl tert-butyl ether (MTBE) | ND          | 1.0   | μg/L         | 1  | 10/28/2010 4:52:05 PN |
| 1,2,4-Trimethylbenzene         | ND          | 1.0   | μg/L         | 1  | 10/28/2010 4:52:05 PM |
| 1,3,5-Trimethylbenzene         | ND          | 1.0   | μg/L         | 1  | 10/28/2010 4:52:05 PN |
| 1,2-Dichloroethane (EDC)       | ND          | 1.0   | μg/L         | 1  | 10/28/2010 4:52:05 PM |
| 1,2-Dibromoethane (EDB)        | ND          | 1.0   | µg/L         | 1  | 10/28/2010 4:52:05 PM |
| Naphthalene                    | ND          | 2.0   | µg/L         | 1  | 10/28/2010 4:52:05 PN |
| 1-Methylnaphthalene            | ND          | 4.0   | μg/L         | 1  | 10/28/2010 4:52:05 PM |
| 2-Methylnaphthalene            | ND          | 4.0   | µg/L         | 1  | 10/28/2010 4:52:05 PM |
| Acetone                        | ND          | 10    | μg/L         | 1  | 10/28/2010 4:52:05 PM |
| Bromobenzene                   | ND          | 1.0   | μg/L         | 1  | 10/28/2010 4:52:05 PM |
| Bromodichloromethane           | ND          | 1.0   | μg/L         | 1  | 10/28/2010 4:52:05 PM |
| Bromoform                      | ND          | 1,0   | μg/L         | 1  | 10/28/2010 4:52:05 PM |
| Bromomethane                   | ND          | 3.0   | μg/L         | 1  | 10/28/2010 4:52:05 PM |
| 2-Butanone                     | ND          | 10    | μg/L         | 1  | 10/28/2010 4:52:05 PM |
| Carbon disulfide               | ND          | 10    | μ <b>g/L</b> | 1  | 10/28/2010 4:52:05 PM |
| Carbon Tetrachloride           | ND          | 1.0   | μg/L         | 1  | 10/28/2010 4:52:05 PM |
| Chlorobenzene                  | ND          | 1.0   | μg/L         | 1  | 10/28/2010 4:52:05 PM |
| Chloroethane                   | ND          | 2.0   | μg/L         | 1  | 10/28/2010 4:52:05 PM |
| Chloroform                     | ND          | 1.0   | μg/L         | 1  | 10/28/2010 4:52:05 PM |
| Chloromethane                  | ND          | 3.0   | µg/L         | 1  | 10/28/2010 4:52:05 PM |
| 2-Chlorotoluene                | ND          | 1.0   | μg/L         | 1  | 10/28/2010 4:52:05 PM |
| 4-Chlorotoluene                | ND          | 1.0   | µg/L         | 1  | 10/28/2010 4:52:05 PM |
| cis-1,2-DCE                    | ND          | 1.0   | μg/L         | 1  | 10/28/2010 4:52:05 PM |
| cis-1,3-Dichloropropene        | ND          | 1.0   | μg/L         | 1  | 10/28/2010 4:52:05 PM |
| 1,2-Dibromo-3-chloropropane    | ND          | 2.0   | µg/L         | 1  | 10/28/2010 4:52:05 PM |
| Dibromochloromethane           | ND          | 1.0   | µg/L         | 1  | 10/28/2010 4:52:05 PM |
| Dibromomethane                 | ND          | 1.0   | µg/L         | 1  | 10/28/2010 4:52:05 PM |
| 1,2-Dichlorobenzene            | ND          | 1.0   | µg/L         | 1  | 10/28/2010 4:52:05 PM |
| 1,3-Dichlorobenzene            | ND          | 1.0   | µg/L         | 1  | 10/28/2010 4:52:05 PM |
| 1,4-Dichlorobenzene            | ND          | 1.0   | µg/L         | 1  | 10/28/2010 4:52:05 PM |
| Dichlorodifluoromethane        | ND          | 1.0   | µg/L         | 1  | 10/28/2010 4:52:05 PM |
| i,1-Dichloroethane             | ND          | 1.0   | μg/L         | 1  | 10/28/2010 4:52:05 PM |
| 1,1-Dichloroethene             | ND          | 1.0   | µg/L         | 1  | 10/28/2010 4:52:05 PM |
| 1,2-Dichloropropane            | ND          | 1.0   | µg/L         | 1  | 10/28/2010 4:52:05 PM |
| 1,3-Dichloropropane            | ND          | 1.0   | µg/L         | 1  | 10/28/2010 4:52:05 PM |
| 2,2-Dichloropropane            | ND          | 2.0   | µg/L         | 1  | 10/28/2010 4:52:05 PM |
| 1,1-Dichloropropene            | ND          | 1.0   | μg/L         | 1  | 10/28/2010 4:52:05 PM |
| Hexachlorobutadiene            | ND          | 1.0   | μg/L         | 1  | 10/28/2010 4:52:05 PM |



#### Qualiflers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 6 of 7

Date: 15-Nov-10

**CLIENT:** 

Western Refining Southwest, Inc.

Lab Order:

1010B70

Injection Well 4th QTR 10-25-10

Project: Lab ID:

1010B70-02

Client Sample ID: Trip Blank

**Collection Date:** 

Date Received: 10/27/2010

Matrix: TRIP BLANK

| Analyses                    | Result . | PQL                                   | Quai Units | DF  | Date Analyzed         |
|-----------------------------|----------|---------------------------------------|------------|-----|-----------------------|
| EPA METHOD 8260B: VOLATILES |          | · · · · · · · · · · · · · · · · · · · |            |     | Analyst: BDH          |
| 2-Hexanone                  | ND       | 10                                    | μg/L       | 1   | 10/28/2010 4:52:05 PM |
| Isopropylbenzene            | ND       | 1.0                                   | μg/L       | 1   | 10/28/2010 4:52:05 PM |
| 4-Isopropyltoluene          | ND       | 1.0                                   | µg/L       | 1   | 10/28/2010 4:52:05 PM |
| 4-Methyl-2-pentanone        | ND       | 10                                    | μg/L       | 1   | 10/28/2010 4:52:05 PM |
| Methylene Chloride          | ND       | 3.0                                   | μg/L       | 1   | 10/28/2010 4:52:05 PM |
| n-Butylbenzene              | ND       | 1.0                                   | µg/L       | 1   | 10/28/2010 4:52:05 PM |
| n-Propylbenzene             | ND       | 1.0                                   | µg/L       | 1   | 10/28/2010 4:52:05 PM |
| sec-Butylbenzene            | ND       | 1.0                                   | μg/L       | 1   | 10/28/2010 4:52:05 PM |
| Styrene                     | ND       | 1.0                                   | μg/L       | 1   | 10/28/2010 4:52:05 PM |
| tert-Butylbenzene           | ND       | 1.0                                   | · μg/L     | 1   | 10/28/2010 4:52:05 PM |
| 1,1,1,2-Tetrachioroethane   | ND       | 1.0                                   | μg/L       | 1   | 10/28/2010 4:52:05 PM |
| 1,1,2,2-Tetrachloroethane   | ND       | 2.0                                   | μg/L       | 1   | 10/28/2010 4:52:05 PM |
| Tetrachloroethene (PCE)     | ND       | 1.0                                   | μg/L       | 1   | 10/28/2010 4:52:05 PM |
| trans-1,2-DCE               | ND       | 1.0                                   | μg/L       | 1   | 10/28/2010 4:52:05 PM |
| trans-1,3-Dichloropropene   | ND       | 1.0                                   | μg/L       | 1   | 10/28/2010 4:52:05 PM |
| 1,2,3-Trichlorobenzene      | ND       | 1.0                                   | μg/L       | 1   | 10/28/2010 4:52:05 PM |
| 1,2,4-Trichlorobenzene      | ND       | 1.0                                   | μg/L       | 1   | 10/28/2010 4:52:05 PM |
| 1,1,1-Trichloroethane       | ND       | 1.0                                   | μg/L       | 1   | 10/28/2010 4:52:05 PM |
| 1,1,2-Trichloroethane       | ND       | 1.0                                   | µg/L       | 1   | 10/28/2010 4:52:05 PM |
| Trichloroethene (TCE)       | ND       | 1.0                                   | μg/L       | 1   | 10/28/2010 4:52:05 PM |
| Trichlorofluoromethane      | ND       | 1.0                                   | μg/L       | 1   | 10/28/2010 4:52:05 PM |
| 1,2,3-Trichloropropane      | ND       | 2.0                                   | μg/L       | 1   | 10/28/2010 4:52:05 PM |
| Vinyl chloride              | ND       | 1.0                                   | µg/L       | 1 . | 10/28/2010 4:52:05 PM |
| Xylenes, Total              | ND       | 1.5                                   | μg/L       | 1   | 10/28/2010 4:52:05 PM |
| Surr: 1,2-Dichloroethane-d4 | 94.4     | 77.7-113                              | %REC       | 1   | 10/28/2010 4:52:05 PM |
| Surr: 4-Bromofluorobenzene  | 105      | 76.4-106                              | %REC       | 1   | 10/28/2010 4:52:05 PM |
| Surr: Dibromofluoromethane  | 98.6     | 91.6-125                              | %REC       | 1   | 10/28/2010 4:52:05 PM |
| Surr: Toluene-d8            | 102      | 92.3-107                              | %REC       | 1   | 10/28/2010 4:52:05 PM |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Estimated value E
- Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits

Page 7 of 7

#### Inorganic non-metals

Client: Hall Environmental Analysis Laboratory

Description: 1010B70-01E/injection Well

ate Sampled:10/25/2010 1020 Date Received: 10/29/2010

Laboratory ID: LJ29015-001

Matrix: Aqueous

**Prep Method** Batch **Analytical Method** Dilution **Analysis Date** Analyst **Prep Date** Run 46089 (Ignitability) 1010A 1 11/08/2010 1730 SAS 1 1 (pH) 9040C 1 10/30/2010 1251 SMH 45478 1 (Reactive Cya) 7.3.3 1 11/09/2010 1739 PMM 11/09/2010 1000 SNM 11/09/2010 1000 (Reactive Sul) 7.3.4 1 11/09/2010 1654 1

| Parameter                                | CAS<br>Number | Analytical<br>Method | Result | Q PQL | MDL   | Units | Run |
|------------------------------------------|---------------|----------------------|--------|-------|-------|-------|-----|
| Ignitability (Pensky-Martens Closed-Cup) |               | 1010A                | >140   |       |       | °F    | 1   |
| Hq                                       |               | 9040C                | 7.04   | 0.000 | 0.000 | su    | 1   |
| Reactive Cyanide                         |               | 7.3.3                | ND     | 50    |       | mg/kg | 1   |
| Reactive Sulfide                         |               | 7.3.4                | ND     | 50    |       | mg/kg | 1   |

PQL = Practical quantitation limit

8 = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

J = Estimated result < PQL and > MOL

P = The RPD between two GC columns exceeds 40% N = Recovery is out of criteria

H = Out of holding time

aly Environmental Services, Inc.

Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.sheatylab.com

Page: 4 of 4

Level 1 Report v2.1

# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th QTR 10-25-10

Work Order:

1010B70

| Analyte                      | Result | Units   | PQL  | SPK Va S | SPK ref | %Rec L    | .owLimit H | ighLimit %RPD  | RPDLimit Qual         |
|------------------------------|--------|---------|------|----------|---------|-----------|------------|----------------|-----------------------|
| Method: EPA Method 300.0:    | Anions |         |      |          |         |           |            |                |                       |
| Sample ID: MB                |        | MBLK    |      |          |         | Batch ID: | R41922     | Analysis Date: | 11/2/2010 9:40:55 AM  |
| Chloride                     | ND     | mg/L    | 0.50 |          |         |           |            |                |                       |
| Sulfate                      | ND     | mg/L    | 0.50 |          |         |           |            |                |                       |
| Sample ID: MB                |        | MBLK    |      |          |         | Batch ID: | R41922     | Analysis Date: | 11/2/2010 11:42:54 PM |
| Chloride                     | ND     | mg/L    | 0.50 |          |         |           |            |                |                       |
| Sulfate                      | ND     | mg/L    | 0.50 |          |         |           |            |                |                       |
| Sample ID: LCS               |        | LCS     |      |          |         | Batch ID: | R41922     | Analysis Date: | 11/2/2010 9:58:19 AN  |
| Chloride                     | 5.060  | mg/L    | 0.50 | 5        | 0       | 101       | 90         | 110            |                       |
| Sulfate                      | 10.25  | mg/L    | 0.50 | 10       | 0       | 102       | 90         | 110            |                       |
| Sample ID: LCS               |        | LCS     |      |          |         | Batch ID: | R41922     | Analysis Date: | 11/3/2010 12:00:19 AN |
| Chloride                     | 4.993  | mg/L    | 0.50 | 5        | 0       | 99.9      | 90         | 110            |                       |
| Sulfate                      | 10.05  | mg/L    | 0.50 | 10       | 0       | 101       | 90         | 110            |                       |
| Method: SM 2320B: Alkalinit  | y      |         |      |          |         |           |            |                |                       |
| Sample ID: MB                |        | MBLK    |      |          |         | Batch ID: | R41937     | Analysis Date: | 11/3/2010 12:01:00 PN |
| Alkalinity, Total (As CaCO3) | ND     | mg/L Ca | 20   |          |         |           |            |                |                       |
| Carbonate                    | ND     | mg/L Ca | 2.0  |          |         |           |            |                |                       |
| Bicarbonate                  | ND     | mg/L Ca | 20   |          |         |           |            |                |                       |
| Sample ID: MB-2              |        | MBLK    |      |          |         | Batch ID: | R41937     | Analysis Date: | 11/3/2010 5:04:00 PN  |
| Alkalinity, Total (As CaCO3) | ND     | mg/L Ca | 20   |          |         |           |            |                |                       |
| Carbonate                    | ND     | mg/L Ca | 2.0  |          |         |           |            |                | •                     |
| Bicarbonate                  | ND     | mg/L Ca | 20   |          |         |           |            |                |                       |
| Sample ID: LCS               |        | LCS     |      |          |         | Batch ID: | R41937     | Analysis Date: | 11/3/2010 12:07:00 PM |
| Alkalinity, Total (As CaCO3) | 79.92  | mg/L Ca | 20   | 80       | 0       | 99.9      | 96.5       | 104            |                       |
| Sample ID: LCS-2             |        | LCS     |      |          |         | Batch ID: | R41937     | Analysis Date: | 11/3/2010 5:10:00 PN  |
| Alkalinity, Total (As CaCO3) | 79.32  | mg/L Ca | 20   | 80       | 0       | 99.2      | 96.5       | 104            |                       |

| Ons | ılifi | ers: |
|-----|-------|------|

E Estimated value

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

J Analyte detected below quantitation limits

## **QA/QC SUMMARY REPORT**

lient: Project: Western Refining Southwest, Inc. Injection Well 4th QTR 10-25-10

Work Order:

1010B70.---

| Analyte                      | Result          | Units | PQL | SPK Va SPK ref | %Rec L    | owLimit His | ghLimit | %RPD    | RPDLimi    | Qual        |
|------------------------------|-----------------|-------|-----|----------------|-----------|-------------|---------|---------|------------|-------------|
| Method: EPA Method 8         | 260B: VOLATILES |       |     |                |           |             |         |         |            |             |
| Sample ID: 5mL rb            |                 | MBLK  |     |                | Batch ID: | R41845      | Analysi | s Date: | 10/28/2010 | 10:12:01 AN |
| Benzene                      | ND              | μg/L  | 1.0 |                |           |             |         |         |            |             |
| Toluene                      | ND              | μg/L  | 1.0 |                |           |             |         |         |            |             |
| Ethylbenzene                 | ND .            | μg/L  | 1.0 |                |           |             |         |         |            |             |
| Methyl tert-butyl ether (MTB | E) ND           | μg/L  | 1.0 |                |           |             |         |         |            |             |
| 1,2,4-Trimethylbenzene       | ND              | µg/L  | 1.0 |                |           |             |         |         |            |             |
| 1,3,5-Trimethylbenzene       | ND              | μg/L  | 1.0 |                |           |             |         |         |            |             |
| 1,2-Dichloroethane (EDC)     | ND              | µg/L  | 1.0 |                |           |             |         |         |            |             |
| 1,2-Dibromoethane (EDB)      | ND              | μg/L  | 1.0 |                |           |             |         |         |            |             |
| Naphthalene                  | ND              | µg/L  | 2.0 |                |           |             |         |         | ,          |             |
| 1-Methylnaphthalene          | ND              | μg/L  | 4.0 |                |           |             |         |         |            |             |
| 2-Methylnaphthalene          | ND              | μg/L  | 4.0 |                |           |             |         |         |            |             |
| Acetone                      | ND              | µg/L  | 10  |                |           |             |         |         |            |             |
| Bromobenzene                 | ND              | μg/L  | 1.0 |                |           |             |         |         |            |             |
| Bromodichloromethane         | ND              | μg/L  | 1.0 |                |           |             |         |         |            |             |
| Bromoform                    | ND              | µg/L  | 1.0 |                |           |             |         |         |            |             |
| Bromomethane                 | ND              | µg/L  | 3.0 |                |           |             |         |         |            |             |
| 2-Butanone                   | ND              | μg/L  | 10  |                |           |             |         |         |            |             |
| Carbon disulfide             | ND              | μg/L  | 10  |                |           |             |         |         |            |             |
| arbon Tetrachloride          | ND              | μg/L  | 1.0 |                |           |             |         |         |            |             |
| nlorobenzene                 | ND              | μg/L  | 1.0 |                |           |             |         |         |            |             |
| Chloroethane                 | ND              | µg/L  | 2.0 |                |           |             |         |         |            |             |
| Chloroform                   | ND              | μg/L  | 1.0 |                |           |             |         |         |            |             |
| Chloromethane                | ND              | µg/L  | 3.0 |                |           |             |         |         |            |             |
| 2-Chlorotoluene              | ND              | µg/L  | 1.0 |                |           |             |         |         |            |             |
| 4-Chlorotoluene              | ND              | µg/L  | 1.0 |                |           |             |         |         |            |             |
| cis-1,2-DCE                  | ND              | µg/L  | 1.0 |                |           |             |         |         |            |             |
| cis-1,3-Dichloropropene      | ND              | µg/L  | 1.0 |                |           |             |         |         |            |             |
| 1,2-Dibromo-3-chloropropand  | e ND            | μg/L  | 2.0 |                |           |             |         |         |            |             |
| Dibromochloromethane         | ND              | μg/L  | 1.0 |                |           |             |         |         |            |             |
| Dibromomethane               | ND              | μg/L  | 1.0 |                |           |             |         |         |            |             |
| 1,2-Dichlorobenzene          | ND              | µg/L  | 1.0 |                |           |             |         |         |            |             |
| 1,3-Dichiorobenzene          | ND              | µg/L  | 1.0 |                |           |             |         |         |            |             |
| 1,4-Dichlorobenzene          | ND              | μg/L  | 1.0 |                |           |             |         |         |            |             |
| Dichlorodifluoromethane      | ND              | µg/L  | 1.0 |                |           |             |         |         |            |             |
| 1,1-Dichloroethane           | ND              | μg/L  | 1.0 |                |           |             |         |         |            |             |
| 1,1-Dichloroethene           | ND              | µg/L  | 1.0 |                |           |             |         |         |            |             |
| 1,2-Dichloropropane          | ND              | µg/L  | 1.0 | •              |           |             |         |         |            |             |
| 1,3-Dichloropropane          | ND              | µg/L  | 1.0 |                |           |             |         |         |            |             |
| 2,2-Dichloropropane          | ND              | µg/L  | 2.0 |                |           |             |         |         |            |             |
| 1,1-Dichloropropene          | ND              | µg/L  | 1.0 |                |           |             |         |         |            |             |
| Hexachlorobutadiene          | ND              | μg/L  | 1.0 |                |           |             |         |         |            |             |
| 2-Hexanone                   | ND              | μg/L  | 10  |                |           |             |         |         |            |             |
| sopropylbenzene              | ND              | µg/L  | 1.0 |                |           |             |         |         |            |             |
| I-isopropyltoluene           | ND              | μg/L  | 1.0 |                |           |             |         |         |            |             |
|                              |                 |       |     |                |           |             |         |         |            |             |

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Client:

Western Refining Southwest, Inc.

Project: Injection Well 4th QTR 10-25-10

Work Order:

1010B70

| Analyte                        | Result      | Units | PQL  | SPK Va SPK ref | %Rec Lo   | owLimit Hi | ghLimit %F   | RPD RPDLimit Qual          |
|--------------------------------|-------------|-------|------|----------------|-----------|------------|--------------|----------------------------|
| Method: EPA Method 8260E       | : VOLATILES |       |      |                |           |            |              |                            |
| Sample ID: 5mL rb              |             | MBLK  |      |                | Batch ID: | R41845     | Analysis Da  | te: 10/28/2010 10:12:01 AN |
| 4-Methyl-2-pentanone           | ND          | µg/L  | 10   | •              |           |            |              |                            |
| Methylene Chloride             | ND          | µg/L  | 3.0  |                |           |            |              | ž                          |
| n-Butylbenzene                 | ND          | μġ/L  | 1.0  |                |           |            |              |                            |
| n-Propylbenzene                | ND          | μg/L  | 1.0  |                |           |            |              |                            |
| sec-Butylbenzene               | ND          | μg/L  | 1.0  |                |           |            |              |                            |
| Styrene                        | ND          | μg/L  | 1.0  |                |           |            |              |                            |
| tert-Butylbenzene              | ND          | μg/L  | 1.0  |                |           |            |              |                            |
| 1,1,1,2-Tetrachlorcethane      | ND          | μg/L  | 1.0  |                |           |            |              |                            |
| 1,1,2,2-Tetrachloroethane      | ND          | μg/L  | 2.0  |                |           |            |              |                            |
| Tetrachlorcethene (PCE)        | ND          | μg/L  | 1.0  |                |           |            |              |                            |
| trans-1,2-DCE                  | ND          | µg/L  | 1.0  |                |           |            |              |                            |
| trans-1,3-Dichloropropene      | ND          | μg/L  | 1.0  |                |           |            |              |                            |
| 1,2,3-Trichlorobenzene         | ND          | μg/L  | 1.0  |                |           |            |              |                            |
| 1,2,4-Trichlorobenzene         | ND          | μg/L  | 1.0  |                |           |            |              |                            |
| 1,1,1-Trichloroethane          | ND          | μg/L  | 1.0  |                |           |            |              |                            |
| 1,1,2-Trichloroethane          | ND          | μg/L  | 1.0  |                |           |            |              |                            |
| Trichloroethene (TCE)          | ND          | μg/L  | 1.0  |                |           |            |              |                            |
| Trichlorofluoromethane         | ND          | μg/L  | 1.0  |                |           |            |              |                            |
| 1,2,3-Trichloropropane         | ND          | µg/L  | 2.0  |                |           |            |              |                            |
| Vinyl chloride                 | ND          | μg/L  | 1.0  |                |           |            |              |                            |
| Xylenes, Total                 | ND          | μg/L  | 1.5  |                |           |            |              |                            |
| Sample ID: 6ml rb              |             | MBLK  |      |                | Batch ID: | R41879     | Analysis Dat | e: 10/29/2010 10:04:17 AM  |
| Benzene                        | ND          | μg/L  | 1.00 |                |           |            |              |                            |
| Toluene                        | ND          | μg/L  | 1.00 |                |           |            |              |                            |
| Ethylbenzene                   | ND          | µg/L  | 1.00 |                |           |            |              |                            |
| Methyl tert-butyl ether (MTBE) | ND          | μg/L  | 1.00 |                |           |            |              |                            |
| 1,2,4-Trimethylbenzene         | ND          | μg/L  | 1.00 |                |           |            |              |                            |
| ,3,5-Trimethylbenzene          | ND          | μg/L  | 1.00 |                |           |            |              |                            |
| ,2-Dichloroethane (EDC)        | ND          | μg/L  | 1.00 |                |           |            |              |                            |
| I,2-Dibromoethane (EDB)        | ND          | μg/L  | 1.00 |                |           |            |              |                            |
| Naphthalene                    | ND          | μg/L  | 2.00 |                |           |            |              |                            |
| -Methylnaphthalene             | ND          | μg/L  | 4.00 |                |           |            |              |                            |
| ?-Methylnaphthalene            | ND          | µg/L  | 4.00 |                |           |            |              |                            |
| Acetone                        | ND          | µg/L  | 10.0 |                |           |            |              |                            |
| Bromobenzene                   | ND          | μg/L  | 1.00 |                |           |            |              |                            |
| Bromodichloromethane           | ND          | µg/L  | 1.00 |                |           |            |              |                            |
| Bromoform                      | ND          | µg/L  | 1.00 |                |           |            |              |                            |
| romomethane                    | ND          | µg/L  | 3.00 |                |           |            |              |                            |
| -Butanone                      | ND          | µg/L  | 10.0 |                |           |            |              |                            |
| arbon disulfide                | ND          | µg/L  | 10.0 |                |           |            |              |                            |
| arbon Tetrachloride            | ND          | µg/L  | 1.00 |                |           |            |              |                            |
| hlorobenzene                   | ND          | μg/L  | 1.00 |                |           |            |              |                            |
| hloroethane                    | ND          | µg/L  | 2.00 |                |           |            |              |                            |
| hloroform                      | ND          | μg/L  | 1.00 |                |           |            |              |                            |

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Western Refining Southwest, Inc. Injection Well 4th QTR 10-25-10

Work Order:

1010B70

| Analyte                     | Result          | Units | PQL  | SPK Va SPK ref | %Rec L    | owLimit: H | ighLimit | %RPD    | RPDLimit     | Qual       |
|-----------------------------|-----------------|-------|------|----------------|-----------|------------|----------|---------|--------------|------------|
| Method: EPA Method 8260B    | : VOLATILES     |       |      |                |           |            |          |         |              |            |
| Sample ID: 5ml rb           |                 | MBLK  |      |                | Batch ID: | R41879     | Analysi  | s Date: | 10/29/2010 1 | 0:04:17 AN |
| Chloromethane               | ND              | μg/L  | 3.00 |                |           |            |          |         |              |            |
| 2-Chlorotoluene             | · ND            | μg/L  | 1.00 |                |           |            |          |         |              |            |
| 4-Chlorotoluene             | ND <sup>-</sup> | µg/L  | 1.00 |                |           |            |          |         |              |            |
| cis-1,2-DCE                 | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| cis-1,3-Dichloropropene     | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| 1,2-Dibromo-3-chloropropane | ND              | µg/L  | 2.00 |                |           |            |          |         |              |            |
| Dibromochloromethane        | NĐ              | µg/L  | 1.00 |                |           |            |          |         |              |            |
| Dibromomethane              | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| 1,2-Dichlorobenzene         | ND              | µg/L  | 1.00 |                |           |            |          |         |              |            |
| 1,3-Dichtorobenzene         | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| 1,4-Dichlorobenzene         | ND              | µg/L  | 1.00 |                |           |            |          |         |              |            |
| Dichlorodifluoromethane     | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| 1,1-Dichloroethane          | ND              | µg/L  | 1.00 |                |           |            |          |         |              |            |
| 1,1-Dichloroethene          | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| 1,2-Dichloropropane         | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| 1,3-Dichloropropane         | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| 2,2-Dichloropropane         | ND              | µg/L  | 2.00 |                |           |            |          |         |              |            |
| 1,1-Dichloropropene         | ND              | µg/L  | 1.00 |                |           |            |          |         |              |            |
| achlorobutadiene            | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| ехапопе                     | ND              | μg/L  | 10.0 |                |           | •          |          |         |              |            |
| Isopropylbenzene            | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| 4-Isopropyltoluene          | ND              | µg/L  | 1.00 |                |           |            |          |         |              |            |
| 4-Methyl-2-pentanone        | ND              | μg/L  | 10.0 |                |           |            |          |         |              |            |
| Methylene Chloride          | ND              | μg/L  | 3.00 |                |           |            |          |         |              |            |
| n-Butylbenzene              | ND              | µg/L  | 1.00 |                |           |            |          |         |              |            |
| n-Propylbenzene             | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| sec-Butylbenzene            | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| Styrene                     | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| tert-Butylbenzene           | ND              | µg/L  | 1.00 |                |           |            |          |         |              |            |
| 1,1,1,2-Tetrachloroethane   | ND              | µg/L  | 1.00 |                |           |            |          |         |              |            |
| 1,1,2,2-Tetrachloroethane   | ND              | μg/L  | 2.00 |                |           |            |          |         |              |            |
| Fetrachloroethene (PCE)     | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| rans-1,2-DCE                | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| rans-1,3-Dichloropropene    | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| 1,2,3-Trichlorobenzene      | ND              | µg/L  | 1.00 |                |           |            |          |         |              |            |
| 1,2,4-Trichlorobenzene      | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| ,1,1-Trichloroethane        | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| 1,1,2-Trichloroethane       | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| Frichloroethene (TCE)       | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| richlorofluoromethane       | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| ,2,3-Trichloropropane       | ND              | µg/L  | 2.00 |                |           |            |          |         |              |            |
| /inyl chloride              | ND              | μg/L  | 1.00 |                |           |            |          |         |              |            |
| (ylenes, Total              | ND              | μg/L  | 1.50 |                |           |            |          |         |              |            |
| Sample ID: b6               |                 | MBLK  |      |                | Batch ID: | R41901     | Analysis | Date:   | 11/1/2010 4  | :25:32 PM  |
|                             |                 |       |      |                |           |            |          |         |              |            |

ND

Estimated value E

J Analyte detected below quantitation limits Not Detected at the Reporting Limit

Н Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

## **QA/QC SUMMARY REPORT**

Client:

Western Refining Southwest, Inc.

Project: Injection Well 4th QTR 10-25-10

Work Order:

1010B70

| 2.030                          |             |         |     | Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro | 770112     | <u> </u>  | 010070     |
|--------------------------------|-------------|---------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|------------|
| Analyte                        | Result      | Units   | PQL | SPK Va SPK ref್ಯಪ್ರಿಣ%Rec LowLimit HighLimi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t %RPD     | RPDLimit  | Qual       |
| Method: EPA Method 8260B       | : VOLATILES | , , , , |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| Sample ID: b6                  |             | MBLK    |     | Batch ID: R41901 Anal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ysis Date: | 11/1/2010 | 4:25:32 PN |
| Benzene                        | ND          | µg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| Toluene                        | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| Ethylbenzene                   | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| Methyl tert-butyl ether (MTBE) | ND          | µg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| 1,2,4-Trimethylbenzene         | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| 1,3,5-Trimethylbenzene         | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| 1,2-Dichloroethane (EDC)       | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| 1,2-Dibromoethane (EDB)        | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| Naphthalene                    | ND          | µg/L    | 2.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| 1-Methylnaphthalene            | ND          | μg/L    | 4.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| 2-Methylnaphthalene            | ND          | μg/L    | 4.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| Acetone                        | ND          | µg/L    | 10  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| Bromobenzene                   | ND          | µg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| Bromodichloromethane           | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | -         |            |
| Bromoform                      | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| Bromomethane                   | ND          | µg/L    | 3.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           | \          |
| 2-Butanone                     | ND          | μg/L    | 10  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| Carbon disulfide               | ND          | μg/L    | 10  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| Carbon Tetrachloride           | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| Chlorobenzene                  | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           | •          |
| Chloroethane                   | ND          | µg/L    | 2.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| Chloroform                     | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| Chloromethane                  | ND          | µg/L    | 3.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| 2-Chlorotoluene                | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| 4-Chlorotoluene                | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| cis-1,2-DCE                    | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| cis-1,3-Dichloropropene        | ND          | μg/L    | 1.0 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |           |            |
| 1,2-Dibromo-3-chloropropane    | ND          | µg/L    | 2.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| Dibromochloromethane           | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| Dibromomethane                 | ND          | µg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| 1,2-Dichlorobenzene            | ND          | µg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| 1,3-Dichlorobenzene            | ND          | µg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| 1,4-Dichtorobenzene            | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| Dichlorodifluoromethane        | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| 1,1-Dichloroethane             | ND          | pg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| 1,1-Dichloroethene             | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| 1,2-Dichloropropane            | ND          | µg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| 1,3-Dichloropropane            | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| 2,2-Dichloropropane            | ND          | μg/L    | 2.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| 1,1-Dichloropropene            | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| -lexachlorobutadiene           | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| 2-Hexanone                     | ND          | μg/L    | 1.0 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |           |            |
| sopropylbenzene                | ND          | μg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
|                                |             |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |
| i-Isopropyltoluene             | ND          | µg/L    | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           | _          |
|                                |             |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |



E Estimated value

J Analyte detected below quantitation limits
ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

# **QA/QC SUMMARY REPORT**

ient:
Project:

Western Refining Southwest, Inc.

Injection Well 4th QTR 10-25-10 Work Order: 1010B70

| Analyte                   | Result       | Units |     | SPK Va S | SPK ref | %Rec l    | LowLimit H | ighLimlt %RI  | PD RPDLimit Qual         |
|---------------------------|--------------|-------|-----|----------|---------|-----------|------------|---------------|--------------------------|
| Method: EPA Method 8260   | B: VOLATILES |       |     |          |         |           |            |               |                          |
| Sample ID: b6             |              | MBLK  |     |          |         | Batch ID: | R41901     | Analysis Date | : 11/1/2010 4:25:32 PI   |
| 4-Methyl-2-pentanone      | ND           | μg/L  | 10  |          |         |           |            |               |                          |
| Methylene Chloride        | ND           | μg/L  | 3.0 |          |         |           |            |               |                          |
| n-Butylbenzene            | ND           | μg/L  | 1.0 |          |         |           |            |               |                          |
| n-Propylbenzene           | ND           | μg/L  | 1.0 |          |         |           |            |               |                          |
| sec-Butylbenzene          | ND           | μg/L  | 1.0 |          |         |           |            |               |                          |
| Styrene                   | ND           | μg/L  | 1.0 |          |         |           |            |               |                          |
| tert-Butylbenzene         | ND           | μg/L  | 1.0 |          |         |           |            |               |                          |
| 1,1,1,2-Tetrachloroethane | ND           | μg/L  | 1.0 |          |         |           |            |               |                          |
| 1,1,2,2-Tetrachloroethane | ND           | μg/L  | 2.0 |          |         |           |            |               |                          |
| Tetrachloroethene (PCE)   | ND           | μg/L  | 1.0 |          |         |           |            |               |                          |
| trans-1,2-DCE             | ND           | μg/L  | 1.0 |          |         |           |            |               |                          |
| trans-1,3-Dichloropropene | ND           | μg/L  | 1.0 |          |         |           |            |               |                          |
| 1,2,3-Trichlorobenzene    | ND           | µg/L  | 1.0 |          |         |           |            |               |                          |
| 1,2,4-Trichlorobenzene    | Й            | µg/L  | 1.0 |          |         |           |            |               |                          |
| 1,1,1-Trichloroethane     | ND           | µg/L  | 1.0 |          |         |           |            |               |                          |
| 1,1,2-Trichloroethane     | ND           | µg/L  | 1.0 |          |         |           |            |               |                          |
| Trichloroethene (TCE)     | ND           | μg/L  | 1.0 |          |         |           |            |               |                          |
| Trichlorofluoromethane    | ND           | µg/L  | 1.0 |          |         |           |            |               |                          |
| 3-Trichioropropane        | ND           | µg/L  | 2.0 |          |         |           |            |               |                          |
| Inyl chloride             | ND           | μg/L  | 1.0 |          |         |           |            |               |                          |
| Xylenes, Total            | ND           | μg/L  | 1.5 |          |         |           |            |               |                          |
| Sample ID: 100ng Ics      |              | LCS   |     |          |         | Batch ID: | R41845     | Analysis Date | : 10/28/2010 11:07:07 AM |
| Benzene                   | 17.56        | μg/L  | 1.0 | 20       | 0       | 87.8      | 84.6       | 109           |                          |
| l'oluene                  | 20.58        | μg/L  | 1.0 | 20       | 0       | 103       | 81         | 114           |                          |
| Chlorobenzene             | 20.71        | μg/L  | 1.0 | 20       | 0       | 104       | 85.2       | 113           |                          |
| I,1-Dichloroethene        | 18.74        | µg/L  | 1.0 | 20       | 0       | 93.7      | 79.6       | 1 <b>24</b>   |                          |
| Frichloroethene (TCE)     | 16.21        | µg/L  | 1.0 | 20       | 0       | 81.0      | 78.3       | 102           |                          |
| Sample ID: 100ng Ics      |              | LCS   |     |          |         | Batch ID: | R41879     | Analysis Date | 10/29/2010 10:59:20 AM   |
| 3enzene                   | 18.52        | μg/L  | 1.0 | 20       | 0       | 92.6      | 84.6       | 109           | •                        |
| Toluene                   | 20.62        | µg/L  | 1.0 | 20       | 0       | 103       | 81         | 114           |                          |
| Chlorobenzene             | 19.93        | μg/L  | 1.0 | 20       | 0       | 99.7      | 85.2       | 113           |                          |
| ,1-Dichloroethene         | 17.62        | μg/L  | 1.0 | 20       | 0       | 88.1      | 79.6       | 124           |                          |
| richloroethene (TCE)      | 18.89        | µg/L  | 1.0 | 20       | 0       | 94.5      | 78.3       | 102           |                          |
| Sample ID: 100ng Ics      |              | LCS   |     |          |         | Batch ID: | R41901     | Analysis Date | 11/1/2010 3:58:01 PM     |
| Benzene                   | 18.85        | μg/L  | 1.0 | 20       | 0       | 94.2      | 84.6       | 109           |                          |
| oluene                    | 21.15        | µg/L  | 1.0 | 20       | Ō       | 106       | 81         | 114           |                          |
| Chlorobenzene             | 20.01        | µg/L  | 1.0 | 20       | 0       | 100       | 85.2       | 113           |                          |
| ,1-Dichloroethene         | 21.46        | µg/L  | 1.0 | 20       | 0       | 107       | 79.6       | 124           |                          |
| richloroethene (TCE)      | 16.38        | μg/L  | 1.0 | 20       | 0       | 81.9      | 78.3       | 102           |                          |



E Estimated value

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

J Analyte detected below quantitation limits

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

# **QA/QC SUMMARY REPORT**

Client:

Western Refining Southwest, Inc.

Project: Injection Well 4th QTR 10-25-10 Work Order:

1010B70

| Analyte                     | Result        | Units | PQL  | SPK Va SPK ref | %Rec Lo   | wLimit Hi | ghLimit | %RPD     | RPDLimit  | Qual      |
|-----------------------------|---------------|-------|------|----------------|-----------|-----------|---------|----------|-----------|-----------|
| Method: EPA Method 8270C    | : Semivolatii |       |      |                |           |           |         |          |           |           |
| Sample ID: mb-24313         |               | MBLK  |      |                | Batch ID: | 24313     | Analys  | is Date: | 11/1/2010 | 9:03:09 A |
| Acenaphthene                | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| Acenaphthylene              | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| Aniline                     | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| Anthracene                  | ND            | µg/L  | 10.0 |                |           |           |         |          |           |           |
| Azobenzene                  | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| Benz(a)anthracene           | ND            | µg/L  | 10.0 |                |           |           |         |          |           |           |
| Benzo(a)pyrene              | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| Benzo(b)fluoranthene        | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| Benzo(g,h,i)perylene        | ND            | µg/L  | 10.0 |                |           |           |         |          |           |           |
| Benzo(k)fluoranthene        | ND            | µg/L  | 10.0 |                |           |           |         |          |           |           |
| Benzoic acid                | ND            | μg/L  | 20.0 |                |           |           |         |          |           |           |
| Benzyl alcohol              | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| Bis(2-chloroethoxy)methane  | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| Bis(2-chloroethyl)ether     | ND            | µg/L  | 10.0 |                |           |           |         |          |           |           |
| Bis(2-chloroisopropyl)ether | ND            | µg/L  | 10.0 |                |           |           |         |          |           |           |
| Bis(2-ethylhexyl)phthalate  | ND            | µg/L  | 10.0 |                |           |           |         |          |           |           |
| 4-Bromophenyl phenyl ether  | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| Butyl benzyl phthelate      | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| Carbazole                   | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| 4-Chloro-3-methylphenol     | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| 4-Chloroaniline             | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| 2-Chloronaphthalene         | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| 2-Chlorophenol              | ND            | µg/L  | 10.0 |                |           |           |         |          |           |           |
| 1-Chlorophenyl phenyl ether | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| Chrysene                    | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| Di-n-butyl phthalate        | ND            | µg/L  | 10.0 |                |           |           |         | •        |           |           |
| Di-n-octyl phthalate        | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| Dibenz(a,h)anthracene       | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| Dibenzofuran                | ND            | µg/L  | 10.0 |                |           |           |         |          |           |           |
| ,2-Dichlorobenzene          | ND            | μg/L  | 5.00 |                |           |           |         |          |           |           |
| ,3-Dichlorobenzene          | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| .4-Dichlorobenzene          | ND            | μg/L  | 5.00 |                |           |           |         |          |           |           |
| ,3'-Dichlorobenzidine       | ND .          | μg/L  | 10.0 |                |           |           |         |          |           |           |
| Diethyl phthalate           | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| Dimethyl phthalate          | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| ,4-Dichlorophenol           | ND            | μg/L  | 20.0 |                |           |           |         |          |           |           |
| ,4-Dimethylphenol           | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| ,6-Dinitro-2-methylphenol   | ND            | μg/L  | 20.0 |                |           |           |         |          |           |           |
| ,4-Dinitrophenol            | ND            | μg/L  | 5.00 |                |           |           |         |          |           |           |
| ,4-Dinitrotoluene           | ND            | µg/L  | 5.00 |                |           |           |         |          |           |           |
| ,6-Dinitrotoluene           | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| luoranthene                 | ND            | µg/L  | 10.0 |                |           |           |         |          |           |           |
| luorene                     | ND            | μg/L  | 10.0 |                |           |           |         |          |           |           |
| exachlorobenzene            | ND            | μg/L  | 5.00 |                |           |           |         |          |           |           |

Qualifiers:

ND

Estimated value

J Analyte detected below quantitation limits Not Detected at the Reporting Limit

Н Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

## **QA/QC SUMMARY REPORT**

Project:

Western Refining Southwest, Inc. Injection Well 4th QTR 10-25-10

Work Order:

1010B70

| Analyte                                 | Paradia Result       | Units        | PQL  | SPK Va SPK n | ef %Rec   | LowLimit H       | lighLimlt | %RPD         | RPDLimit                              | Qual       |
|-----------------------------------------|----------------------|--------------|------|--------------|-----------|------------------|-----------|--------------|---------------------------------------|------------|
| Method: EPA Method                      | 8270C: Semivolatiles |              |      |              |           |                  |           |              |                                       |            |
| Sample ID: mb-24313                     |                      | MBLK         |      |              | Batch II  | D: <b>2431</b> 3 | 3 Analys  | sis Date:    | 11/1/2010                             | 9:03:09 AI |
| Hexachlorobutadiene                     | ND                   | μg/L         | 10.0 |              |           |                  |           |              |                                       |            |
| Hexachlorocyclopentadien                | e ND                 | μg/L         | 10.0 | •            |           |                  |           |              |                                       |            |
| Hexachloroethane                        | ND                   | μg/L         | 5.00 |              |           |                  |           |              |                                       |            |
| Indeno(1,2,3-cd)pyrene                  | ND                   | μg/L         | 10.0 |              |           |                  |           |              |                                       |            |
| Isophorone                              | ND                   | µg/L         | 10.0 |              |           |                  |           |              |                                       |            |
| 2-Methylnaphthalene                     | ND                   | μg/L         | 10.0 |              |           |                  |           |              |                                       |            |
| 2-Methylphenol                          | ND                   | μg/L         | 5.00 |              |           |                  |           |              |                                       |            |
| 3+4-Methylphenol                        | ND                   | μg/L         | 5.00 |              |           |                  |           |              |                                       |            |
| N-Nitrosodi-n-propylamine               | ND                   | μg/L         | 10.0 |              |           |                  |           |              |                                       |            |
| N-Nitrosodimethylamine                  | ND                   | μg/L         | 10.0 |              |           |                  |           |              |                                       |            |
| N-Nitrosodiphenylamine                  | ND                   | µg/L         | 10.0 |              |           |                  |           |              |                                       |            |
| Naphthalene                             | ND                   | μg/L         | 10.0 |              |           |                  |           |              |                                       |            |
| 2-Nitroaniline                          | ND                   | μg/L         | 10.0 |              |           |                  |           |              |                                       |            |
| 3-Nitroaniline                          | ND                   | μg/L         | 10.0 |              |           |                  |           |              |                                       |            |
| 4-Nitroaniline                          | ND                   | µg/L         | 20.0 |              |           |                  |           |              |                                       |            |
| Nitrobenzene                            | ND                   | µg/L         | 5.00 |              |           |                  |           |              |                                       |            |
| 2-Nitrophenol                           | ND                   | μg/L         | 10.0 |              |           |                  |           |              |                                       |            |
| 4-Nitrophenol                           | ND                   | μg/L         | 10.0 |              |           |                  |           |              |                                       |            |
| entachlorophenol                        | ND                   | μg/L         | 5.00 |              |           |                  |           |              |                                       |            |
| nenanthrene                             | ND                   | µg/L         | 10.0 |              |           |                  |           |              |                                       |            |
| Phenol                                  | ND                   | μg/L         | 10.0 |              |           |                  |           |              |                                       |            |
| Pyrene                                  | ND                   | µg/L         | 10.0 |              |           |                  |           |              |                                       |            |
| Pyridine                                | ND                   | μg/L         | 5.00 |              |           |                  |           |              |                                       |            |
| 1,2,4-Trichlorobenzene                  | ND                   | µg/L         | 10.0 |              |           |                  |           |              |                                       |            |
| 2,4,5-Trichlorophenol                   | ND                   | μ <b>g/L</b> | 10.0 |              |           |                  |           |              |                                       |            |
| 2,4,6-Trichlorophenol                   | ND                   | µg/L         | 10.0 |              |           |                  |           |              |                                       |            |
| Sample ID: Ics-24313                    |                      | LCS          |      |              | Batch ID  | 24313            | Analysi   | s Date:      | 11/1/2010 10                          | :04:42 AN  |
| Acenaphthene                            | 61.28                | μg/L         | 10.0 | 100 0        | 61.3      | 31               | 99.4      |              |                                       | •          |
| I-Chloro-3-methylphenol                 | 60.38                | µg/L         | 10.0 | 100 0        | 60.4      | 34.3             | 111       |              |                                       |            |
| 2-Chlorophenol                          | 59.32                | μg/L         | 10.0 | 100 0        | 59.3      | 24.1             | 98.7      |              |                                       |            |
| ,4-Dichlorobenzene                      | 55.22                | μg/L         | 10.0 | 100 0        | 55.2      | 20.6             | 85.6      |              |                                       |            |
| 4-Dinitrotoluene                        | 82.90                | μg/L         | 10.0 | 100 0        | 82.9      | 26.6             | 126       |              |                                       |            |
| N-Nitrosodi-n-propylamine               | 60.08                | µg/L         | 10.0 | 100 0        | 60.1      | 29.2             | 94.4      |              |                                       |            |
| -Nitrophenol                            | 87.64                | μg/L         | 10.0 | 100 0        | 67.6      | 9.87             | 86        |              |                                       |            |
| Pentachlorophenol                       | 60.88                | μg/L         | 20.0 | 100 0        | 60.9      | 20               | 97.8      |              |                                       |            |
| henol                                   | 50.20                | μg/L         | 10.0 | 100 0        | 50.2      | 17.5             | 60.5      |              |                                       |            |
| yrene                                   | 57.70                | μg/L         | 10.0 | 100 0        | 57.7      | 46.8             | 92.2      |              |                                       |            |
| ,2,4-Trichlorobenzene                   | 55.00                | µg/L         | 10.0 | 100 0        | 55.0      | 25.2             | 92.3      |              |                                       |            |
| ample ID: Icsd-24313                    |                      | LCSD         |      |              | Batch ID: |                  | Analysis  | s Date:      | 11/1/2010 10                          | :34:07 AM  |
| cenaphthene                             | 60.02                | μg/L         | 10.0 | 100 0        | 60.0      | 31               | 99.4      | 2.08         | 30                                    |            |
| -Chloro-3-methylphenol                  | 64.00                | μg/L         | 10.0 | 100 0        | 64.0      | 34.3             | 111       | 5.82         | 30.8                                  |            |
| -Chlorophenol                           | 58.62                | μg/L<br>μg/L | 10.0 | 100 0        | 58.6      | 34.3<br>24.1     | 98.7      | 5.62<br>1.19 | 30.6<br>31                            |            |
| 4-Dichlorobenzene                       | 55.38                |              | 10.0 | 100 0        |           |                  |           |              |                                       |            |
| ,4-Dichloropenzene<br>-4-Dinitrotoluene | 55.38<br>81.68       | μg/L         |      |              | 55.4      | 20.6             | 85.6      | 0.289        | 37                                    |            |
| -Dumotomana                             | 01.00                | μ <b>g/L</b> | 10.0 | 100 0        | 81.7      | 26.6             | 126       | 1.48         | 34.5                                  | •          |
| Qualifiers:                             |                      |              |      |              |           |                  |           |              | · · · · · · · · · · · · · · · · · · · |            |

ND

Ε Estimated value

J Analyte detected below quantitation limits Not Detected at the Reporting Limit

Н Holding times for preparation or analysis exceeded

Non-Chlorinated NC

RPD outside accepted recovery limits

## **QA/QC SUMMARY REPORT**

Client: Project: Western Refining Southwest, Inc.

Injection Well 4th QTR 10-25-10

Work Order: 1010B70

| Analyte (Analyte )                                | Result           | Units        | PQL     | SPK V | SPK ref | %Rec L    | owLimit Hi | ghLimit  | %RPD    | RPDLimit (     | Qual     |
|---------------------------------------------------|------------------|--------------|---------|-------|---------|-----------|------------|----------|---------|----------------|----------|
| Method: EPA Method 82700                          | C: Semivolatiles |              |         |       |         |           |            |          |         |                |          |
| Sample ID: Icsd-24313                             |                  | LCSD         |         |       |         | Batch ID: | 24313      | Analysis | s Date: | 11/1/2010 10:3 | 34:07 Al |
| N-Nitrosodi-n-propylamine                         | 58.16            | μg/L         | 10.0    | 100   | 0       | 58.2      | 29.2       | 94.4     | 3.25    | 30.8           |          |
| 4-Nitrophenol                                     | 70.12            | μ <b>g/L</b> | 10.0    | 100   | 0       | 70.1      | 9.87       | 86       | 3.60    | 61.1           |          |
| Pentachlorophenol                                 | 60.28            | μg/L         | 20.0    | 100   | 0       | 60.3      | 20         | 97.8     | 0.990   | 64.8           |          |
| Phenol                                            | 49.38            | μg/L         | 10.0    | 100   | 0       | 49.4      | 17.5       | 60.5     | 1.65    | 31.4           |          |
| Pyrene                                            | 60.50            | μg/L         | 10.0    | 100   | 0       | 60.5      | 46.8       | 92.2     | 4.74    | 29.8           |          |
| 1,2,4-Trichlorobenzene                            | 55.44            | μg/L         | 10.0    | 100   | 0       | 55.4      | 25.2       | 92.3     | 0.797   | 30.9           |          |
| Method: EPA Method 7470:                          | Mercury          |              |         |       |         |           |            |          |         |                |          |
| Sample ID: MB-24361                               | •                | MBLK         |         |       |         | Batch ID: | 24361      | Analysis | Date:   | 11/3/2010 12:2 | 9:29 PA  |
| Mercury                                           | ND               | mg/L         | 0.00020 |       |         |           |            |          |         | •              |          |
| Sample ID: LCS-24361                              |                  | LCS          |         |       |         | Batch ID: | 24361      | Analysis | s Date: | 11/3/2010 12:3 | 1:16 PN  |
| Mercury                                           | 0.005075         | mg/L         | 0.00020 | 0.005 | 0       | 102       | 80         | 120      |         |                |          |
| Sample ID: LCS-24361                              |                  | LCS          |         |       |         | Batch ID: | 24361      | Analysis | Date:   | 11/3/2010 12:3 | 3:04 PN  |
| Mercury                                           | 0.005067         | mg/L         | 0.00020 | 0.005 | 0       | 101       | 80         | 120      | 0.168   | 0              |          |
|                                                   |                  |              |         |       |         |           |            | -,,      |         |                |          |
| Method: EPA 6010B: Total F<br>Sample ID: MB-24343 | Recoverable Met  | ais<br>MBLK  |         |       |         | Batch ID: | 24343      | Analysis | Date:   | 11/2/2010 11:2 | 2:19 AN  |
| Arsenic                                           | ND               | mg/L         | 0.020   |       |         |           |            |          |         | ,              |          |
| Barium                                            | ND               | mg/L         | 0.020   |       |         |           |            |          |         |                |          |
| Cadmium                                           | ND               | mg/L         | 0.0020  |       |         |           |            |          |         |                |          |
| Calcium                                           | ND               | mg/L         | 1.0     |       |         |           |            |          |         |                |          |
| Chromium                                          | ND               | mg/L         | 0.0060  |       |         |           |            |          |         |                |          |
| Lead                                              | ND               | mg/L         | 0.0050  |       |         |           |            |          |         |                |          |
| Magnesium                                         | ND               | mg/L         | 1.0     |       |         |           |            |          |         |                |          |
| Potassium                                         | ND               | mg/L         | 1.0     |       |         |           |            |          |         |                |          |
| Selenium                                          | ND               | mg/L         | 0.050   |       |         |           |            |          |         |                |          |
| Silver                                            | ND               | mg/L         | 0.0050  |       |         |           |            |          |         |                |          |
| Sodium                                            | ND               | mg/L         | 1.0     |       |         |           |            |          |         |                |          |
| Sample ID: LCS-24343                              |                  | LCS          |         |       |         | Batch ID: | 24343      | Analysis | Date:   | 11/2/2010 11:2 | 5:32 AN  |
| Arsenic                                           | 0.5188           | mg/L         | 0.020   | 0.5   | 0       | 104       | 80         | 120      |         |                |          |
| 3arium                                            | 0.4969           | mg/L         | 0.020   | 0.5   | 0       | 99.4      | 80         | 120      |         |                |          |
| Cadmium                                           | 0.5095           | mg/L         | 0.0020  | 0.5   | 0       | 102       | 80         | 120      |         |                |          |
| Calcium                                           | 54.16            | mg/L         | 1.0     | 50    | 0       | 108       | 80         | 120      |         |                |          |
| Chromium -                                        | 0.4998           | mg/L         | 0.0060  |       | 0.0012  | 99.7      | 80         | 120      |         |                |          |
| .ead                                              | 0.5073           | mg/L         | 0.0050  | 0.5   | 0       | 101       | 80         | 120      | ٠       |                |          |
| Magnesium                                         | 54.75            | mg/L         | 1.0     | 50    | 0       | 110       | 80         | 120      | •       |                |          |
| Potassium                                         | 57.52            | mg/L         | 1.0     | 50    | 0       | 115       | 80         | 120      |         |                |          |
| Selenium                                          | 0.4797           | mg/L         | 0.050   | 0.5   | 0       | 95.9      | 80         | 120      |         |                |          |
| Silver                                            | 0.5098           | mg/L         | 0.0050  | 0.5   | 0       | 102       | 80         | 120      |         |                |          |
| Sodium                                            | 58.09            | mg/L         | 1.0     | 50    | 0       | 116       | 80         | 120      |         |                |          |

| Oua | liffere. | , |
|-----|----------|---|

ND

Estimated value

J Analyte detected below quantitation limits Not Detected at the Reporting Limit

Н Holding times for preparation or analysis exceeded

NC Non-Chlorinated

RPD outside accepted recovery limits R

## **QA/QC SUMMARY REPORT**

lent:

Western Refining Southwest, Inc. Injection Well 4th QTR 10-25-10

Work Order:

1010B70

| Analyte                                        | Result          | Units          | PQL  | SPK Va SPK ref | %Rec Lo   | owLimit Hi | ghLimit %RPD   | RPDLimit Qual        |
|------------------------------------------------|-----------------|----------------|------|----------------|-----------|------------|----------------|----------------------|
| Method: SM2540C MOD: To<br>Sample ID: MB-24315 | tal Dissolved S | Bolids<br>MBLK |      |                | Batch ID: | 24315      | Analysis Date: | 11/1/2010 7:37:00 AM |
| Total Dissolved Solids Sample ID: LCS-24315    | ND              | mg/L<br>LCS    | 20.0 |                | Batch ID: | 24315      | Analysis Date: | 11/1/2010 7:37:00 AM |
| Total Dissolved Solids                         | 1026            | mg/L           | 20.0 | 1000 10        | 102       | 80         | 120            |                      |



E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

#### Sample Receipt Checklist

| Client Name WESTERN REFINING SOUT                       |                 |                                        | Date Received         | :                                     | 1                | 0/27/2010          |            |  |  |
|---------------------------------------------------------|-----------------|----------------------------------------|-----------------------|---------------------------------------|------------------|--------------------|------------|--|--|
| Work Order Number 1010B70                               |                 |                                        | Received by:          | LCD                                   |                  | ۸_                 |            |  |  |
| Checklist completed by:                                 | ·               |                                        | Sample ID lat         | oels checked                          |                  | liials             |            |  |  |
| Signature  Matrix: Carrier name                         | UPS             | Date                                   |                       |                                       |                  |                    |            |  |  |
|                                                         | 21.34           |                                        |                       |                                       |                  |                    |            |  |  |
| Shipping container/cooler in good condition?            | Yes             | $\checkmark$                           | No 🗆                  | Not Present                           |                  |                    |            |  |  |
| Custody seals intact on shipping container/cooler?      | Yes             | lacksquare                             | No 🗆                  | Not Present                           |                  | Not Shipped        |            |  |  |
| Custody seals intact on sample bottles?                 | Yes             |                                        | No 🗌                  | N/A                                   | $\checkmark$     |                    |            |  |  |
| Chain of custody present?                               | Yes             | $\checkmark$                           | No 🗆                  |                                       |                  |                    |            |  |  |
| Chain of custody signed when relinquished and received? | Yes             | $\checkmark$                           | No 🗆                  |                                       |                  |                    |            |  |  |
| Chain of custody agrees with sample labels?             | Yes             | $\checkmark$                           | No 🗆                  |                                       |                  |                    |            |  |  |
| Samples in proper container/bottle?                     | Yes             | <b>Y</b>                               | No 🗌                  |                                       |                  |                    |            |  |  |
| Sample containers intact?                               | Yes             | <b>V</b>                               | No 🗌                  |                                       |                  |                    |            |  |  |
| Sufficient sample volume for indicated test?            | Yes             | V                                      | No 🗆                  |                                       |                  |                    |            |  |  |
| All samples received within holding time?               | Yes             | $\checkmark$                           | No 🗆                  |                                       |                  | Number o           | fpreserved |  |  |
| Water - VOA vials have zero headspace? No VOA vials sub | mitted          |                                        | Yes 🗹                 | No 🗆                                  |                  | bottles che<br>pH: | ecked for  |  |  |
| Water - Preservation labels on bottle and cap match?    | Yes             | $\checkmark$                           | No 🗆                  | N/A                                   | 7                | 2 2                |            |  |  |
| Water - pH acceptable upon receipt?                     | Yes             | $\checkmark$                           | No 🗆                  | N/A □                                 | ح ک              | <2()>12)uni        | ess noted  |  |  |
| Container/Temp Blank temperature?                       | 1.7             | 7°                                     | <6° C Acceptable      |                                       |                  |                    |            |  |  |
| COMMENTS:                                               |                 |                                        | If given sufficient t | ime to cool.                          |                  |                    |            |  |  |
|                                                         |                 |                                        |                       |                                       |                  |                    |            |  |  |
|                                                         |                 |                                        |                       |                                       |                  |                    |            |  |  |
|                                                         | ===             | :                                      |                       |                                       |                  | ====               |            |  |  |
|                                                         |                 |                                        |                       |                                       |                  |                    |            |  |  |
|                                                         |                 |                                        |                       |                                       |                  |                    |            |  |  |
|                                                         |                 |                                        |                       |                                       |                  |                    |            |  |  |
| Client contacted Date contacted:                        | Date contacted: |                                        |                       |                                       | Person contacted |                    |            |  |  |
| Contacted by: Regarding:                                |                 |                                        |                       | -                                     |                  |                    |            |  |  |
| Comments:                                               |                 |                                        |                       |                                       |                  |                    |            |  |  |
|                                                         |                 |                                        |                       |                                       |                  |                    |            |  |  |
|                                                         |                 |                                        |                       |                                       |                  |                    |            |  |  |
|                                                         |                 |                                        |                       | · · · · · · · · · · · · · · · · · · · |                  |                    |            |  |  |
|                                                         |                 |                                        |                       |                                       |                  |                    |            |  |  |
| Corrective Action                                       |                 |                                        |                       |                                       |                  |                    |            |  |  |
|                                                         |                 |                                        |                       |                                       |                  |                    |            |  |  |
|                                                         |                 | ······································ |                       |                                       |                  |                    |            |  |  |

|   |                         | HALL ENVIRONMENTAL       |                        |                                                                                                                  |                  |                  |                  | ा                  | > (;                        | ' ¥1K                    | 14.5               | Seactives (1)                     | 5             |          |         | ><      |              |          | ×     | ×          |          |   |          |                                |                 |
|---|-------------------------|--------------------------|------------------------|------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|--------------------|-----------------------------|--------------------------|--------------------|-----------------------------------|---------------|----------|---------|---------|--------------|----------|-------|------------|----------|---|----------|--------------------------------|-----------------|
|   | Ì                       | ENVIKONMENT              | <b>?</b><br><b>)</b> , | Albuquerane NM 87109                                                                                             | 707              | 101              |                  | 十 <sub>(人)</sub>   | <u> </u>                    | Com                      |                    | -ime2) 072<br>1114 <b>ন</b> থৈষ্ট |               | ×        | ×       |         |              | _        |       |            |          |   |          |                                |                 |
|   |                         |                          |                        |                                                                                                                  | EDE 24E 4407     |                  | <b>-</b>         |                    |                             |                          |                    | AOV) 809S                         |               |          | ļ       |         | <del> </del> |          |       | _          |          |   |          |                                |                 |
|   | ĺ                       | Y .                      |                        |                                                                                                                  | 2                | Analysis Request |                  | s'83               | ЪС                          | 7808 /                   |                    | 081 Pestici                       | <del></del>   |          |         |         | ļ —          |          |       |            | <u> </u> |   |          |                                |                 |
|   |                         | 2                        |                        | ָבָּי בַּיּבְּייִבָּייִבְּייִבְּייִבְּייִבְּייִבְּייִבְּייִבְּייִבְּייִבְּייִבְּייִבְּייִבְּייִבְּייִבְּייִבְּיי | )                | ay<br>SiS        | (1               | OS'                | Od                          | 3, NO <sub>2</sub> ,     | ON'                | SCRA 8 Met<br>ID,7) enoin         | 4             |          |         |         |              |          |       |            |          |   |          |                                |                 |
|   | į                       | <u> </u>                 |                        | - Alb                                                                                                            |                  | Analy            |                  | 7'°                | 1.0                         |                          |                    |                                   | _             |          |         |         |              | $\times$ |       |            |          |   |          |                                |                 |
|   |                         | HALL                     | , d                    | wwwaneliviiolifiielital.colli                                                                                    | 2075             | 02/20            |                  | <del>ال</del> ا ما | 246                         |                          |                    | AN9) 01E                          |               |          |         |         |              |          |       | _          |          |   |          | 1                              |                 |
|   | ;                       | Ì                        |                        | w<br>Wkins                                                                                                       | 3/1              | 5                | Ĕ                | - 71               | - ~E                        | (Appella                 |                    |                                   | 2             |          |         |         |              |          | **    |            |          |   | $\vdash$ |                                |                 |
|   |                         | 7 [                      |                        | 4901 Hawkins NE                                                                                                  | Tol 505.345.3075 | 200              | (le              | Dies               | /SB                         | ) 891<br>- \-            | 08                 | PH Method                         |               |          |         |         |              |          |       |            |          |   |          |                                |                 |
|   |                         |                          |                        | 490                                                                                                              | 7                | ם<br>-           |                  |                    |                             |                          |                    | TEX + MTE                         |               |          |         | -       |              |          |       |            |          |   |          | Remarks:<br>Ozw                |                 |
|   |                         | _]                       |                        |                                                                                                                  |                  |                  |                  | (1208              | 3) s                        | ·amt -                   | 3E +               | TM + X3T8                         | 3             |          |         |         |              |          |       |            |          |   |          | Rema                           |                 |
|   |                         |                          |                        | 0-35-0                                                                                                           |                  |                  |                  |                    |                             |                          |                    | 9                                 |               | <u>.</u> | -       | )       | 1            | 1        | -     | -          | -2       |   |          | Time 7                         |                 |
| 1 |                         |                          |                        | -                                                                                                                | 4                |                  |                  |                    |                             | 2%                       | <b>H</b>           | 113<br>113<br>113<br>114          |               |          |         |         |              |          |       |            |          |   | ;        |                                | Date            |
|   | Ime:                    | □ Rush                   |                        | p //77                                                                                                           |                  |                  | Jer.             | į                  |                             | らそびが                     | eicaltifice        | Preservative<br>Type              | HC1           | Amber    |         | ļ       | H250x        | H NO's   | Ne OH | Zu Acctate |          |   |          | Miles                          |                 |
|   | Turn-Around Time:       | Standard                 | Project Name:          | Injection 4111 4th OTR                                                                                           | Project #:       |                  | Project Manager: |                    |                             | Sampler: 186             | Sample Temperatrii | Container<br>Type and #           | 3-UDA         | 1-Liter  | 1-500ml | 1-500m) | 1-250m       | -        | 1-50m |            |          | · |          | Roceived by:                   | Received by:    |
| • | cord                    |                          |                        | 2                                                                                                                | 113              | 1                |                  |                    | □ Level 4 (Full Validation) | 1.7.49                   |                    | Sample Request ID                 | n well        |          |         |         |              |          |       |            | Blank    |   |          | Long                           |                 |
|   | Chain-of-Custody Record | Client: Western Residing |                        | 0604 DD                                                                                                          | N M AZ           | 1 62             | 1                |                    | ☐ Level 4 (Ft               | <u>.</u>                 |                    | Sample F                          | Injection wel |          |         |         |              |          |       |            | 12       |   |          | of by:                         | ed by:          |
|   | -Sf-CL                  | S. N. R                  |                        | Mailing Address: #50                                                                                             | Toll             |                  | ַעׁ [            |                    | ľ                           | □ Other                  |                    | Matrix                            | OzH GGOI      |          |         |         |              |          |       | ~          |          |   |          | Reigney ished by:              | Relinquished by |
|   | Shain                   | West                     |                        | y Address                                                                                                        | P/mm             | Phone #: 624     | Ir Fax#,         | QA/QC Package:     | ndard                       | Accreditation<br>□ NELAP | EDD (Type)         | Time                              |               |          |         |         |              |          |       |            |          |   |          | Date: Time: - <b>%-10</b> 3:20 | Time:           |
|   |                         | Client:                  |                        | Mailing                                                                                                          | (C)              | Phone            | email            | OAVOC              | Standard                    | Accreditati<br>□ NELAP   | O EDC              | Date                              | 35-10         | 4        |         |         | +            | _        | -     | -          |          |   |          | Date:                          | Date:           |

# **Hall Environmental Analysis Laboratory**

# **QUALITY ASSURANCE PLAN**

Effective Date: February 2<sup>nd</sup> 2010

**Revision 9.2** 

www.hallenvironmental.com

Control Number: 0000095

Approved By:

Andy Freeman

**Laboratory Manager** 

Approved By:

Carolyn Swanson

Date

Quality Assurance/Quality Control Officer

# **Table of Contents**

| Section | Title                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>Page</u> |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.0     | Title Page                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1           |
| 2.0     | Table of Contents                                                                                                                                                                                                                                                                                                                                                                                                                              | 3           |
| 3.0     | Introduction Purpose of Document Objectives Policies                                                                                                                                                                                                                                                                                                                                                                                           | 6           |
| 4.0     | Organization and Responsibility Company Certifications Personnel     Laboratory Director     Laboratory Manager/ Lead Technical Director     Quality Assurance Officer Business/Project Manager Section Managers/Technical Directors Health and Safety/Chemical Hygiene Officer Chemist I-III Laboratory Technician Sample Control Manager Sample Custodians Delegations in the Absence of Key Personnel Personnel Qualifications and Training | 8           |
| 5.0     | Receipt and Handling of Samples Sampling Procedures Containers Preservation Sample Custody Receiving Samples Logging in Samples and Storage Disposal of Samples                                                                                                                                                                                                                                                                                | 16          |
| 6.0     | Analytical Procedures  List of Procedures Used  Criteria for Standard Operating Procedures                                                                                                                                                                                                                                                                                                                                                     | 19          |

| 7.0    | Calibration Thermometers Refrigerators/Freezers Ovens Analytical/Table Top Balances Instrument Calibration pH Meter Other Analytical Instrumentation and Equipment Standards Reagents                                                                                                                                         | 23 |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 8.0    | Maintenance                                                                                                                                                                                                                                                                                                                   | 27 |
| 9.0    | Data Integrity                                                                                                                                                                                                                                                                                                                | 28 |
| 10.0   | Quality Control Internal Quality Control Checks Precision, Accuracy, Detection Limit Quality Control Parameter Calculations Mean Standard Deviation Percent Recovery (%R) Confidence Intervals Relative Percent Difference (RPD) Uncertainty Measurements Calibration Calculations  Data Reduction, Validation, and Reporting | 29 |
| 11.0   | Data Reduction Validation Reports and Records                                                                                                                                                                                                                                                                                 |    |
| 12.0   | Corrective Action                                                                                                                                                                                                                                                                                                             | 41 |
| 13.0   | Quality Assurance Audits, Reports and Complaints Internal/External Systems' Audits Management Reviews Complaints Internal and External Reports                                                                                                                                                                                | 43 |
| 14.0   | References                                                                                                                                                                                                                                                                                                                    | 46 |
| Append | ix A Personnel Chart/Organizational Structure                                                                                                                                                                                                                                                                                 | 48 |
| Append | ix B ORELAP Accreditation  Full list of approved analytes, methods, analytical techniques and fields of testing  Reserved, available upon request                                                                                                                                                                             |    |

## Appendix C TCEQ Accreditation

Full list of approved analytes, methods, analytical techniques and fields of testing **Reserved, available upon request** 

# Appendix D Utah ELCP Accreditation

Full list of approved analytes, methods, analytical techniques and fields of testing **Reserved**, available upon request

## Appendix E ADHS Accreditation

Full list of approved analytes, methods, analytical techniques and fields of testing **Reserved**, available upon request

# Appendix F NMED-DWB Certification

Reserved, available upon request

# Appendix G NM DOH Certification

Reserved, available upon request

# Appendix H Terms and Definitions

Reserved, available upon request

# Appendix I Chain of Custody Record

Reserved, available upon request

## **Appendix J HEAL Forms**

Analyst Ethics and Data Integrity Agreement IDOC Certificate ADOCP Certificate Training Forms Corrective Action Report Reserved, available upon request

#### 3.0 Introduction

## **Purpose of Document**

The purpose of this Quality Assurance Plan is to formally document the quality assurance policies and procedures of Hall Environmental Analysis Laboratory, Inc. (HEAL), for the benefit of its employees, clients, and accrediting organizations. HEAL continually implements all aspects of this plan as an essential and integral part of laboratory operations in order to ensure that high quality data is produced in an efficient and effective manner.

## **Objectives**

The objective of HEAL is to achieve and maintain excellence in environmental testing. This is accomplished by developing, incorporating and documenting the procedures and policies specified by each of our accrediting authorities and outlined in this plan. A laboratory staff that is analytically competent, well qualified, and highly trained carries out these activities. An experienced management team, knowledgeable in their area of expertise, monitors them. Finally, a comprehensive quality assurance program governs laboratory practices and ensures that the analytical results are valid, defensible, reproducible, reconstructable and of the highest quality.

HEAL establishes and thoroughly documents its activities to ensure that all data generated and processed will be scientifically valid and of known and documented quality. Routine laboratory activities are detailed in method specific standard operating procedures (SOP). All data reported meets the applicable requirements for the specific method that is referenced, ORELAP, TCEQ, EPA, client specific requirements and/or State Bureaus. In the event that these requirements are ever in contention with each other, it is HEAL's policy to always follow the most prudent requirement available. For specific method requirements refer to HEAL's Standard Operating Procedures (SOP's), EPA methods, Standard Methods 20<sup>th</sup> edition, ASTM methods or state specific methods.

HEAL management ensures that this document is correct in terms of required accuracy, data reproducibility, and that the procedures contain proper quality control measures. HEAL management additionally ensures that all equipment is reliable, well maintained and appropriately calibrated. The procedures and practices of the laboratory are geared towards not only strictly following our regulatory requirements but also allowing the flexibility to conform to client specific specifications. Meticulous records are maintained for all samples and their respective analyses so that results are well documented and defensible in a court of law.

The HEAL Quality Assurance/Quality Control Officer (QA/QCO) and upper management are responsible for supervising and administering this quality assurance program, and ensuring each individual is responsible for its proper implementation. All HEAL management remains committed to the encouragement of excellence in analytical testing and will continue to provide the necessary resources and environment conducive to its achievement.

#### **Policies**

Understanding that quality cannot be mandated, it is the policy of this laboratory to provide an environment that encourages all staff members to take pride in the quality of their work. In addition to furnishing proper equipment and supplies, HEAL stresses the importance of continued training and professional development. Further, HEAL recognizes the time required for data interpretation. Therefore, no analyst should feel pressure to sacrifice data quality for data quantity. Each staff member must perform with the highest level of integrity and professional competence, always being alert to problems that could compromise the quality of their technical work.

Management and senior personnel supervise analysts closely in all operations. Under no circumstance is the willful act or fraudulent manipulation of analytical data condoned. Such acts must be reported immediately to HEAL management. Reported acts will be assessed on an individual basis and resulting actions could result in dismissal. The laboratory staff is encouraged to speak with lab managers or senior management if they feel that there are any undo commercial, financial, or other pressures, which might adversely affect the quality of their work; or in the event that they suspect that data quality has been compromised in any way. HEAL's Quality Assurance/Quality Control Officer is available if any analyst and/or manager wishes to anonymously report any suspected or known breaches in data integrity.

All proprietary rights and client information at HEAL (including national security concerns) are considered confidential. No information will be given out without the express verbal or written permission of the client. All reports generated will be held in the strictest of confidence.

This is a controlled document. Each copy is assigned a unique tracking number and when released to a client or accrediting agency the QA/QCO keeps the tracking number on file. This document is reviewed on an annual basis to ensure that it is valid and representative of current practices at HEAL.

## 4.0 Organization and Responsibility

## Company

HEAL is accredited in accordance with the 2003 NELAC standard (see NELAC accredited analysis list in the appendix), through ORELAP and TCEQ and by the Arizona Department of Health Services. Additionally, HEAL is qualified as defined under the State of New Mexico Water Quality Control Commission regulations and the New Mexico State Drinking Water Bureau. HEAL is a locally owned small business that was established in 1991. HEAL is a full service environmental analysis laboratory with analytical capabilities that include both organic and inorganic methodologies and has performed analyses of soil, water, air as well as various other matrices for many sites in the region. HEAL's client base includes local, state and federal agencies, private consultants, commercial industries as well as individual homeowners. HEAL has performed as a subcontractor to the state of New Mexico and to the New Mexico Department of Transportation. HEAL has been acclaimed by its customers as producing quality results and as being adaptive to client-specific needs.

The laboratory is divided into an organic section, and an inorganic section. Each section has a designated manager/technical director. The technical directors report directly to the laboratory manager, who oversees all operations.

#### Certifications

ORELAP - NELAC Oregon Primary accrediting authority.

TCEQ - NELAC Texas Secondary accrediting authority.

The Arizona Department of Health Services

The New Mexico Drinking Water Bureau

The New Mexico Department of Health

See appendix B-E for copies of current licenses and licensed parameters, or refer to our current list of certifications online at www.hallenvironmental.com.

In the event of a certification being revoked or suspended HEAL will notify, in writing, those clients that require the effected certification.

#### Personnel

HEAL management ensures the competence of all who operate equipment, perform environmental tests, evaluate results, and sign test reports. Personnel performing specific tasks shall be qualified on the basis of appropriate education, training, experience and /or demonstrated skills.

All personnel shall be responsible for complying with HEAL's quality assurance/quality control requirements that pertain to their technical function. Each technical staff member must have a combination of experience and education to adequately demonstrate specific knowledge of their particular function and a general knowledge of laboratory operations, test methods, quality assurance/quality control procedures and records management.

All employees training certificates and diplomas are kept on file with demonstrations of capability for each method they perform. An Organizational Chart can be found in Appendix A.

## **Laboratory Director**

The Laboratory Director is responsible for overall technical direction and business leadership of HEAL. The Laboratory Manager, the Project Manager and Quality Assurance/Quality Control Officer report directly to the Laboratory Director. Someone with a minimum of 7 years of directly related experience and a bachelor's degree in a scientific or engineering discipline should fill this position.

## Laboratory Manager/Lead Technical Director

The Laboratory Manager shall exercise day—to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results. The Laboratory Manager shall be experienced in the fields of accreditation for which the laboratory is approved or seeking accreditation. The Laboratory Manager shall certify that personnel with appropriate educational and/or technical background perform all tests for which HEAL is accredited. Such certification shall be documented.

The Laboratory Manager shall monitor standards of performance in quality control and quality assurance and monitor the validity of the analyses performed and data generated at HEAL to assure reliable data.

The Laboratory Manager is responsible for the daily operations of the laboratory. The Laboratory Manager is the lead technical director of the laboratory and in conjunction with the section technical directors is responsible for coordinating activities within the laboratory with the overall goal of efficiently producing high quality data with in a reasonable time frame.

In events where employee scheduling or current workload is such that new work cannot be incorporated, with out missing hold times, the Laboratory Manager has authority to modify employee scheduling, re-schedule projects or, when appropriate, allocate the work to approved subcontracting laboratories.

Additionally, the laboratory manager reviews and approves new analytical procedures and methods, and performs a final review of most analytical results. The Laboratory Manager provides technical support to both customers and HEAL staff.

The Laboratory Manager also observes the performance of supervisors to ensure good laboratory practices and proper techniques are being taught and utilized, assisting in overall quality control implementation, and strategic planning for the future of the company. Other duties include assisting in establishing laboratory policies which lead to the fulfillment of requirements for various certification programs, assuring that all Quality Assurance and Quality Control documents are reviewed and approved, and assisting in conducting Quality Assurance Audits.

The laboratory manager addresses questions or complaints that cannot be answered by the section managers.

The Laboratory Manager shall have a bachelor's degree in a chemical, environmental, biological sciences, physical sciences or engineering field, and at least five years of experience in the environmental analysis of representative inorganic and organic analytes for which the laboratory seeks or maintains accreditation.

## **Quality Assurance Quality Control Officer**

The Quality Assurance/Quality Control Officer (QA/QCO) serves as the focal point for QA/QC and shall be responsible for the oversight and/or review of quality control data. The QA/QCO functions independently from laboratory operations and shall be empowered to halt unsatisfactory work and/or prevent the reporting of results generated from an out-of-control measurement system. The QA/QCO shall objectively evaluate data and perform assessments without any outside/managerial influence. The QA/QCO shall have direct access to the highest level of management at which decisions are made on laboratory policy and/or resources. The QA/QCO shall notify laboratory management of deficiencies in the quality system in periodic, independent reports.

The QA/QCO shall have general knowledge of the analytical test methods, for which data review is performed, have documented training and/or experience in QA/QC procedures and in the laboratory's quality system. The QA/QCO will have a minimum of a BS in a scientific or related field and a minimum of three years of related experience.

The QA/QCO shall schedule and conduct internal audits as per the Internal Audit SOP at least annually, monitor and trend Corrective Action Reports as per the Data Validation SOP, periodically review control charts for out of control conditions and initiate any appropriate corrective actions.

The QA/QCO shall oversee the analysis of proficiency testing in accordance with our standards and monitor any corrective actions issued as a result of this testing.

The QA/QCO reviews all standard operating procedures and statements of work in order to assure their accuracy and compliance to method and regulatory requirements.

The QA/QCO shall be responsible for maintaining and updating this quality manual.

## **Business/Project Manager**

The role of the business/project manager is to act as a liaison between HEAL and our clients. The project manager reviews reports, updates clients on the status of projects inhouse, prepares quotations for new work, and is responsible for HEAL's marketing effort.

All new work is assessed by the project manager and reviewed with the other managers so as to not exceed the laboratories capacity. In events where employee scheduling or current workload is such that new work cannot be incorporated with out missing hold times, the Project Manager has authority to re-schedule projects.

It is also the duty of the project manager to work with the Laboratory Manager and QA/QCO to insure that before new work is undertaken the resources required and accreditations requested are available to meet the client's specific needs.

Additionally, the Project Manager can initiate the review of the need for new analytical procedures and methods, and performs a final review of some analytical results. The Project Manager provides technical support to customers. Someone with a minimum of 2 years of directly related experience and a bachelor's degree in a scientific or engineering discipline should fill this position.

### **Section Manager/Technical Directors**

The Section Manager/Technical Directors are full-time members of the staff at HEAL who exercise day-to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results for their department within HEAL. A Technical Director's duties shall include, but not be limited to, monitoring standards of performance in quality control and quality assurance; monitoring the validity of the analyses performed and the data generated in their sections to ensure reliable data, overseeing training and supervising departmental staff, schedule incoming work for their sections and monitor laboratory personnel to ensure that proper procedures and techniques are being utilized. They supervise and implement new Quality Control procedures as directed by the QA/QCO, update and maintain quality control records including, but not limited to, training forms, IDOCs, ADOCPs, MDLs and evaluate laboratory personnel in their Quality Control activities. In addition technical directors are responsible for upholding the spirit and intent of HEAL's data integrity procedures.

They are the technical director of the associated section and review analytical data to acknowledge that data meets all criteria set forth for good Quality Assurance practices. Someone with a minimum of 2 years of experience in the environmental analysis of

representative analytes for which HEAL seeks or maintains accreditation and a bachelor's degree in a scientific or related discipline should fill this position.

# Health and Safety / Chemical Hygiene Officer

Refer to the most recent version of the Health and Safety and Chemical Hygiene Plans for the rolls, responsibilities and basic requirements of the Health and Safety Officer (H&SO) and the Chemical Hygiene Officer (CHO). These jobs can be executed by the same employee.

### Chemist I, II and III

Chemists are responsible for the analysis of various sample matrices including, but not limited to, solid, aqueous, and air as well as the generation of high quality data in accordance with the HEAL SOPs and QA/QC guidelines in a reasonable time as prescribed by standard turnaround schedules or as directed by the Section Manager or Laboratory Manager.

Chemists are responsible for making sure all data generated is entered in the database in the correct manner and the raw data is reviewed, signed and delivered to the appropriate peer for review. A Chemist reports daily to the section manager and will inform them as to material needs of the section specifically pertaining to the analyses performed by the chemist. Additional duties may include preparation of samples for analysis, maintenance of lab instruments or equipment, cleaning and providing technical assistance to lower level laboratory staff.

The senior chemist in the section may be asked to perform supervisory duties as related to operational aspects of the section. The chemist may perform all duties of a lab technician.

The position of Chemist is a full or part time hourly position and is divided into three levels, Chemist I, II, and III. All employees hired into a Chemist position at HEAL must begin as a Chemist I and remain there at a minimum of three months regardless of their education and experience. Chemist I must have a minimum of an AA in a related field or equivalent experience (equivalent experience means years of related experience can be substituted for the education requirement). A Chemist I is responsible for analysis, instrument operation and data reduction. Chemist II must have a minimum of an AA in a related field or equivalent experience and must have documented and demonstrated aptitude to perform all functions of a Chemist II. A Chemist II is responsible for the full analysis of their test methods, routine instrument maintenance, purchase of consumables as dictated by their Technical Director, advanced data reduction and basic data review. Chemist II may also assist Chemist III in method development and, as dictated by their Technical Director, may be responsible for the review and/or revision of their method specific SOPs. Chemist III must have Bachelors degree or equivalent experience and must have documented and demonstrated aptitude to perform all functions of a Chemist III. Chemist III is responsible for all tasks completed by a Chemist I and II as well as advanced

data review, non-routine instrument maintenance, assisting their technical director in basic supervisory duties and method development.

## **Laboratory Technician**

A laboratory technician is responsible for providing support in the form of sample preparation, basic analysis, general laboratory maintenance, glassware washing, chemical inventories and sample kit preparation. This position can be filled by someone without the education and experience necessary to obtain a position as a chemist.

## Sample Control Manager

The sample control manager is responsible for receiving samples and reviewing the sample login information after it has been entered into the computer. The sample control manager also checks the samples against the chain-of-custody for any sample and/or labeling discrepancies prior to distribution.

The sample control manager is responsible for sending out samples to the sub-contractors along with the review and shipping of field sampling bottle kits. The sample control manager acts as a liaison between the laboratory and field sampling crew to ensure that the appropriate analytical test is assigned. If a discrepancy is noted the sample control manager or sample custodian will contact the customer to resolve any questions or problems. The sample control manager is an integral part of the customer service team.

This position should be filled by someone with a high school diploma and a minimum of 2 years of related experience and can also be filled by a senior manager.

#### Sample Custodians

Sample Custodians work directly under the Sample Control Manager. They are responsible for sample intake into the laboratory and into the LIMS. Sample Custodians take orders from our clients and prepare appropriate bottle kits to meet the client's needs. Sample Custodians work directly with the clients in properly labeling and identifying samples as well as properly filling out legal COCs. When necessary, Sample Custodians contact clients to resolve any questions or problems associated with their samples. Sample Custodians are responsible for distributing samples throughout the laboratory and are responsible for notifying analysts of special circumstances such as short holding times or improper sample preservation upon receipt.

## **Delegations in the Absence of Key Personnel**

Planned absences shall be preceded by notification to the Laboratory Manager. The appropriate staff members shall be informed of the absence. In the case of unplanned absences, the organizational superior shall either assume the responsibilities and duties or delegate the responsibilities and duties to another appropriately qualified employee.

In the event that the Laboratory Manager is absent for a period of time exceeding fifteen consecutive calendar days, another full-time staff member meeting the basic qualifications and competent to temporarily perform this function will be designated. If this absence exceeds thirty-five consecutive calendar days, HEAL will notify ORELAP in writing of the absence and the pertinent qualifications of the temporary laboratory manager.

## **Laboratory Personnel Qualification and Training**

All personnel joining HEAL shall undergo orientation and training. During this period the new personnel shall be introduced to the organization and their responsibilities, as well as the policies and procedures of the company. They shall also undergo on the job training and shall work with trained staff. They will be shown required tasks and be observed while performing them.

When utilizing staff undergoing training appropriate supervision shall be dictated and overseen by the appropriate section technical director. Prior to analyzing client samples, a new employee, or an employee new to a procedure, must meet the following basic requirements. The SOP and Method for the analysis must be read and signed by the employee indicating that they read, understood and intend to comply with the requirements of the documents. The employee must undergo documented training. conducted by a senior analyst familiar with the procedure and overseen by the section Technical Director. This training is documented by any means deemed appropriate by the trainer and section Technical Director, and kept on file in the employees file located in the QA/QCO's office. The employee must perform a successful Initial Demonstration of Proficiency (IDOC). See Appendix H for the training documents and checklists utilized at HEAL to ensure that all of these requirements are met. Once all of the above requirements are met it is incumbent upon the section Technical Director to determine at which point the employee can begin to perform the test unsupervised. A Certification to Complete Work Unsupervised (see Appendix H) is them filled out by the employee and technical director.

All IDOCs shall be documented through the use of the certification form which can be found in Appendix H. IDOCs are performed by analyzing four Laboratory Control Spikes (LCSs). Using the results of the LCSs the mean recovery is calculated in the appropriate reporting units and the standard deviations of the population sample (n-1) (in the same units) as well as the relative percent difference for each parameter of interest. When it is not possible or pertinent to determine mean and standard deviations HEAL assesses performance against establish and documented criteria dictated in the method SOP. The mean and standard deviation are compared to the corresponding acceptance criteria for

precision and accuracy in the test method (if applicable) or in laboratory-generated acceptance criteria. In the event that the HEAL SOP or test method fail to establish the pass/fail criteria the default limits of +/- 20% for calculated recovery and <20% relative percent difference based on the standard deviation will be utilized. If all parameters meet the acceptance criteria, the IDOC is successfully completed. If any one of the parameters do not meet the acceptance criteria, the performance is unacceptable for that parameter and the analyst must either locate and correct the source of the problem and repeat the test for all parameters of interest or repeat the test for all parameters that failed to meet criteria. Repeat failure, however, confirms a general problem with the measurement system. If this occurs the source of the problem must be identified and the test repeated for all parameters of interest.

New employees that do not have prior analysis experience will not be allowed to perform analysis until they have demonstrated attention to detail with minimal errors in the assigned tasks. To ensure a sustained level of quality performance among staff members, continuing demonstration of capability shall be performed at least once a year. These are as an Annual Documentation of Continued Proficiency (ADOCP).

At least once per year an ADOCP must be completed by: the acceptable performance of a blind sample (this is typically done using a PT sample but can be a single blind sample to the analyst), by performing another IDOC, or by summarizing the data of four consecutive laboratory control samples with acceptable levels of precision and accuracy (these limits are those currently listed in the LIMS for an LCS using the indicated test method.) ADOCPs are documented using a standard form and are kept on file in each analysts employee folder.

Each new employee shall be provided with data integrity training as a formal part of their new employee orientation. Each new employee will sign an ethics and data integrity agreement to ensure that they understand that data quality is our main objective. Every HEAL employee recognizes that although turn around time is important, quality is put above any pressure to complete the task expediently. Analysts are not compensated for passing QC parameters nor are incentives given for the quantity of work produced. Data Integrity and Ethics training are performed on an annual basis in order to remind all employees of HEAL's policy on data quality. Employees are required to understand that any infractions of the laboratory data integrity procedures will result in a detailed investigation that could lead to very serious consequences including immediate termination, debarment or civil/criminal prosecution.

Training for each member of HEAL's technical staff is further established and maintained through documentation that each employee has read, understood, and is using the latest version of this Quality Assurance Manual. Training courses or workshops on specific equipment, analytical techniques or laboratory procedures are documented through attendance sheets, certificates of attendance, training forms or quizzes. This training documentation is located in either analyst specific employee folders in the QA/QCO Office or in the current years group training folder, also located in the QA/QCO Office. On the front of all methods, SOPs and procedures for HEAL there is a signoff sheet that is signed by all pertinent employees, indicating that they have read, understood and agreed to perform the most recent version of the document.

# 5.0 Receipt and Handling of Samples

## Sampling

#### **Procedures**

HEAL does not provide field sampling for any projects. Sample kits are prepared and provided for clients upon request. The sample kits contain the appropriate sampling containers (with a preservative when necessary), labels, blue ice (The use of "blue ice" by anyone except HEAL personnel is discouraged because it generally does not maintain the appropriate temperature of the sample. If blue ice is used, it should be completely frozen at the time of use, the sample should be chilled before packing, and special notice taken at sample receipt to be certain the required temperature has been maintained.), a cooler, chain-of-custody forms, plastic bags, bubble wrap, and any special sampling instructions. Sample kits are reviewed prior to shipment for accuracy and completeness.

#### **Containers**

Containers which are sent out for sampling are purchased by HEAL from a commercial source. Glass containers are certified "EPA Cleaned" QA level 1. Plastic containers are certified clean when required. These containers are received with a Certificate of Analysis verifying that the containers have been cleaned according to the EPA wash procedure. Containers are used once and discarded. If the samples are collected and stored in inappropriate containers the laboratory may not be able to accurately quantify the amount of the desired components. In this case re-sampling may be required.

#### Preservation

If sampling for an analyte(s) requires preservation, the sample custodians fortify the containers prior to shipment to the field, or provide the preservative for the sampler to add in the field. The required preservative is introduced into the vials in uniform amounts and done so rapidly to minimize the risk of contamination. Vials that contain a preservative are labeled appropriately. If the samples are stored with inappropriate preservatives the laboratory may not be able to accurately quantify the amount of the desired components. In this case re-sampling may be required.

Refer to the current Login SOP and/or the current price book for detailed sample receipt and handling procedures, appropriate preservation and holding time requirements.

## **Sample Custody**

## Chain-of-Custody Form

A Chain-of-Custody (COC) form is used to provide a record of sample chronology from the field to receipt at the laboratory. HEAL's COC contains the client's name, address, phone and fax numbers, the project name and number, the project manager's name, and the field sampler's name. It also identifies the date and time of sample collection, sample matrix, field sample ID number, number/volume of sample containers, sample temperature upon receipt, and any sample preservative information.

There is also a space to record the HEAL ID number assigned to samples after they are received. Next to the sample information is a space for the client to indicate the desired analyses to be performed. There is a section for the client to indicate the data package level as well as any accreditation requirements. Finally, there is a section to track the actual custody of the samples. The custody section contains lines for signatures, dates and times when samples are relinquished and received. The COC form also includes a space to record special sample related instructions, sampling anomalies, time constraints, and any sample disposal considerations.

It is paramount that all COCs arrive at HEAL complete and accurate so that the samples can be processed and allocated for testing in a timely and efficient manor. A sample chain-of-custody form can be found in Appendix G or on line at www.hallenvironmental.com.

## **Receiving Samples**

Samples are received by authorized HEAL personnel. Upon arrival, the COC is compared to the respective samples. After the samples and COC have been determined to be complete and accurate, the sampler signs over the COC. The HEAL staff member in turn signs the chain-of-custody, also noting the current date, time and sample temperature. This relinquishes custody of the samples from the sampler and delegates sample custody to HEAL. The third (pink) copy of the COC form is given to the person who has relinquished custody of the samples.

#### Logging in Samples and Storage

Standard Operating Procedures have been established for the receiving and tracking of all samples (refer to the current HEAL Login SOP). These procedures ensure that samples are received and properly logged into the laboratory, and that all associated documentation, including chain of custody forms, are complete and consistent with the samples received. Each sample set is given a unique HEAL tracking ID number. Individual sample locations within a defined sample set are given a unique sample ID suffix-number. Labels with the HEAL numbers, and tests requested, are generated and

placed on their respective containers. The pH of preserved, non-volatile samples is checked and noted if out of compliance. Due to the nature of the samples, the pHs of volatiles samples are checked after analysis. Samples are reviewed prior to being distributed for analysis.

Samples are distributed for analysis based upon the requested tests. In the event that sample volume is limited and different departments at HEAL are required to share the sample, volatile work takes precedence and will always be analyzed first before the sample is sent to any other department for analysis.

Each project (sample set) is entered into the Laboratory Information Management System (LIMS) with a unique ID that will be identified on every container. The ID tag includes the Lab ID, Client ID, date and time of collection, and the analysis/analyses to be performed. The LIMS continually updates throughout the lab. Therefore, at any time, an analyst or manager may inquire about a project and/or samples status. For more information about the login procedures, refer to the Sample Login SOP.

### Disposal of Samples

Samples are held at HEAL for a minimum of thirty days and then transferred to the HEAL warehouse for disposal. Analytical results are used to characterize their respective sample contamination level(s) so that the proper disposal can be performed. These wastes will be disposed of according to their hazard as well as their type and level of contamination. Refer to the Hall Environmental Analysis Laboratory Chemical Hygiene Plan and current Sample Disposal SOP for details regarding waste disposal.

Waste drums are provided by an outside agency. These drums are removed by the outside agency and disposed of in a proper manner.

The wastes that are determined to be non-hazardous are disposed of as non-hazardous waste in accordance with the Chemical Hygiene Plan and Sample Disposal SOP.

## 6.0 Analytical Procedures

All analytical methods used at HEAL incorporate necessary and sufficient Quality Assurance and Quality Control practices. A Standard Operating Procedure (SOP) is used for each method to provide the necessary criteria to yield acceptable results. These procedures are reviewed at least annually and revised as necessary and are attached as a pdf file in the Laboratory Information Management System (LIMS) for easy access by each analyst. The sample is often consumed or altered during the analytical process. Therefore, it is important that each step in the analytical process be correctly followed in order to yield valid data.

When unforeseen problems arise, the analyst, technical director, and, when necessary, laboratory manager meet to discuss the factors involved. The analytical requirements are evaluated and a suitable corrective action or resolution is established. The client is notified in the case narrative with the final report or before, if the validity of their result is in question.

#### **List of Procedures Used**

Typically, the procedures used by HEAL are EPA approved methodologies or 20<sup>th</sup> edition Standard Methods. However, proprietary methods for client specific samples are sometimes used. The following tables list EPA and Standard Methods Method numbers with their corresponding analytes and/or instrument classification.

# Methods Utilized at HEAL Drinking Water(DW) Non-Potable Water (NPW) Solids (S)

|       | Matrix         | Title of Method                                                                                                             |
|-------|----------------|-----------------------------------------------------------------------------------------------------------------------------|
| 120.1 | NPW            | "Conductance(Specific Conductance, uohms at 25 ° C)"                                                                        |
| 180.1 | DW<br>NPW      | "Turbidity (Nephelometric)"                                                                                                 |
| 200.2 | DW<br>NPW      | "Sample Preparation Procedure For Spectrochemical Determination of Total Recoverable Elements"                              |
| 200.7 | DW<br>NPW      | "Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry" |
| 200.8 | DW<br>NPW      | "Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry."                     |
| 245.1 | DW<br>NPW      | "Mercury (Manual Cold Vapor Technique)"                                                                                     |
| 300.0 | DW<br>NPW<br>S | "Determination of Inorganic Anions by Ion Chromatography"                                                                   |
| 413.2 | NPW<br>S       | "Oil and Grease"                                                                                                            |
| 418.1 | NPW<br>S       | "Petroleum Hydrocarbons (Spectrophotometric, Infrared)"                                                                     |
| 504.1 | DW             | "EDB, DBCP and 123TCP in Water by Microextraction and Gas Chromatography"                                                   |

| •       |           |                                                                                                                                                                    |
|---------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 505     | DW        | "Analysis of Organohalide Pesticides and Commercial Polychlorinated<br>Biphenyl (PCB) Products in Water by Microextraction and Gas<br>Chromatography"              |
| 515.1   | DW        | "Determination of Chlorinated Acids in Water by Gas Chromatography with an Electron Capture Detector"                                                              |
| 524.2   | DW        | "Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry"                                                     |
| 531.1   | DW        | "Measurement of N-Methylcarbomoyloximes and N-Methylcarbamates in Water by Direct Aqueous Injection HPLC with Post Column Dervivatization"                         |
| 547     | DW        | "Determination of Glyphosate in Drinking Water by Direct-Aqueous Injection HPLC, Post-Column Derivatization, and Fluorescence Detection"                           |
| 552.1   | DW        | "Determination of Haloacetic Acids and Dalapon in Drinking Water by Ion-Exchange Liquid-Solid Extraction and Gas Chromatography with an Electron Capture Detector" |
| 1311    | S         | "Toxicity Characteristic Leaching Procedure"                                                                                                                       |
| 1311ZHE | s         | "Toxicity Characteristic Leaching Procedure"                                                                                                                       |
| 3005A   | NPW       | "Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by FLAA or ICP Spectroscopy"                                                      |
| 3010A   | S         | "Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by FLAA or ICP Spectroscopy"                                                         |
| 3050B   | S         | "Acid Digestion of Sediment, Sludge, and Soils"                                                                                                                    |
| 3510C   | DW<br>NPW | "Separatory Funnel Liquid-Liquid Extraction"                                                                                                                       |
| 3540    | S         | "Soxhlet Extraction"                                                                                                                                               |
| 3545    | S         | "Pressurized Fluid Extraction(PFE)"                                                                                                                                |
| 3665    | NPW<br>S  | "Sulfuric Acid/Permanganate Cleanup"                                                                                                                               |
| 5030B   | NPW *     | "Purge-and-Trap for Aqueous Samples"                                                                                                                               |
| 5035    | S         | "Closed-System Purge-and-Trap and Extraction for Volatile Organics in Soil and Waste Samples"                                                                      |
| 6010B   | NPW<br>S  | "Inductively Coupled Plasma-Atomic Emission Spectrometry"                                                                                                          |
| 6020    | NPW<br>S  | "Inductively Coupled Plasma-Mass Spectrometry"                                                                                                                     |
| 7470A   | NPW       | "Mercury in Liquid Waste (Manual Cold-Vapor Technique)"                                                                                                            |
| 7471A   | S         | "Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)"                                                                                                |
| 8021B   | NPW<br>S  | "Aromatic and Halogenated Volatiles By Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors"                                        |
| 8015B   | NPW<br>S  | "Nonhalogenated Volatile Organics by Gas Chromatography" (Gasoline Range and Diesel Range Organics)                                                                |

|                  | l e       | <u> </u>                                                                          |
|------------------|-----------|-----------------------------------------------------------------------------------|
| 8015AZ           | S         | "C10-C32 Hydrocarbons in Soil-8015AZ"                                             |
| 8081A            | NPW<br>S  | "Organochlorine Pesticides by Gas Chromatography"                                 |
| 8082             | NPW<br>S  | "Polychlorinated Biphenyls (PCBs) by Gas Chromatography"                          |
| 8260B            | NPW<br>S  | "Volatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS)"     |
| 8270C            | NPW<br>S  | "Semivolatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS)" |
| 8310             | NPW<br>S  | "Polynuclear Aromatic Hydrocarbons"                                               |
| 9045C            | S         | "Soil and Waste pH"                                                               |
| 9060             | NPW       | "Total Organic Carbon"                                                            |
| 9067             | NPW<br>S  | "Phenolics (Spectrophotometric, MBTH With Distillation)"                          |
| 9095             | S         | Paint Filter                                                                      |
| Walkley/Black    | S         | FOC/TOC WB                                                                        |
| SM2320 B         | DW<br>NPW | "Alkalinity"                                                                      |
| SM2540 B         | NPW       | "Total Solids Dried at 103-105° C"                                                |
| SM2540 C         | DW<br>NPW | "Total Dissolved Solids Dried at 180° C"                                          |
| SM2540 D         | NPW       | "Total Suspended Solids Dried at 103-105° C"                                      |
| SM4500-H+B       | DW<br>NPW | "pH Value"                                                                        |
| SM4500-NH3<br>C  | NPW<br>S  | "4500-NH3" Ammonia                                                                |
| SM4500-Norg<br>C | NPW<br>S  | "4500-Norg" Total Kjeldahl Nitrogen (TKN)                                         |
| SM5310 B         | DW        | "5310" Total Organic Carbon (TOC)                                                 |
| 8000B            | NPW<br>S  | "Determinative Chromatographic Separations"                                       |
| 8000C            | NPW<br>S  | "Determinative Chromatographic Separations"                                       |

# Criteria for Standard Operating Procedures

HEAL has Standard Operating Procedures (SOPs) for each of the test methods listed above. These SOPs are based upon the listed methods and detail the specific procedure and equipment utilized as well as the quality requirements necessary to prove the integrity of the data. SOPs are reviewed or revised every twelve months or sooner if necessary. The review/revision is documented in the Master SOP Logbook filed in the QA/QC Office. All SOPs are available in the LIMS linked under the specific test method. Administrative SOPs, which are not linked in the LIMS, are available on desktops throughout the laboratory in the link to administrative SOPs folder.

Each HEAL test method SOP shall include or reference the following topics where applicable:

Identification of the test method;

Applicable matrix or matrices;

Limits of detection and quantitation;

Scope and application, including parameters to be analyzed;

Summary of the test method;

Definitions:

Interferences;

Safety;

Equipment and supplies;

Reagents and standards;

Sample collection, preservation, shipment and storage;

Quality control parameters;

Calibration and standardization:

Procedure:

Data analysis and calculations;

Method performance;

Pollution prevention:

Data assessment and acceptance criteria for quality control measures;

Corrective actions for out-of-control data:

Contingencies for handling out-of-control or unacceptable data;

Waste management;

References: and

Any tables, diagrams, flowcharts and validation data.

#### 7.0 Calibration

All equipment and instrumentation used at HEAL are operated, maintained and calibrated according to manufacturers guidelines, as well as criteria set forth in applicable analytical methodology. Personnel who have been properly trained in their procedures perform operation and calibration. Brief descriptions of the calibration processes for our major laboratory equipment and instruments are found below.

#### **Thermometers**

The thermometers in the laboratory are used to measure the temperatures of the refrigerators/freezers, ovens, water baths, hot blocks, ambient laboratory conditions, TCLP Extractions, digestion blocks and samples at the time of log-in. All NIST traceable thermometers are either removed from use upon their documented expiration date or they are checked annually with a NIST certified thermometer and a correction factor is noted on each thermometer log. See the most current Login SOP for detailed procedures on this calibration procedure.

Dickson Data Loggers are used to record sample and standard storage refrigerators over the weekend when the appropriate staff is not available to record the temperatures. These data loggers are shipped back to the manufacturer once a year to be re-calibrated.

## Refrigerators/Freezers

Each laboratory refrigerator or freezer contains a thermometer capable of measuring to a minimum precision of 1°C. The thermometers are kept with the bulb immersed in liquid. Each workday, the temperatures of the refrigerators are recorded in a designated logbook to insure that the refrigerators are within the required designated range. Samples are stored separately from the standards to reduce the risk of contamination.

See the current catastrophic Failure SOP for the procedure regarding how to handle failed refrigerators or freezers.

#### Ovens

The ovens contain thermometers graduated by 1° C. The ovens are calibrated quarterly against NIST thermometers and checked daily as required and in which ever way is dictated by or appropriate for the method in use.

## **Analytical and Table Top Balances**

The table top balances are capable of weighing to a minimum precision of 0.01 grams. The analytical balances are capable of weighing to a minimum precision of 0.0001 grams. Records are kept of daily calibration checks for the balances in use. Working weights are used in these checks. The balances are annually certified by an outside source and the certifications are on file with the QA/QCO.

Balances, unless otherwise indicated by method specific SOPs, will be checked daily with at least two weights that will bracket the working range of the balance for the day. Daily balance checks will be done using working weights that are calibrated annually against Class S weights. Class S weights are calibrated as required by an external provider. The Class S weights are used once a year or more frequently if required, to assign values to the Working Weights. During the daily balance checks the working weights are compared to their assigned values and must pass in order to validate the calibration of the balance. The assigned values for the working weights, as well as the daily checks, are recorded in the balance logbook for each balance.

#### Instrument Calibration

An instrument calibration is the relationship between the known concentrations of a set of calibration standards introduced into an analytical instrument and the measured response they produce. Calibration curve standards are a prepared series of aliquots at various known concentrations levels from a primary source reference standard. Specific mathematical types of calibration techniques are outlined in SW-846 8000B and/or 8000C. The entire initial calibration must be performed prior to sample analyses.

The lowest standard in the calibration curve must be at or below the required reporting limit.

Refer to the current SOP to determine the minimum requirement for calibration points.

Most compounds tend to be linear and a linear approach should be favored when linearity is suggested by the calibration data. Non-linear calibration should be considered only when a linear approach cannot be applied. It is not acceptable to use an alternate calibration procedure when a compound fails to perform in the usual manner. When this occurs it is indicative of instrument issues or operator error.

If a non-linear calibration curve fit is employed, a minimum of six calibration levels must be used for second-order (quadratic) curves.

When more than 5 levels of standards are analyzed in anticipation of using second-order calibration curves, all calibration points MUST be used regardless of the calibration option employed. The highest or lowest calibration point may be excluded for the purpose of

narrowing the calibration range, and meeting the requirements for a specific calibration option. Otherwise, unjustified exclusion of calibration data is expressly forbidden.

Analytical methods vary in QC acceptance criteria. HEAL follows the method specific guidelines for QC acceptance. The specific acceptance criteria are outlined in the analytical methods and its corresponding SOP.

#### pH Meter

The pH meter measures to a precision of 0.01 pH units. The pH calibration logbook contains the calibration before each use, or each day, if used more than once per day. It is calibrated using a minimum of 3 certified buffers. Also available with the pH meter is a magnetic stirrer with a temperature sensor. See the current pH SOP (SM4500 H+ B) for specific details regarding calibration of the pH probe.

## Other Analytical Instrumentation and Equipment

The conductivity probe is calibrated as needed and checked daily when in use.

Eppendorf (or equivalent brands) pipettes are checked gravimetrically prior to use.

#### **Standards**

All of the source reference standards used are ordered from a reliable commercial vendor. A Certificate of Analysis (CoA), which verifies the quality of the standard, accompanies the standards from the vendor. The Certificates of Analysis are dated and stored on file by the Technical Directors or their designee. These standards are traceable to the National Institute of Standards (NIST). When salts are purchased and used as standards the certificate of purity must be obtained from the vendor and filed with the CoAs.

All standard solutions, calibration curve preparations, and all other quality control solutions are labeled in a manner that can be traced back to the original source reference standard. All source reference standards are entered into the LIMS with an appropriate description of the standard. Dilutions of the source reference standard (or any mixes of the source standards) are fully tracked in the LIMS. Standards are labeled with the date opened for use, and an expiration date.

As part of the quality assurance procedures at HEAL, analysts strictly adhere to manufacture recommendations for storage times/expiration dates and policies of analytical standards and quality control solutions.

## Reagents

HEAL ensures that the reagents used are of acceptable quality for their intended purpose. This is accomplished by ordering high quality reagents and adhering to good laboratory practices so as to minimize contamination or chemical degradation. All reagents must meet any specifications noted in the analytical method. Refer to the current Purchase of Consumables SOP for details on how this is accomplished and documented.

Upon receipt, all reagents are assigned a separate ID number, and logged into the LIMS. All reagents shall be labeled with the date received into the laboratory and again with the date opened for use. Recommended shelf life shall be documented and controlled. Dilutions or solutions prepared shall be clearly labeled, dated, and initialed. These solutions are traceable back to their primary reagents.

All gases used with an instrument shall meet specifications of the manufacturer. All safety requirements that relate to maximum and/or minimum allowed pressure, fitting types, and leak test frequency, shall be followed. When a new tank of gas is placed in use, it shall be checked for leaks and the date put in use will be written in the instrument maintenance logbook.

HEAL continuously monitors the quality of the reagent water and provides the necessary indicators for maintenance of the purification systems in order to assure that the quality of laboratory reagent water meets established criteria for all analytical methods.

Reagent blank samples are also analyzed to ensure that no contamination is present at detectable levels. The frequency of reagent blank analysis is typically the same as calibration verification samples. Refrigerator storage blanks are stored in the volatiles refrigerator for a period of one week and analyzed and replaced once a week.

#### 8.0 Maintenance

Maintenance logbooks are kept for each major instrument and all support equipment in order to document all repair and maintenance. In the front of the logbook, the following information is included:

Unique name of the item or equipment
Manufacturer
Type of Instrument
Model Number
Serial Number
Date received and date placed into service
Location of Instrument
Condition of instrument upon receipt

For routine maintenance, the following information shall be included in the log:

Maintenance Date
Maintenance Description
Maintenance Performed by Initials

A manufacturer service agreement (or equivalent) covers most major instrumentation to assure prompt and reliable response to maintenance needs beyond HEAL instrument operator capabilities.

Refer to the current Maintenance and Troubleshooting SOP for each section in the laboratory for further information.

# 9.0 Data Integrity

For HEAL's policy on ethics and data integrity see section 3.0 of this document. Upon being hired and annually there after, all employees at HEAL undergo documented data integrity training. All new employees sign an Ethics and Data Integrity Agreement, documenting their understanding of the high standards of integrity required at HEAL and outlining their responsibilities in regards to ethics and data integrity. See Appendix H for a copy of this agreement.

In instances of ethical concern analysts are required to report the known or suspected concern to their Technical Director, the Laboratory Manager or the QA/QCO. This will be done in a confidential and receptive environment, allowing all employees to privately discuss ethical issues or report items of ethical concern.

Once reported and documented the ethical concern will be immediately elevated to the Laboratory Manager and the need for an investigation, analyst remediation or termination will be determined on a case by case basis.

All reported instances of ethical concern will be thoroughly documented and handled in a manner sufficient to rectify any breaches in data integrity with an emphasis on preventing similar incidences from happening in the future.

## 10.0 Quality Control

## **Internal Quality Control Checks**

HEAL utilizes various internal quality control checks, including duplicates, matrix spikes, matrix spike duplicates, method blanks, laboratory control spikes, laboratory control spike duplicates, surrogates, internal standards, calibration standards, quality control charts, proficiency tests and calculated measurement uncertainty.

Refer to the current method SOP to determine the frequency and requirements of all quality controls. In the event that the frequency of analysis is not indicated in the method specific SOP, duplicate samples, laboratory control spikes (LCS), Method Blanks (MB) and matrix spikes and matrix spike duplicates (MS/MSD) are analyzed for every batch of twenty samples.

When sample volume is limited on a test that requires an MS/MSD an LCSD shall be analyzed to demonstrate precision and accuracy and when possible a sample duplicate will be analyzed.

Duplicates are identical tests repeated for the same sample or matrix spike in order to determine the precision of the test method. A Relative Percent Difference (RPD) is calculated as a measure of this precision. Unless indicated in the SOP, the default acceptance limit is </= 20%.

Matrix Spikes and Matrix Spike Duplicates are spiked samples (MS/MSD) that are evaluated with a known added quantity of a target compound. This is to help determine the accuracy of the analyses and to determine the matrix affects on analyte recovery. A percent recovery is calculated to assess the quality of the accuracy. In the event that the acceptance criteria is not outlined in the SOP, a default limits of 70-130% will be utilized. When an MSD is employed an RPD is calculated and when not indicated in the SOP shall be acceptable at </= 30%.

When appropriate for the method, a Method Blank should be analyzed with each batch of samples processed to assess contamination levels in the laboratory. MBs consist of all the reagents measured and treated as they are with samples, except without the samples. This enables the laboratory to ensure clean reagents and procedures. Guidelines should be in place for accepting or rejecting data based on the level of contamination in the blank. In the event that these guidelines are not dictated by the SOP or in client specific work plans, the MB should be less than the MDL reported for the analyte being reported.

A Laboratory Control Spike and Laboratory Control Spike Duplicate (LCS/LCSD) are reagent blanks, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. It is generally used to establish intra-laboratory or analyst-specific precision and bias or to assess the performance of all or a portion of the measurement system. Guidelines are outlined in each

SOP for the frequency and pass fail requirements for LCS and LCSDs. These limits can be set utilizing control charts as discussed below.

Surrogates are utilized when dictated by method and are substances with properties that mimic the analytes of interest. The surrogate is an analyte that is unlikely to be found in environmental samples. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for surrogates.

Internal Standards are utilized when dictated by the method and are known amounts of standard added to a test portion of a sample as a reference for evaluating and controlling the precision and bias of the applied analytical method. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for Internal Standards.

Proficiency Test (PT) Samples are samples provided by an unbiased third party. They are typically analyzed twice a year, or at any other interval defined in the method SOP. They contain a pre-determined concentration of the target compound, which is unknown to HEAL. HEAL's management and all analysts shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance criteria, sequence of analytical steps, number of replicates and other procedures as used when analyzing routine samples.

With regards to analyzing PT Samples HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seek accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall not attempt to obtain the assigned value of any PT sample from the PT Provider.

Calibration standards are standards run to calibrate. Once the calibration is established the same standards can be analyzed as Continuing Calibration Verifications (CCV), used to confirm the consistency of the instrumentation. Calibration standards can be utilized at the beginning and end of each batch, or more frequently as required. Typically Continuing Calibration Blanks (CCB) are run in conjunction with CCVs. Refer to the current method SOP for frequency and pass/fail requirements of CCVs and CCBs.

Control Limits are limits of acceptable ranges of the values of quality control checks. If a value falls outside the appropriate range, immediate evaluation and assessment of the procedure is required. Data generated with laboratory control samples that fall outside of the established control limits are judged to be generated during an "out-of-control" situation. These data are considered suspect and shall be repeated or reported with qualifiers.

Control limits should be established and updated according to the requirements of the method being utilized. When the method does not specify, and control limits are to be generated or updated for a test, the following guidelines shall be utilized.

Control Limits should be updated periodically and at least annually. The Limits should be generated utilizing the most recent 20-40 data values and Control Charts should be printed when these limits are updated in the LIMS. The data values used shall not reuse values that were included in the previous Control Limit update. The data values shall also be reviewed by the LIMS for any Grubbs Outliers, and if identified, the outliers must be removed prior to generating new limits. Once new Control Limits have been established and updated in the LIMS, the printed Control Chart shall be reviewed by the appropriate technical director and primary analyst performing the analysis for possible trends and compared to the previous Control Charts. The technical director initials the control charts, indicating that they have reviewed and determined the updated Limits to be accurate and appropriate. These initialed charts are then filed in the QA/QCO office.

Calculated Measurement Uncertainty is calculated annually using LCSs in order to determine the laboratory specific uncertainty associated with each test method. These uncertainty values are available to our clients upon request and are utilized as a trending tool internally to determine the effectiveness of new variables introduced into the procedure over time.

## Precision, Accuracy, Detection Levels

#### **Precision**

The laboratory uses sample duplicates, laboratory control spike duplicates and matrix spike duplicates to assess precision in terms of relative percent difference (RPD). HEAL requires the RPD to fall within the 99% confidence interval of established control charts or an RPD of less than 30% if control charts are not available. RPD's greater than these limits are considered out-of-control and require an appropriate response.

RPD = 2 x (Sample Result – Duplicate Result) X 100 (Sample Result + Duplicate Result)

#### Accuracy

The accuracy of an analysis refers to the difference between the calculated value and the actual value of a measurement. The accuracy of a laboratory result is evaluated by comparing the measured amount of QC reference material recovered from a sample and the known amount added. Control limits can be established for each analytical method and sample matrix. Recoveries are assessed to determine the method efficiency and/or the matrix effect.

Analytical accuracy is expressed as the percent recovery (%R) of an analyte or parameter. A known amount of analyte is added to an environmental sample before the sample is prepared and subsequently analyzed. The equation used to calculate percent recovery is:

%Recovery = {(concentration\* recovered)/(concentration\* added)} X 100

\*or amount

HEAL requires that the Percent Recovery to fall within the 99 % confidence interval of established control limits. A value that falls outside of the confidence interval requires a warning and process evaluation. The confidence intervals are calculated by determining the mean and sample standard deviation. If control limits are not available, the range of 70 to 130% is used unless the specific method dictates otherwise. Percent Recoveries outside of this range mandate additional action such as analyses by Method of Standard Additions, additional sample preparation(s) where applicable, method changes, out-of-control action or data qualification.

#### **Detection Limit**

Current practices at HEAL define the Detection Limit (DL) as the smallest amount that can be detected above the baseline noise in a procedure within a stated confidence level.

HEAL presently utilizes an Instrument Detection Limit (IDL), a Method Detection Limit (MDL), and a Practical Quantitation Limit (PQL). The relationship between these levels is approximately

IDL: MDL: PQL = 1:5:5.

The IDL is a measure of the sensitivity of an analytical instrument. The IDL is the amount which, when injected, produces a detectable signal in 99% of the analyses at that concentration. An IDL can be considered the minimum level of analyte concentration that is detectable above random baseline noise.

The MDL is a measure of the sensitivity of an analytical method. An MDL determination (as required in 40CFR part 136 Appendix B) consists of replicate spiked samples carried through all necessary preparation steps. The spike concentration is three times the standard deviation of three replicates of spikes. At least seven replicates are spiked and analyzed and their standard deviation (s) calculated. Routine variability is critical in passing the 10 times rule and is best achieved by running the MDLs over different days and when possible over several calibration events. The method detection limit (MDL) can be calculated using the standard deviation according to the formula:

MDL = s \* t (99%)

Where t (99%) is the student's t value for the 99% confidence interval. It depends on the number of trials used in calculating the sample standard deviation, so choose the appropriate value according to the number of trials.

| Number of Trials | t(99%) |
|------------------|--------|
| 6                | 3.36   |
| 7                | 3.14   |
| 8                | 3.00   |
| 9                | 2.90   |

The calculated MDL must not be less than 10 times the spiked amount or the study must be performed again with a lower concentration.

The PQL is significant because different laboratories can produce different MDLs although they may employ the same analytical procedures, instruments and sample matrices. The PQL is about two to five times the MDL and represents a practical, and routinely achievable, reporting level with a good certainty that the reported value is reliable. It is often determined by regulatory limits. The reported PQL for a sample is dependent on the dilution factor utilized during sample analysis.

# **Quality Control Parameter Calculations**

#### Mean

The sample mean is also known as the arithmetic average. It can be calculated by adding all of the appropriate values together, and dividing this sum by the number of values.

Average = 
$$(\Sigma x_1) / n$$

 $x_i$  = the value x in the I<sup>th</sup> trial n = the number of trials

#### Standard Deviation

The sample standard deviation, represented by s, is a measure of dispersion. The dispersion is considered to be the difference between the average and each of the values  $x_i$ . The variance,  $s^2$ , can be calculated by summing the squares of the

differences and dividing by the number of differences. The sample standard deviation, s, can be found by taking the square root of the variance.

Standard deviation = s = 
$$\left[\sum (x_1 - average)^2 / (n-1)\right]^{\frac{1}{2}}$$

# Percent Recovery (MS, MSD, LCS and LCSD)

#### **Control Limits**

Control Limits are calculated by the LIMS using the average percent recovery (x), and the standard deviation (s).

Upper Control Limit = x + 3sLower Control Limit = x - 3s

These control limits approximate a 99% confidence interval around the mean recovery.

# **RPD (Relative Percent Difference)**

Analytical precision is expressed as a percentage of the difference between the results of duplicate samples for a given analyst. Relative percent difference (RPD) is calculated as follows:

RPD = 
$$2 \times (Sample Result - Duplicate Result) \times 100$$
  
(Sample Result + Duplicate Result)

### **Uncertainty Measurements**

Uncertainty, as defined by ISO, is the parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurement. Ultimately uncertainty measurements are used to state how good a test result is and to allow the end user of data to properly interpret their reported data. All procedures allow for some uncertainty. For most analyses the components and estimates of uncertainty are reduced by following well established test methods. To further reduce uncertainty, results are generally not reported below

the lowest calibration point (PQL) or above the highest calibration point (UQL). Understanding that there are many influence quantities affecting a measurement result, so many in fact that it is impossible to identify all of them, HEAL calculates measurement uncertainty at least annually using LCSs. These estimations of measurement uncertainty are kept on file in the method folders in the QA/QC office.

Measurement Uncertainty contributors are those that may be determined statistically. These shall be generated by estimating the overall uncertainty in the entire analytical process by measuring the dispersion of values obtained from laboratory control samples over time. At least 20 of the most recent LCS data points are gathered. The standard deviation (s) is calculated using these LCSs data points. Since it can be assumed that the possible estimated values of the spikes are approximately normally distributed with approximate standard deviation (s), the unknown value of the spike is believed to lie in 95% confidence interval, corresponding to an uncertainty range of +/- 2(s).

Calculate standard deviation (s) and 95% confidence interval according to the following formulae:

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{(n-1)}}$$

Where: s = standard deviation

x = number in series

 $\bar{x}$  = calculated mean of series n = number of samples taken

95% confidence =  $2 \times s$ 

Example: Assuming that after gathering 20 of the most recent LCS results for Bromide, we have calculated the standard deviations of the values and achieved a result of 0.0326, our measurement uncertainty for Bromide (at 95% confidence =  $2 \times 8$ ) is 0.0652.

#### **Calibration Calculations**

1. Response Factor or Calibration Factor:

$$RF = ((A_x)(C_{is}))/((A_{is})(C_x))$$

 $CF=(A_x)/(C_x)$ 

a. Average RF or CF

$$RF_{AVE} = \Sigma RF_i / n$$

b. Standard Deviation

$$s = SQRT \{ [\Sigma (RF_i - RF_{AVE})^2] / (n-1) \}$$

c. Relative Standard Deviation

Where:

 $A_x$  = Area of the compound

 $C_x$  = Concentration of the compound

A<sub>is</sub> = Area of the internal standard

C<sub>is</sub> = Concentration of the internal standard

n = number of pairs of data

RF<sub>i</sub> = Response Factor (or other determined value)

RF<sub>AVE</sub> = Average of all the response factors

 $\Sigma$  = the sum of all the individual values

2. Linear Regression

a. Slope (m)

$$m = (n\Sigma x_i y_i - (n\Sigma x_i)^* (n\Sigma y_i)) / (n\Sigma x_i^2 - (\Sigma x_i)^2)$$

b. Intercept (b)

$$b = y_{AVE} - m^*(x_{AVE})$$

c. Correlation Coefficient (cc)

CC (r) ={ 
$$\Sigma((x_i-x_{ave})^*(y_i-y_{ave}))$$
 } / {  $SQRT((\Sigma(x_i-x_{ave})^2)^*(\Sigma(y_i-y_{ave})^2))$  }

Page 36 of 49 Quality Assurance Plan 9.2 Effective February 2<sup>nd</sup> 2010

Or CC (r) =[
$$(\Sigma w * \Sigma wxy) - (\Sigma wx * \Sigma wy)] / (sqrt( ( [(\Sigma w * \Sigma wx^2) - (\Sigma wx * \Sigma wx)] * [(\Sigma w * \Sigma wy^2) - (\Sigma wy * \Sigma wy)])))]$$

d. Coefficient of Determination

$$COD(r^2) = CC*CC$$

#### Where:

 $y = Response (Area) Ratio A_x/A_{ls}$ 

 $x = Concentration Ratio C_x/C_{is}$ 

m = slope

b = intercept

n = number of replicate x,y pairs

x<sub>l</sub> = individual values for independent variable

y<sub>i</sub> = individual values for dependent variable

 $\Sigma$  = the sum of all the individual values

 $x_{ave}$  = average of the x values

yave = average of the y values

w = weighting factor, for equal weighting w=1

3. Quadratic Regression

$$y = ax^2 + bx + c$$

a. Coefficient of Determination

COD (r<sup>2</sup>) = 
$$(\Sigma(y_i-y_{ave})^2 - \{[(n-1)/(n-p)] * [\Sigma(y_i-Y_i)^2]\}) / \Sigma(y_i-y_{ave})^2$$

#### Where:

 $y = Response (Area) Ratio A_x/A_{is}$ 

 $x = Concentration Ratio C_x/C_{is}$ 

 $a = x^2$  coefficient

b = x coefficient

c = intercept

y<sub>i</sub> = individual values for each dependent variable

 $x_i$  = individual values for each independent variable

 $y_{ave}$  = average of the y values

n = number of pairs of data

p = number of parameters in the polynomial equation (l.e., 3 for third order, 2 for second order)

 $Y_i = ((2*a*(C_x/C_{is})^2)-b^2+b+(4*a*c))/(4a)$ 

#### b. Coefficients (a,b,c) of a Quadratic Regression

$$\mathsf{a} = \mathsf{S}_{(\mathsf{x}\mathsf{2}\mathsf{y})} \mathsf{S}_{(\mathsf{x}\mathsf{x})} \mathsf{-} \mathsf{S}_{(\mathsf{x}\mathsf{y})} \mathsf{S}_{(\mathsf{x}\mathsf{x}\mathsf{2})} \, / \, \mathsf{S}_{(\mathsf{x}\mathsf{x})} \mathsf{S}_{(\mathsf{x}\mathsf{2}\mathsf{x}\mathsf{2})} \mathsf{-} [\mathsf{S}_{(\mathsf{x}\mathsf{x}\mathsf{2})}]^2$$

$$b = S_{(xy)}S_{(x2x2)} - S_{(x2y)}S_{(xx2)} / S_{(xx)}S_{(x2x2)} - [S_{(xx2)}]^2$$

$$c = [(\Sigma yw)/n] - b^*[(\Sigma xw)/n] - a^*[\Sigma(x^2w)/n]$$

#### Where:

n = number of replicate x,y pairs

x = x values

y = y values

 $w = S^{-2} / (\Sigma S^{-2}/n)$ 

 $S_{(xx)} = (\Sigma x^2 w) - [(\Sigma x w)^2 / n]$ 

 $S_{(xy)} = (\Sigma xyw) - [(\Sigma xw)^*(\Sigma yw) / n]$ 

 $S_{(xx2)} = (\Sigma x^3 w) - [(\Sigma x w)^* (\Sigma x^2 w) / n]$ 

 $S_{(x2y)} = (\Sigma x^2 yw) - [(\Sigma x^2 w)^*(\Sigma yw) / n]$ 

 $S_{(x2x2)} = (\Sigma x^4 w) - [(\Sigma x^2 w)^2 / n]$ 

Or If unweighted calibration, w=1

S(xx) = (Sx2) - [(Sx)2 / n]

S(xy) = (Sxy) - [(Sx)\*(Sy) / n]

S(xx2) = (Sx3) - [(Sx)\*(Sx2) / n]

S(x2y) = (Sx2y) - [(Sx2)\*(Sy) / n]

S(x2x2) = (Sx4) - [(Sx2)2 / n]

#### 11.0 Data Reduction, Validation, Reporting, and Record Keeping

All data reported must be of the highest possible accuracy and quality. During the processes of data reduction, validation, and report generation, all work is thoroughly checked to insure that error is minimized.

#### **Data Reduction**

The analyst who generated the data usually performs the data reduction. The calculations include evaluation of surrogate recoveries (where applicable), and other miscellaneous calculations related to the sample quantitation.

If the results are computer generated, then the formulas must be confirmed by hand calculations, at minimum, one per batch.

See the current Data Validation SOP for details regarding data reduction.

#### Validation

A senior analyst, most often the section supervisor, validates the data. All data undergoes peer review. If an error is detected it is brought to the analyst attention to rectify and further checks ensure that all data for that batch is sound. Previous and/or common mistakes are stringently monitored throughout the validation process. Data is reported using appropriate significant figure criteria. In most cases, two significant digits are utilized, but three significant digits can be used in QC calculations. Significant digits are not rounded until after the last step of a sample calculation. All final reports undergo a review by the laboratory manager, or the project manager or their designee, to provide a logical review of all results before they are released to the client.

If data is to be manually transferred from one medium to another, the transcribed data is checked by a peer. This includes data typing, computer data entry, chromatographic data transfer, data table inclusion to a cover letter, or when data results are combined with other data fields.

All hand written data from run logs, analytical standard logbooks, hand entered data logbooks, or on instrument generated chromatograms, are systematically archived should the need for future retrieval arise.

See the current Data Validation SOP for detail regarding data validation.

#### **Reports and Records**

All records at HEAL are retained and maintained through the procedures outlined in the most recent version of the Records Control SOP.

The reports are compiled by the Laboratory Information Management System (LIMS). Most data is transferred directly from the instruments to the LIMS. After being processed by the analyst and reviewed by a data reviewer, final reports are approved and signed by the senior laboratory management. A comparative analysis of the data is performed at this point. For example, if TKN and NH3 are analyzed on the same sample the NH3 result should never be greater than the TKN result. Lab results and reports are released only to appropriately designated individuals. Release of the data can be by fax, email, electronic deliverables or mailed hard copy.

When a project is completed, the project file folder is stored with a hard copy of the report, relevant supporting data, and the quality assurance/control worksheets. These folders are kept on file and are arranged by project number. Additionally, all electronic data is backed up daily on the HEAL main server. The backup includes raw data, chromatograms and report documents. Hard copies of chromatograms are stored separately according to the instrument and the analysis date. All records and analytical data reports are retained in a secure location as permanent records for a minimum period of five years (unless specified otherwise in a client contract). Access to archived information shall be documented with an access log. Access to archived electronic reports and data will be protected by a project manager password. In the event that HEAL transfers ownership or terminates business practices, complete records will be maintained or transferred according to the client's instructions.

After issuance, the original report shall remain unchanged. If a correction to the report is necessary, then an additional document shall be issued. This document shall have a title of "Addendum to Test Report or Correction to Original Report", or equivalent. Demonstration of original report integrity comes in two forms. First, the report date is included on each page of the final report. Second, each page is numbered in sequential order, making the addition or omission of any data page(s) readily detectable.

#### **12.0 Corrective Action**

Refer to the most recent version of the Data Validation SOP for the procedure utilized in filling out a Corrective Action Report. A blank copy of the corrective action report is available in the Appendix.

The limits that have been defined for data acceptability also form the basis for corrective action initiation. Initiation of corrective action occurs when the data generated from continuing calibration standard, sample surrogate recovery, laboratory control spike, matrix spike or sample duplicates exceed acceptance criteria. If corrective action is necessary, the analyst or the section supervisor will coordinate to take the following steps to determine and correct the measurement system deficiency:

Check all calculations and data measurements systems (Calibrations, reagents, instrument performance checks etc.).

Assure that proper procedures were followed.

Unforeseen problems that arise during sample preparation and/or sample analysis that lead to treating a sample differently from documented procedures shall be documented with a corrective action report. The section supervisor and laboratory manager shall be made aware of the problem at the time of the occurrence. See the appropriate SOP regarding departures from documented procedures.

Continuing calibration standards below acceptance criteria can not be used for reporting analytical data unless method specific criteria states otherwise.

Continuing calibration standards above acceptance criteria can be used to report data so long as the failure is isolated to a single standard and the corresponding samples are non-detect for the failing analyte.

Samples with non-compliant surrogate recoveries should be reanalyzed unless deemed unnecessary by the supervisor for matrix, historical data or other analysis related anomalies.

Laboratory and Matrix Spike acceptance criteria vary significantly depending on method and matrix. Analysts and supervisors meet and discuss appropriate corrective action measures as spike failures occur.

Sample duplicates with RPD values outside control limits require supervisor evaluation and possible reanalysis.

A second mechanism for initiation of corrective action is that resulting from Quality Assurance performance audits, system audits, inter and intra-laboratory comparison studies. Corrective Actions initiated through this mechanism will be monitored and coordinated by the laboratory QA/QCO.

All corrective action forms are entered in the LIMS and included with the raw data for peer review, signed by the technical director of the section and included in the case narrative to the client whose samples were affected. All Corrective action forms in the LIMS are reviewed by the QA/QCO.

#### 13.0 Quality Assurance Audits, Reports and Complaints

#### Internal/External Systems' Audits, Performance Evaluations, and Complaints

Several procedures are used to assess the effectiveness of the quality control system. One of these methods includes internal performance evaluations, which are conducted by the use of control samples, replicate measurements and control charts. Another method is external performance audits, which are conducted by the use of inter-laboratory checks, such as participation in laboratory evaluation programs and performance evaluation samples available from a NELAC accredited Proficiency Standard Vendor.

Proficiency samples will be obtained twice per year from an appropriate vendor for all tests and matrices for which we are accredited and for which there are PTs available. HEAL participates in soil, waste water, drinking water and underground storage tank PT studies. Copies of results are available upon request. HEAL's management and all analysts shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance criteria, sequence of analytical steps, number of replicates and other procedures as used when analyzing routine samples.

With regards to analyzing PT Samples HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seeks accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall no attempt to obtain the assigned value of any PT sample from the PT Provider.

Internal Audits are performed annually by the QA/QCO in accordance with the current Internal Audit SOP. They are performed using the guidelines outlined below:

The system audit consists of a qualitative inspection of the QA system in the laboratory and an assessment of the adequacy of the physical facilities for sampling, calibration, and measurement. This audit includes a careful evaluation and review of laboratory quality control procedures. Including but not limited to:

- 1. Review of staff qualifications, demonstration of capability, and personnel training programs
- 2. Storage and handling of reagents, standards and samples
- 3. Standard preparation logbook and LIMS procedures
- 4. Extraction logbooks
- 5. Raw data logbooks
- Analytical logbooks or batch printouts and instrument maintenance logbooks

- 7. Data review procedures
- 8. Corrective action procedures
- 9. Review of data packages is performed regularly by the lab manager/QA Officer.

The QA/QCO will conduct these audits on an annual basis.

#### **Management Reviews**

HEAL management shall periodically, and at least annually, conduct a review of the laboratory's quality system and environmental testing activities to ensure their continuing suitability and effectiveness, and to introduce necessary changes or improvements. The review shall take account of:

- 1. the suitability and implementation of policies and procedures
- 2. reports from managerial and supervisory personnel
- 3. the outcome of recent internal audits
- 4. corrective and preventive actions
- 5. assessments by external bodies
- 6. the results of inter-laboratory comparisons or proficiency tests
- 7. changes in volume and type of work
- 8. client feed back
- 9. complaints
- 10. other relevant factors, such as laboratory health and safety, QC activities, resources and staff training.

Findings from management reviews and the actions that arise from them shall be recorded and any corrective actions that arise shall be completed in an appropriate and agreed upon timescale.

#### Complaints

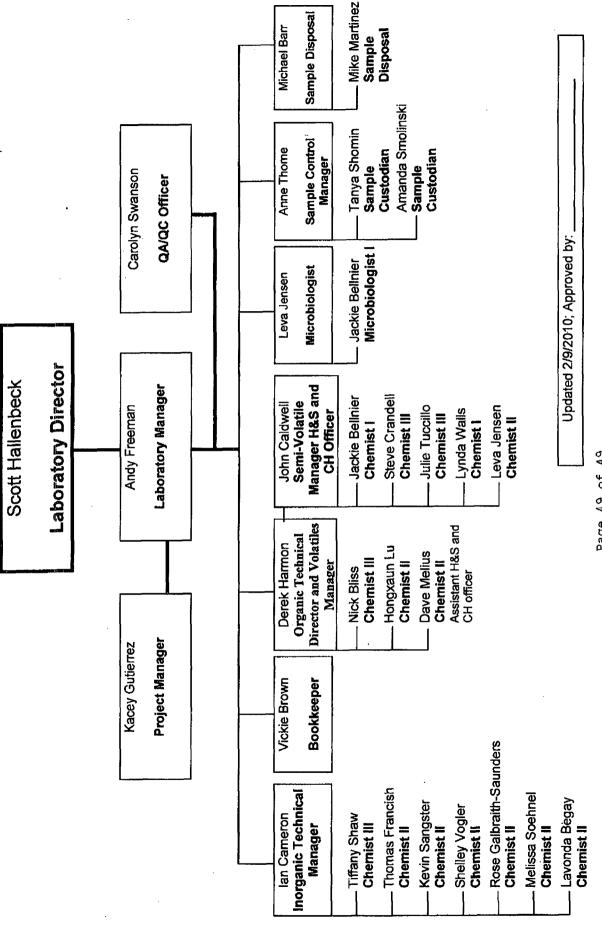
Complaints from clients are documented and given to the laboratory manager. The lab manager shall review the information and contact the client. If doubt is raised concerning the laboratories policies or procedures, then an audit of the section or sections may be performed. All records of complaints and subsequent actions shall be maintained in the client compliant logbook for 5 years unless otherwise stated.

#### **Internal and External Reports**

The QA/QCO is responsible for preparation and submission of quality assurance reports to the appropriate management personnel as problems and issues arise. These reports include the assessment of measurement systems, data precision and accuracy, and the results of performance and system audits. Additionally, they also include significant QA problems, corrective actions, and recommended resolution measures. Reports of these Quality Assurance Audits describe the particular activities audited, procedures utilized in the examination and evaluation of laboratory records, and data validation procedures. Finally, there are procedures for evaluating the performance of Quality Control and Quality Assurance activities, and laboratory deficiencies and the implementation of corrective actions with the review requirements.

#### References (Analytical Protocols Utilized at HEAL)

- 1. <u>Standard Methods for the Examination of Water and Wastewater:</u> AOHA, AWWA, and WPCG; 20th Edition, 1999.
- 2. <u>Methods for Chemical Analysis of Water and Wastes</u>, USEPA, EPA-600/4-79-020, March 1979 and as amended December, 1982 (EPA-600/4-82-055)
- 3. <u>Test Methods for Evaluating Solid Waste: Physical/Chemical Methods</u>, USEPA SW-846, 3rd Edition, Updates I, II, IIA, IIB, III, December, 1996.
- 4. <u>Methods of Soil Analysis</u>: Parts 1 & 2, 2nd Edition, Agronomy Society of America, Monograph 9
- 5. <u>Diagnosis & Improvement of Saline & Alkali Soils.</u> Agriculture Handbook No. 60, USDA, 1954
- 6. <u>Handbook on Reference Methods for Soil Testing.</u> The Council on Soil Testing & Plant Analysis, 1980 and 1992
- 7. <u>Field and Laboratory Methods Applicable to Overburdens and Mine Soils, USEPA, EPA-600/2-78-054, March 1978</u>
- 8. <u>Laboratory Procedures for Analyses of Oilfield Waste.</u> Department of Natural Resources, Office of Conservation, Injection and Mining Division, Louisiana, August 1988
- 9. <u>Soil Testing Methods Used at Colorado State University for the Evaluation of Fertility,</u>
  Salinity and Trace Element Toxicity, Technical Bulletin LT B88-2 January, 1988
- 10. <u>Manual of Operating Procedures for the Analysis of Selected Soil, Water, Plant Tissue and Wastes Chemical and physical Parameter.</u> Soil, Water, and Plant Analysis Laboratory, Dept. of Soil and Water Science, The University of Arizona, August 1989
- 11. <u>Sampling Procedures and Chemical Methods in Use at the U.S. Salinity Laboratory for Characterizing Salt-Affected Soils and Water.</u> USDA Salinity Laboratory.
- 12. <u>Procedures for Collecting Soil Samples and Methods of Analysis for Soil Survey.</u> USDA Soil Conservation Service, SSIR No. 1.
- 13. <u>Soil Survey Laboratory Methods Manual.</u> Soil Survey Laboratory Staff. Soil Survey Investigations Report No. 42, version 2.0, August 1992.
- 14. <u>Methods for the Determination of Metals in Environmental Samples</u>, USEPA, EPA-600/4-91-010, June 1991
- 15. The Merck Index, Eleventh Edition, Merck & Co., Inc. 1989.


- 16. Handbook of Chemistry and Physics, 62nd Edition, CRC Press, Inc. 1981-1982.
- 17. Analytical Chemistry of PCB's. Erickson, Mitchell D., CRC Press, Inc. 1992.
- 18. <u>Environmental Perspective on the Emerging Oil Shale Industry</u>, EPA Oil & Shale Research Group.
- 19. Polycyclic Aromatic Hydrocarbons in Water Systems, CRC Press, Inc.
- 20. Quality Systems for Analytical Services, Revision 2.2, U.S. Department of Energy, October 2006.
- 21. <u>Manual for the Certification of Laboratories Analyzing Drinking Water, Criteria and procedures Quality Assurance Fifth Edition, U.S. Environmental Protection Agency, January 2005.</u>
- 22. <u>Technical Notes on Drinking Water Methods</u>, U.S. Environmental Protection Agency, October 1994.

# Appendix A

Personnel Chart / Organizational Structure

Page 48 of 49 Quality Assurance Plan 9.2 Effective February 2<sup>nd</sup> 2010

# Diagram of Organizational Structure



Page 49 of 49 Quality Assurance Plan 9.2 Effective February 2<sup>nd</sup> 2010



#### **OREGON**

# **Environmental Laboratory Accreditation Program**



**NELAP Recognized** 

Hall Environmental Analysis Laboratory, Inc. NM100001

4901 Hawkins Rd. NE, Suite D Albuquerque,NM 87109

IS GRANTED APPROVAL BY ORELAR UNDER THE 2003 NELAC STANDARDS, TO PERFORM ANALYSES ON ENVIRONMENTAL SAMPLES IN MATRICES AS LISTED BELOW:

Air Drinking Water Water Chem. Waste Tissue

Chemistry Chemistry

Chemistry

AND AS RECORDED IN THE LIST OF APPROVED ANALYTICS METHODS, ANALYTIC TECHNIQUES, AND NELDS OF TESTING ISSUED CONCURRENTLY WITH THIS PERTIFICATE AND REVISED AS NECESSARY.

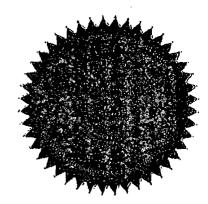
ACCREDITED STATUS DEPENDS ON SUCCESSFUL ONGOING PARTICIPATION IN THE PROGRAM AND CONTINUED COMPUSNOE WITH THE STANDARDS.

CUSTOMERS ARE URGED TO VERIFY THE LABORATORY'S CURRENT ACCREDITATION STATUS

Irene E. Ronning Ph.D.

Oregon State Public Health Laboratory

**ORELAP Administrator** 


3150 NW. 229th Ave, Suite 100

Hillsboro, OR 97124

ISSUE DATE: 03/01/2010

EXPIRATION DATE: 02/28/2011

Certificate No: NM100001 - 007





#### Oregon

#### **Environmental Laboratory Accreditation Program**



Department of Agriculture, Laboratory Division Department of Environmental Quality, Laboratory Division

Department of Human Services, Public Health Laboratory

**NELAP Recognized** 

#### **ORELAP Fields of Accreditation**

03/01/2010

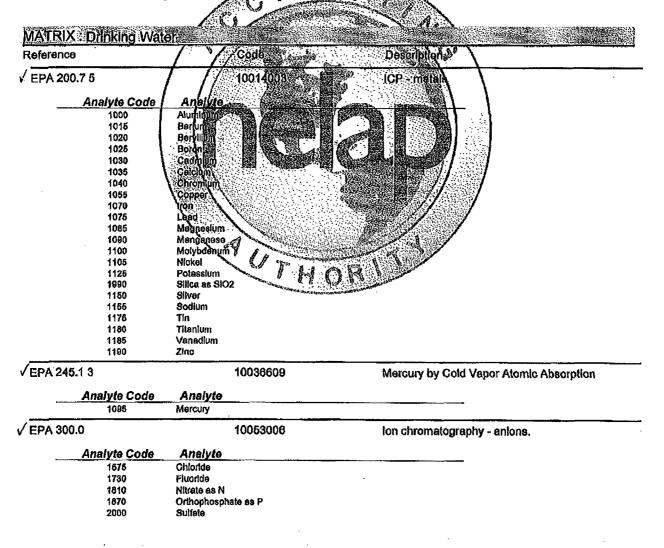
ORELAPID: NM100001

EPA CODE: NM00035

Certificate: NM100001 - 007

Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE. Suite D Albuquerque


NM 87109

Issue Date:

Expiration Date: 02/28/2011

As of 03/01/2010

this list supercedes all previous lists for this certificate number.



ORELAP ID: NM100001

EPA CODE: NM00035

Certificate:

NM100001 - 007

#### Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE. Suite D Albuquerque

NM 87109

Issue Date: 03/01/2010

Expiration Date: 02/28/2011

As of 03/01/2010

this list supercedes all previous lists for this certificate number.

Customers. PLease verify the current accreditation standing with ORELAP.

VEPA 5030B 10153409 Purge and trap for aqueous samples Analyte Code Analyte Extraction/Preparation 125 VEPA 504.1 10083008 EDB/DBCP/TCP micro-extraction, GC/ECD Analyte Code Analyte 4670 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB, Ethylene dibromide) 4585 ✓ EPA **524.2 4.1** 10088809 olatile Organic Compounds GC/MS Capillary Analyte Code Analyté. 1,1,1,8 Tetrachtorosinana; 1,1,1-Trichlorosinana; 1,1,2,2,7 strachtorosinana; 1,1,2-Trichlorosthana; 6105 6160 5110 6165 1,1-Dichloroethane 1,1-Dichloroethylene 4830 4640 4670 1,1-Dichloropropend 6150 5180 5155 **6210** 4610 4635 1.2 Dictiorpropine 1:3.5 Unitelly/benzene 1:3. Dictiorpenzene 1:3. Dictiorpropine 1:4. Dictioropenzene 4665 6215 4615 4660 4620 4535 2-Ghlorojoluene 4-Chilorotoluen 4640 4375 Banzaña, Bromobenzene 4385 4390 Bromochloromethania 4395 Bromodichlorometrane 4400 **Bromoform** 4455 Cerbon tetrachloride 4476 Chlorobenzene 4675 Chlorodibromomethane 4465 Chloroethane (Ethyl chloride) 4605 Chloroform 4645 cls-1,2-Dichloroethylene 4660 cls-1,3-Dichloropropens 4595 Dibromomethane (Methylene bromide) 4765 Ethylbenzene 4835 Hexachlorobutadiene 4900 Isopropylbenzene 4950 Methyl bromide (Bromomethane) Methyl chloride (Chloromethane) 4960 8000 Methyl tert-butyl ether (MTBE) 4975 Methylene chloride (Dichtoromethene) 4435 n-Butylbenzene 5090 n-Propylbenzene 4440 sec-Butylbenzene **5100** Styrene 4445 tert-Bulylbenzene 5115 Tetrachioroethylene (Perchioroethylene) 5140 Toluene

ORELAP ID: NM100001

EPA CODE: NM00035

Certificate: NM100001 - 007

#### Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque

NM 87109

Issue Date: 03/01/2010 -

Expiration Date: 02/28/2011

As of 03/01/2010

this list supercedes all previous lists for this certificate number.

| Analyte Code         | Analyte                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|----------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 4700                 | trans-1,2-Dichloroethylene          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 4685                 | trans-1,3-Dichloropropylene .       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 5170                 | Trichloroethene (Trichloroethylene) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| <b>6176</b>          | Trichlorofluoromethane (Fluorot     | richloromethane, Freon 11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 6235                 | Vinyl chloride                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 5280                 | Xylene (total)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| √ SM 2320 B 20th ED  | 20045209                            | Alkalinity by Titration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Analyte Code         | Analyte                             | Contractor to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the  |  |  |  |
| 1605                 | Alkelinity as CaCO3                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| √SM 2540 C 20th ED   | 20080004                            | fipialiDissolved Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Analyte Code         | Analyto J                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 1958                 | Residie-fille able (TOS)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| SM 4500-H+ B 20th ED | 20104807                            | pH by Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                      |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Analyte Code         | Analyte pH                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                      |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| √SM 5310 B 20th ED   | 20137400                            | Total Organic Carbon by Combustion Infra-red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Analyte Code         | Analyte                             | Melhod Melhod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| . 2040               | Total digianic carden               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                      | I have med accommon                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                      |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                      |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                      |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                      |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                      |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                      | 1 Common                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                      |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                      | Mario Articologia                   | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |  |  |  |

ORELAP ID: NM100001

EPA CODE: NM00035

Certificate: NM100001 - 007

#### Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque

NM 87109

Issue Date:

03/01/2010

Expiration Date: 02/28/2011

As of 03/01/2010

this list supercedes all previous lists for this certificate number.

| Reference |              | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EPA 300   | .0           | 10053006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ion chromatography - anions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| _         | Analyte Code | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1540         | Bromide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1575         | Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | 1730         | Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1810         | Nitrale as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |
|           | 1820         | Nitrato-nitrite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1840         | Nildle as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1870<br>2000 | Orthophospitate as P<br>Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |              | A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A 2018 A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EPA 300   | 5A           | 10183207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Acid Digestion of waters for Total Recoverable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           | Analyte Code | /Analyj6/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | or Djasolyed Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | 125          | Extraction/Preparation Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EPA 351   | nc:          | 10138202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Separaton Punnel Iliquid-liquid extraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LI M OV I | i Ci         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ooperatory Trittor Hydro-induit Oxiraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           | Analyte Code | Arlalyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 125          | Extraction/Preparation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EPA 503   | OB.          | 10153209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Purge and trap for aqueous samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | Analyte Code | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 125          | Extraction/Preparation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EPA 601   | OB           | 10155609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NAME OF ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | Analyte Code |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| t         | 1000         | Ahalyte<br>Alumihum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1005         | Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1010         | Arsenio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1015         | Barlum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1020         | Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |
|           | 1025         | Boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1030         | Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1035         | Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1040         | Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1050<br>1070 | Cobail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1070<br>1075 | Iron<br>Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1085         | Magnasium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1090         | Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1100         | Molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1105         | Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1125         | Potassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | 1140         | Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1150         | Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1155         | Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | 1165         | Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1176         | Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1180         | Tilanium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 3035         | Uranium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1185         | Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1190         | Zino                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

ORELAP ID: NM100001

EPA CODE: NM00035

Certificate: NM100001 - 007

#### Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque NM 87109

Issue Date:

03/01/2010

Expiration Date: 02/28/2011

As of 03/01/2010

this list supercedes all previous lists for this certificate number.

| EPA 7470A | •                  | 10165807                                         | Mercury In Liquid Waste by Cold Vapor Atomic<br>Absorption                  |
|-----------|--------------------|--------------------------------------------------|-----------------------------------------------------------------------------|
| An        | alyte Code         | Analyte                                          |                                                                             |
|           | 1095               | Mercury                                          |                                                                             |
| EPA 8016B |                    | 10173601                                         | Non-halogenated organics using GC/FID                                       |
| An        | alyte Code         | Analyte                                          |                                                                             |
|           | 9369               | Diesel range organics (DRO)                      |                                                                             |
|           | 9408<br>9499       | Gasoline range organics (GRO) Motor Oll          | the more representations                                                    |
|           |                    |                                                  |                                                                             |
| EPA 8021B |                    | 101748081                                        | Aromatic and Halogenated Volatiles by GC with<br>RID and/oxECD Purge & Trap |
| An        | alyte Code         | Analyte's                                        |                                                                             |
|           | 5210               | 1,2,4-Irimelhylbenzene                           |                                                                             |
|           | 5215               | 1,6,5-Yamelhylbenzene                            |                                                                             |
|           | 4375<br>4768       | Benzene Ethylbenzene                             | Jan /                                                                       |
|           | 4765<br>6240       | m+p-xylene                                       |                                                                             |
|           | 5000 j             | Methyl tert-bulyl ether (MTBB)                   |                                                                             |
|           | 5250               | o-Xyjene                                         | P. WINDS                                                                    |
|           | 6140               | Toluene                                          |                                                                             |
|           | 5260               | Xylene ((Olal)                                   |                                                                             |
| EPA 8081A |                    | 101/8606                                         | Organochie ine Pesticides by GC/ECD                                         |
| Δn        | alyte Code         | Analyte                                          |                                                                             |
|           | 7355               | (44 D)D)                                         |                                                                             |
|           | 7360               | 4 A DOE                                          |                                                                             |
| •         | 7365               | V.4-DDT                                          |                                                                             |
|           | 7025               | Aldrin                                           |                                                                             |
|           | 7110               | alpha-BHC (alpha-Hexachlorocyclone               | X80B) / (40BX                                                               |
|           | 7115<br>7105       | beta-BHC (beta-Hexachtorocyclohexa delta-BHC     | ne)                                                                         |
|           | 7470               | Dieldrin                                         |                                                                             |
|           | 7510               | Endosulfan i                                     |                                                                             |
|           | 7615               | Endosulfan II                                    |                                                                             |
|           | 7620               | Endosulfan sulfale                               | CAST CONTRACT                                                               |
|           | 7540               | Endrin                                           |                                                                             |
|           | 7530<br>7120       | Endrin eldehyde                                  | ahlaraavalahavaatii                                                         |
|           | 7120<br>7685       | gamma-BHC (Lindane, gamma-Hexad<br>Heptachlor    | NIM ON ON THE PROPERTY.                                                     |
|           | 7690               | Heptechlor epoxide                               |                                                                             |
|           | 7810               | Methoxychlor                                     |                                                                             |
| EPA 8082  |                    | 10179007                                         | Polychlorinated Biphenyls (PCBs) by GC/ECD                                  |
| An        | alyte Code         | Analyte                                          |                                                                             |
|           | 8880               | Aroclor-1016 (PCB-1016)                          | Alaka a sa sa sa sa sa sa sa sa sa sa sa sa                                 |
|           | 8885               | Arodor-1221 (PCB-1221)                           |                                                                             |
|           | 8890               | Aroclor-1232 (PCB-1232)                          |                                                                             |
|           | 8895               | Aroclor-1242 (PGB-1242)                          |                                                                             |
|           | 8900               | Aroclor-1248 (PCB-1248)                          |                                                                             |
|           | 8905<br>8910       | Arodor-1284 (PCB-1254)<br>Arodor-1280 (PCB-1260) |                                                                             |
| EPA 8260B | 3710               | 10184802                                         | Volatile Organic Compounds by purge and trap                                |
| A         | aluta Cada         | Analuto                                          | GC/MS                                                                       |
| An        | alyte Code<br>5105 | Analyte 1,1,1,2-Tetrachloroethane                |                                                                             |
|           | J 100              | 1, 1, 1,4*1 GUAGROTOSHISHIS                      | ,                                                                           |

ORELAP ID: NM100001

EPA CODE: NM00036

Certificate: NM100001 - 007

#### Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque NM 87109

Issue Date:

03/01/2010

Expiration Date: 02/28/2011

As of 03/01/2010

this list supercedes all previous lists for this certificate number.

| Analyte Code | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5160         | 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5110         | 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5165         | 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4630         | 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4640         | 1,1-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4670         | 1,1-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5150         | 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5180·        | 1,2,3-Trichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5155         | 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5210         | 1,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4570         | 1,2-Dibromo-3-chjoropene (DBCP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4585         | 1,2-Dibromoetkane (EDB Ethylene dibromide)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4610         | 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4635         | 1,2-Dichlordeinane (Ethylane dichloride)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4655         | 1,2-Dichloropropage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5215         | A OF The All Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control |
| 4615         | 1,3-o-tymanyugutsana<br>1,3-Dichloroughzena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4660         | 1,3-Dichybropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4620         | 1,4-Dichlo(obenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8380         | 1-Melhylnephthelene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4665         | 2,2-Qichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4410         | 2-Bulgnoner (Melhyl ally) Keigne MER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4535         | 2.01434466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4880         | 2-Cfik joje ujenta ja<br>2-Hox none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6385         | 2-Malby/pephthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4540         | 4-Chicololuene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4910         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4995         | A-laop/opyltolue/lei/p-cymane/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4995         | 4-Meltivit-2-pentanone (MIBK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4316<br>4376 | Acelone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4376<br>4385 | Benzena<br>Bromobenzena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4390<br>4305 | Bromochloromethane  Romodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4395         | Bromodichioromethana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4400         | Bromotorm S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4450<br>4455 | Carbon disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4475         | Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4475<br>4576 | Chlorodibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4485         | Chloroethane (Ethyl chloride)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4505         | Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4646         | cis-1,2-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4680         | cls-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4595         | Dibromomethane (Methylene bromide)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4626         | Dichlorodifluoromethane (Freon-12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4765         | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4835         | Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4900         | isopropyibenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5240         | m+p-xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4950         | Methyl bromide (Bromomethane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4960         | Methyl chloride (Chloromethane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5000         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4975         | Methyl tert-butyl ether (MTBE) Methylene chloride (Dichloromethane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4875<br>5005 | Naphikalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4435         | n-Bulylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5090         | n-Propylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5250         | o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4440         | sec-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5100         | Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4445         | terl-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| B115         | Tetrachlorosthylene (Perchlorosthyleno)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

ORELAP ID: NM100001

EPA CODE: NM00035

Certificate: NM100001 - 007

#### Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque NM 87109

Issue Date: 03/01/2010

Expiration Date: 02/28/2011

As of 03/01/2010

this list supercedes all previous lists for this certificate number.


Customers. PLease verify the current accreditation standing with ORELAP.

| Analyte C    | Code Analyte                                              |
|--------------|-----------------------------------------------------------|
| 4700         | trans-1,2-Dichioroethylene                                |
| 4686         | trans-1,3-Dichloropropylene                               |
| 6170         | Trichloroethene (Trichloroethylene)                       |
| 5175         | Trichlorofluoromethane (Fluorotrichloromethane, Freon 11) |
| <b>623</b> 5 | Vinyl chloride                                            |
| 5260         | Xylene (total)                                            |

✓EPA 8270C

10185805

Semivolatile Organic compounds by GC/MS



ORELAP ID: NM100001

EPA CODE: NM00035

Certificate: NM100001 - 007

#### Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque

NM 87109

Issue Date:

03/01/2010

Expiration Date: 02/28/2011

As of 03/01/2010

this list supercedes all previous lists for this certificate number.

| Analyte Code                          | Analyte                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6925                                  | DI-n-butyl phthalate                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8200                                  | Di-n-octyl phthalate                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6266                                  | Fluoranthene                                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6270                                  | Fluorene                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6275                                  | Hexachiorobenzene                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4635                                  | Hexachlorobutadiens                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6265                                  | Hexachlorocyclopentadiene                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4840                                  | Hexachloroethane                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6316                                  | Indeno(1,2,3-cd) pyrene                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6320                                  | Isophorone                                   | was a resident water and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5005                                  | Naphthalene<br>Nitrobenzene                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6015                                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6546                                  | n-Nitrosodi-n-prohylaming                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6536                                  | n-Nitrosodiphenylamine                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8605                                  | Pentachlorophenol                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6615                                  | Phenanthrene<br>Phenois                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6625                                  | Phenois,                                     | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6665                                  | Pyrene                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5095                                  | Pyriding                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EPA 8310                              | / / 10187807                                 | Polynuclear Aromatic Hydrocarbons by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EFA 65 IV                             |                                              | TOIVINGE AND INCOME OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PRO |
| Analyte Carlo                         |                                              | HRUGUVXVIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Analyte Code                          | Analyte va                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6380                                  | 1-Methylhephthalene                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5500                                  | Acenaphinene Acenaphinene                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5505                                  | Acenaphinylene                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5555                                  | Anthlacene                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5576                                  | Benzo(a)anthracene                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>5580</b>                           | Denzo(e)pyrene                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5590                                  | Renzo(g)b.l)perylene                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5600                                  | Henzo(k)filoranthene<br>Benzo(b)filoranthene |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5586                                  | Reuzololitnotauruena                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5855                                  | Chrysene                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5895                                  | Dibenz(e,h), afilhracene                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6265                                  | Fluorenthene                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6270<br>6315                          | Fluorene<br>Indeno(1,2,3-cd) pyrene          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8005                                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | Naphthalene                                  | translation of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the |
| 8615<br>8665                          | Phenenthrene                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0000                                  | Pyrene                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EPA 9060A                             | 10244801                                     | Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analyte Code                          | Analyte                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2040                                  | Total organic carbon                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · · · · · · · · · · · · · · · · · · · |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8M 2540 C 20th ED                     | 20050004                                     | Total Dissolved Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analyte Code                          | Analyte                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1955                                  | Residue-filterable (TDS)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SM 4500-H+ B 20th ED                  | 20104807                                     | pH by Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | _                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analyte Code                          | Analyte                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1900                                  | pH                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | · · · · · · · · · · · · · · · · · · ·        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SM 4500-NH3 C 20th ED                 | 20106405                                     | Ammonia Nitrogen by Titration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                       |                                              | - •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Analyte Code                          | Analyte                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1815                                  | Ammonia as N                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                              | Page 8 of 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

ORELAP ID: NM100001

EPA CODE: NM00035

Certificate: NM100001 - 007

#### Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque

NM 87109

Issue Date:

03/01/2010

Expiration Date: 02/28/2011

As of 03/01/2010

this list supercedes all previous lists for this certificate number.

Customers. PLease verify the current accreditation standing with ORELAP.

√ SM 4500-Norg C 20th ED

20119602

Nitrogen (Organic) by Semi-micro Kjeldahl

Method

Analyte Code

Analyte

1795

Kjeldahl nitrogen - total



ORELAP ID: NM100001

EPA CODE: NM00035

Hall Environmental Analysis Laboratory, Inc.

Certificate: NM100001 - 007

4901 Hawkins Rd. NE, Suite D Albuquerque

NM 87109

Issue Date:

03/01/2010

Expiration Date: 02/28/2011

As of 03/01/2010

this list supercedes all previous lists for this certificate number.

| Reference        | Code                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EPA 3050B        | 10135601                    | Acid Digestion of Sediments, Sludges, and soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analyte Code     | Analyte                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 125              | Extraction/Preparation      | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| EPA 3540C        | 10140202                    | Soxhiet Extraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte Code     | Analyte Ka                  | S ROSE OF A CONTRACT OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR |
| 125              | Extraction/Preparation      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EPA 3546A        | 10141001                    | Pressurized Fluid Extraction (PFE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte Code     | Analyte /                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 125              | extraclipnie reparation     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EPA 5035         | // 10154004                 | Olosed System Purge-and-Trap and Extraction for Volatile Organics in Soll and Waste Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Analyte Code     | Analyte                     | ior voisule digames in soil and waste samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 125              | Extraction/Preparation 2007 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ÆPA 6010B        | 10/(45809                   | ICR-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Analyte Code     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1000<br>1006     | Aluminium Ass               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1010             | Arsenio                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1015             | \Bartum \                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1020             | Beryllium                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1025             | Bolon                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1030             | Cadmium                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1035             | Catclum                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1040             | Chickling 4 /2 & **Start 12 | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |
| 1050             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1055<br>1070     | Copper                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1078             | Lead                        | ASSESSED FOR THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P |
| 1085             | Magnesium                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1090             | Manganese                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1100             | Molybdenum                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1105             | Nickol                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1125             | Potessium                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1140             | Selenium                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1150             | Sliver                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11 <del>55</del> | Sodium                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1166             | Thaillum                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1175             | Tin                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1180             | Titenlum                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3035             | Uranium                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1185             | Vanadium                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,190            | Zinc                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EPA 7471A        | 10166208                    | Mercury in Solid Waste by Cold Vapor Atomic Absorption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4 4 . 4 6 4      | Accordents                  | · indothing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Analyte Code     | Analyte                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

ORELAPID: NM100001

EPA CODE: NM00035

Certificate: NM100001 - 007

#### Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque NM 87109

Issue Date: 03/01/2010

Expiration Date: 02/28/2011

As of 03/01/2010

this list supercedes all previous lists for this certificate number.

| EPA 8015B                                            | 10173601                                                                                                                   | Non-halogenated organics using GC/FID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Analyte Code                                         | Analyte                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 9369                                                 | Diesel range organics (DRO)                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 9408                                                 | Gasoline range organics (GRO)                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 9499                                                 | Motor Oll                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| EPA 8021B                                            | 10174808                                                                                                                   | Aromatic and Halogenated Volatiles by GC with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Analyte Code                                         | Analyte                                                                                                                    | PID and/or ECD Purge & Trap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 4375                                                 | Benzene Mine Mine                                                                                                          | Andrew of the San San San San San San San San San San                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 4785                                                 | Ethyloenzene                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 5240                                                 | m+D-xy(effe)                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 5000                                                 | Methyl terf bulyl ether (MTBE)                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| <b>525</b> 0<br>5140                                 | o-Xylene ( )<br>Toluene                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 5260                                                 | Xylene (lotal)                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| EPA 8081A                                            | / //10/78606                                                                                                               | Organochlorine Pasticides by GC/ECD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                      |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Analyte Code<br>7355                                 | Anelyte 4.4'-PDD                                                                                                           | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 7360<br>7360                                         | 44.6                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 7385                                                 | 4,4 D T                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 7025                                                 | Aldrin                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 7110                                                 | alpha-BHC (alpha Hexachigrocycloffexane)                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 71 <b>1</b> 5                                        | beta BHC (beta Hexacil procyclonexene)                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 7105                                                 | delia/dHC                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 7470                                                 | Dialduo                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 7610<br>7615                                         | Endosulan II                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 7520                                                 | Endosolian sulfate                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 7540                                                 | Entido                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 7530                                                 | Endin sidehyde                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 7120                                                 | gamma BHC (Lindana gamma Hexachloro                                                                                        | yclohexanE) (V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 7685                                                 | Heptachlo                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 7690                                                 | Heptachlor epoxide                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 7810                                                 | Methoxychlor                                                                                                               | A CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR |  |  |
| EPA 8082                                             | 10179007                                                                                                                   | Polychlorinated Biphenyls (PCBs) by GC/ECD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Analyte Code                                         | Analyte                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 8880                                                 | Aroclor-1016 (PCB-1018)                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 8885                                                 | Arodor-1221 (PCB-1221)                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 8890                                                 | Aroclor-1232 (PCB-1232)                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 8895<br>8900                                         | Aroclor-1242 (PCB-1242)<br>Aroclor-1248 (PCB-1248)                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 8905                                                 | Arocior-1264 (PCB-1264)                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 8910                                                 | Arocior-1280 (PCB-1280)                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                      | 10184802                                                                                                                   | Volatile Organic Compounds by purge and trap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| EPA 8260B                                            | (V1040VZ                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| EPA 8260B                                            |                                                                                                                            | GC/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Analyte Code                                         | Analyte                                                                                                                    | GC/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Analyte Code                                         | Analyte 1,1,1,2-Tetrachloroethane                                                                                          | GC/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| <u>Analyte Code</u><br>5105<br>5160                  | Analyte 1,1,1,2-Tetrachloroethane 1,1,1-Trichtoroethane                                                                    | GC/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Analyte Code<br>5105<br>5160<br>5110                 | Analyte 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane                                          | GC/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| <u>Analyte Code</u><br>5105<br>5160                  | Analyte 1,1,1,2-Tetrachloroethane 1,1,1-Trichtoroethane                                                                    | GC/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Analyte Code<br>5105<br>5160<br>5110<br>5165         | Analyte 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane                    | GC/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Analyte Code<br>5105<br>5160<br>5110<br>5165<br>4630 | Analyte 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane | GC/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |

ORELAPID: NM100001

EPA CODE: NM00035

Certificate: NM100001 - 007

#### Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Sulte D Albuquerque NM 87109

Issue Date: 0

03/01/2010

Expiration Date: 02/28/2011

As of 03/01/2010

this list supercedes all previous lists for this certificate number.

| Analyte Code | Analyte                                                   |
|--------------|-----------------------------------------------------------|
| 5180         | 1,2,3-Trichloropropane                                    |
| 5155         | 1,2,4-Trichlorobanzene                                    |
| 5210         | 1,2,4-Trimethylbenzene                                    |
| 4570         | 1,2-Dibromo-3-chioropropane (DBCP)                        |
| 4585         | 1,2-Dibromoethane (EDB, Ethylene dibromide)               |
| 4810         | 1,2-Dichlorobenzene                                       |
| 4635         | 1,2-Dichloroethane (Ethylene dichloride)                  |
| 4855         | 1,2-Dichioropropane                                       |
| 5215         | 1,3,6-Trimethylbenzene                                    |
| 4615         | 1,3-Dichlorobenzene                                       |
| 4660         |                                                           |
| •            | 1,3-Dichloropropane                                       |
| 4620         | 1,4-Dichlorobenzene                                       |
| 6380         | 1-Methylpaphthalene                                       |
| 4685         | 2,2-Dichloropropana                                       |
| 4410         | 2-Bulanone (Methyl ethyl retone, MEK)                     |
| 4535         | 2-Chlorotolueno                                           |
| 4860         | 2-Hexahone /                                              |
| 6385         | /2-Methyjnaphthalane                                      |
| 4540         | 4-Chlopotolulene                                          |
| 4910         | 4-Isopropylioluene (o-Cymene)                             |
| 4995         | 4-Methyl-2-panlanone (MIBIK)                              |
| 4315         | Acelones waste.                                           |
| 4376         | Benzene                                                   |
| 4385         | Bromdpenzene                                              |
| 4390         | Bromogujoromeliju in                                      |
| 4395         | Bromodichloromelliane                                     |
| 4400         | Bronkloim                                                 |
| '            | Carlotte Charles                                          |
| 4450         | Carpon disulfide                                          |
| 4465         | Carpon tetrachloride                                      |
| 4475         | Chlorobenzene                                             |
| 4676         | Chlorodiblomomethane                                      |
| 4485         | Chloroethana (Ethyl chloride)                             |
| 4605         | Chloroform                                                |
| 4645         | cls-1,2-Dichlogielitylene                                 |
| 4680         | cls-1,3-Dichlolopropana                                   |
| 4595         | Dibromomethane (Methylane bromide)                        |
| 4625         | Dichlorodifluoromethane (Freen 12)                        |
| 4765         | Ethylbenzene                                              |
| 4835         | Hexachiorobuladiens                                       |
| 4900         | Isopropylbenzene                                          |
| 5240         | m+p-xylene                                                |
| 4950         | Methyl bromide (Bromomethane)                             |
| 4960         | Methyl chloride (Chloromethane)                           |
| 5000         | Methyl tert-butyl ether (MTBE)                            |
| 4975         | Methylene chloride (Dichloromethane)                      |
| 5005         | Nephihalene                                               |
| 4435         | n-Bulyibenzene                                            |
| 5090         | n-Propyibenzene                                           |
| 5250         | o-Xylene                                                  |
| 4440         | sec-Butylbenzene                                          |
|              |                                                           |
| 6100<br>4445 | Styrene<br>tert-Rutulhenzone                              |
| 4445         | tert-Butylbenzene Tetrachloroethylene (Perchloroethylene) |
| 5115         |                                                           |
| 5140         | Toluene                                                   |
| 4700         | trans-1,2-Dichloroethylene                                |
| 4685         | trans-1,3-Dichloropropylene                               |
| 5170         | Trichloroethene (Trichloroethylene)                       |
| 51 <b>75</b> | Trichlorofluoromethane (Fluorotrichloromethane, Freon 11) |
| 5235         | Vinyl chloride                                            |
|              | Xylene (total)                                            |

ORELAP ID: NM100001

EPA CODE: NM00035

Certificate: NM100001 - 007

#### Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque NM 87109

Issue Date: 03/01/2010

Expiration Date: 02/28/2011

As of 03/01/2010

this list supercedes all previous lists for this certificate number.

Customers. PLease verify the current accreditation standing with ORELAP.

Semivolatile Organic compounds by GC/MS 10185805 /EPA 8270C **Analyte Code** Analyte 1,2,4-Trichlorobenzene 5155 4610 1,2-Dichlorobenzene 1,3-Dichlorobenzene 4615 1,4-Dichlorobenzene 4820 2,4,6-Trichlorophenol 6835 6840 2,4,6-Trichlorophenol 2,4-Dichlorophenol 8000 6130 2,4-Dimethylphenol 2,4-Dinitrophengle 6175 2,4-Dinitrotoluene (2,4-DNT) 2,6-Dinitrotoluene (2,6-DNT) 2-Chloronephihalene 6185 6190 5795 2-Chloropherol 2-Methyr-4,8-dinitrophenol (4,8-Dinitro-2-methyrphenol 2-Methylpephhelene 2-Methylphenol (ö-Crasol) 5800 6360 6365 6400 6460 2-Nitrol 6490 2-Nitropheno 3 & 4 Methylphenol 9,3' politiciation and 6412 5945 8465 6660 phenyl 5700 6745 4 Ohlorophenyl 4 Nitrophenyl A Nitrophenyl Acenaphthene Acenaphthylen 5625 6470 8500 5500 **6505** Añiline 6545 Anthracene 6555 5562 Azobehzene\* 8675 Benzo(a) animace fie 5580 Benzo(a)pyrene Benzo(g,h,i)perylene. Benzo(k)fluoranthene 5590 5600 Benzo[b]fluoranthene 6686 5610 Benzolc acid 5030 Benzyl elcohol bis(2-Chloroethoxy)methane 6760 bis(2-Chloroethyl) ether 5765 bis(2-Chiorolsopropyl) ether 6780 6670 **Bulyl benzyl phthalate** Cerbazole 5680 8855 Chrysene Di(2-ethylhexyl) phthalate (bis(2-Ethylhexyl)phthalate, DEHP) 6065 5895 Dibenz(a,h) anihracene Dibenzofuran 5905 Diethyl phthalate 6070 6135 Dimethyl phthalate Di-n-butyl phthalate 5925 DI-n-octyl phthalate 6200 6265 Fluoranthene 6270 Fluorene Hexachlorobenzene 8275 Hexachlorobutadiene 4835 6285 Hexachlorocyclopentadiene

Hexachloroethane

4840

ORELAP ID: NM100001

EPA CODE: NM00035

Certificate: NM100001 - 007

#### Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque

NM 87109

Issue Date: 03/01/2010 Expiration Date: 02/28/2011

As of 03/01/2010

this list supercedes all previous lists for this certificate number.

| Analyte Code | Analyte                                       |
|--------------|-----------------------------------------------|
| 6315         | Indeno(1,2,3-cd) pyrene                       |
| 6320         | isophorone                                    |
| 5005         | Naphthalene                                   |
| 5015 ·       | Nitrobenzene                                  |
| 6530         | n-Nitrosodimethylamine                        |
| 8545         | n-Nilrosodi-n-propylamina                     |
| 6535         | n-Nitrosodiphanylamine                        |
| 6605         | Pentachloropheno!                             |
| 6615         | Phenanthrene                                  |
| 6625         | Phenol                                        |
| 6665         | Pyrene                                        |
| 5095         | Pyridine Pyridine                             |
| EPA 8310     | 10187607 Rolyhuclear Aromatic Hydrocarbons by |
| Analyte Code | Ahelyte HPLC/UV/VIB                           |
| 6380         | 1 Methylneighthalene                          |
| 8385         | 2-Methylhaphthateness                         |
| 5500         | Acenaphthene                                  |
| 5605         | Acengon(hylene )                              |
| 5555         | Anthracene Anthracene                         |
| 5575         | Benzo(a)artifiagene                           |
| 5580         | Benzolaj pyrenaga                             |
| 5590         | Benzolgih, i) perylen essees                  |
| 5600         | Benzo(K)tivoren(ng)                           |
| 5585         | Béntoli) huoran liene                         |
| 6855         | Chipheile Dibent (a, h) enthracene            |
| 5895         | Dibent(é,h) anthracene                        |
| 6265         | / Hugganinana                                 |
| 6270         | \Fluorene \ /                                 |
| 6315         | lodeno(1,2,3-od) pyrane                       |
| 6005         | Naphthaleno                                   |
| . 6615       | Phenenthrens                                  |
| 6665         | Pyrene                                        |
|              |                                               |
|              |                                               |
|              |                                               |



# State of New Mexico ENVIRONMENT DEPARTMENT Water & Wastewater Infrastructure Development Division DRINKING WATER BUREAU

525 Camino de Los Marquez, Suite 4
Santa Fe, New Mexico 87505
Phone (505) 476-8620 • Fax (505) 476-8656
Toll Free 1-877-654-8720
www.nmeny.state.nm.us/dwb



RON CURRY Secretary

Sarah Cottrell
Deputy Secretary

Karen E. Gallegos
Director

June 17, 2010

Andy Freeman
Hall Environmental Analysis Laboratory, Inc.
4901 Hawkins Road NE, Suite D
Albuquerque, NM 87109

Dear Mr. Freeman:

The Drinking Water Bureau of the New Mexico Environment Department (NMED-DWB) has received and reviewed your NELAP certification /accreditation information from the state of Oregon. The documentation is acceptable and your New Mexico certification is now valid through February 28, 2011.

This certification is to perform drinking water analysis in compliance with the Federal Safe Drinking Water Act, pursuant to 40CFR Part 141, and the New Mexico Environment Department Drinking Water Regulations for the Primary Regulated contaminants, including contaminants as listed in your Oregon Scope Accreditation.

You must advise NMED-DWB of any change in your accreditation by the State of Oregon and continue to provide this office with performance evaluation results. You are also required to provide evidence of renewal of accreditation by the state of Oregon to continue certification past February 28, 2011.

Laboratories certified by New Mexico can be purged from the list if there is no evidence that they are performing drinking water compliance sample analysis for public water supply systems in New Mexico.

If you have any questions or require additional information, please contact me at 505-476-8648.

Sincerely,

Oneva Rivera

Data/ Lab Coordinator

oneva.rivera@state.nm.us



State of Utah
GARY R HERBERT
Governor
GREGORY S BELL
Lieutenant Governor

#### Utah Department of Health

David N. Sundwall, MD

Executive Director

#### **Disease Control and Prevention**

Patrick F. Luedtke, MD, MPH.

Director Unified State Labs: Public Health

**Bureau of Laboratory Improvement** 

David B Mendenhall, MPA, MT (ASCP)

Bureau Director



### STATE OF UTAH DEPARTMENT OF HEALTH

## ENVIRONMENTAL LABORATORY CERTIFICATION PROGRAM CERTIFICATION

is hereby granted to

#### Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE Albuquerque NM 87109-4337

Scope of accreditation is limited to the State of Utah Accredited Fields of Accreditation Which accompanies this Certificate

Continued accredited status depends on successful Ongoing particitpation in the program

EPA Number:

NM00035

Expiration Date: 2/28/2011

Patrick F. Luedtke, MD, MPH

Director Unified State Laboratories: Public Health





State of Utah
GARY R HERBERT
Governor
GREGORY S BELL
Lieutenant Governor

Utah Department of Health

David N. Sundwall, MD Executive Director

#### **Disease Control and Prevention**

Patrick F. Luedtke, MD, MPH.

Director Unified State Laboratories: Public Health

**Bureau of Laboratory Improvement** 

David B Mendenhall, MPA, MT (ASCP)

Bureau Director



3/11/2010

Hall Environmental Analysis Laboratory, Inc. Andy Freeman 4901 Hawkins Rd. NE Albuquerque NM 87109-4337 ID# HEAL EPA ID: NM00035

Director.

In recognition of your NELAP accreditation and in compliance with the ELCP requirements, the laboratory listed is certified for environmental monitoring under the Clean Water Act and authorized to perform the following methods, for the analytes and matrix listed:

#### Non-Potable Water

#### **Inorganics and Metals**

| 300.0 [1993] | Bromide         |
|--------------|-----------------|
| 300.0 [1993] | Chloride        |
| 300.0 [1993] | Fluoride        |
| 300.0 [1993] | Nitrate         |
| 300.0 [1993] | Nitrite         |
| 300.0 [1993] | ortho-Phosphate |
| 300.0 [1993] | Sulfate :       |
| 300.0 [1993] | Nitrate/Nitrite |
|              |                 |

The effective date of this certificate letter is: 3/1/2010.

The analytes by method which a laboratory is authorized to perform at any given time will be those indicated in the most recent certificate letter. The most recent certification letter supersedes all previous certification or authorization letters. It is the certified laboratory's responsibility to review this letter for discrepancies. The certified laboratory must document any discrepancies in this letter and send notice to this bureau within 15 days of receipt. This certificate letter will be recalled in the event your laboratory's certification is revoked.

Respectfully,

Patrick F. Luedtke, MD, MPH.

Director Unified State Laboratories: Public Health





State of Utah
GARY R HERBERT
Governor
GREGORY S BELL
Lieutenant Governor

Utah Department of Health

David N. Sundwall, MD Executive Director

**Disease Control and Prevention** 

Patrick F. Luedtke, MD, MPH.

Director Unified State Labs: Public Health

Bureau of Laboratory Improvement David B Mendenhall, MPA, MT (ASCP)

Bureau Director



3/11/2010

Hall Environmental Analysis Laboratory, Inc. Andy Freeman 4901 Hawkins Rd. NE Albuquerque NM 87109-4337

ID# HEAL EPA ID: NM00035

Director,

in recognition of your NELAP accreditation and in compliance with the ELCP requirements, the laboratory listed is certified for environmental monitoring under the Resource Conservation and Recovery Act and authorized to perform the following methods, for the analytes and matrix listed:

| <u>Metal Dige</u> | stion |                         |                                                      |
|-------------------|-------|-------------------------|------------------------------------------------------|
|                   |       | Non-                    |                                                      |
|                   |       | Potable                 |                                                      |
| •                 | Solid | Water                   |                                                      |
| 3005 A            |       | $\checkmark$            | Acid Digestion Total Recoverable or Dissolved Metals |
| <u>Metals</u>     |       |                         |                                                      |
| -                 |       | Non-                    |                                                      |
|                   |       | Potable<br>Water        |                                                      |
|                   | Solid |                         |                                                      |
| 6010 B            |       | $\checkmark$            | Aluminum                                             |
| 6010 B            |       |                         | Antimony                                             |
| 6010 B            |       | $\checkmark$            | Arsenic                                              |
| 6010 B            |       | $\checkmark$            | Barlum                                               |
| 6010 B            |       | $\checkmark$            | Beryllium                                            |
| 6010 B            |       | $\checkmark$            | Boron                                                |
| 6010 B            |       | $\checkmark$            | Cadmium                                              |
| 6010 B            |       | $\mathbf{Z}$            | Calcium                                              |
| 6010 B            |       | $\checkmark$            | Chromium                                             |
| 6010 B            |       | $ \mathbf{V} $          | Cobalt                                               |
| 6010 B            |       | $\checkmark$            | Iron                                                 |
| 6010 B            |       | V                       | Lead                                                 |
| 6010 B            |       |                         | Magnesium                                            |
| 6010 B            |       | $\checkmark$            | Manganese                                            |
| 6010 B            |       | $\checkmark$            | Molybdenum                                           |
| 6010 B            |       | ✓                       | Nickel                                               |
| 6010 B            |       | $\checkmark$            | Potassium                                            |
| 6010 B            |       |                         | Selenium                                             |
| 6010 B            |       | $\checkmark$            | Silver                                               |
| 6010 B            |       | $\checkmark$            | Sodium                                               |
| 6010 B            |       | $\checkmark$            | Thallium                                             |
| 6010 B            |       | $\checkmark$            | Tin                                                  |
| 6010 B            |       | $\overline{\mathbf{V}}$ | Titanlum                                             |
| 6010 B            |       | $\checkmark$            | Vanadium                                             |



Half Environmental Analysis Laboratory, Inc. Resource Conservation and Recovery Act

| Page 2 01         |                |                         |                                                          |   |
|-------------------|----------------|-------------------------|----------------------------------------------------------|---|
| <u>Metals</u>     |                | Non-                    |                                                          |   |
|                   |                | Potable                 |                                                          |   |
|                   | Solid          | Water                   |                                                          |   |
| 6010 B            |                | $\checkmark$            | Zinc                                                     |   |
| Organic I         | xtractic       |                         |                                                          | • |
|                   |                | Non-<br>Potable         |                                                          |   |
|                   | Solid          | Water                   |                                                          |   |
| 3510 C            | Solid          | <b>V</b>                | Separatory Funnel Liquid-Liquid Extractions              |   |
| Organic I         | Ll<br>Doževena |                         | Separatory Furnier Enquire Entractions                   |   |
| <u>Organiic i</u> | natiuthe       | Non-                    |                                                          |   |
|                   |                | Potable                 |                                                          |   |
|                   | Solid          | Water                   |                                                          |   |
| 8015 B            |                | $\checkmark$            | Diesel Range Organics (DROs)                             |   |
| 8015 B            |                | $ \mathbf{Z} $          | Gasoline Range Organics (GROs)                           |   |
| 8260 B            |                | lacksquare              | 1,1,1,2-Tetrachloroethane                                |   |
| 8260 B            |                | $ \mathbf{Z} $          | 1,1,1-Trichloroethane                                    |   |
| 8260 B            |                | lacksquare              | 1,1,2,2-Tetrachloroethane                                |   |
| 8260 B            |                |                         | 1,1,2-Trichloroethane                                    |   |
| 8260 B            |                | V                       | 1,1-Dichloroethane                                       |   |
| 3260 B            |                |                         | 1,1-Dichloroethylene (-ethene)                           |   |
| 8260 B            |                | $\checkmark$            | 1,1-Dichloropropene                                      |   |
| 8260 B            |                | $\checkmark$            | 1,2,3-Trichlorobenzene                                   |   |
| 3260 B            |                | $\mathbf{Z}$            | 1,2,3-Trichloropropane                                   |   |
| 8260 B            |                | ✓                       | 1,2,4-Trichlorobenzene                                   |   |
| 8260 B            |                | $\checkmark$            | 1,2,4-Trimethylbenzene                                   |   |
| 8260 B            |                |                         | 1,2-Dibromo-3-chloropropane (DBCP, Dibromochloropropane) |   |
| 8260 B            |                | $\checkmark$            | 1,2-Dibromoethane (EDB, Ethylene dibromide)              |   |
| 8260 B            |                | $\checkmark$            | 1,2-Dichlorobenzene                                      |   |
| 8260 B            |                | $\checkmark$            | 1,2-Dichloroethane                                       |   |
| 8260 B            |                | $\checkmark$            | 1,2-Dichloropropane                                      |   |
| 8260 B            |                | $\checkmark$            | 1,3,5-Trimethylbenzene                                   |   |
| 8260 B            |                |                         | 1,3-Dichlorobenzene                                      |   |
| 8260 B            |                | $\checkmark$            | 1,3-Dichloropropane                                      |   |
| 8260 B            |                |                         | 1,4-Dichlorobenzene                                      |   |
| 8260 B            |                | $\checkmark$            | 2,2-Dichloropropane                                      |   |
| 8260 B            |                |                         | 2-Chlorotoluene                                          |   |
| 8260 B            |                | $\checkmark$            | 2-Hexanone                                               |   |
| 8260 B            |                | $\checkmark$            | 2-Methylnaphthalene                                      |   |
| 8260 B            |                | $\checkmark$            | 4-Chlorotoluene                                          |   |
| 8260 B            |                | $\checkmark$            | 4-Methyl-2-pentanone (MIBK, Isopropylacetone, Hexone)    |   |
| 8260 B            |                |                         | Acetone                                                  |   |
| 8260 B            |                | $\checkmark$            | Benzene                                                  |   |
| 3260 B            |                | V                       | Bromobenzene                                             |   |
| 8260 B            |                | V                       | Bromochloromethane                                       |   |
| 8260 B            |                | V                       | Bromodichloromethane                                     |   |
| 8260 B            |                | $\checkmark$            | Bromoform                                                |   |
| 8260 B            |                | $\checkmark$            | Carbon Disulfide                                         |   |
| 8260 B            |                | $\mathbf{Z}$            | Carbon Tetrachloride                                     |   |
| 8260 B            | $-\bar{\Box}$  | $ \mathbf{Z} $          | Chlorobenzene                                            |   |
| 8260 B            | 一              | $\overline{\mathbf{V}}$ | Chlorodibromomethane [Dibromochioromethane]              |   |
| 3260 B            | ī              | $\overline{\mathbf{Z}}$ | Chloroethane                                             |   |
| 9260 B            | $\equiv$       |                         | Chloroform                                               |   |
| 3260 B            |                | $\overline{\mathbf{Z}}$ | cis-1,2-Dichloroethene (-ethylene)                       | _ |
|                   | =              | $\overline{\mathbf{Z}}$ | cis-1,3-dichloropropene                                  |   |
| 8260 B            | <u>:</u>       | <b>Y</b> .              | сь- г,э-чистиогоргорепа                                  | • |



Hall Environmental Analysis Laboratory, Inc. Resource Conservation and Recovery Act

Page 3 of 5

| Organic In       |                     | Non-                    |                                                         |
|------------------|---------------------|-------------------------|---------------------------------------------------------|
|                  | 0.84                | Potable<br>Water        |                                                         |
| 0000 B           | Solid               | <b>V</b>                | Dibromomethane                                          |
| 8260 B           | Н                   | <b>V</b>                | Dichlorodifluoromethane                                 |
| 8260 B           | $\Box$              |                         | Dichloromethane (DCM, Methylene chloride)               |
| 8260 B<br>8260 B |                     | Z                       | Ethylbenzene                                            |
|                  | H                   | V                       | Hexachlorobutadiene                                     |
| 8260 B<br>8260 B | H                   |                         | Isopropylbenzene                                        |
|                  |                     | <b>Y</b>                | Methyl bromide [Bromomethane]                           |
| 8260 B<br>8260 B | H                   |                         | Methyl chloride [Chloromethane]                         |
| 8260 B           | ī                   | V                       | Methyl Ethyl Ketone (MEK, 2-Butanone)                   |
| 8260 B           | H                   | $\overline{\mathbf{Z}}$ | Methyl-t-Butyl Ether (MTBE)                             |
| 8260 B           | Ħ                   | Z                       | Naphthalene                                             |
| 8260 B           | ī                   | V                       | n-Butylbenzene                                          |
| 8260 B           | ī                   | V                       | n-Propylbenzene                                         |
| 8260 B           | $\Box$              | V                       | ortho-Xylene                                            |
| 8260 B           | $\overline{\Box}$   | V                       | p-lsopropyltoluene                                      |
| 8260 B           | П                   | $\overline{\mathbf{Z}}$ | sec-Butylbenzene                                        |
| 8260 B           | Ħ                   | V                       | Styrene                                                 |
| 8260 B           | $\Box$              | $\overline{\mathbf{Z}}$ | tert-Butylbenzene                                       |
| 8260 B           | H                   | $\overline{\mathbf{Z}}$ | Tetrachloroethylene (Perchloroethylene -ethene)         |
| 8260 B           | $\Box$              | <b>V</b>                | Toluene                                                 |
| 8260 B           | $\Box$              | <b>Z</b>                | trans-1,2-Dichloroethylene (-ethene)                    |
| 8260 B           | ñ                   | $\overline{\mathbf{Z}}$ | trans-1,3-Dichloropropylene (-propene)                  |
| 8260 B           | $\overline{\sqcap}$ | V                       | Trichloroethene (Trichloroethylene)                     |
| 8260 B           | $\Box$              | $\overline{\mathbf{V}}$ | Trichlorofluoromethane                                  |
| 8260 B           | 一<br>一              | $\overline{\mathbf{Z}}$ | Vinyl Chloride                                          |
| 8260 B           |                     | $\overline{\mathbf{Z}}$ | Volatile Organic Compounds                              |
| 8260 B           | $\overline{\Box}$   |                         | Xylenes, Total                                          |
| 8270 C           | F                   | V                       | 1,2,4-Trichlorobenzene                                  |
| 8270 C           | $\overline{\Box}$   | $\overline{\mathbf{Z}}$ | 1,2-Dichlorobenzene                                     |
| 8270 C           |                     | $\checkmark$            | 1,3-Dichlorobenzene                                     |
| 8270 C           | $\Box$              | <b>V</b>                | 1,4-Dichlorobenzene                                     |
| 8270 C           | $\overline{\Box}$   | <b>V</b>                | 2,4,5-Trichlorophenol                                   |
| 8270 C           |                     | ¥                       | 2,4,6-Trichlorophenol                                   |
| 8270 C           |                     | V                       | 2.4-Dichlorophenol                                      |
| 8270 C           |                     | <b>V</b>                | 2,4-Dimethylphenol                                      |
| 8270 C           |                     | $\checkmark$            | 2,4-Dinitrophenol                                       |
| 8270 C           |                     |                         | 2,4-Dinitrotoluene (2,4-DNT)                            |
| 8270 C           |                     | V                       | 2,6-Dinitrotoluene (2,6-DNT)                            |
| 8270 C           |                     | $\checkmark$            | 2-Chloronaphthalene                                     |
| 8270 C           |                     | $\checkmark$            | 2-Chlorophenol                                          |
| 8270 C           |                     | V                       | 2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylphenol) |
| 8270 C           |                     | $\checkmark$            | 2-Methylnaphthalane                                     |
| 8270 C           |                     | $\checkmark$            | 2-Methylphenol (o-cresol, 2-Hydroxytoluene)             |
| 8270 C           |                     | $\mathbf{Y}$            | 2-Nitroaniline                                          |
| 8270 C           |                     | $\checkmark$            | 2-Nitrophenol                                           |
| 8270 C           |                     | $\checkmark$            | 3,3'-Dichlorobenzidine                                  |
| 8270 C           |                     | $\checkmark$            | 3-Nitroaniline                                          |
| 8270 C           |                     | $\mathbf{Y}$            | 4-Bromophenyl Phenyl Ether                              |
| 8270 C           |                     | V                       | 4-Chloro-3-methylphenol                                 |
| 8270 C           |                     | $\overline{\mathbf{Z}}$ | 4-Chloroaniline                                         |
| 8270 C           |                     | ~                       | 4-Chiorophenyi Phenyi Ether                             |
|                  |                     |                         |                                                         |



| Organic I        | Instrume  |                         |                                    |
|------------------|-----------|-------------------------|------------------------------------|
| Non-             |           | Non-<br>Potable         |                                    |
|                  | Solid     | Water                   |                                    |
| 8270 C           |           | V                       | 4-Nitroaniline                     |
| 8270 C           |           | $\overline{\mathbf{V}}$ | 4-Nitrophenol                      |
| 8270 C           |           |                         | Acenaphthene                       |
| 8270 C           |           | $\overline{\mathbf{V}}$ | Acenaphthylene                     |
| 8270 C           |           | $\checkmark$            | Aniline                            |
| 8270 C           |           | $\checkmark$            | Anthracene                         |
| 8270 C           | · 🔲       | $\checkmark$            | Azobenzene                         |
| 8270 C           |           | $\overline{\checkmark}$ | Benzo(a)anthracene                 |
| 8270 C           |           | $\checkmark$            | Benzo(a)pyrene                     |
| 8270 C           |           | $\checkmark$            | Benzo(b)fluoranthene               |
| 8270 C           |           | $\checkmark$            | Benzo(g,h,i)perylene               |
| 8270 C           |           | $\checkmark$            | Benzo(k)fluoranthene               |
| 8270 C           |           | $\checkmark$            | Benzolc Acid                       |
| 8270 C           |           | $ \mathcal{L} $         | Benzyl alcohol                     |
| 8270 C           |           | $\checkmark$            | bis(2-chloroethoxy)methane         |
| 8270 C           |           | $\checkmark$            | bis(2-Chloroethyl)ether            |
| 8270 C           |           | V                       | bis(2-chloroisopropyl)ether        |
| 8270 C           |           | $\checkmark$            | bis(2-Ethylhexyl) phthalate (DEHP) |
| 8270 C           |           | $\checkmark$            | Butyl Benzyl Phthalate             |
| 8270 C           |           | V                       | Carbazole                          |
| 8270 C           |           | $\checkmark$            | Chrysene                           |
| 8270 C           |           | V                       | Dibenzo(a,h)anthracene             |
| 8270 C           |           | $\checkmark$            | Dibenzofuran                       |
| 8270 C           |           | V                       | Diethyl Phthalate                  |
| 8270 C           |           |                         | Dimethyl Phthalate                 |
| 8270 C           |           | $ \mathbf{Z} $          | Di-n-butyl phthalate               |
| 8270 C           |           | lacksquare              | Di-n-octyl Phthalate               |
| 8270 C           |           | $\checkmark$            | Fluoranthene                       |
| 8270 C           |           | $\checkmark$            | Fluorene                           |
| 8270 C           |           | V                       | Hexachlorobenzene                  |
| 8270 C           |           | Z                       | Hexachlorobutadiene                |
| 8270 C           |           | V                       | Hexachlorocyclopentadiene          |
| 8270 C           | 닐         | V                       | Hexachloroethane                   |
| 8270 C           |           | $\mathbf{Z}$            | Indeno(1,2,3-cd)pyrene             |
| 8270 C           |           | V                       | Isophorone                         |
| 8270 C           |           |                         | Naphthalene                        |
| 8270 C           |           |                         | Nitrobenzene                       |
| 8270 C           |           | <b>Y</b>                | n-Nitroso-di-n-Propylamine         |
| 8270 C           |           | Z                       | n-Nitrosodiphenylamine             |
| 8270 C<br>8270 C |           | <b>V</b>                | Pentachlorophenol Phenanthrene     |
| 8270 C           | <u></u>   | Z                       | Phenol                             |
| 8270 C           |           | <b>Y</b>                |                                    |
| 8270 C<br>8270 C |           |                         | Pyrene Pyridine                    |
| 8270 C           |           |                         | Semivolatile Organic Compounds     |
| Volatile O       | urania 15 |                         |                                    |
| TOIR C           |           | Non-                    | <del>21</del>                      |
|                  |           | Potable                 |                                    |
|                  |           | Water                   |                                    |
| 5030 B           |           | $\checkmark$            | Purge-and-Trap for Aqueous Samples |



Hall Environmental Analysis Laboratory, Inc. Resource Conservation and Recovery Act Page 5 of 5



The effective date of this certificate letter is: 3/1/2010.

The analytes by method which a laboratory is authorized to perform at any given time will be those indicated in the most recent certificate letter. The most recent certification letter supersedes all previous certification or authorization letters. It is the certified laboratory's responsibility to review this letter for discrepancies. The certified laboratory must document any discrepancies in this letter and send notice to this bureau within 15 days of receipt. This certificate letter will be recalled in the event your laboratory's certification is revoked.

Respectfully,

Patrick F. Luedtke, MD, MPH.

Director Unified State Laboratories: Public Health





# ENVIRONMENTAL LABORATORY LICENSE

Issued to:

Laboratory Director: Scott Hallenbeck

Owner/Representative: Andy Freeman

# Hall Environmental Analysis Laboratory AZ0682

is in compliance with Environmental Laboratory's applicable standards for the State of Arizona and maintains on file a List of Parameters for which the laboratory is certified to perform analysis.

PERIOD OF LICENSURE FROM: 10/20/2010 TO: 10/19/2011



Steven 'D'. Baker, Chief Office of Laboratory Services Bureau of State Laboratory Services

#### Page:

#### 1

### Arizona Department of Health Services Office of Laboratory Licensure, Certification & Training 250 North 17th Avenue, Phoenix, AZ 85007

Wednesday, September 22 2010

AZ License: AZ0682

Lab Director: Mr. Scott Hallenbeck

Lab Name: Hall Environmental Analysis Laboratory,

Phone: (505) 345-3975

Fax: (505) 345-4107

| rogram      | HW                                         |            |              |           |  |  |
|-------------|--------------------------------------------|------------|--------------|-----------|--|--|
|             | Parameter                                  | EPA Method | Billing Code | Cert Date |  |  |
|             | Aluminum                                   | EPA 6010B  | MTL3         | 10/20/05  |  |  |
|             | Aromatic & Halogenated Vocs By Gc          | EPA 8021B  | OC8          | 10/20/05  |  |  |
|             | Arsenic                                    | EPA 6010B  | MTL3         | 10/20/05  |  |  |
|             | Barium                                     | EPA 6010B  | MTL3         | 10/20/05  |  |  |
|             | Beryllium                                  | EPA 6010B  | MTL3         | 10/20/05  |  |  |
|             | C10-C32 Hydrocarbons                       | 8015AZ1    | OC4          | 03/21/07  |  |  |
|             | Cadmium                                    | EPA 6010B  | MTL3         | 10/20/05  |  |  |
|             | Calcium                                    | EPA 6010B  | MTL3         | 10/20/05  |  |  |
| •           | Chromium, Total                            | EPA 6010B  | MTL3         | 10/20/05  |  |  |
|             | Closed System Purge And Trap Extract. Vocs | EPA 5035A  | PREP2        | 12/05/06  |  |  |
|             | Copper                                     | EPA 6010B  | MTL3         | 10/20/05  |  |  |
|             | Dissolved In Water                         | EPA 3005A  | PREP1        | 08/21/08  |  |  |
|             | Iron                                       | EPA 6010B  | MTL3         | 10/20/05  |  |  |
|             | Lead                                       | EPA 6010B  | MTL3         | 10/20/05  |  |  |
|             | Magnesium                                  | EPA 6010B  | MTL3         | 10/20/05  |  |  |
|             | Manganese '                                | EPA 6010B  | MTL3         | 10/20/05  |  |  |
|             | Mercury                                    | EPA 7470A  | MTL5         | 10/20/05  |  |  |
|             | Mercury                                    | EPA 7471A  | MTL5         | 10/20/05  |  |  |
|             | Nickel                                     | EPA 6010B  | MTL3         | 10/20/05  |  |  |
|             | Pahs                                       | EPA 8310   | OC13         | 03/21/07  |  |  |
|             | Pcbs By Gc                                 | EPA 8082   | OC9          | 03/21/07  |  |  |
|             | Potassium                                  | EPA 6010B  | MTL3         | 10/20/05  |  |  |
|             | Pressurized Fluid Extraction               | EPA 3545   | PREP2        | 12/05/06  |  |  |
|             | Purge And Trap For Aqueous Samples         | EPA 5030C  | PREP2        | 12/05/06  |  |  |
|             | Sediments, Sludges And Soils               | EPA 3050B  | PREP1        | 06/05/07  |  |  |
|             | Selenium                                   | EPA 6010B  | MTL3         | 09/06/06  |  |  |
|             | Semivolatile Compounds By Gc/Ms            | EPA 8270C  | OC16         | 07/26/07  |  |  |
|             | Separatory Funnel Liquid-Liquid Extraction | EPA 3510C  | PREP2        | 06/05/07  |  |  |
|             | Silver                                     | EPA 6010B  | MTL3         | 10/20/05  |  |  |
|             | Sodium                                     | EPA 6010B  | MTL3         | 10/20/05  |  |  |
|             | Vocs By Gc/Ms                              | EPA 8260B  | OC8          | 10/20/05  |  |  |
|             | Zinc                                       | EPA 6010B  | MTL3         | 10/20/05  |  |  |
| otal Licens | ed Parameters in this Program: 32          |            |              |           |  |  |
| rogram      | SDW                                        |            |              |           |  |  |
|             | Parameter                                  | EPA Method | Billing Code | Cert Date |  |  |
|             | Alkalinity                                 | SM 2320B   | NIA1         | 02/26/08  |  |  |
|             | Antimony                                   | EPA 200.8  | MTL7         | 09/22/10  |  |  |
|             | Arsenic                                    | EPA 200.8  | MTL7         | 09/22/10  |  |  |

#### **Arizona Department of Health Services** Office of Laboratory Licensure, Certification & Training 250 North 17th Avenue, Phoenix, AZ 85007

Wednesday, September 22 2010

cense: AZ0682

Lab Name: Hall Environmental Analysis Laboratory,

| Program     | SDW                                                                                                                                      |                                                                            |                                                      |                                                                       |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------|--|
|             | Parameter                                                                                                                                | EPA Method                                                                 | Billing Code                                         | Cert Date                                                             |  |
|             | Copper                                                                                                                                   | EPA 200.8                                                                  | MTL7                                                 | 09/22/10                                                              |  |
| •           | Edb/Dbcp                                                                                                                                 | EPA 504.1 (1.1)                                                            | OC4                                                  | 06/20/08                                                              |  |
|             | Edb/Dbcp - Additional                                                                                                                    | EPA 504.1 (1.1)                                                            | OC34                                                 | 06/20/08                                                              |  |
|             | Lead                                                                                                                                     | EPA 200.8                                                                  | MTL7                                                 | 09/22/10                                                              |  |
|             | Selenium                                                                                                                                 | EPA 200.8                                                                  | MTL7                                                 | 09/22/10                                                              |  |
|             | Thallium                                                                                                                                 | EPA 200.8                                                                  | MTL7                                                 | 09/22/10                                                              |  |
|             | Uranium                                                                                                                                  | EPA 200.8                                                                  | MTL7                                                 | 09/22/10                                                              |  |
| Total Licen | sed Parameters in this Program: 10                                                                                                       | L) A200.0                                                                  | WITE                                                 |                                                                       |  |
|             | sed Parameters in this Program: 10                                                                                                       |                                                                            |                                                      |                                                                       |  |
|             | sed Parameters in this Program: 10  WW  Parameter                                                                                        | EPA Method                                                                 | Billing Code                                         | Cert Date                                                             |  |
|             | sed Parameters in this Program: 10  WW  Parameter  Alkalinity, Total                                                                     | EPA Method<br>SM 2320B                                                     | Billing Code<br>NIA1                                 |                                                                       |  |
|             | sed Parameters in this Program: 10  WW  Parameter                                                                                        | EPA Method                                                                 | Billing Code                                         | Cert Date                                                             |  |
|             | sed Parameters in this Program: 10  WW  Parameter  Alkalinity, Total                                                                     | EPA Method<br>SM 2320B                                                     | Billing Code<br>NIA1                                 | Cert Date 07/26/07                                                    |  |
|             | sed Parameters in this Program: 10  WW  Parameter  Alkalinity, Total Chloride                                                            | EPA Method<br>SM 2320B<br>EPA 300.0                                        | Billing Code<br>NIA1<br>NIIIA1                       | Cert Date<br>07/26/07<br>07/26/07                                     |  |
|             | sed Parameters in this Program: 10  WW  Parameter  Alkalinity, Total  Chloride  Fluoride                                                 | EPA Method<br>SM 2320B<br>EPA 300.0<br>EPA 300.0                           | Billing Code<br>NIA1<br>NIIIA1<br>NIIIA1             | Cert Date<br>07/26/07<br>07/26/07<br>07/26/07                         |  |
|             | sed Parameters in this Program: 10  WW  Parameter  Alkalinity, Total  Chloride  Fluoride  Nitrate (As N)                                 | EPA Method<br>SM 2320B<br>EPA 300.0<br>EPA 300.0<br>EPA 300.0              | Billing Code NIA1 NIIIA1 NIIIA1 NIIIA1               | Cert Date<br>07/26/07<br>07/26/07<br>07/26/07                         |  |
|             | sed Parameters in this Program: 10  WW  Parameter  Alkalinity, Total  Chloride  Fluoride  Nitrate (As N)  Nitrite (As N)                 | EPA Method<br>SM 2320B<br>EPA 300.0<br>EPA 300.0<br>EPA 300.0<br>EPA 300.0 | Billing Code NIA1 NIIIA1 NIIIA1 NIIIA1 NIIIA1        | Cert Date<br>07/26/07<br>07/26/07<br>07/26/07<br>07/26/07<br>07/26/07 |  |
|             | sed Parameters in this Program: 10  WW  Parameter  Alkalinity, Total  Chloride  Fluoride  Nitrate (As N)  Nitrite (As N)  Orthophosphate | EPA Method<br>SM 2320B<br>EPA 300.0<br>EPA 300.0<br>EPA 300.0<br>EPA 300.0 | Billing Code NIA1 NIIIA1 NIIIA1 NIIIA1 NIIIA1 NIIIA1 | Cert Date<br>07/26/07<br>07/26/07<br>07/26/07<br>07/26/07<br>07/26/07 |  |

| Instruments                                  | Quantity | Date     |
|----------------------------------------------|----------|----------|
| GAS CHROMATOGRAPH/MASS SPECTROMETER          | 3        | 08/11/08 |
| GAS CHROMATOGRAPH                            | 2        | 09/06/06 |
| HIGH PERFORMANCE LIQUID CHROMATOGRAPH        | 2        | 08/11/08 |
| ION CHROMATOGRAPH                            | 2        | 08/11/08 |
| INDUCTIVELY COUPLED PLASMA SPECTROMETER      | 1        | 08/11/05 |
| INDUCTIVELY COUPLED PLASMA/MASS SPECTROMETER | 1        | 09/15/10 |
| MERCURY ANALYZER                             | 1        | 08/11/05 |

#### **Softwares**

**VARIAN STAR - GCMS** 

**PERKIN ELMER - ICP** 

**PERKIN ELMER - ICP/MS** 

VARIAN GALAXIE AND CUSTOM WRITTEN-GC



Bryan W. Shaw, Ph.D., Chairman
Buddy Garcia, Commissioner
Carlos Rubinstein, Commissioner
Mark R. Vickery, P.G., Executive Director



#### TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

June 30, 2010

CERTIFIED MAIL

91 7108 2199 3995 2006 9293

Ms. Carolyn Swanson
Hall Environmental Analysis Laboratory, Inc.
4901 Hawkins Road NE, Suite D
Albuquerque, NM 87109-4337

Dear Ms. Swanson:

I am writing to congratulate you and the staff of Hall Environmental Analysis Laboratory, Inc. Based on your application and primary NELAP accreditation from the State of Oregon, pursuant to authorization from the Executive Director of the Texas Commission on Environmental Quality, the Program Manager of the Quality Assurance Section has issued your laboratory secondary NELAP accreditation according to the attached Fields of Accreditation.

I am enclosing the accreditation certificate and Fields of Accreditation listing. Please review the enclosures for accuracy and completeness. Your laboratory's accreditation is valid for one year, contingent on continued compliance with the requirements of the State of Texas as well as those of your primary Accreditation Authority.

If I may be of further assistance, please contact me at (512) 239-3754 or e-mail at fiamison@tceq.state.tx.us.

Sincerely,

Frank Jamison
Records Specialist

Enclosures



NELAP-Recognized Laboratory Accreditation is hereby awarded to



# Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

in accordance with Texas Water Code Chapter 5, Subchapter R, Title 30 Texas Administrative Code Chapter 25, and the National Environmental Laboratory Accreditation Program.

The laboratory's scope of accreditation includes the fields of accreditation that accompany this certificate. Continued accreditation depends upon successful ongoing participation in the program. The Texas Commission on Environmental Quality urges customers to verify the laboratory's current accreditation status for particular methods and analyses

Certificate Number: T104704424-10-1

Effective Date: 7/1/2010

Expiration Date: 6/30/2011

Executive Director Texas Commission on Environmental Quality

Marria



#### **NELAP - Recognized Laboratory Fields of Accreditation**



Certificate:

T104704424-10-1

**Expiration Date:** 

6/30/2011

Issue Date:

7/1/2010

4901 Hawkins Road NE, Suite D

Hall Environmental Analysis Laboratory, Inc.

Albuquerque, NM 87109-4337

| Method EPA 200.7  |    | ,          |           |
|-------------------|----|------------|-----------|
| Analyte           | AB | Analyte ID | Method ID |
| Aluminum          | OR | 1000       | 10013806  |
| Barium            | OR | 1015       | 10013806  |
| Beryllium         | OR | 1020       | 10013806  |
| Boron             | OR | 1025       | 10013806  |
| Cadmium           | OR | 1030       | 10013806  |
| Calcium           | OR | 1035       | 10013806  |
| Chromium          | OR | 1040       | 10013806  |
| Copper            | OR | 1055       | 10013806  |
| tron              | OR | 1070       | 10013806  |
| Lead              | OR | 1075       | 10013806  |
| Magnesium         | OR | 1085       | 10013806  |
| Manganese         | OR | 1090       | 10013806  |
| Molybdenum        | OR | 1100       | 10013806  |
| Nicket            | OR | 1105       | 10013806  |
| Potassium         | OR | 1125       | 10013806  |
| Silver            | OR | 1150       | 10013806  |
| Sodium            | OR | 1155       | 10013806  |
| Tin               | OR | 1175       | 10013806  |
| Titanium          | OR | 1180       | 10013806  |
| Vanadium          | OR | 1185       | 10013806  |
| Zinc              | OR | 1190       | 10013806  |
| flethod EPA 245.1 |    |            |           |
| Analyte           | AB | Analyte ID | Method ID |
| Mercury           | OR | 1095       | 10036609  |
| flethod EPA 300.0 |    |            |           |
| Analyte           | AB | Analyte ID | Method ID |
| Chloride          | OR | 1575       | 10053006  |
| Fluoride          | OR | 1730       | 10053006  |
| Nitrate as N      | OR | 1810       | 10053006  |





#### **NELAP - Recognized Laboratory Fields of Accreditation**

Certificate:

T104704424-10-1

**Expiration Date:** 

6/30/2011

Issue Date:

7/1/2010

4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

Hall Environmental Analysis Laboratory, Inc.

| Orthophosphate as P         OR         1870         10053006           Sulfate         OR         2000         10053006           Method EPA 504.1         Analyte         AB         Analyte ID         Method ID           1,2-Dibromo-3-chloropropane (DBCP)         OR         4570         10082801           1,2-Dibromoethane (EDB, Ethylene dibromide)         OR         4585         10082801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Matrix: Drinking Water                      |      | ···. |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------|------|-----------|
| Sulfate         OR         2000         10053006           Method         EPA 504.1         AB         Analyte ID         Method ID           1,2-Dibromo-3-chloropropane (DBCP)         OR         4570         10082801           1,2-Dibromoethane (EDB, Ethylene dibromide)         OR         4585         10082801           Method EPA 524.2         AB         Analyte ID         Method ID           Analyte         OR         5160         10089006           1,1,2-Trichloroethane         OR         5165         10089006           1,1,2-Trichloroethylene (1,1-Dichloroethene)         OR         4640         10089006           1,2-Dichlorobenzene         OR         4610         10089006           1,2-Dichlorobenzene         OR         4635         10089006           1,2-Dichloropropane         OR         4655         10089006           1,2-Dichlorobenzene         OR         4655         10089006           Benzene         OR         4375         10089006           Carbon tetrachloride         OR         4475         10089006           Chlorobenzene         OR         4645         10089006           Cis-1,2-Dichloroethylene         OR         4765         10089006      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Nitrite as N                                | OR   | 1840 | 10053006  |
| Method EPA 504.1         AB (1,2-Dibromo-3-chloropropane (DBCP)         AB (2,2-Dibromo-3-chloropropane (DBCP)         AB (3,2-Dibromo-3-chloropropane (DBCP)         Method ID (3,2-Dibromo-3-chloropropane (DBCP)         OR (3,585)         10082801           Method EPA 524.2         Analyte         AB (3,2-Dibromo-3-chloropropane)         AB (3,2-Dibromo-3-chloropropane)         Method ID (3,1-1-Trichloroethane)         OR (3,165)         10089006           1,1,2-Trichloroethane         OR (3,165)         10089006         1,1-2-Trichloroethylene (1,1-Dichloroethane)         OR (4640)         10089006           1,2-Trichlorobenzene         OR (3,155)         10089006         1,2-Dichlorobenzene         OR (4610)         10089006           1,2-Dichloroethane         OR (4635)         10089006         1,2-Dichloropropane         OR (4635)         10089006           1,2-Dichloropropane         OR (4620)         10089006         10089006           1,4-Dichlorobenzene         OR (4620)         10089006         10089006           2-Dichloropethylene         OR (4655)         10089006         10089006           3-Dichloropethylene         OR (4655)         10089006         10089006           4-Dichloropethylene         OR (4650)         10089006         10089006         10089006         10089006         10089006         10089006         10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Orthophosphate as P                         | OR   | 1870 | 10053006  |
| Analyte         AB         Analyte ID         Method ID           1,2-Dibromo-3-chloropropane (DBCP)         QR         4570         10082801           1,2-Dibromoethane (EDB, Ethylene dibromide)         QR         4585         10082801           Method EPA 524.2         Total to the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the co | Sulfate                                     | OR   | 2000 | 10053006  |
| 1,2-Dibromo-3-chloropropane (DBCP)         OR         4570         10082801           1,2-Dibromoethane (EDB, Ethylene dibromide)         OR         4585         10082801           Method EPA 524.2         Analyte         AB         Analyte ID         Method ID           1,1,1-Trichloroethane         OR         5160         10089006           1,1,2-Trichloroethane         OR         5165         10089006           1,1-Dichloroethylene (1,1-Dichloroethene)         OR         4640         10089006           1,2-Trichlorobenzene         OR         4610         10089006           1,2-Dichloroethylene (1,1-Dichloroethene)         OR         4610         10089006           1,2-Dichloropropane         OR         4635         10089006           1,2-Dichloropropane         OR         4655         10089006           1,4-Dichlorobenzene         OR         4655         10089006           1,4-Dichloroethylene         OR         4375         10089006           Chlorobenzene         OR         4455         10089006           Chlorobenzene         OR         4475         10089006           Cis-1,2-Dichloroethylene         OR         4650         10089006           Ethylbenzene         OR         51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Method EPA 504.1                            |      |      |           |
| 1,2-Dibromoethane (EDB, Ethylene dibromide)       OR       4585       10082801         Method EPA 524.2       AB       Analyte ID       Method ID         1,1,1-Trichloroethane       OR       5160       10089006         1,1,2-Trichloroethane       OR       5165       10089006         1,1,2-Trichloroethylene (1,1-Dichloroethene)       OR       4640       10089006         1,2-Trichlorobenzene       OR       4610       10089006         1,2-Dichloroethane       OR       4635       10089006         1,2-Dichloropropane       OR       4655       10089006         1,2-Dichloroethane       OR       4655       10089006         1,2-Dichloropropane       OR       4655       10089006         1,4-Dichlorobenzene       OR       4620       10089006         Carbon tetrachloride       OR       4375       10089006         Carbon tetrachloride       OR       4475       10089006         Chlorobenzene       OR       4475       10089006         Cis-1,2-Dichloroethylene       OR       4650       10089006         Dichloromethane (DCM, Methylene chloride)       OR       4765       10089006         Ethylbenzene       OR       5100       10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analyte                                     |      | •    | Method ID |
| Method EPA 524.2         AB Jite         AB Jite         Analyte ID Jite         Method ID Jite           1,1,1-Trichloroethane         OR 5160         10089006           1,1,2-Trichloroethane         OR 5165         10089006           1,1,2-Trichloroethylene (1,1-Dichloroethene)         OR 4640         10089006           1,2,4-Trichlorobenzene         OR 5155         10089006           1,2-Dichloroethane         OR 4610         10089006           1,2-Dichloroethane         OR 4635         10089006           1,2-Dichloropropane         OR 4655         10089006           1,4-Dichlorobenzene         OR 4620         10089006           1,4-Dichlorobenzene         OR 4620         10089006           Carbon tetrachloride         OR 4455         10089006           Carbon tetrachloride         OR 4455         10089006           Chlorobenzene         OR 4475         10089006           cis-1,2-Dichloroethylene         OR 4650         10089006           Dichloromethane (DCM, Methylene chloride)         OR 4650         10089006           Styrene         OR 5100         10089006           Tetrachloroethylene (Perchloroethylene)         OR 5115         10089006           Toluene         OR 5140         10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,2-Dibromo-3-chloropropane (DBCP)          |      | 4570 | 10082801  |
| Analyte         AB         Analyte ID         Method ID           1,1,1-Trichloroethane         OR         5160         10089006           1,1,2-Trichloroethane         OR         5165         10089006           1,1-Dichloroethylene (1,1-Dichloroethene)         OR         4640         10089006           1,2-Trichlorobenzene         OR         5155         10089006           1,2-Dichloroethane         OR         4610         10089006           1,2-Dichloropropane         OR         4635         10089006           1,2-Dichloropropane         OR         4655         10089006           1,4-Dichlorobenzene         OR         4620         10089006           8enzene         OR         4375         10089006           Carbon tetrachloride         OR         4455         10089006           Chlorobenzene         OR         4475         10089006           cis-1,2-Dichloroethylene         OR         4650         10089006           Dichloromethane (DCM, Methylene chloride)         OR         4765         10089006           Styrene         OR         5100         10089006           Tetrachloroethylene (Perchloroethylene)         OR         5140         10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2-Dibromoethane (EDB, Ethylene dibromide) | OR   | 4585 | 10082801  |
| 1,1,1-Trichloroethane       OR       5160       10089006         1,1,2-Trichloroethane       OR       5165       10089006         1,1-Dichloroethylene (1,1-Dichloroethene)       OR       4640       10089006         1,2-Trichlorobenzene       OR       4610       10089006         1,2-Dichlorobenzene       OR       4635       10089006         1,2-Dichloropropane       OR       4655       10089006         1,2-Dichloropropane       OR       4655       10089006         1,4-Dichlorobenzene       OR       4620       10089006         Benzene       OR       4375       10089006         Carbon tetrachloride       OR       4455       10089006         Chlorobenzene       OR       4475       10089006         cis-1,2-Dichloroethylene       OR       4650       10089006         Dichloromethane (DCM, Methylene chloride)       OR       4650       10089006         Styrene       OR       5100       10089006         Tetrachloroethylene (Perchloroethylene)       OR       5115       10089006         Toluene       OR       5140       10089006         Trichloroethylene (Trichloroethylene)       OR       5170       10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Method EPA 524.2                            |      |      |           |
| 1,1,2-Trichloroethane       OR       5165       10089006         1,1-Dichloroethylene (1,1-Dichloroethene)       OR       4640       10089006         1,2-Dichlorobenzene       OR       5155       10089006         1,2-Dichlorobenzene       OR       4610       10089006         1,2-Dichloropropane       OR       4635       10089006         1,2-Dichloropropane       OR       4655       10089006         1,4-Dichlorobenzene       OR       4620       10089006         1,4-Dichlorobenzene       OR       4375       10089006         Carbon tetrachloride       OR       4455       10089006         Chlorobenzene       OR       4475       10089006         Cis-1,2-Dichloroethylene       OR       4645       10089006         Dichloromethane (DCM, Methylene chloride)       OR       4650       10089006         Ethylbenzene       OR       4765       10089006         Styrene       OR       5100       10089006         Tetrachloroethylene (Perchloroethylene)       OR       5140       10089006         Toluene       OR       5140       10089006         Trichloroethene (Trichloroethylene)       OR       5170       10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · ·       |      | -    |           |
| 1,1-Dichloroethylene (1,1-Dichloroethene)       OR       4640       10089006         1,2-4-Trichlorobenzene       OR       5155       10089006         1,2-Dichlorobenzene       OR       4610       10089006         1,2-Dichloroethane       OR       4635       10089006         1,2-Dichloropropane       OR       4655       10089006         1,4-Dichlorobenzene       OR       4620       10089006         Benzene       OR       4375       10089006         Carbon tetrachloride       OR       4455       10089006         Chlorobenzene       OR       4475       10089006         Cis-1,2-Dichloroethylene       OR       4650       10089006         Dichloromethane (DCM, Methylene chloride)       OR       4650       10089006         Ethylbenzene       OR       5100       10089006         Styrene       OR       5100       10089006         Tetrachloroethylene (Perchloroethylene)       OR       5115       10089006         Trichloroethene (Trichloroethylene)       OR       5140       10089006         Trichloroethene (Trichloroethylene)       OR       5170       10089006         Vinyl chloride       OR       5235       10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |      |      |           |
| 1,2,4-Trichlorobenzene       OR       5155       10089006         1,2-Dichlorobenzene       OR       4610       10089006         1,2-Dichloroethane       OR       4635       10089006         1,2-Dichloropropane       OR       4655       10089006         1,4-Dichlorobenzene       OR       4620       10089006         Benzene       OR       4375       10089006         Carbon tetrachloride       OR       4475       10089006         Chlorobenzene       OR       4475       10089006         Cis-1,2-Dichloroethylene       OR       4645       10089006         Dichloromethane (DCM, Methylene chloride)       OR       4650       10089006         Ethylbenzene       OR       4765       10089006         Styrene       OR       5100       10089006         Tetrachloroethylene (Perchloroethylene)       OR       5115       10089006         Toluene       OR       5140       10089006         Trichloroethene (Trichloroethylene)       OR       5170       10089006         Vinyl chloride       OR       5235       10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • •                                         |      |      |           |
| 1,2-Dichlorobenzene       OR       4610       10089006         1,2-Dichloroethane       OR       4635       10089006         1,2-Dichloropropane       OR       4655       10089006         1,4-Dichlorobenzene       OR       4620       10089006         Benzene       OR       4375       10089006         Carbon tetrachloride       OR       4455       10089006         Chlorobenzene       OR       4475       10089006         Cis-1,2-Dichloroethylene       OR       4645       10089006         Dichloromethane (DCM, Methylene chloride)       OR       4650       10089006         Ethylbenzene       OR       4765       10089006         Styrene       OR       5100       10089006         Tetrachloroethylene (Perchloroethylene)       OR       5115       10089006         Toluene       OR       5140       10089006         trans-1,2-Dichloroethylene       OR       5170       10089006         Trichloroethene (Trichloroethylene)       OR       5170       10089006         Vinyl chloride       OR       5235       10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1-Dichloroethylene (1,1-Dichloroethene)   |      | 4640 | 10089006  |
| 1,2-Dichloroethane       OR       4635       10089006         1,2-Dichloropropane       OR       4655       10089006         1,4-Dichlorobenzene       OR       4620       10089006         Benzene       OR       4375       10089006         Carbon tetrachloride       OR       4455       10089006         Chlorobenzene       OR       4475       10089006         cis-1,2-Dichloroethylene       OR       4645       10089006         Dichloromethane (DCM, Methylene chloride)       OR       4650       10089006         Ethylbenzene       OR       4765       10089006         Styrene       OR       5100       10089006         Tetrachloroethylene (Perchloroethylene)       OR       5115       10089006         Toluene       OR       5140       10089006         trans-1,2-Dichloroethylene       OR       5170       10089006         Trichloroethene (Trichloroethylene)       OR       5170       10089006         Vinyl chloride       OR       5235       10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2,4-Trichlorobenzene                      | OR   | 5155 | 10089006  |
| 1,2-Dichloropropane       OR       4655       10089006         1,4-Dichlorobenzene       OR       4620       10089006         Benzene       OR       4375       10089006         Carbon tetrachloride       OR       4455       10089006         Chlorobenzene       OR       4475       10089006         Cis-1,2-Dichloroethylene       OR       4645       10089006         Dichloromethane (DCM, Methylene chloride)       OR       4650       10089006         Ethylbenzene       OR       4765       10089006         Styrene       OR       5100       10089006         Tetrachloroethylene (Perchloroethylene)       OR       5115       10089006         Troluene       OR       5140       10089006         Trichloroethylene (Trichloroethylene)       OR       5170       10089006         Trichloroethene (Trichloroethylene)       OR       5170       10089006         Vinyl chloride       OR       5235       10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,2-Dichlorobenzene                         | OR · | 4610 | 10089006  |
| 1,4-Dichlorobenzene       OR       4620       10089006         Benzene       OR       4375       10089006         Carbon tetrachloride       OR       4455       10089006         Chlorobenzene       OR       4475       10089006         cis-1,2-Dichloroethylene       OR       4645       10089006         Dichloromethane (DCM, Methylene chloride)       OR       4650       10089006         Ethylbenzene       OR       4765       10089006         Styrene       OR       5100       10089006         Tetrachloroethylene (Perchloroethylene)       OR       5115       10089006         Toluene       OR       5140       10089006         trans-1,2-Dichloroethylene       OR       4700       10089006         Trichloroethene (Trichloroethylene)       OR       5170       10089006         Vinyl chloride       OR       5235       10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,2-Dichloroethane                          | OR   | 4635 | 10089006  |
| Benzene         OR         4375         10089006           Carbon tetrachloride         OR         4455         10089006           Chlorobenzene         OR         4475         10089006           Cis-1,2-Dichloroethylene         OR         4645         10089006           Dichloromethane (DCM, Methylene chloride)         OR         4650         10089006           Ethylbenzene         OR         4765         10089006           Styrene         OR         5100         10089006           Tetrachloroethylene (Perchloroethylene)         OR         5115         10089006           Toluene         OR         5140         10089006           trans-1,2-Dichloroethylene         OR         4700         10089006           Trichloroethene (Trichloroethylene)         OR         5170         10089006           Vinyl chloride         OR         5235         10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2-Dichloropropane                         | OR   | 4655 | 10089006  |
| Carbon tetrachloride         OR         4455         10089006           Chlorobenzene         OR         4475         10089006           cis-1,2-Dichloroethylene         OR         4645         10089006           Dichloromethane (DCM, Methylene chloride)         OR         4650         10089006           Ethylbenzene         OR         4765         10089006           Styrene         OR         5100         10089006           Tetrachloroethylene (Perchloroethylene)         OR         5115         10089006           Toluene         OR         5140         10089006           trans-1,2-Dichloroethylene         OR         4700         10089006           Trichloroethene (Trichloroethylene)         OR         5170         10089006           Vinyl chloride         OR         5235         10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,4-Dichlorobenzene                         | OR   | 4620 | 10089006  |
| Chlorobenzene         OR         4475         10089006           cis-1,2-Dichloroethylene         OR         4645         10089006           Dichloromethane (DCM, Methylene chloride)         OR         4650         10089006           Ethylbenzene         OR         4765         10089006           Styrene         OR         5100         10089006           Tetrachloroethylene (Perchloroethylene)         OR         5115         10089006           Toluene         OR         5140         10089006           trans-1,2-Dichloroethylene         OR         4700         10089006           Trichloroethene (Trichloroethylene)         OR         5170         10089006           Vinyl chloride         OR         5235         10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzene                                     | OR   | 4375 | 10089006  |
| cis-1,2-Dichloroethylene       OR       4645       10089006         Dichloromethane (DCM, Methylene chloride)       OR       4650       10089006         Ethylbenzene       OR       4765       10089006         Styrene       OR       5100       10089006         Tetrachloroethylene (Perchloroethylene)       OR       5115       10089006         Toluene       OR       5140       10089006         trans-1,2-Dichloroethylene       OR       4700       10089006         Trichloroethene (Trichloroethylene)       OR       5170       10089006         Vinyl chloride       OR       5235       10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Carbon tetrachloride                        | OR   | 4455 | 10089006  |
| Dichloromethane (DCM, Methylene chloride)         OR         4650         10089006           Ethylbenzene         OR         4765         10089006           Styrene         OR         5100         10089006           Tetrachloroethylene (Perchloroethylene)         OR         5115         10089006           Toluene         OR         5140         10089006           trans-1,2-Dichloroethylene         OR         4700         10089006           Trichloroethene (Trichloroethylene)         OR         5170         10089006           Vinyl chloride         OR         5235         10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chlorobenzene                               | OR   | 4475 | 10089006  |
| Ethylbenzene       OR       4765       10089006         Styrene       OR       5100       10089006         Tetrachloroethylene (Perchloroethylene)       OR       5115       10089006         Toluene       OR       5140       10089006         trans-1,2-Dichloroethylene       OR       4700       10089006         Trichloroethene (Trichloroethylene)       OR       5170       10089006         Vinyl chloride       OR       5235       10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cis-1,2-Dichloroethylene                    | OR   | 4645 | 10089006  |
| Styrene         OR         5100         10089006           Tetrachloroethylene (Perchloroethylene)         OR         5115         10089006           Toluene         OR         5140         10089006           trans-1,2-Dichloroethylene         OR         4700         10089006           Trichloroethene (Trichloroethylene)         OR         5170         10089006           Vinyl chloride         OR         5235         10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dichloromethane (DCM, Methylene chloride)   | OR   | 4650 | 10089006  |
| Tetrachloroethylene (Perchloroethylene)         OR         5115         10089006           Toluene         OR         5140         10089006           trans-1,2-Dichloroethylene         OR         4700         10089006           Trichloroethene (Trichloroethylene)         OR         5170         10089006           Vinyl chloride         OR         5235         10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ethylbenzene                                | OR   | 4765 | 10089006  |
| Toluene         OR         5140         10089006           trans-1,2-Dichloroethylene         OR         4700         10089006           Trichloroethene (Trichloroethylene)         OR         5170         10089006           Vinyl chloride         OR         5235         10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Styrene                                     | OR   | 5100 | 10089006  |
| trans-1,2-Dichloroethylene         OR         4700         10089006           Trichloroethene (Trichloroethylene)         OR         5170         10089006           Vinyl chloride         OR         5235         10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tetrachloroethylene (Perchloroethylene)     | OR   | 5115 | 10089006  |
| Trichloroethene (Trichloroethylene)  Vinyl chloride  OR 5170 10089006  OR 5235 10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Toluene                                     | OR   | 5140 | 10089006  |
| Vinyl chloride OR 5235 10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | trans-1,2-Dichloroethylene                  | OR   | 4700 | 10089006  |
| 7000y00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Trichloroethene (Trichloroethylene)         | OR   | 5170 | 10089006  |
| Xylene (total) OR 5260 10089006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vinyl chloride                              | OR   | 5235 | 10089006  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Xylene (total)                              | OR   | 5260 | 10089006  |







Certificate:

T104704424-10-1

**Expiration Date:** 

6/30/2011

Issue Date:

7/1/2010

4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

Hall Environmental Analysis Laboratory, Inc.

| Matrix: Drinking Water   |    |            |           |     |
|--------------------------|----|------------|-----------|-----|
| Method SM 2540 C         |    |            | •         |     |
| Analyte                  | AB | Analyte ID | Method ID |     |
| Residue-filterable (TDS) | OR | 1955       | 20004404  | * * |



#### **NELAP - Recognized Laboratory Fields of Accreditation**



Certificate:

T104704424-10-1

**Expiration Date:** 

6/30/2011

**Issue Date:** 

7/1/2010

4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

Hall Environmental Analysis Laboratory, Inc.

| Matrix: Non Potable Water | ,  |            |           |
|---------------------------|----|------------|-----------|
| Method EPA 300.0          |    |            |           |
| Analyte                   | AB | Analyte ID | Method ID |
| Bromide                   | OR | 1540       | 10053006  |
| Chloride                  | OR | 1575       | 10053006  |
| Fluoride                  | OR | 1730       | 10053006  |
| Nitrate as N              | OR | 1810       | 10053006  |
| Nitrite as N              | OR | 1840       | 10053006  |
| Orthophosphate as P       | OR | 1870       | 10053006  |
| Sulfate                   | OR | 2000       | 10053006  |
| Method EPA 6010           |    |            |           |
| Analyte                   | AB | Analyte ID | Method ID |
| Aluminum                  | OR | 1000       | 10155201  |
| Antimony                  | OR | 1005       | 10155201  |
| Arsenic                   | OR | 1010       | 10155201  |
| Barium                    | OR | 1015       | 10155201  |
| Beryllium                 | OR | 1020       | 10155201  |
| Boron                     | OR | 1025       | 10155201  |
| Cadmium                   | OR | 1030       | 10155201  |
| Calcium                   | OR | 1035       | 10155201  |
| Chromium                  | OR | 1040       | 10155201  |
| Cobalt                    | OR | 1050       | 10155201  |
| Iron                      | OR | 1070       | 10155201  |
| Lead                      | QR | 1075       | 10155201  |
| Magnesium                 | OR | 1085       | 10155201  |
| Manganese                 | OR | 1090       | 10155201  |
| Molybdenum                | OR | 1100       | 10155201  |
| Nickel                    | OR | 1105       | 10155201  |
| Potassium                 | OR | 1125       | 10155201  |
| Selenium                  | OR | 1140       | 10155201  |
| Silver                    | OR | 1150       | 10155201  |
| Sodium                    | OR | 1155       | 10155201  |





#### **NELAP - Recognized Laboratory Fields of Accreditation**

Certificate:

T104704424-10-1

**Expiration Date:** 

6/30/2011

Issue Date:

7/1/2010

4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

Hall Environmental Analysis Laboratory, Inc.

| Matrix: Non Potable Water               |      |              |           |
|-----------------------------------------|------|--------------|-----------|
| Thallium                                | ÓR   | 1165         | 10155201  |
| Tin                                     | OR   | 1175         | 10155201  |
| Titanium                                | OR   | 11 <b>80</b> | 10155201  |
| Vanadium                                | OR-  | 1185         | 10155201  |
| Zinc                                    | OR   | 1190         | 10155201  |
| Method EPA 7470                         |      |              |           |
| Analyte                                 | AB   | Analyte ID   | Method ID |
| Mercury                                 | OR   | 1095         | 10165603  |
| Method EPA 8015                         |      |              |           |
| Analyte                                 | AB   | Analyte ID   | Method ID |
| Diesel range organics (DRO)             | OR   | 9369         | 10173203  |
| Gasoline range organics (GRO)           | OR   | 9408         | 10173203  |
| Method EPA 8021                         |      |              |           |
| Analyte                                 | AB   | Analyte ID   | Method ID |
| 1,2,4-Trimethylbenzene                  | OR   | 5210         | 10174400  |
| 1,3,5-Trimethylbenzene                  | OR   | 5215         | 10174400  |
| Benzene                                 | OR   | 4375         | 10174400  |
| Ethylbenzene                            | OR · | 4765         | 10174400  |
| m+p-xylene                              | OR   | 5240         | 10174400  |
| Methyl tert-butyl ether (MTBE)          | OR   | 5000         | 10174400  |
| o-Xylene                                | OR   | 5250         | 10174400  |
| Toluene                                 | OR   | 5140         | 10174400  |
| Xyiene (total)                          | OR   | 5260         | 10174400  |
| Method EPA 8081                         |      |              |           |
| Analyte                                 | AB   | Analyte ID   | Method ID |
| 4,4'-DDD                                | OR   | 7355         | 10178402  |
| 4,4'-DDE                                | OR   | 7360         | 10178402  |
| 4,4'-DDT                                | OR   | 7365         | 10178402  |
| Aldrin                                  | OR   | 7025         | 10178402  |
| alpha-BHC (alpha-Hexachlorocyclohexane) | OR   | 7110         | 10178402  |
| beta-BHC (beta-Hexachlorocyclohexane)   | OR   | 7115         | 10178402  |



#### **NELAP - Recognized Laboratory Fields of Accreditation**



Certificate:

T104704424-10-1

**Expiration Date:** 

6/30/2011

Issue Date:

7/1/2010

4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

Hall Environmental Analysis Laboratory, Inc.

| Matrix: Non Potable Water                        |    |            |           |
|--------------------------------------------------|----|------------|-----------|
| delta-BHC (delta-Hexachlorocyclohexane)          | ÓR | 7105       | 10178402  |
| Dieldrin                                         | OR | 7470       | 10178402  |
| Endosulfan I                                     | OR | 7510       | 10178402  |
| Endosulfan II                                    | OR | 7515       | 10178402  |
| Endosulfan sulfate                               | OR | 7520       | 10178402  |
| Endrin                                           | OR | 7540       | 10178402  |
| Endrin aldehyde                                  | OR | 7530       | 10178402  |
| gamma-BHC (Lindane, gamma-Hexachlorocyclohexane) | OR | 7120       | 10178402  |
| Heptachlor                                       | OR | 7685       | 10178402  |
| Heptachlor epoxide                               | OR | 7690       | 10178402  |
| Methoxychlor                                     | OR | 7810       | 10178402  |
| Method EPA 8082                                  |    |            |           |
| Analyte                                          | AB | Analyte iD | Method ID |
| Aroclor-1016 (PCB-1016)                          | OR | 8880       | 10179007  |
| Aroclor-1221 (PCB-1221)                          | OR | 8885       | 10179007  |
| Aroclor-1232 (PCB-1232)                          | OR | 8890       | 10179007  |
| Aroclor-1242 (PCB-1242)                          | OR | 8895       | 10179007  |
| Aroclor-1248 (PCB-1248)                          | OR | 8900       | 10179007  |
| Aroclor-1254 (PCB-1254)                          | OR | 8905       | 10179007  |
| Aroclor-1260 (PCB-1260)                          | OR | 8910       | 10179007  |
| Method EPA 8260                                  |    |            |           |
| Analyte                                          | AB | Analyte ID | Method ID |
| 1,1,1,2-Tetrachloroethane                        | OR | 5105       | 10184404  |
| 1,1,1-Trichloroethane                            | OR | 5160       | 10184404  |
| 1,1,2,2-Tetrachloroethane                        | OR | 5110       | 10184404  |
| 1,1,2-Trichloroethane                            | OR | 5165       | 10184404  |
| 1,1-Dichloroethane                               | OR | 4630       | 10184404  |
| 1,1-Dichloroethylene (1,1-Dichloroethene)        | OR | 4640       | 10184404  |
| 1,1-Dichloropropene                              | OR | 4670       | 10184404  |
| 1,2,3-Trichlorobenzene                           | OR | 5150       | 10184404  |
| 1,2,3-Trichloropropane                           | OR | 5180       | 10184404  |
|                                                  |    |            |           |





#### **NELAP - Recognized Laboratory Fields of Accreditation**

Certificate:

T104704424-10-1

**Expiration Date:** 

6/30/2011

Issue Date:

7/1/2010

4901 Hawkins Road NE, Suite D

Hall Environmental Analysis Laboratory, Inc.

Albuquerque, NM 87109-4337

| Matrix: Non Potable Water                   |    |      |          |
|---------------------------------------------|----|------|----------|
| 1,2,4-Trichlorobenzene                      | OR | 5155 | 10184404 |
| 1,2,4-Trimethylbenzene                      | OR | 5210 | 10184404 |
| 1,2-Dibromo-3-chloropropane (DBCP)          | OR | 4570 | 10184404 |
| 1,2-Dibromoethane (EDB, Ethylene dibromide) | OR | 4585 | 10184404 |
| 1,2-Dichlorobenzene                         | OR | 4610 | 10184404 |
| 1,2-Dichloroethane                          | OR | 4635 | 10184404 |
| 1,2-Dichloropropane                         | OR | 4655 | 10184404 |
| 1,3,5-Trimethylbenzene                      | OR | 5215 | 10184404 |
| 1,3-Dichlorobenzene                         | OR | 4615 | 10184404 |
| 1,3-Dichloropropane                         | OR | 4660 | 10184404 |
| 1,4-Dichlorobenzene                         | OR | 4620 | 10184404 |
| 2,2-Dichloropropane                         | OR | 4665 | 10184404 |
| 2-Butanone (Methyl ethyl ketone, MEK)       | OR | 4410 | 10184404 |
| 2-Chlorotoluene                             | OR | 4535 | 10184404 |
| 2-Hexanone                                  | OR | 4860 | 10184404 |
| 4-Chlorotoluene                             | OR | 4540 | 10184404 |
| 4-Isopropyltoluene                          | OR | 4915 | 10184404 |
| 4-Methyl-2-pentanone (MIBK)                 | OR | 4995 | 10184404 |
| Acetone                                     | OR | 4315 | 10184404 |
| Benzene                                     | OR | 4375 | 10184404 |
| Bromobenzene                                | OR | 4385 | 10184404 |
| Bromochloromethane                          | OR | 4390 | 10184404 |
| Bromodichloromethane                        | OR | 4395 | 10184404 |
| Bromoform                                   | OR | 4400 | 10184404 |
| Bromomethane (Methyl bromide)               | OR | 4950 | 10184404 |
| Carbon disulfide                            | OR | 4450 | 10184404 |
| Carbon tetrachloride                        | OR | 4455 | 10184404 |
| Chlorobenzene                               | OR | 4475 | 10184404 |
| Chloroethane                                | OR | 4485 | 10184404 |
| Chloroform                                  | OR | 4505 | 10184404 |





#### **NELAP - Recognized Laboratory Fields of Accreditation**

Certificate:

T104704424-10-1

**Expiration Date:** 

6/30/2011

Issue Date:

7/1/2010

4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

Hall Environmental Analysis Laboratory, Inc.

| trix: Non Potable Water                 |    |            |           |
|-----------------------------------------|----|------------|-----------|
| Chloromethane (Methyl chloride)         | OR | 4960       | 10184404  |
| cis-1,2-Dichloroethylene                | OR | 4645       | 10184404  |
| cis-1,3-Dichloropropylene               | OR | 4680       | 10184404  |
| Dibromochloromethane                    | OR | 4575       | 10184404  |
| Dibromomethane                          | OR | 4595       | 10184404  |
| Dichlorodifluoromethane                 | OR | 4625       | 10184404  |
| Ethylbenzene                            | OR | 4765       | 10184404  |
| Hexachlorobutadiene                     | OR | 4835       | 10184404  |
| Isopropylbenzene                        | OR | 4900       | 10184404  |
| m+p-xylene                              | OR | 5240       | 10184404  |
| Methyl tert-butyl ether (MTBE)          | OR | 5000       | 10184404  |
| Methylene chloride                      | OR | 4975       | 10184404  |
| Naphthalene                             | OR | 5005       | 10184404  |
| n-Butylbenzene                          | OR | 4435       | 10184404  |
| n-Propylbenzene                         | OR | 5090       | 10184404  |
| o-Xylene                                | OR | 5250       | 10184404  |
| sec-Butylbenzene                        | OR | 4440       | 10184404  |
| Styrene                                 | OR | 5100       | 10184404  |
| tert-Butylbenzene                       | OR | 4445       | 10184404  |
| Tetrachloroethylene (Perchloroethylene) | OR | 5115       | 10184404  |
| Toluene                                 | OR | 5140       | 10184404  |
| trans-1,2-Dichloroethylene              | OR | 4700       | 10184404  |
| trans-1,3-Dichloropropylene             | OR | 4685       | 10184404  |
| Trichloroethene (Trichloroethylene)     | OR | 5170       | 10184404  |
| Trichlorofluoromethane                  | OR | 5175       | 10184404  |
| Vinyl chloride                          | OR | 5235       | 10184404  |
| Xylene (total)                          | OR | 5260       | 10184404  |
| nod EPA 8270                            |    |            |           |
| nalyte                                  | AB | Analyte ID | Method ID |
| 1,2,4-Trichlorobenzene                  | OR | 5155       | 10185203  |
| 1,2-Dichlorobenzene                     | OR | 4610       | 10185203  |



#### **NELAP - Recognized Laboratory Fields of Accreditation**



Certificate:

T104704424-10-1

**Expiration Date:** 

6/30/2011

Issue Date:

7/1/2010

Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Road NE, Suite D

Albuquerque, NM 87109-4337

| 1,3-Dichlorobenzene          | OR | 4615 | 10185203 |
|------------------------------|----|------|----------|
| ,4-Dichlorobenzene           | OR | 4620 | 10185203 |
| 2,4,5-Trichlorophenol        | OR | 6835 | 10185203 |
| 2,4,6-Trichlorophenol        | OR | 6840 | 10185203 |
| 2,4-Dichlorophenol           | OR | 6000 | 10185203 |
| 2,4-Dimethylphenol           | OR | 6130 | 10185203 |
| 2,4-Dinitrophenol            | OR | 6175 | 10185203 |
| 2,4-Dinitrotoluene (2,4-DNT) | OR | 6185 | 10185203 |
| 2,6-Dinitrotoluene (2,6-DNT) | OR | 6190 | 10185203 |
| 2-Chloronaphthalene          | OR | 5795 | 10185203 |
| 2-Chlorophenol               | OR | 5800 | 10185203 |
| 2-Methyl-4,6-dinitrophenol   | OR | 6360 | 10185203 |
| 2-Methylnaphthalene          | OR | 6385 | 10185203 |
| 2-Methylphenol (o-Cresol)    | OR | 6400 | 10185203 |
| 2-Nitroaniline               | OR | 6460 | 10185203 |
| 2-Nitrophenol                | OR | 6490 | 10185203 |
| 3,3'-Dichlorobenzidine       | OR | 5945 | 10185203 |
| 3-Methylphenol (m-Cresol)    | OR | 6405 | 10185203 |
| 3-Nitroaniline               | OR | 6465 | 10185203 |
| 4-Bromophenyl phenyl ether   | OR | 5660 | 10185203 |
| 4-Chloro-3-methylphenol      | OR | 5700 | 10185203 |
| 4-Chloroaniline              | OR | 5745 | 10185203 |
| 4-Chlorophenyl phenylether   | OR | 5825 | 10185203 |
| 4-Methylphenol (p-Cresol)    | OR | 6410 | 10185203 |
| 4-Nitroaniline               | OR | 6470 | 10185203 |
| 4-Nitrophenol                | OR | 6500 | 10185203 |
| Acenaphthene                 | OR | 5500 | 10185203 |
| Acenaphthylene               | OR | 5505 | 10185203 |
| Aniline                      | OR | 5545 | 10185203 |
| Anthracene                   | OR | 5555 | 10185203 |





#### **NELAP - Recognized Laboratory Fields of Accreditation**

Certificate:

T104704424-10-1

**Expiration Date:** 

6/30/2011

Issue Date:

7/1/2010

Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

| Azobenzene                         | OR | 5562 | 10185203 |
|------------------------------------|----|------|----------|
| Benzo(a)anthracene                 | OR | 5575 | 10185203 |
| Benzo(a)pyrene                     | OR | 5580 | 10185203 |
| Benzo(b)fluoranthene               | OR | 5585 | 10185203 |
| Benzo(g,h,i)perylene               | OR | 5590 | 10185203 |
| Benzo(k)fluoranthene               | OR | 5600 | 10185203 |
| Benzoic acid                       | OR | 5610 | 10185203 |
| Benzyl alcohol                     | OR | 5630 | 10185203 |
| bis(2-Chloroethoxy)methane         | OR | 5760 | 10185203 |
| bis(2-Chloroethyl) ether           | OR | 5765 | 10185203 |
| bis(2-Chloroisopropyl) ether       | OR | 5780 | 10185203 |
| bis(2-Ethylhexyl) phthalate (DEHP) | OR | 6255 | 10185203 |
| Butyl benzyl phthalate             | OR | 5670 | 10185203 |
| Carbazole                          | OR | 5680 | 10185203 |
| Chrysene                           | OR | 5855 | 10185203 |
| Dibenz(a,h) anthracene             | OR | 5895 | 10185203 |
| Dibenzofuran                       | OR | 5905 | 10185203 |
| Diethyl phthalate                  | OR | 6070 | 10185203 |
| Dimethyl phthalate                 | OR | 6135 | 10185203 |
| Di-n-butyl phthalate               | OR | 5925 | 10185203 |
| Di-n-octyl phthalate               | OR | 6200 | 10185203 |
| Fluoranthene                       | OR | 6265 | 10185203 |
| fluorene                           | OR | 6270 | 10185203 |
| lexachlorobenzene                  | OR | 6275 | 10185203 |
| łexachlorobutadien <del>e</del>    | OR | 4835 | 10185203 |
| lexachlorocyclopentadiene          | OR | 6285 | 10185203 |
| lexachloroethane                   | OR | 4840 | 10185203 |
| ndeno(1,2,3-cd) pyrene             | OR | 6315 | 10185203 |
| sophorone                          | OR | 6320 | 10185203 |
| laphthalene                        | OR | 5005 | 10185203 |







Certificate:

T104704424-10-1

**Expiration Date:** 

6/30/2011

Issue Date:

7/1/2010

4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

Hall Environmental Analysis Laboratory, Inc.

| Matrix: Non Potable Water |    |            |           |
|---------------------------|----|------------|-----------|
| Nitrobenzene              | OR | 5015       | 10185203  |
| n-Nitrosodi-n-propylamine | OR | 6545       | 10185203  |
| n-Nitrosodiphenylamine    | OR | 6535       | 10185203  |
| Pentachlorophenol         | OR | 6605       | 10185203  |
| Phenanthrene              | OR | 6615       | 10185203  |
| Phenol                    | OR | 6625       | 10185203  |
| Pyrene                    | OR | 6665       | 10185203  |
| Pyridine                  | OR | 5095       | 10185203  |
| hod EPA 8310              |    |            |           |
| Analyte                   | AB | Analyte ID | Method ID |
| Acenaphthene              | OR | 5500       | 10187607  |
| Acenaphthylene            | OR | 5505       | 10187607  |
| Anthracene                | OR | 5555       | 10187607  |
| Benzo(a)anthracene        | OR | 5575       | 10187607  |
| Benzo(a)pyrene            | OR | 5580       | 10187607  |
| Benzo(b)fluoranthene      | OR | 5585       | 10187607  |
| Benzo(g,h,i)perylene      | OR | 5590       | 10187607  |
| Benzo(k)fluoranthene      | OR | 5600       | 10187607  |
| Chrysene                  | OR | 5855       | 10187607  |
| Dibenz(a,h) anthracene    | OR | 5895       | 10187607  |
| Fluoranthene              | OR | 6265       | 10187607  |
| Fluorene                  | OR | 6270       | 10187607  |
| Indeno(1,2,3-cd) pyrene   | OR | 6315       | 10187607  |
| Naphthalene               | OR | 5005       | 10187607  |
| Phenanthrene              | OR | 6615       | 10187607  |
| Pyrene                    | OR | 6665       | 10187607  |
|                           |    |            |           |



#### **NELAP - Recognized Laboratory Fields of Accreditation**

Certificate:

T104704424-10-1

**Expiration Date:** 

6/30/2011

Issue Date:

7/1/2010

Hall Environmental Analysis Laboratory, Inc. 4901 Hawkins Road NE, Suite D

Albuquerque, NM 87109-4337

| latrix: Solid & Hazardous Material |      |            |           |
|------------------------------------|------|------------|-----------|
| Method EPA 6010                    |      |            |           |
| Analyte                            | AB   | Analyte ID | Method II |
| Aluminum                           | OR   | 1000       | 10155201  |
| Antimony                           | OR . | 1005       | 10155201  |
| Arsenic                            | OR   | 1010       | 10155201  |
| Barium                             | OR   | 1015       | 10155201  |
| Beryllium                          | OR   | 1020       | 10155201  |
| Boron                              | OR   | 1025       | 10155201  |
| Cadmium                            | OR   | 1030       | 10155201  |
| Calcium                            | OR   | 1035       | 10155201  |
| Chromium                           | OR   | 1040       | 10155201  |
| Cobalt                             | OR   | 1050       | 10155201  |
| Copper                             | OR   | 1055       | 10155201  |
| Iron                               | OR   | 1070       | 10155201  |
| Lead                               | OR   | 1075       | 10155201  |
| Magnesium                          | OR   | 1085       | 10155201  |
| Manganese                          | OR   | 1090       | 10155201  |
| Molybdenum                         | OR   | 1100       | 10155201  |
| Nickel                             | OR   | 1105       | 10155201  |
| Potassium                          | OR   | 1125       | 10155201  |
| Selenium                           | OR   | 1140       | 10155201  |
| Silver                             | OR   | 1150       | 10155201  |
| Sodium                             | OR   | 1155       | 10155201  |
| Thallium                           | OR   | 1165       | 10155201  |
| Tin                                | . OR | 1175       | 10155201  |
| Titanium                           | OR   | 1180       | 10155201  |
| Vanadium                           | OR   | 1185       | 10155201  |
| Zinc                               | OR   | 1190       | 10155201  |
| thod EPA 7471                      |      |            |           |
| Analyte                            | AB   | Analyte ID | Method ID |
| Mercury                            | OR   | 1095       | 10166004  |





#### **NELAP - Recognized Laboratory Fields of Accreditation**

Certificate:

T104704424-10-1

**Expiration Date:** 

6/30/2011

Issue Date:

7/1/2010

4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

Hall Environmental Analysis Laboratory, Inc.

| Matrix: Solid & Hazardous Material               |      |            |                   |
|--------------------------------------------------|------|------------|-------------------|
| Method EPA 8015                                  |      |            |                   |
| Analyte                                          | AB   | Analyte ID | Method ID         |
| Diesel range organics (DRO)                      | OR   | 9369       | 10173203          |
| Gasoline range organics (GRO)                    | OR   | 9408       | 10173203          |
| Method EPA 8021                                  |      |            |                   |
| Analyte                                          | AB   | Analyte ID | Method ID         |
| Benzene                                          | OR   | 4375       | 10174400          |
| Ethylbenzene                                     | OR   | 4765       | 10174400          |
| m+p-xylene                                       | OR   | 5240       | 10174400          |
| Methyl tert-butyl ether (MTBE)                   | OR   | 5000       | 10174400          |
| o-Xylene                                         | OR   | 5250       | 10174400          |
| Toluene                                          | OR   | 5140       | 10174400          |
| Xylene (total)                                   | OR   | 5260       | 10174400          |
| Method EPA 8081                                  |      |            | •                 |
| Analyte                                          | AB   | Analyte ID | Method ID         |
| 4,4'-DDD                                         | OR   | 7355       | 10178402          |
| 4,4'-DDE                                         | OR   | 7360       | 10178402          |
| 4,4'-DDT                                         | OR   | 7365       | 10178402          |
| Aldrin                                           | OR   | 7025       | 10178402          |
| alpha-BHC (alpha-Hexachlorocyclohexane)          | OR   | 7110       | 10178402          |
| beta-BHC (beta-Hexachlorocyclohexane)            | OR   | 7115       | 10178402          |
| delta-BHC (delta-Hexachlorocyclohexane)          | OR   | 7105       | 10178402          |
| Dieldrin                                         | OR   | 7470       | 10178402          |
| Endosulfan I                                     | OR   | 7510       | 10178402          |
| Endosulfan II                                    | OR   | 7515       | 10178402          |
| Endosulfan sulfate                               | OR   | 7520       | 10178402          |
| Endrin                                           | OR   | 7540       | 10178402          |
| Endrin aldehyde                                  | OR   | 7530       | 10178402          |
| gamma-BHC (Lindane, gamma-Hexachlorocyclohexane) | OR   | 7120       | 10178402          |
| Heptachlor                                       | OR   | 7685       | 10178402          |
| Heptachlor epoxide                               | OR ' | 7690       | 10178402          |
| •                                                |      |            | · - · <del></del> |





#### **NELAP - Recognized Laboratory Fields of Accreditation**

Certificate:

T104704424-10-1

**Expiration Date:** 

6/30/2011

Issue Date:

7/1/2010

4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

Hall Environmental Analysis Laboratory, Inc.

| Methoxychlor                                | OR | 7810       | 10178402  |
|---------------------------------------------|----|------------|-----------|
| Method EPA 8082                             |    |            | -         |
| Analyte                                     | AB | Analyte ID | Method ID |
| Aroclor-1016 (PCB-1016)                     | OR | 8880       | 10179007  |
| Aroclor-1221 (PCB-1221)                     | OR | 8885       | 10179007  |
| Aroclor-1232 (PCB-1232)                     | OR | 8890       | 10179007  |
| Aroclor-1242 (PCB-1242)                     | OR | 8895       | 10179007  |
| Aroclor-1248 (PCB-1248)                     | OR | 8900       | 10179007  |
| Aroclor-1254 (PCB-1254)                     | OR | 8905       | 10179007  |
| Aroclor-1260 (PCB-1260)                     | OR | 8910       | 10179007  |
| lethod EPA 8260                             |    |            |           |
| Analyte                                     | AB | Analyte ID | Method ID |
| 1,1,1,2-Tetrachloroethane                   | OR | 5105       | 10184404  |
| 1,1,1-Trichloroethane                       | OR | 5160       | 10184404  |
| 1,1,2,2-Tetrachloroethane                   | OR | 5110       | 10184404  |
| 1,1,2-Trichloroethane                       | OR | 5165       | 10184404  |
| 1,1-Dichloroethane                          | OR | 4630       | 10184404  |
| 1,1-Dichloroethylene (1,1-Dichloroethene)   | OR | 4640       | 10184404  |
| 1,1-Dichloropropene                         | OR | 4670       | 10184404  |
| 1,2,3-Trichlorobenzene                      | OR | 5150       | 10184404  |
| 1,2,3-Trichloropropane                      | OR | 5180       | 10184404  |
| 1,2,4-Trichlorobenzene                      | OR | 5155       | 10184404  |
| 1,2,4-Trimethylbenzene                      | OR | 5210       | 10184404  |
| 1,2-Dibromo-3-chloropropane (DBCP)          | OR | 4570       | 10184404  |
| 1,2-Dibromoethane (EDB, Ethylene dibromide) | OR | 4585       | 10184404  |
| 1,2-Dichlorobenzene                         | OR | 4610       | 10184404  |
| 1,2-Dichloroethane                          | OR | 4635       | 10184404  |
| 1,2-Dichloropropane                         | OR | 4655       | 10184404  |
| 1,3,5-Trimethylbenzene                      | OR | 5215       | 10184404  |
| 1,3-Dichlorobenzene                         | OR | 4615       | 10184404  |
| 1,3-Dichloropropane                         | OR | 4660       | 10184404  |



#### **NELAP - Recognized Laboratory Fields of Accreditation**



Certificate:

T104704424-10-1

**Expiration Date:** 

6/30/2011

Issue Date:

7/1/2010

4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

Hall Environmental Analysis Laboratory, Inc.

| 1,4-Dichlorobenzene                   | OR   | 4620 | 10184404 |
|---------------------------------------|------|------|----------|
| 2,2-Dichloropropane                   | OR   | 4665 | 10184404 |
| 2-Butanone (Methyl ethyl ketone, MEK) | OR   | 4410 | 10184404 |
| 2-Chlorotoluene                       | OR   | 4535 | 10184404 |
| 2-Hexanone                            | OR   | 4860 | 10184404 |
| 4-Chlorotoluene                       | OR   | 4540 | 10184404 |
| 4-Isopropyltoluene                    | OR   | 4915 | 10184404 |
| 4-Methyl-2-pentanone (MIBK)           | OR   | 4995 | 10184404 |
| Acetone                               | OR   | 4315 | 10184404 |
| Benzene                               | OR   | 4375 | 10184404 |
| Bromobenzene                          | OR   | 4385 | 10184404 |
| Bromochloromethane                    | OR   | 4390 | 10184404 |
| Bromodichloromethane                  | OR   | 4395 | 10184404 |
| Bromoform                             | OR   | 4400 | 10184404 |
| Bromomethane (Methyl bromide)         | OR   | 4950 | 10184404 |
| Carbon disulfide                      | OR ´ | 4450 | 10184404 |
| Carbon tetrachloride                  | OR   | 4455 | 10184404 |
| Chlorobenzene                         | OR   | 4475 | 10184404 |
| Chloroethane                          | OR   | 4485 | 10184404 |
| Chloroform                            | OR   | 4505 | 10184404 |
| Chloromethane (Methyl chloride)       | OR   | 4960 | 10184404 |
| cis-1,2-Dichloroethylene              | OR   | 4645 | 10184404 |
| cis-1,3-Dichloropropylene             | OR   | 4680 | 10184404 |
| Dibromochloromethane .                | OR   | 4575 | 10184404 |
| Dibromomethane                        | OR   | 4595 | 10184404 |
| Dichlorodifluoromethane               | OR   | 4625 | 10184404 |
| Ethylbenzene                          | OR   | 4765 | 10184404 |
| Hexachlorobutadiene                   | OR   | 4835 | 10184404 |
| sopropylbenzene                       | OR   | 4900 | 10184404 |
| n+p-xylene                            | OR   | 5240 | 10184404 |



#### **NELAP - Recognized Laboratory Fields of Accreditation**



Certificate:

T104704424-10-1

**Expiration Date:** 

6/30/2011

Issue Date:

7/1/2010

4901 Hawkins Road NE, Suite D

Hall Environmental Analysis Laboratory, Inc.

Albuquerque, NM 87109-4337

| Matrix: Solid & Hazardous Material      |    |            |           |   |
|-----------------------------------------|----|------------|-----------|---|
| Methyl tert-butyl ether (MTBE)          | OR | 5000       | 10184404  |   |
| Methylene chloride                      | OR | 4975       | 10184404  |   |
| Naphthalene                             | OR | 5005       | 10184404  |   |
| n-Butylbenzene                          | OR | 4435       | 10184404  |   |
| n-Propylbenzene                         | OR | 5090       | 10184404  |   |
| o-Xylene                                | OR | 5250       | 10184404  |   |
| sec-Butylbenzene                        | OR | 4440       | 10184404  |   |
| Styrene:                                | OR | 5100       | 10184404  |   |
| tert-Butylbenzene                       | OR | 4445       | 10184404  | 4 |
| Tetrachloroethylene (Perchloroethylene) | OR | 5115       | 10184404  |   |
| Toluene                                 | OR | 5140       | 10184404  |   |
| trans-1,2-Dichloroethylene              | OR | 4700       | 10184404  |   |
| trans-1,3-Dichloropropylene             | OR | 4685       | 10184404  |   |
| Trichloroethene (Trichloroethylene)     | OR | 5170       | 10184404  |   |
| Trichlorofluoromethane                  | OR | 5175       | 10184404  |   |
| Vinyl chloride                          | OR | 5235       | 10184404  |   |
| Xylene (total)                          | OR | 5260       | 10184404  |   |
| Method EPA 8270                         |    |            |           |   |
| Analyte                                 | AB | Analyte ID | Method ID |   |
| 1,2,4-Trichlorobenzene                  | OR | 5155       | 10185203  |   |
| 1,2-Dichlorobenzene                     | OR | 4610       | 10185203  |   |
| 1,3-Dichlorobenzene                     | OR | 4615       | 10185203  |   |
| 1,4-Dichlorobenzene                     | OR | 4620       | 10185203  |   |
| 2,4,5-Trichlorophenol                   | OR | 6835       | 10185203  |   |
| 2,4,6-Trichlorophenol                   | OR | 6840       | 10185203  |   |
| 2,4-Dichlorophenol                      | OR | 6000       | 10185203  |   |
| 2,4-Dimethylphenol                      | OR | 6130       | 10185203  |   |
| 2,4-Dinitrophenol                       | OR | 6175       | 10185203  | _ |
| 2,4-Dinitrotoluene (2,4-DNT)            | OR | 6185       | 10185203  |   |
| 2,6-Dinitrotoluene (2,6-DNT)            | OR | 6190       | 10185203  |   |
| 2-Chloronaphthalene                     | OR | 5795       | 10185203  |   |





#### **NELAP - Recognized Laboratory Fields of Accreditation**

Certificate:

T104704424-10-1

**Expiration Date:** 

6/30/2011

Issue Date:

7/1/2010

4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

Hall Environmental Analysis Laboratory, Inc.

| trix: Solid & Hazardous Material | ·   | <del></del> |          |
|----------------------------------|-----|-------------|----------|
| 2-Chlorophenol                   | OR  | 5800        | 10185203 |
| 2-Methyl-4,6-dinitrophenol       | OR  | 6360        | 10185203 |
| 2-Methylnaphthalene              | OR  | 6385        | 10185203 |
| 2-Methylphenol (o-Cresol)        | OR  | 6400        | 10185203 |
| 2-Nitroaniline                   | OR. | 6460        | 10185203 |
| 2-Nitrophenol                    | OR  | 6490        | 10185203 |
| 3,3'-Dichlorobenzidine           | OR  | 5945        | 10185203 |
| 3-Methylphenol (m-Cresol)        | OR  | 6405        | 10185203 |
| 3-Nitroaniline                   | OR  | 6465        | 10185203 |
| 4-Bromophenyl phenyl ether       | OR  | 5660        | 10185203 |
| 4-Chloro-3-methylphenol          | OR  | 5700        | 10185203 |
| 4-Chloroaniline                  | OR  | 5745        | 10185203 |
| 4-Chlorophenyl phenylether       | OR  | 5825        | 10185203 |
| 4-Methylphenol (p-Cresol)        | OR  | 6410        | 10185203 |
| 4-Nitroaniline                   | OR  | 6470        | 10185203 |
| 4-Nitrophenol                    | OR  | 6500        | 10185203 |
| Acenaphthene                     | OR  | 5500        | 10185203 |
| Acenaphthylene                   | OR  | 5505        | 10185203 |
| Aniline                          | OR  | 5545        | 10185203 |
| Anthracene                       | OR  | 5555        | 10185203 |
| Azobenzene                       | OR  | 5562        | 10185203 |
| Benzo(a)anthracene               | OR  | 5575        | 10185203 |
| Benzo(a)pyrene                   | OR  | 5580        | 10185203 |
| Benzo(b)fluoranthene             | OR  | 5585        | 10185203 |
| Benzo(g,h,i)perylene             | OR  | 5590        | 10185203 |
| Benzo(k)fluoranthene             | OR  | 5600        | 10185203 |
| Benzoic acid                     | OR  | 5610        | 10185203 |
| Benzyl alcohol                   | OR  | 5630        | 10185203 |
| bis(2-Chloroethoxy)methane       | OR  | 5760        | 10185203 |
| bis(2-Chloroethyl) ether         | OR  | 5765        | 10185203 |



#### **NELAP - Recognized Laboratory Fields of Accreditation**



Certificate:

T104704424-10-1

**Expiration Date:** 

6/30/2011

Issue Date:

7/1/2010

4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

Hall Environmental Analysis Laboratory, inc.

| is(2-Chloroisopropyl) ether          | OR | 5780         | 10185203  |
|--------------------------------------|----|--------------|-----------|
| bis(2-Ethylhexyl) phthalate (DEHP)   | OR | 6255         | 10185203  |
| Butyl benzyl phthalate               | OR | 5670         | 10185203  |
| Carbazole                            | OR | 5680         | 10185203  |
| Chrysene                             | OR | 5855         | 10185203  |
| Dibenz(a,h) anthracene               | OR | 5895         | 10185203  |
| Dibenzofuran                         | OR | 5905         | 10185203  |
| Diethyl phthalate                    | OR | 6070         | 10185203  |
| Dimethyl phthalate                   | OR | 6135         | 10185203  |
| Di-n-butyl phthalate                 | OR | 5925         | 10185203  |
| Di-n-octyl phthalate                 | ÓR | 6200         | 10185203  |
| Fluoranthene                         | OR | 6265         | 10185203  |
| Fluorene                             | OR | 6270         | 10185203  |
| Hexachlorobenzene                    | OR | 6275         | 10185203  |
| Hexachlorobutadiene                  | OR | 4835         | 10185203  |
| Hexachlorocyclopentadiene            | OR | 6285         | 10185203  |
| Hexachloroethane                     | OR | 4840         | 10185203  |
| Indeno(1,2,3-cd) pyrene              | OR | 6315         | 10185203  |
| Isophorone                           | OR | 6320         | 10185203  |
| Naphthalene                          | OR | 5005         | 10185203  |
| Nitrobenzene                         | OR | 5015         | 10185203  |
| n-Nitrosodimethylamine               | OR | 6530         | 10185203  |
| n-Nitrosodi-n-propylamine            | OR | <b>654</b> 5 | 10185203  |
| n-Nitrosodiphenylamine               | OR | 6535         | 10185203  |
| Pentachlorophenol                    | OR | 6605         | 10185203  |
| <sup>o</sup> henanthren <del>e</del> | OR | 6615         | 10185203  |
| Phenol                               | OR | 6625         | 10185203  |
| <sup>-</sup> yrene                   | OR | 6665         | 10185203  |
| Pyridine                             | OR | 5095         | 10185203  |
| hod EPA 8310                         |    |              |           |
| nalyte                               | AB | Analyte ID   | Method ID |





#### **NELAP - Recognized Laboratory Fields of Accreditation**

Certificate:

T104704424-10-1

**Expiration Date:** 

6/30/2011

Issue Date:

7/1/2010

4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

Hall Environmental Analysis Laboratory, Inc.

| Matrix: Solid & Hazardous Material |    |      |                   |
|------------------------------------|----|------|-------------------|
| Acenaphthene                       | OR | 5500 | 10187607          |
| Acenaphthylene                     | OR | 5505 | 10187607          |
| Anthracene                         | OR | 5555 | 10187607          |
| Benzo(a)anthracene                 | OR | 5575 | 10187607          |
| Benzo(a)pyrene                     | OR | 5580 | 10187607          |
| Benzo(b)fluoranthene               | OR | 5585 | 10187607          |
| Benzo(g,h,i)perylene               | OR | 5590 | 10187607          |
| Benzo(k)fluoranthene               | OR | 5600 | 10187607          |
| Chrysene                           | OR | 5855 | 10187607          |
| Dibenz(a,h) anthracene             | OR | 5895 | 10187607          |
| Fluoranthene                       | OR | 6265 | 101 <b>87</b> 607 |
| Fluorene                           | OR | 6270 | 10187607          |
| Indeno(1,2,3-cd) pyrene            | OR | 6315 | 10187607          |
| Naphthalene                        | OR | 5005 | 10187607          |
| Phenanthrene                       | OR | 6615 | 10187607          |
| Pyrene                             | ÓR | 6665 | 10187607          |

#### Chavez, Carl J, EMNRD

From:

Chavez, Carl J, EMNRD

Sent:

Tuesday, December 07, 2010 7:52 AM

To: Cc: 'Gibson, Dan'; Moore, Darrell; 'Lackey, Johnny'; Schmaltz, Randy; McDaniel, Vic Sanchez, Daniel J., EMNRD; Jones, William V., EMNRD; VonGonten, Glenn, EMNRD

Subject:

UIC Class I Disposal Well 2011 Annual Report Reminder

Gentlemen:

Good morning.

This is a reminder of your OCD discharge permit reporting obligations for your Underground Injection Control (UIC) disposal well(s).

Please plan on meeting the Annual Report submittal dates in January of 2011 as failure to submit the report will constitute a violation under the Federal UIC Program and reporting to the United States Environmental Protection Agency, which could result in the shut-in and/or plug and abandonment of your Class I disposal well(s), etc.

Please contact me if you have questions. Thank you in advance for your cooperation.

File: OCD Online "Annual Report" thumbnail

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: <a href="http://www.emnrd.state.nm.us/ocd/">http://www.emnrd.state.nm.us/ocd/</a> index.htm (Pollution Prevention Guidance is under "Publications")





BLOOMFIELD REFINERY

Carl Chavez
New Mexico Oil Conservation Division
Environmental Bureau
1220 South St. Francis Dr
Santa Fe, NM 87505

Certified Mail: 7008 1300 0001 3402 7183

January 28, 2010

RE: Western Refining Southwest, Inc. - Bloomfield Refinery 2009 Annual Class I Well Report Non-Hazardous Injection Well Permit # - UIC-CL-009 API # - 30- 45-29002

Mr. Chavez,

Bloomfield Refinery submits the *Annual Class I Well Report January – December 2009* as requested in the September 25, 2009 e-mail from NMOCD – Santa Fe. The well is located in the NE/4, SE/4 of Section 27, Township 29 North, Range 11West, NMPM, San Juan County, New Mexico and is operated by Western Refining Southwest, Inc.

RECEIVED OCD 2010 FEB - 1 A 11: 39

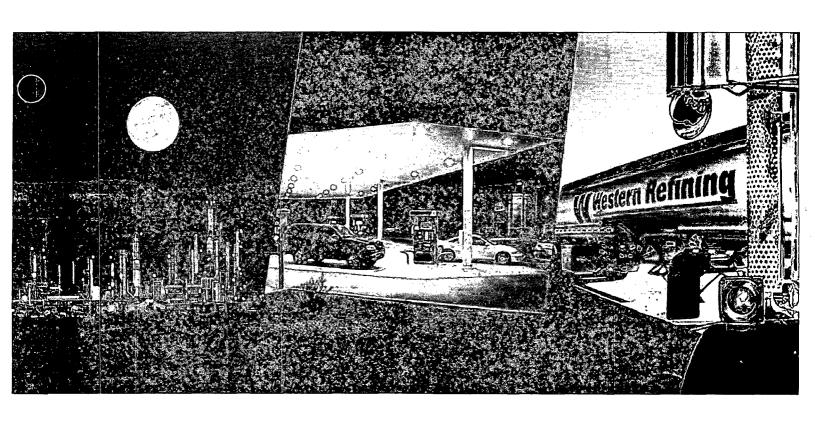
If you need more information, please contact me at (505) 632-4171.

Sincerely,

βames R. Schmaltz

☑nvironmental Manager

Western Refining Southwest, Inc. - Bloomfield Refinery


Cc: Kelly G. Roberts – NMOCD Aztec District Office V.R. McDaniel – Bloomfield Refinery Site Manager Allen Hains – Western Refining – El Paso

#### ANNUAL CLASS I WELL REPORT

Waste Disposal Well #1 January – December 2009

Western Refining Southwest, Inc. Bloomfield Refinery Bloomfield, New Mexico Permit # - UIC-CL1-009 API # - 30-45-29002

January 2010



#### ANNUAL CLASS I WELL REPORT

#### Waste Disposal Well #1 January – December 2009

Western Refining Southwest, Inc. Bloomfield Refinery Bloomfield, New Mexico Permit # - UIC-CL1-009 API # - 30-45-29002

January 28, 2010

Prepared by:

Cindy Murtado

**Environmental Coordinator** 

Reviewed by:

James R. Schmaltz

Environmental Manager

#### Certification

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

V. R. McDaniel

Site Manager

#### **Executive Summary**

This report provides a summary of activities conducted throughout 2009 on Waste Disposal Well #1 (WDW-#1) at the Bloomfield Refinery. The following is a summary of conclusions and recommendations developed from well activities performed in 2009.

#### **Conclusions**

**Injection Volume** - The volume injected into the disposal well during 2009 was 34,042,355 gallons. Western Refining suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Due to the reduced water usage caused by this suspension, injection flow rates have decreased to less than 50% or less than 60 gpm during December 2009.

**Sampling and Chemical Analyses** - Injection fluid samples were collected on a quarterly basis for chemical analysis. Analytical results did not exhibit characteristics of hazardous waste.

Maintenance Operations - During 2009, maintenance operations included well cleanout, well stimulation, well acidization, and installation of an injection fluids filter. Down hole flow rate improved to approximately 100 gpm after each procedure and the average injection pressure decreased from 1,111 psia in January to 1,025 psia in November.

**Mechanical Integrity Tests** - The 2009 well testing program included a Radioactive Tracer Test, high-pressure shutdown test, Bradenhead Test, Mechanical Integrity Test, bottom hole pressure survey and pressure Falloff Test. All tests were successfully completed and results indicate no problems with the mechanical integrity of the well.

Well Evaluation - Bloomfield Refinery retained William M Cobb & Associates, Inc to evaluate available well information and present recommendations to improve the injectivity of the injection well. Bloomfield Refinery followed the recommendations to clean out/stimulate/acidize the well and to filter the injection fluids. Western believes that the well stimulation procedures were successful as indicated by the results of the Radioactive Tracer Test and the Falloff Test; fracture treatment of the lower interval is not being considered at this time.

**Area of Review (AOR)** - No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of Disposal Well #1.

#### Recommendations

In 2010, Western will continue the routine operating, monitoring, maintenance and testing programs which will include quarterly chemical analysis of injection fluids, annual MIT, Bradenhead testing, and the annual pressure Falloff Test. Western will continue to utilize the maximum operating injection pressure at the wellhead of 1150 psi as allowed in the amended Administrative Order SWD-528 in order to optimize potential fluctuations in the dewatering activities associated with groundwater remediation and to accommodate any changes in operation of the facility.

#### TABLE OF CONTENTS

| Secti | on Title                                                                                                                     | Page |  |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|
|       | Executive Summary                                                                                                            | 4    |  |  |  |  |
| 1.0   | Introduction                                                                                                                 |      |  |  |  |  |
| 2.0   |                                                                                                                              |      |  |  |  |  |
| 3.0   | Injection Volume                                                                                                             | 8    |  |  |  |  |
| 4.0   | Sampling and Chemical Analyses                                                                                               | 9    |  |  |  |  |
| 5.0   | Maintenance Operations                                                                                                       | 9    |  |  |  |  |
| 6.0   | Mechanical Integrity Tests                                                                                                   | 10   |  |  |  |  |
| 7.0   | Well Evaluations                                                                                                             | 11   |  |  |  |  |
| 8.0   | Conclusions and Recommendations                                                                                              | 13   |  |  |  |  |
| 9.0   | References                                                                                                                   | 14   |  |  |  |  |
| Appe  | endix A – Form C-103 Notifications<br>endix B – Laboratory Analytical Reports<br>endix C – Laboratory Quality Assurance Plan |      |  |  |  |  |

#### LIST OF FIGURES

Figure 1: Site Location Map Figure 2: Well Schematic Figure 3: Disposal Well and Area Wells

#### LIST OF TABLES

Table 1: Monthly Injection Well Report

Table 2: Area of Review

#### 1.0 Introduction

This report provides a summary of activities conducted during 2009 on Waste Disposal Well #1 (WDW #1). The disposal well is part of the Bloomfield Refinery operations. The refinery is located immediately south of Bloomfield, New Mexico in San Juan County. The well location is depicted in Figure 1. The physical address is #50 Road 4990, Bloomfield, New Mexico 87413.

The Bloomfield Refinery is located on approximately 263 acres. Bordering the facility is a combination of federal and private properties. Public property managed by the Bureau of Land Management lies to the south. The majority of undeveloped land in the vicinity of the facility is used extensively for oil and gas production and, in some instances, grazing. U.S. Highway 44 is located approximately one-half mile west of the facility. The topography of the main portion of the site is generally flat with steep bluffs to the north where the San Juan River intersects Tertiary terrace deposits.

The Waste Disposal Well #1 is owned by Western Refining Southwest, Inc., which is a wholly owned subsidiary of Western Refining Company, and it is operated by Western Refining Southwest, Inc. – Bloomfield Refinery.

#### 1.1 Well Information

Well Name & Number:

OCD UIC:

OCD Discharge Plan Permit Number:

Well Classification:

API Number:

Legal Location: Physical Address:

Waste Disposal Well #1

UIC-CL1-009

GW-130

Class I Non-hazardous

30-045-29002

1250 FEL, 2442FSL, I Sec 27 T29S R11E #50 Road 4990, Bloomfield, NM 87413

#### 2.0 Summary of Activities

The following list of the activities were conducted throughout 2009 on Disposal Well #1 at Western's Bloomfield Refinery.

| • | 01/28/09 | 1 <sup>st</sup> Quarterly Sampling Event        |
|---|----------|-------------------------------------------------|
| 8 | 04/14/09 | 2 <sup>nd</sup> Quarterly Sampling Event        |
| 0 | 04/28/09 | Coil Tubing Well Cleanout/Acidization Procedure |
|   |          | (See Form C-103 in Appendix A)                  |
| G | 07/01/09 | 3 <sup>rd</sup> Quarterly Sampling Event        |
| 0 | 07/07/09 | Well Stimulation/Acidization Procedure          |
|   |          | (See Form C-103 in Appendix A)                  |
| • | 09/15/09 | Well Stimulation/Acidization Procedure          |
|   |          | (See Form C-103 in Appendix A)                  |
| 0 | 09/23/09 | Radioactive Tracer Test                         |
|   |          | (See Form C-103 in Appendix A)                  |
| • | 09/24/09 | Mechanical Integrity Test                       |
|   |          | (See Form C-103 in Appendix A)                  |
| 0 | 09/28/09 | Pressure Fall-off Test                          |
| 9 | 10/01/09 | 4 <sup>th</sup> Quarterly Sampling Event        |
| 0 | 12/23/09 | Filter Installation                             |

#### 3.0 Injection Volume

The Monthly Injection Well Report summarizing injection volumes and well performance parameters is presented as Table 1.

#### 3.1 Injection Volume

The volume injected into the disposal well during 2009 was 34,042,355 gallons. Western Refining suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Due to the reduced water usage caused by this suspension, injection flow rates have decreased to less than 50% or less than 60 gpm during December 2009.

#### 3.2 Injection Well Down-Time

The Injection Well was down a total of 682 hours in 2009. The down-times are directly correlated with performing well testing procedures and maintenance. Well testing procedures include the Radioactive Tracer Test and the Annual Falloff Test. The maintenance procedures that contributed to downtime were the well stimulation/acidization procedures, the cartridge filter installation and 108 hours in November due to repair of pump pistons.

#### 4.0 Sampling and Chemical Analyses

Injection fluids samples were collected on a quarterly basis and analyzed for the constituents listed per Item #9 of the *Bloomfield Refinery Class I (Non-Hazardous)* Disposal Well UIC-CL1-009 (GW-130) Discharge Permit Renewal dated March 23, 2004. First quarter samples were collected on January 28, 2009, second quarter samples were collected April 14, 2009, third quarter samples were obtained July 1, 2009, and fourth quarter samples were taken October 1, 2009. Laboratory Analytical Reports and Laboratory Quality Assurance Plan are presented in Appendices B and C, respectively.

Analytical results did not exhibit characteristics of hazardous waste.

#### 5.0 Maintenance Operations

During 2009, maintenance operations included well cleanout, well stimulation, acidization, and installation of an injection fluids filter.

#### 5.1 Well Stimulation/Acidization

In order to reduce sand and scale build up within the well bore and perforations, three separate well stimulation/acidization procedures were performed. On April 28, 2009 coil-tubing clean out and acidization procedures were completed. Eighty-three barrels of hydrochloric (HCl) acid were injected down hole and 65 barrels of flush water were used. After the procedure, the injection rate increased from 60 gpm to 100 gpm. Copies of Form C-103 are located in Appendix A.

The next well stimulation/acidization procedure occurred on July 7, 2009. The process consisted of pumping 3500 gallons down hole of 15% HCl acid in addition to 250 (1.3 specific gravity) "bio" ball sealers. Eight hundred gallons of flush water was used. The well was shut in 1 hour and 15 minutes, and then opened to flow back into frac tanks for three hours. The well was allowed to flow back to the evaporation ponds overnight (14 hours). The procedure improved the flow rate from 70 gpm to 101 gpm. Copies of Form C-103 are located in Appendix A.

The last stimulation/acidization procedure for 2009 was conducted on September 15 & 16, 2009. Coil tubing clean out was performed on September 15, 2009. The well bottom was tagged at 3520' and the hole was circulated clean. Two hundred gallons of 15% HCl was spotted across the perforations and the well shut in. On September 16, 2009, 350 (1.18 specific gravity) "bio" balls were dropped and 4,000 gallons of 15% HCl with corrosion inhibitor and Gas Perm 1000 were pumped in. Acid was displaced with 28 barrels of 2% (potassium chloride) KCl water. The well was shut in for 1 hour 45 minutes and then allowed to flow back 870 barrels to the frac tanks. The down hole flow rate improved to 98gpm. Copies of Form C-103 are located in Appendix A.

Down hole flow rates improved to approximately 100 gpm after each procedure and the average injection pressure decreased from 1,111 psia in January to 1,025 psia in November.

#### 5.2 Filter Installation

Historically sand and scale have likely caused plugging of the well bore and perforations, which in turn caused higher surface well pressures and lower injection flow rate. To further alleviate these potential problems, Bloomfield Refinery installed a filter to remove solids from the injection fluids. A skid mounted cartridge filter was leased from Filter Supply of Farmington, New Mexico. The filter was installed in the injection pump building and put into service on December 23, 2009.

#### **6.0 Mechanical Integrity Tests**

The 2009 well testing program included a radioactive tracer test, high-pressure shutdown test, Bradenhead test, mechanical integrity test, bottom hole pressure survey and pressure falloff test. The testing is discussed below.

#### **6.1** Radioactive Tracer Test

In accordance with the 5-year review of the permit and permit renewal a Radioactive Tracer Test was performed on September 23, 2009. Two millicuries of Scandium (Sc 46) was injected down hole and flushed with 5,000 gallons of water. A Gamma Ray correlation log was run from 3,506 feet to the surface. Two passes (up and down) were logged.

The logs indicate that most of the perforated intervals are taking fluid. There were spurious spikes above the packer which are usually associated with tubing collars. These spikes indicated that there was still some radioactive material hung up in the tubing. Results of the Radioactive Tracer Test prove that the operational integrity of the well is sound.

An electronic copy of the Gamma Ray correlation log and follow-up C-103 were e-mailed to New Mexico Oil Conservation Division – Santa Fe (NMOCD-Santa Fe) and New Mexico Oil Conservation Division - Aztec (NMOCD-Aztec) on September 28, 2009. A hard copy was also available in Appendix H of the 2009 Annual Bottomhole Pressure Surveys and Pressure Falloff Tests for Waste Disposal Well #1Report (Cobb & Associates, 2009b) that was sent to NMOCD – Santa Fe on November 18, 2009.

#### 6.2 Annual Mechanical Integrity Test

Bloomfield Refinery performed the annual High Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrity Test (MIT) on September 24, 2009. All tests were

witnessed by Monica Kuehling of NMOCD-Aztec. The MIT held at 580 psi for 30 minutes, therefore indicating the absence of any leaks.

#### 6.3 Annual Pressure Fall-Off Test

Bloomfield Refinery retained William M. Cobb.& Associates, Inc. to perform the annual bottom hole pressure survey and pressure Falloff Test on WDW #1. The well tests were conducted in accordance with United States Environmental Protection Agency (USEPA) 40 CFR 146.13 and the State of New Mexico Falloff Test Guidelines, December 3, 2007. The 2009 pressure falloff test procedure was conducted in accordance with the USEPA's Region 6 "Pressure Falloff Testing Guidelines, Third Revision", dated August 8, 2002, and required by the State of New Mexico as of December 3, 2007. The pressure falloff test and bottom hole pressure survey performed on Waste Disposal Well No. 1 also met the NMOCD requirements for such testing.

The Falloff Test on WDW #1 at Bloomfield Refinery got underway with a pre-flow period beginning at 6PM on September 28, 2009 and ending at 9:56AM on October 2, 2009. The average flow rate for the 72-hour period prior to the beginning of the fall-off test was 69.3 gpm. On the morning of October 2, 2009, tandem bottom hole memory gauges were lowered into the well and allowed to stabilize. The well was shut-in for 238 hours, ending at 7:59 AM on October 12, 2009. The bottom hole pressure gauges were then pulled from the well making gradient stops every 1,000 feet.

Geologic assessment indicates the WDW #1 is in a confined low permeability sand interval and historically is not capable of producing a bottom hole 100 psi pressure drop between the test data. The Falloff Test data showed no unexpected pressure changes. The pressure dropped quickly during the first few minutes of the test due to wellbore storage effects and then continued to decline as the pressure in the reservoir adjusted to the noflow period. The Falloff Test data show linear flow for the duration of the test with no indication of end of linear flow or reservoir boundary effects. With pressures steady and rates increasing over most of the last four years, there does not appear to be any reservoir response to injection other than that which would be expected from normal growth of the injected volume.

All test data and conclusions are presented in the 2009 Annual Bottomhole Pressure Surveys and Pressure Falloff Tests for Waste Disposal Well #1Report (Cobb and Associates, 2009b) that was submitted to NMOCD – Santa Fe on November 18, 2009.

#### 7.0 Well Evaluations

#### 7.1 Well Evaluation

Bloomfield Refinery retained William M. Cobb & Associates, Inc. to evaluate available well information and present recommendations to improve the injectivity of the injection well. A report, *Evaluation of Disposal Well #1 Bloomfield Refinery* (Cobb and Associates, 2009a), was prepared by William M. Cobb & Associates, Inc. for Bloomfield

Refinery and submitted to NMOCD – Santa Fe on October 7, 2009. In the report, William M Cobb & Associates, Inc stated "with the current injection pressure limit of 1,150 psig at the wellhead and at rates of under 100 gpm, the well should serve for an additional ten years."

Bloomfield Refinery followed the recommendations to clean out/stimulate/acidize the well and to filter the injection fluids. Western believes that the well stimulation procedures were successful as indicated by the results of the Radioactive Tracer Test and the Falloff Test; therefore fracture treatment of the lower interval is not being considered at this time.

Western Refining suspended refining operations at the Bloomfield Refinery on November 23, 2009. Due to the reduced water usage caused by this suspension, injection flow rates have decreased to less than 60 gpm. With proper operation of the filtration system and with the decreased flow rates, WDW #1 should operate for more that ten years.

#### 7.2 Area of Review (AOR)

The Area of Review data from the 2008 Falloff test report was reviewed and updated in 2009 Annual Bottomhole Pressure Surveys and Pressure Falloff Tests for Waste Disposal Well #1Report (Cobb & Associates, 2009b) that was submitted to NMOCD – Santa Fe on November 18, 2009.

Fifty-eight wells were found within a one-mile radius of WDW #1, which injects water into the Mesaverde formation. The wells and status are spotted on an area map, Figure 3, with a well number listed with the well data in Table 2. Of these wells, 15 have been plugged and abandoned. Four wells are classified as dry holes and believed to be plugged and abandoned. Twenty-four wells produce petroleum from shallow zones. One well is an Entrada injection well. Fourteen wells produce petroleum from the Dakota and Gallup zones, which are deeper than the Mesaverde interval used for injection purposes.

Twenty-four of the 59 wells have penetrated the injection zone. Of these, three have been plugged. Five wells are currently producing from shallow zones and 14 wells produce from deep zones. There are two injection wells including WDW #1 and Ashcroft SWD #1 well.

No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of Disposal Well #1.

#### 8.0 Conclusions and Recommendations

The following is a summary of conclusions and recommendations developed from well activities in 2009.

#### 8.1 Conclusions

**Injection Volume** - The volume injected into the disposal well during 2009 was 34,042,355 gallons. Western Refining suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Due to the reduced water usage caused by this suspension, injection flow rates have decreased to less than 50% or less than 60 gpm during December 2009.

**Sampling and Chemical Analyses** - Injection fluids samples were collected on a quarterly basis for chemical analysis. Analytical results did not exhibit characteristics of hazardous waste.

**Maintenance Operations** - During 2009, maintenance operations included well cleanout, well stimulation, well acidization, and installation of an injection fluids filter. Down hole flow rates improved to approximately 100 gpm after each procedure and the average injection pressure decreased from 1,111 psia in January to 1,025 psia in November.

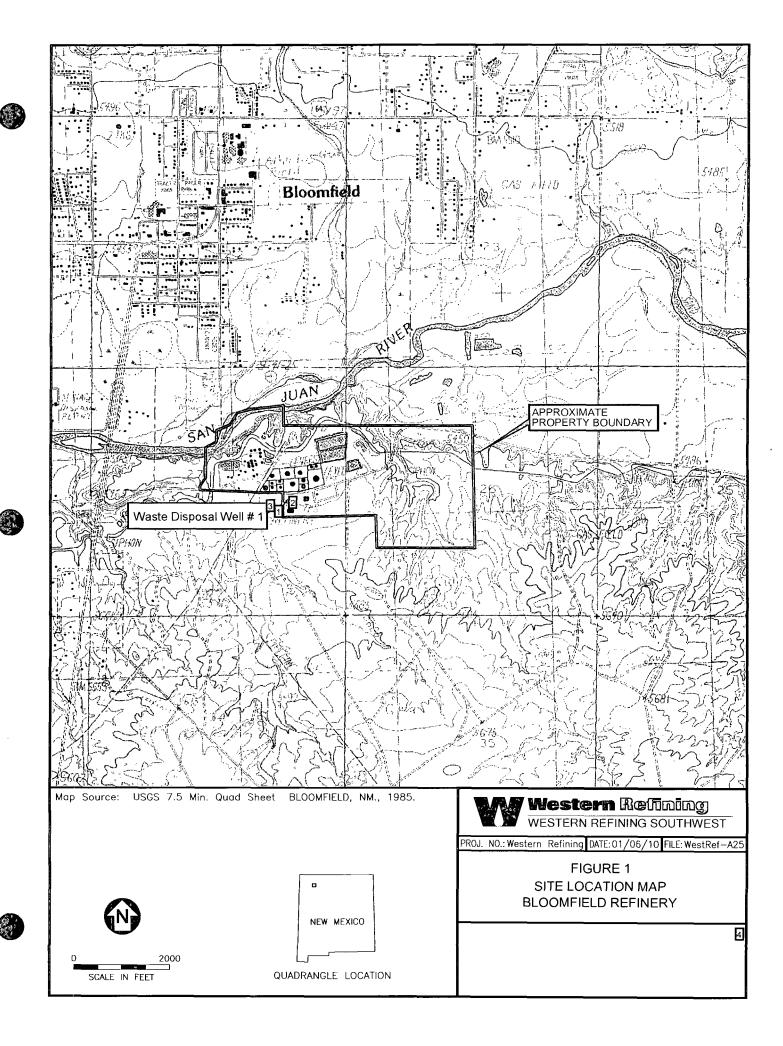
**Mechanical Integrity Tests** - The 2009 well testing program included a Radioactive Tracer Test, high-pressure shutdown test, Bradenhead Test, Mechanical Integrity Test, bottom hole pressure survey and pressure Falloff Test. Results of these tests prove that the operational integrity of the well is sound.

**Well Evaluation** - Bloomfield Refinery retained William M Cobb & Associates, Inc to evaluate available well information and present recommendations to improve the injectivity of the injection well. Bloomfield Refinery followed the recommendations to clean out/stimulate/acidize the well and to filter the injection fluids. Western believes that the well stimulation procedures were successful as indicated by the results of the Radioactive Tracer Test and the Falloff Test; therefore fracture treatment of the lower interval is not being considered at this time.

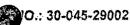
**Area of Review (AOR)** - No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of WDW #1.

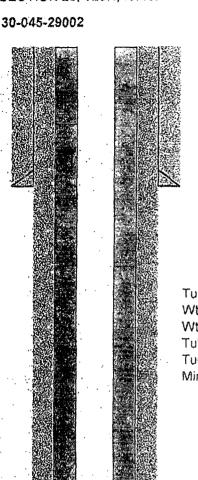
#### 8.2 Recommendations

In 2010, Western will continue the routine operating, monitoring, maintenance and testing programs which include quarterly chemical analysis of injection fluids, annual MIT, Bradenhead testing, and the annual pressure Falloff Test. Western will continue to utilize the maximum operating injection pressure at the wellhead of 1150 psi as allowed


in the amended Administrative Order SWD-528 in order to optimize potential fluctuations in the dewatering activities associated with groundwater remediation and to accommodate any changes in operation of the facility.

# 9.0 References


Cobb & Associates, 2009a, Evaluation of Disposal Well #1 Bloomfield Refinery, August 26, 2009.


Cobb & Associates, 2009b, 2009 Annual Bottomhole Pressure Surveys and Pressure Falloff Tests for Waste Disposal Well #1Report November 2, 2009.

Bloomfield Refinery Class I (Non-Hazardous) Disposal Well UIC-CL1-009 (GW-130) Discharge Permit Renewal dated March 23, 2004.



# WESTERN REFINING DISPOSAL WELL #1 NW, SW SECTION 26, T29N, R11W







#### FIGURE 2

DISPOSAL WELL #1 WELL SCHEMATIC Western Refining Inc. Bioomfield, NM

| 1 |             |           |              |     |          |         |
|---|-------------|-----------|--------------|-----|----------|---------|
| 1 | Date:       | 4/26/2006 | Approved By: | ris | Job No.: | 70F5830 |
| Į | Drawn By: . | rts       | Checked By:  |     | Scale:   | NIA     |

8-5/8", 48#/ft, Surface Casing @ 830'

TOC: Surface Hole Size: 11.0"

Tubing: 2-7/8", Acid Resistant Fluoroline Cement Lined

Wt of Tubing: 6.5 #/ft

Wt of Tubing Lined: 7.55 #/ft

Tubing ID: 2.128" Tubing Drift ID: 2.000"

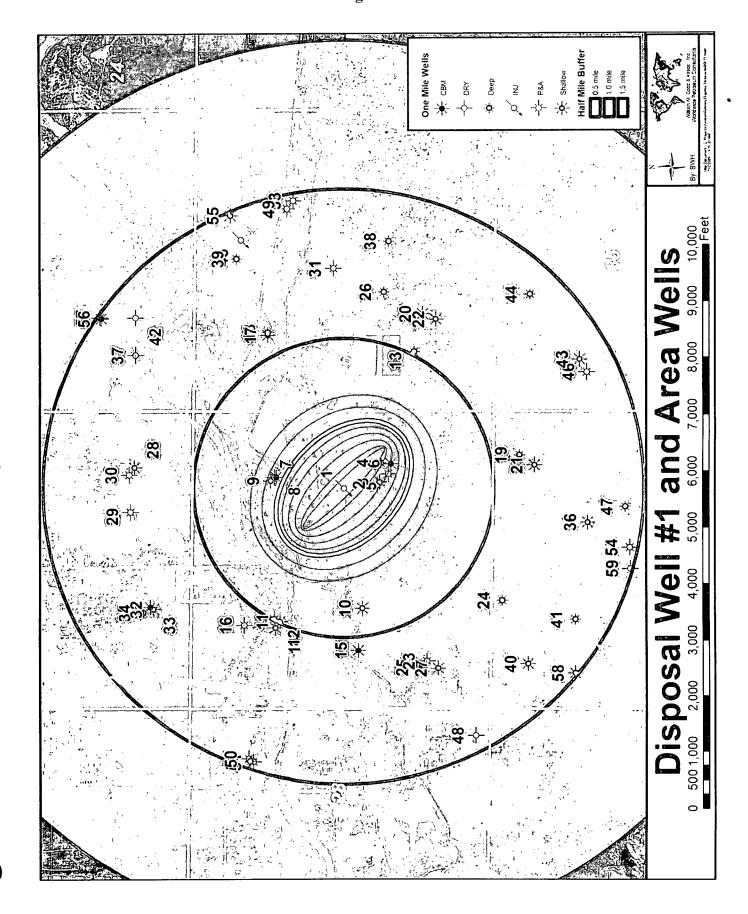
Minimum JD @ Packer: ~1.87" estimated

Packer: Unknown Packer Type @ 3221'

Could be a Guiberson or similar model Uni-6

Perforations: 3276' - 3408' 4JSPF 0.5 EHD Top of the Cliff House Formation: 3276'

Fill was cleaned out of well on 4/20/06 Fill was orginally tagged at 3325'


Perforations: 3435' - 3460' 4JSPF 0.5 EHD Top of the Menefee Formation: 3400'

RBP: 3520'

5-1/2", 15.5#/ft, Production Casing @3600'

TOC: Surface Hole Size: 7-7/8"

Figure 3





|              |                     |                                                                             |                  |               |                    | Table 1                         | 1 6          |                     |          |        |            | ,     |       |
|--------------|---------------------|-----------------------------------------------------------------------------|------------------|---------------|--------------------|---------------------------------|--------------|---------------------|----------|--------|------------|-------|-------|
|              |                     |                                                                             | WESTERN REFINING | N REFIN       |                    | SOUTHWEST, INC                  | INC BI       | BLOOMFIELD REFINERY | LD REFII | VERY   |            |       |       |
|              |                     |                                                                             | -                |               |                    | P.O. BOX 159                    | <b>K</b> 159 |                     |          |        |            |       |       |
|              |                     |                                                                             |                  | 8             | BLOOMFIE           | OMFIELD, NEW MEXICO 87413       | / MEXICC     | ) 87413             |          |        |            |       |       |
|              |                     |                                                                             |                  |               | VINTINOM           | TACABA LIBIN MOITOBINI VIDEN    | WEII DE      | TOCO                |          |        |            |       |       |
|              |                     |                                                                             |                  |               |                    | DISCHARGE PI AN GW-130          | 1N GW-130    |                     |          |        |            |       |       |
|              |                     |                                                                             |                  |               | NE1/4 SE1/         | 14 SE1/4 SECTION 27, T29N, R11W | 1 27, T29N,  | R11W                |          |        |            |       |       |
|              |                     |                                                                             |                  | Z             | NMPM, SAN          | M, SAN JUAN COUNTY, NEW MEXICO  | NTY, NEW     | MEXICO              |          |        |            |       |       |
|              |                     |                                                                             |                  |               |                    |                                 |              |                     |          |        |            |       |       |
|              | AMOUNT              | AMOUNT                                                                      | TOTALIZER        |               |                    |                                 |              |                     |          |        | ON-LINE    | INE   |       |
|              | OF WATER            | TO SOLAR                                                                    | AMOUNT           | DOWN-         | INJECTION PRESSURE | RESSURE                         |              | ANNULAR PRESSURE    | RESSURE  |        | FLOW RATES | RATES |       |
| PERIOD       | FROM RIVER          | EVAP PONDS                                                                  | INJECTED         | TIME          | MAX                | NIM                             | AVG          | MAX                 | NIW      | AVG    | MAX        | NIM   | AVG   |
| 2009         | (GALLONS)           | (GALLONS)                                                                   | (GALLONS)        | (HRS)         | (PSIA)             | (PSIA)                          | (PSIA)       | (PSIA)              | (PSIA)   | (PSIA) | (GPM)      | (GPM) | (GPM) |
|              |                     |                                                                             |                  |               |                    |                                 |              |                     |          |        |            |       |       |
| JAN          | 8,613,000           | 5,685,000                                                                   | 3,571,904        | 0             | 1138               | 1090                            | 1111         | 300                 | 113      | 216    | 91         | 39    | 81    |
| FEB          | 8,257,000           | 8,838,500                                                                   | 3,221,260        | 0             | 1130               | 1104                            | 1119         | 231                 | 113      | 175    | 98         | 1.4   | 74    |
| MAR          | 9,316,000           | 4,127,000                                                                   | 2,984,184        | 0             | 1122               | 1049.0                          | 1108         | 191                 | 170      | 178    | *          | *     | 29    |
|              |                     |                                                                             |                  |               |                    |                                 |              |                     |          |        |            |       |       |
| APR          | 9,183,000           | 4,115,000                                                                   | 2,534,774        | 36            | 1142               | 1049                            | 1117         | 228                 | 143      | 184    | 104        | 14    | 62    |
| MAY          | 9,421,000           | 4,177,000                                                                   | 3,669,236        | 0             | 1144               | 1050                            | 1129         | 190                 | 174      | 180    | 86         | 69    | 82    |
| NOC          | 9,188,000           | 4,001,000                                                                   | 3,063,006        | 0             | 1138               | 266                             | 1119         | 192                 | 175      | 184    | 83         | 43    | 69    |
|              |                     |                                                                             |                  |               |                    |                                 |              |                     |          |        |            |       |       |
| JUL          | 11,053,000          | 4,040,000                                                                   | 2,899,690        | 12            | 1143               | 1020                            | 1120         | 190                 | 93       | 176    | 106        | 68    | 86    |
| AUG          | 10,282,000          | 3,878,000                                                                   | 3,255,566        | 0             | 1139               | 994                             | 1097         | 181                 | 100      | 154    | 93         | 47    | 78    |
| SEP          | 8,630,000           | 3,992,000                                                                   | 3,225,841        | 12            | 1115               | 922                             | 1058         | 188                 | 136      | 164    | 98         | 24    | 75    |
|              |                     |                                                                             |                  |               |                    |                                 |              |                     |          |        |            |       |       |
| OCT          | 4,960,000           | 1,430,000                                                                   | 2,047,955        | 264           | 1050               | 993                             | 1075         | 249                 | 106      | 159    | 36         | 61    | 80    |
| NOV          | 7,231,000           | 4,048,000                                                                   | 2,405,228        | 108           | 1108               | 956                             | 1025         | 177                 | 61       | 126    | 96         | 34    | 99    |
| DEC          | 2,345,000           | 1,918,000                                                                   | 1,163,711        | 180           | 995                | 916                             | 957          | 197                 | 127      | 141    | 53         | 18    | 36    |
| *Flow meter  | out of service - es | *Flow meter out of service - estimated average from Feb. and April readings | from Feb. and A  | pril readings |                    |                                 |              |                     |          |        |            |       |       |
|              |                     |                                                                             |                  |               |                    |                                 |              |                     |          |        |            |       |       |
| Total amount | t injected in 2009  | Total amount injected in 2009 - 34,042,355 gallons                          | รทร              |               |                    |                                 |              |                     |          |        |            |       |       |

| Pen.<br>Inj.<br>Zone  | Yes                 | Yes                 | 8<br>N              | Yes                  | S<br>S                           | °                   | Š                        | 8                                   | Yes                          | Yes                     | Š                           | Yes                  | Yes                     | <sup>o</sup> Z              | Yes                     | °N                           | Yes                      | Yes                       | Yes                       | 8<br>8                     | 9<br>2                   | °Z                       | 8<br>N                   | Yes                  |
|-----------------------|---------------------|---------------------|---------------------|----------------------|----------------------------------|---------------------|--------------------------|-------------------------------------|------------------------------|-------------------------|-----------------------------|----------------------|-------------------------|-----------------------------|-------------------------|------------------------------|--------------------------|---------------------------|---------------------------|----------------------------|--------------------------|--------------------------|--------------------------|----------------------|
| Status                | S.Z.                | P&A                 | Shallow             | Deep                 | P&A                              | CBM                 | CBM                      | P&A                                 | Shallow                      | Shallow                 | Shallow                     | Deep                 | Deep                    | Shallow                     | CBM                     | P&A                          | CBM                      | Deep                      | Deep                      | CBM                        | Shallow                  | Shallow                  | P&A                      | Deep                 |
| RESERVOIR             | MESAVERDE           | DAKOTA              | CHACRA              | GALLUP               | PICTURED CLIFFS                  | FRUITLAND COAL      | FRUITLAND COAL           |                                     | CHACRA                       | PICTURED CLIFFS         | FRUITLAND SAND              | DAKOTA               | DAKOTA                  | CHACRA                      | FRUITLAND COAL          |                              | FRUITLAND COAL           | DAKOTA                    | GALLUP                    | FRUITLAND COAL             | CHACRA                   | CHACRA                   | PICTURED CLIFFS          | GALLUP               |
| OPERATOR              | WESTERN REFINING    | BP AMERICA          | XTO ENERGY, INC     | XTO ENERGY, INC      | Pre-Ongard                       | HOLCOMB 0&G         | H-27-29N-11W HOLCOMB O&G | Pre-Ongard                          | H-27-29N-11W XTO ENERGY, INC | Burlington              | F-27-29N-11W MANANA GAS INC | Burlington           | . Burlington            | F-27-29N-11W MANANA GAS INC | Burlington              | Pre-Ongard                   | F-26-29N-11W HOLCOMB O&G | XTO ENERGY, INC           | Burlington                | Burlington                 | Burlington               | ENERGEN                  | Pre-Ongard               | ENERGEN              |
| ULSTR                 | 1-27-29N-11W        | I-27-29N-11W        | 1-27-29N-11W        | I-27-29N-11W         | I-27-29N-11W                     | I-27-29N-11W        | H-27-29N-11W             | H-27-29N-11W Pre-Ongard             | H-27-29N-11W                 | K-27-29N-11W Burlington | F-27-29N-11W                | F-27-29N-11W         | M-26-29N-11W Burlington | F-27-29N-11W                | L-27-29N-11W Burlington | C-27-29N-11W Pre-Ongard      | F-26-29N-11W             | F-26-29N-11W              | A-34-29N-11W              | N-26-29N-11W               | A-34-29N-11W             | N-26-29N-11W ENERGEN     | M-27-29N-11W Pre-Ongard  | C-34-29N-11W ENERGEN |
| P&A Date              |                     | 19-Jan-94           |                     |                      | 18-Oct-82                        |                     |                          | 18-Aug-55                           |                              |                         |                             |                      |                         |                             |                         | 09-Nov-78                    |                          |                           |                           |                            |                          |                          | 27-Jun-75                |                      |
| Total<br>Depth        | 3514                | 6298                | 2839                | 6177                 | 1717                             | 1714                | 1689                     | 1800                                | 6262                         | 5808                    | 1354                        | 6160                 | 6348                    | 2710                        | 6214                    | 800                          | 4030                     | 6242                      | 6148                      | 1760                       | 2857                     | 2869                     | 1747                     | 5970                 |
| Perf.<br>Bottom       | 3514                | ∞                   |                     | "                    |                                  | 4                   | 6                        |                                     | _                            | _                       |                             |                      |                         |                             |                         |                              | •                        | w                         |                           | <b>4</b>                   | 2                        | .,                       |                          |                      |
| tro!                  | 35                  | 6298                | 2839                | 5646                 |                                  | 1714                | 1689                     |                                     | 2810                         | 1770                    | 1354                        | 6160                 | 6348                    | 2710                        | 1661                    |                              | 1645                     | 6242                      | 6148                      | 1760                       | 2857 2                   | 2869 2                   | 1747                     | 5970                 |
| Perf<br>Top           | 3276 38             | 6157                | 2827 2839           | 5314 564             |                                  | 1543 171            | 1483 168                 |                                     | 2701 2810                    | 1680 1770               | 1326 1354                   | 6024 6160            | 6176 6348               | 2578 2710                   | 1388 1661               |                              |                          |                           |                           |                            |                          |                          |                          | 5326 5970            |
|                       |                     |                     |                     |                      | 30-045-07812                     |                     |                          | 30-045-07883                        |                              |                         |                             |                      |                         |                             |                         | 30-045-07896                 | 1645                     | 6242                      | 6148                      | 1760                       | 2857                     | 2869                     | 1747                     |                      |
| Perf<br>Top           | 3276                | 6157                | 2827                | 5314                 | 1 30-045-07812                   | 1543                | 1483                     | 2                                   | 2701                         | 1680                    | 1326                        | 6024                 | 6176                    | 2578                        | 1388                    | 1 30-045-07896               | 1462 1645                | 1E 30-045-24083 6086 6242 | 6086 6148                 | 1468 1760                  | 2747 2857                | 2746 2869                | 1664 1747                | 5326                 |
| WELLNAME # APINO Perf | 3276                | 6157                | 2827                | 30-045-30833 5314    | Davis Pooled Unit 1 30-045-07812 | 1543                | 1483                     | Davis PU/FB Umbarger 2 30-045-07883 | 30-045-24084 2701            | 30-045-25673 1680       | 1326                        | 6024                 | 6176                    | 2578                        | 1388                    | Black Diamond 1 30-045-07896 | 1462 1645                | 6086 6242                 | 30-045-25657 6086 6148    | 30-045-31118 1468 1760     | 30-045-24574 2747 2857   | 30-045-24572 2746 2869   | 1664 1747                | 30-045-25707 5326    |
| # APINO Perf          | 1 30-045-29002 3276 | 1 30-045-07825 6157 | 1 30-045-23554 2827 | 1R 30-045-30833 5314 | -                                | 1 30-045-34463 1543 | 2 30-045-34409 1483      | 2                                   | 1E 30-045-24084 2701         | 18 30-045-25673 1680    | 1 30-045-27361 1326         | 1E 30-045-24673 6024 | 1 30-045-12003 6176     | 1 30-045-27365 2578         | 1 30-045-07835 1388     | -                            | 1 30-045-25329 1462 1645 | 1E 30-045-24083 6086 6242 | 16 30-045-25657 6086 6148 | 100 30-045-31118 1468 1760 | 9 30-045-24574 2747 2857 | 9 30-045-24572 2746 2869 | 1 30-045-07903 1664 1747 | 15 30-045-25707 5326 |

| Pen.<br>Int.<br>Zone         | °N           | Yes          | 8<br>N          | °Z                          | °Z                          | Yes                         | 8<br>N                  | 8<br>N                      | S<br>N                      | Yes                         | S<br>S                      | §                          | °Z                      | Yes          | Yes                | Š                         | Yes          | 8            | Yes                     | Yes                     | Yes                          | o<br>Z          | Yes          | o<br>N                  |
|------------------------------|--------------|--------------|-----------------|-----------------------------|-----------------------------|-----------------------------|-------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------------|-------------------------|--------------|--------------------|---------------------------|--------------|--------------|-------------------------|-------------------------|------------------------------|-----------------|--------------|-------------------------|
| Status                       | Shallow      | Deep         | Shallow         | Shallow                     | P&A                         | P&A                         | P&A                     | Shallow                     | CBM                         | Deep                        | Shallow                     | Shallow                    | DRY                     | Deep         | Deep               | Shallow                   | Deep         | DRY          | Shallow                 | Deep                    | $\vec{z}$                    | P&A             | Deep         | DRY                     |
| RESERVOIR                    | CHACRA       | GALLUP       | PICTURED CLIFFS | CHACRA                      | FRUITLAND SAND              | DAKOTA                      | (N/A)                   | CHACRA                      | FRUITLAND COAL              | DAKOTA                      | FRUITLAND SAND              | PICTURED CLIFFS 8          | FARMINGTON              | DAKOTA       | DAKOTA             | FARMINGTON, NORTH Shallow | DAKOTA       | FARMINGTON   | CHACRA                  | GALLUP                  | MORRISON BLUFF EN            | PICTURED CLIFFS | DAKOTA       |                         |
| <u>OPERATOR</u>              | ENERGEN      | Burlington   | Burlington      | P-22-29N-11W MANANA GAS INC | O-22-29N-11W JOHN C PICKETT | P-22-29N-11W MANANA GAS INC | Pre-Ongard              | N-22-29N-11W MANANA GAS INC | N-22-29N-11W MANANA GAS INC | N-22-29N-11W MANANA GAS INC | N-22-29N-11W MANANA GAS INC | G-34-29N-11W CHAPARRAL O&G | Pre-Ongard              | Burlington   | XTO ENERGY, INC    | D-34-29N-11W MCELVAIN O&G | Burlington   | Pre-Ongard   | Burlington              | Burlington              | B-26-29N-11W XTO ENERGY, INC | CHAPARRAL O&G   | Burlington   | Pre-Ongard              |
| ULSTR                        | M-27-29N-11W | K-26-29N-11W | M-27-29N-11W    | P-22-29N-11W                | O-22-29N-11W                | P-22-29N-11W                | M-26-29N-11W Pre-Ongard | N-22-29N-11W                | N-22-29N-11W                | N-22-29N-11W                | N-22-29N-11W                | G-34-29N-11W               | M-23-29N-11W Pre-Ongard | J-26-29N-11W | B-26-29N-11W       | D-34-29N-11W              | F-34-29N-11W | O-23-29N-11W | E-35-29N-11W Burlington | C-35-29N-11W Burlington | B-26-29N-11W                 | E-35-29N-11W    | G-34-29N-11W | P-28-29N-11W Pre-Ongard |
| P&A Date                     |              |              |                 |                             | 02-Mar-00                   | 14-Jun-99                   | 11-Nov-58               |                             |                             |                             |                             |                            |                         |              |                    |                           |              |              |                         |                         |                              | 18-Dec-99       |              |                         |
| <u>Total</u><br><u>Depth</u> | 2790         | 5870         | 1678            | 2754                        | 1466                        | 6274                        | 1917                    | 2732                        | 1608                        | 6226                        | 1410                        | 1736                       | 2335                    | 6430         | 6160               | 1525                      | 6347         | 2015         | 6328                    | 5943                    | 7382                         | 1790            | 6340         | 870                     |
| Perf<br>Bottom               | 2790         | 5870         | 1678            | 2754                        | 1466                        | 6274                        |                         | 2732                        | 1608                        | 6226                        | 1410                        | 1736                       |                         | 6430         | 6160               | 1064                      | 6347         |              | 2906                    | 5943                    | 7070                         | 1790            | 6340         |                         |
| Perf<br>Top                  | 2668         | 5295         | 1648            | 2627                        | 1380                        | 6072                        |                         | 2622                        | 1440                        | 6052                        | 1390                        | 1726                       |                         | 6172         | 6047               | 1060                      | 6202         |              | 2784                    | 5369                    | 6952                         | 1776            | 6171         |                         |
| APINO                        | 30-045-24573 | 30-045-25612 | 30-045-21732    | 30-045-26721                | 30-045-07959                | 30-045-07961                | 30-045-07776            | 30-045-26731                | 30-045-34312                | 30-045-07940                | 30-045-13089                | 30-045-20755               | 30-545-02123            | 30-045-33093 | 30-045-07733       | 30-045-24834              | 30-045-24835 | 30-545-02124 | 30-045-24837            | 30-045-25675            | 30-045-30788                 | 30-045-20752    | 30-045-07672 | 30-045-07751            |
| #⊧                           | က            | က            | #               | 2                           | -                           | <del>-</del>                | <del></del>             | <b>~</b>                    |                             | -                           | 2                           | 2                          | 33                      | <u>†</u>     | -                  | 11                        | 7E           | 4            | 4E                      | 15                      | _                            | <b>←</b>        | 5            | ~                       |
| WELLNAME                     | GARLAND      | CALVIN       | GARLAND B       | NANCY HARTMAN               | GRACE PEARCE                | HARTMAN                     | Davis                   | MARY JANE                   | ROYAL FLUSH                 | COOK                        | COOK                        | SHELLY                     | HARE                    | CALVIN       | SULLIVAN GAS COM D | ELLEDGE FEDERAL 34        | CONGRESS     | HARE         | CONGRESS                | CONGRESS                | ASHCROFT SWD                 | LEA ANN         | CONGRESS     | Viles EE                |
| Miles to<br>DW1              | 0.65         | 0.67         | 0.68            | 0.70                        | 0.71                        | 0.72                        | 0.73                    | 0.75                        | 0.76                        | 0.79                        | 0.79                        | 0.82                       | 0.82                    | 0.84         | 0.85               | 0.85                      | 0.89         | 06.0         | 06.0                    | 06.0                    | 06.0                         | 06.0            | 0.94         | 0.94                    |
| <u>Map</u><br>Seq.           | 25           | 26           | 27              | 28                          | 29                          | 30                          | 31                      | 32                          | 33                          | 34                          | 35                          | 36                         | 37                      | 38           | 39                 | 40                        | <b>4</b>     | 42           | 43                      | 44                      | 45                           | 46              | 47           | 48                      |

| WELLNAME         #         APINO         Perf Top         Perf Bottom Depth         Total         Ps.A Date         ULSTR         OPER/           Sullivan         1X 30-045-29107         900         23-Jun-55         G-26-29N-11W Pre-Ongard | APINO         Perf Total           Top         Bottom         Depth           30-045-29107         900 | Perf Total Top Bottom Depth | Perf Total Bottom Depth | Total<br>Depth<br>900 |           | P&A Date ULSTR<br>23-Jun-55 G-26-29N-11W    | <u>ULSTR</u><br>G-26-29N-11W |             | OPERATOR<br>Pre-Ongard       | RESERVOIR<br>PICTURED CLIFFS | Status<br>P&A | Pen.<br>Inj.<br>Zone<br>No |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|-----------------------|-----------|---------------------------------------------|------------------------------|-------------|------------------------------|------------------------------|---------------|----------------------------|
| selby Pooled Unit 2 30-045-07895 1600                                                                                                                                                                                                            | 30-045-07895 1600                                                                                      | 1600                        |                         |                       |           | 25-3411-35 G-20-25N-<br>05-May-78 A-28-29N- | A-28-29N-                    | ¥ %1        | Pre-Ongard                   | PICTURED CLIFFS              | P &A          | 2 8                        |
| Masden-Selby 3 30-045-07762 600 05-Jun-78 A-28-29N-11W Pre-Ongard                                                                                                                                                                                | 009                                                                                                    | 009                         |                         |                       |           | 05-Jun-78 A-28-29N                          | A-28-29N                     | -11W        | Pre-Ongard                   |                              | P&A           | Š                          |
| MASDEN GAS COM 1 30-045-07894 6023 6125 6125 A-28-29                                                                                                                                                                                             | 6023 6125 6125                                                                                         | 6023 6125 6125              | 6125 6125               | 6125                  |           | A-28-29                                     | A-28-29                      | N-11W       | A-28-29N-11W XTO ENERGY, INC | ракота                       | Deep          | Yes                        |
| Sullivan 1 30-045-07870 1420 31-Aug-53 G-26-2                                                                                                                                                                                                    | 1420 31-Aug-53                                                                                         | 1420 31-Aug-53              | 31-Aug-53               | 31-Aug-53             | 31-Aug-53 |                                             | G-26-2                       | 9N-11W      | G-26-29N-11W Pre-Ongard      | PICTURED CLIFFS              | P&A           | 9<br>2                     |
| CONGRESS 1 30-045-07674 PC 30-Oct-53 J-34-2                                                                                                                                                                                                      | PC 30-Oct-53                                                                                           | PC 30-Oct-53                | 30-Oct-53               | 30-Oct-53             | 30-Oct-53 | 30-Oct-53 J-34-2                            | J-3 <b>4</b> -2              | 9N-11W      | J-34-29N-11W Pre-Ongard      | PICTURED CLIFFS              | P&A           | Š                          |
| EARL B SULLIVAN 1 30-045-23163 2750 2761 2761 B-26-2                                                                                                                                                                                             | 2750 2761 2761                                                                                         | 2750 2761 2761              | 2761 2761               | 2761                  |           | B-26-2                                      | B-26-2                       | 9N-11W      | B-26-29N-11W XTO ENERGY, INC | CHACRA                       | Shallow       | 8                          |
| STATE GAS COM BS 1 30-045-23550 1470 1648 2761 K-23-2                                                                                                                                                                                            | 1648 2761                                                                                              | 1648 2761                   | 1648 2761               | 2761                  |           | K-23-2                                      | K-23-2                       | 9N-11W      | K-23-29N-11W HOLCOMB O&G     | FRUITLAND COAL               | CBM           | °N                         |
| PEARCE GAS COM 1 30-045-07985 6154 6182 6182 10-Mar-97 K-23-29N-11W BP AMERICA                                                                                                                                                                   | 6154 6182 6182                                                                                         | 6154 6182 6182              | 6182 6182               | 6182                  |           | 10-Mar-97 K-23-2                            | K-23-2                       | 9N-11W      | BP AMERICA                   | DAKOTA                       | P&A           | Yes                        |
| CHAPARRAL 1 30-045-20609 1712 1731 1731 E-34-2                                                                                                                                                                                                   | 1712 1731 1731                                                                                         | 1712 1731 1731              | 1731 1731               | 1731                  |           | E-34-2                                      | E-34-2                       | 9N-11W      | E-34-29N-11W CHAPARRAL O&G   | PICTURED CLIFFS              | Shallow       | o<br>N                     |
| CONGRESS 2 30-545-02151 Frlind -34-29                                                                                                                                                                                                            | FrfInd                                                                                                 | FrfInd                      |                         |                       |           | -34-29                                      | -34-29                       | -34-29N-11W | Pre-Ongard                   | FRUITLAND SAND               | DRY           | Š                          |

| r | - Zone        | <u>N</u> | 12  | 4   | 0 | 5   | 4       | 0    | 35    |
|---|---------------|----------|-----|-----|---|-----|---------|------|-------|
|   | Pen Inj. 20ne | Yes      | က   | 0   | 2 | 2   | က       | 4    | 24    |
|   | Total         | Wells    | 15  | 4   | 2 | 7   | 17      | 14   | 59    |
|   |               | Status   | P&A | Dry | Ţ | CBM | Shallow | Deep | Total |

# Section 6.0 Form C-103 Notifications

|   | Submit 3 Copies To Appropriate District Office                          | State of New M                                                         | exico                       |                             | Form C-103             |
|---|-------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------|-----------------------------|------------------------|
| } | District 1                                                              | Energy, Minerals and Nat                                               | ural Resources              |                             | June 19. 2008          |
| • | 1625 N. French Dr., Hobbs, NM 88240                                     |                                                                        |                             | WELL API NO.                | 220.0                  |
|   | District II<br>1301 W. Grand Ave., Artesia, NM 88210                    | OIL CONSERVATION                                                       | NOIVISION                   | 30-045-290002-00            |                        |
|   | District III                                                            | 1220 South St. Fra                                                     |                             | 5. Indicate Type of L       |                        |
|   | 1000 Rio Brazos Rd , Aziec, NM 87410                                    | Santa Fe, NM 8                                                         |                             | STATE                       | FEE                    |
|   | District IV<br>1220 S. St. Francis Dr., Santa Fe, NM<br>87505           | Santa I C, INIVI o                                                     | 17303                       | 6. State Oil & Gas Le       | ease No.               |
|   |                                                                         | CES AND REPORTS ON WELL                                                | S                           | 7. Lease Name or Un         | it Agreement Name      |
|   | (DO NOT USE THIS FORM FOR PROPOS<br>DIFFERENT RESERVOIR USE "APPLIC     | SALS TO DRILL OR TO DEEPEN OR PI                                       | LUG BACK TO A               | Disposal                    |                        |
|   |                                                                         | Gas Well 🗌 OtherX SWR                                                  |                             | 8. Well Number #00          |                        |
|   | 2. Name of Operator Western Refining Souhwest, Inc. –                   | Bloomfield Refinery                                                    |                             | 9. OGRID Number<br>037218   |                        |
|   | 3. Address of Operator                                                  |                                                                        |                             | 10. Pool name or Wi         |                        |
|   | #50 Road 4990 Bloomfield, NM                                            | 87413                                                                  |                             | SHD; Mesall                 | and a                  |
| Ī | 4. Well Location                                                        |                                                                        |                             | ( ) / ( )                   |                        |
| Ĭ | Unit Letter I: 244                                                      | 2 feet from the South                                                  | line and 1250               | feet from theEast           | line                   |
|   | Section 24 27                                                           | Township 29                                                            | Range 11                    |                             | unty San Juan          |
|   |                                                                         | 11. Elevation (Show whether DI                                         |                             |                             |                        |
|   |                                                                         | Tr. Biovación (Brion mientes Br                                        | i, 1112, 111, 011, 011      |                             |                        |
|   |                                                                         |                                                                        |                             |                             |                        |
|   | 12. Check A                                                             | appropriate Box to Indicate N                                          | Nature of Notice            | e, Report or Other Da       | ta                     |
|   | NOTICE OF IN                                                            | TENTION TO:                                                            | 9111                        | BSEQUENT REPO               | DT OE:                 |
|   | PERFORM REMEDIAL WORK                                                   | PLUG AND ABANDON                                                       | REMEDIAL WO                 |                             | TERING CASING          |
|   | TEMPORARILY ABANDON                                                     | CHANGE PLANS                                                           |                             |                             | AND A                  |
|   | August 1                                                                |                                                                        | 1                           |                             | IND A                  |
|   | PULL OR ALTER CASING                                                    | MULTIPLE COMPL                                                         | CASING/CEME                 | NI JOB                      |                        |
|   | DOWNHOLE COMMINGLE                                                      |                                                                        |                             |                             |                        |
|   | OTHER:                                                                  | Ø                                                                      | OTHER:                      |                             |                        |
|   | of starting any proposed wo or recompletion.                            | leted operations. (Clearly state all<br>rk). SEE RULE 1103, For Multip | ple Completions: A          | Attach wellbore diagram (   | of proposed completior |
|   | This Class I Injection Well operated Discharge Permit Disposal Well UIC |                                                                        | nc. – Bloomfield R          | tefinery is permitted by N  | ew Mexico OCD          |
|   | Well Maintenance (Down-Hole Clea                                        | n Out) will be conducted starting                                      | approximately on 4          | 1-22-09 or no later than 4- | 30-09.                 |
|   |                                                                         | ومسر                                                                   |                             | 921                         | N ADD 2010             |
|   |                                                                         | <i>*</i>                                                               |                             | KUV                         | D APR 20 '09           |
|   |                                                                         |                                                                        |                             | on                          | CONS. DIV.             |
|   |                                                                         |                                                                        |                             |                             |                        |
|   |                                                                         |                                                                        |                             |                             | DIST. 3                |
|   |                                                                         |                                                                        |                             |                             |                        |
|   | Spud Date:                                                              | Rig Release D                                                          | Date:                       |                             |                        |
|   |                                                                         |                                                                        |                             |                             |                        |
| - | I hereby certify that the information a                                 | above is true and complete to the l                                    | hest of my knowled          | loe and belief              |                        |
|   | $\alpha$                                                                | to the and complete to the                                             | oost of my knowice          | 150 and benef.              |                        |
| ; | SIGNATURE CINDY HWYAC                                                   | Lo TITLE Envir                                                         | renmental Gordi             | nator DATE                  | 4-16-09                |
|   |                                                                         | urtaalo E-mail addres                                                  | Cincle hunter               | nator DATE                  | - exc. (-31-(11)k)     |
|   | Type or print name Chiby 11 t                                           |                                                                        |                             |                             | E: 303-032-4(4)        |
|   | APPROVED BY: Tolk G                                                     | Depu                                                                   | ity Oil & Gas<br>District # | Inspector, 3 DATE           | APR 2 4 2009           |
|   | Conditions of Approval (if any):                                        |                                                                        |                             |                             | 110 11 12 - 6000       |



BLOOMFIELD REFINERY

Jim Griswold New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 RCVD APR 20 '09 OIL CONS. DIV.

Certified Mail: 7007 0220 0004 0187 0756

DIST. 3

April 16, 2009

RE: Bloomfield Refinery UIC Class I Well API# 30-0-45-29002 Disposal Well #1 Unit I, Section 27, Township 20, Range 11

Dear Mr. Griswold,

Please find enclosed the C-103 notification for well maintenance work (down-hole cleanout) that will be conducted on Bloomfield Refinery's Class I Injection Well. This work is tentatively scheduled for 4-22-09 but will occur no later than 4-30-09.

If you need additional information, please contact Randy Schmaltz (505-632-4171), Bob Krakow (505-632-4135), or myself (505-632-4161).

Sincerely.

Cindy Hurtado

Environmental Coordinator

Bloomfield Refinery - Western Refining

Cc: Randy Schmaltz – Environmental Manager – Bloomfield Refinery Brandon Powell – NMOCD Aztec District Office

| Submit 3 Copies To Appropriate District Office                                                                          | State of New Mo<br>Energy, Minerals and Natu                     |                                                |                                           | Form C-103<br>May 27, 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>District I</u><br>1625 N. French Dr., Hobbs, NM 88240                                                                | thergy, Millerals and Nati                                       | nar Resources                                  | WELL API NO.                              | 171117 27, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| District II<br>1301 W. Grand Ave., Artesia, NM 88210                                                                    | OIL CONSERVATION                                                 | DIVISION                                       | 30-045-290002-0                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| District III                                                                                                            | 1220 South St. Fran                                              | i                                              | 5. Indicate Type<br>STATE                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1000 Rio Brazos Rd., Aztec, NM 87410<br>District IV                                                                     | Santa Fe, NM 8                                                   |                                                | 6. State Oil & Ga                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1220 S. St. Francis Dr., Santa Fe, NM                                                                                   | ,                                                                |                                                | 0. 0 0 0                                  | .5 501.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SUNDRY NOTICES                                                                                                          | AND REPORTS ON WELLS                                             | `                                              | 7 Lease Name of                           | r Unit Agreement Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (DO NOT USE THIS FORM FOR PROPOSALS DIFFERENT RESERVOIR. USE "APPLICATION"                                              | TO DRILL OR TO DEEPEN OR PL                                      | UG BACK TO A                                   | 7. Bouse Rume of                          | ome, ig. coment in the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th |
| PROPOSALS.)   1. Type of Well: Oil Well   Gas                                                                           | Well DtherX                                                      |                                                | 8. Well Number                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2. Name of Operator                                                                                                     | Wen Coment                                                       |                                                | 9. OGRID Numb                             | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Western Refining Southwest, Inc Blo                                                                                     | omfeld Refinery                                                  |                                                | 037218                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3. Address of Operator                                                                                                  | 2                                                                |                                                | 10. Pool name or                          | Wildcat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| #50 Road 4990 Bloomfield, NM 8741                                                                                       | <i>3</i>                                                         |                                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4. Well Location                                                                                                        |                                                                  |                                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unit Letter 1: 2442 feet fi                                                                                             |                                                                  |                                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                         | ownship 29 Range Elevation (Show whether DR                      | NMPM NMPM                                      |                                           | / San Juan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Pit or Below-grade Tank Application or Clos                                                                             | ·                                                                | , KKB, K1, OK, etc./                           |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                         | Distance from nearest fresh v                                    | vater well Dista                               | mee from nearest surf                     | ace water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                         | Below-Grade Tank: Volume                                         |                                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                         | opriate Box to Indicate N                                        |                                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12. Check Appl                                                                                                          | opitale box to indicate is                                       | fattife of Notice, i                           | report of Other                           | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NOTICE OF INTER                                                                                                         | NTION TO:                                                        | SUBS                                           | SEQUENT RE                                | PORT OF:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PERFORM REMEDIAL WORK 🔲 PL                                                                                              |                                                                  | REMEDIAL WORK                                  |                                           | ALTERING CASING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                         | IANGE PLANS ☐                                                    |                                                | LING OPNS.                                | P AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PULL OR ALTER CASING   MI                                                                                               | JLTIPLE COMPL                                                    | CASING/CEMENT                                  | JOB 🗌                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OTHER:                                                                                                                  |                                                                  | OTHER:                                         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ol> <li>Describe proposed or completed<br/>of starting any proposed work).<br/>or recompletion.</li> </ol>             | operations. (Clearly state all<br>SEE RULE 1103. For Multip      | pertinent dotails, and<br>de Completions: Att  | give pertinent date<br>ach wellbore diagr | es, including estimated date<br>am of proposed completion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| The Class I Injection Well operated by W<br>Discharge Permit Disposal Well UICL-9.                                      | estern Refining Southwest, In EPA ID# NMD089416416.              | c. – Bloomfield Refi                           | nery is permitted b                       | y New Mexico OCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ·                                                                                                                       |                                                                  |                                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| April 28, 2009 coil tubing clean out and a downhole, 65 barrels of flush water was a increasesd from 60 gpm to 100 gpm. | cidization processes were con<br>used. After the process was con | npleted on the injection mpleted the Injection | on Well. 83 barrels<br>Well was put back  | s of HCL acid was injected con line. The injection rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9Pm 10 9Pm                                                                                                              |                                                                  |                                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                         |                                                                  |                                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                         |                                                                  |                                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                         |                                                                  |                                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                         |                                                                  |                                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                         |                                                                  |                                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                         |                                                                  |                                                | · · · · · · · · · · · · · · · · · · ·     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I hereby certify that the information above grade tank has been yill be constructed or closed                           | l according to NMOCD guidelines [                                | ], a general permit [] c                       | er an (attached) altern                   | ative OCD-approved plan .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SIGNATURE ( my Huntado                                                                                                  |                                                                  |                                                |                                           | DATE 4-29-2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Type or print name For State Use Only                                                                                   | tado E-mail ac                                                   | idress: Cindy, hur                             | tado e wnr.197                            | Rephone No. 505-632 - 4/6/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| APPROVED BY: but the Conditions of Approval (if any):                                                                   | TITLE_                                                           | Environmental                                  | Engereen                                  | DATE \$/14/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Submit 3 Copies To Appropriate District Office  State of New Mexico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Form C-103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| District 1 1625 N. French Dr., Hobbs, NM 88240  Energy, Minerals and Natural Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WELL API NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| District II 1301 W. Grand Ave., Artesia, NM 88210 OIL CONSERVATION DIVISION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30-045-29002-00 5. Indicate Type of Lease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| District III 1220 South St. Francis Dr. 1000 Rio Brazos Rd., Aztec, NM 87410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STATE FEE X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| District IV Santa Fe, NM 87505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6. State Oil & Gas Lease No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1220 S. St. Francis Dr., Santa Fc, NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SUNDRY NOTICES AND REPORTS ON WELLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7. Lease Name or Unit Agreement Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (DO NOT USE THIS FORM FOR PROPOSALS TO DRILL OR TO DEEPEN OR PLUG BACK TO A DIFFERENT RESERVOIR. USE "APPLICATION FOR PERMIT" (FORM C-101) FOR SUCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Disposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PROPOSALS.)  1. Type of Well: Oil Well Gas Well OtherX (Disposal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8. Well Number #001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2. Name of Operator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9. OGRID Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| San Juan Refining Co/Western Refining Southwest, Inc Bloomfeld Refinery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 037218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3. Address of Operator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10. Pool name or Wildcat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| #50 Road 4990 Bloomfield, NM 87413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Blanco/Mesa Verde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4. Well Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unit Letter 1: 2442 feet from the South line and 1250 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | et from theEastline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Section 27 Township 29 Range 11 NMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11. Elevation (Show whether DR, RKB, RT, GR, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pit or Below-grade Tank Application   or Closure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pit type Depth to Groundwater Distance from nearest fresh water well Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pit Liner Thickness; mil Below-Grade Tank: Volume bbls; C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onstruction Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ol><li>Check Appropriate Box to Indicate Nature of Notice</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , Report or Other Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NOTICE OF INTENTION TO: SUB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SSEQUENT REPORT OF:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PERFORM REMEDIAL WORK PLUG AND ABANDON REMEDIAL WOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RILLING OPNS. PANDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PULL OR ALTER CASING   MULTIPLE COMPL   CASING/CEMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OTHER: Well Stimulation/Acidize Well  X  OTHER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13. Describe proposed or completed operations. (Clearly state all pertinent details, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ad give pertinent dates, including estimated date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| of starting any proposed work). SEE RULE 1103. For Multiple Completions: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| or recompletion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Western Refining Soutwest, Inc. – Bloomfield Refinery requests permission to perform well referenced above. Procedures for this project are attached.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ell stimulation/acidization procedures on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| The procedure will be scheduled pending approval from OCD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The protestant with our sentential politicing approval from OCD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I hope he contife that the information where it is a second of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the continuous of the | A Latin Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of th |
| I hereby certify that the information above is true and complete to the best of my knowled grade tank has been will be constructed or closed according to NMOCD guidelines, a general permit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SIGNATURE undy / unfado TITLE Environmental Coc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ordinator_DATE6/29/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Type or print name Cindy Hurtado E-mail address: cindy.hurtado@wnr.com For State Use Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Telephone No. (505)632-4161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ADEDOUGD GV. A. A.I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| APPROVED BY: Conditions of Approval (if any):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 Engineer DATE 6/29/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

#### Western Refining

#### **Procedure**

May 12, 2009

Well: Location:

By:

Disposal Well #1

Sec 26, T29N, R11W

San Juan Co, New Mexico

John Thompson

Field:

Mesaverde

Elevation:

API No: Lease No: 30-045-29002

#### Project:

Lower injection pressure by pumping 15% HCl acid.

#### Prior to Job:

Spot 2 ea. 400 bbl frac tanks (only 1 will be needed if displacement water is available from refinery). Hard line well to 1 tank (for flowback).

#### Acid Job:

- 1. Hold safety meeting w/ Halliburton and Western Refinery personnel and review
- Rig up Halliburton to well head and pressure test pumps and lines to 4000 psi.
- Pump 3,500 gal of 15% HCl acid w/ inihibtors and mutual solvent with 250 ea. biodegradable ball sealers
- 4. Displace acid to bottom perforation with ~ 24 bbls of 2% KCl water (or disposal water
- Shut well in for ~ 1 hr and let acid treatment "soak". Rig down and release Halliburton.
- Open well through 2" line and let well flow back to frac tank. Flow back approximately 400 bbls of fluid.
- 7. After flowback, return well to injection status and monitor rates and pressures.

#### Materials & Vendors

Acid: Halliburton Energy Services

Frac Tank: M&R Trucking Roustabouts: Englehart

Engineering/Supervision: Walsh Engineering

#### Hurtado, Cindy

From:

Hurtado, Cindy

Sent:

Monday, July 13, 2009 9:44 AM

To:

'Chavez, Carl J, EMNRD'; 'monica.kuehling@state.nm.us'; Schmaltz, Randy

Cc:

Krakow, Bob

Subject:

UICI-9 WRSW-Bloomfield Refinery Acid Job 7-07-09

Attachments: C-103 Follow up 7-07-09.pdf

#### Good Morning,

Please find attached the C-103 follow-up report for the well strmulation/acidization procedure that was conducted at Bloomfield Refinery's Class I Injection Well. Monica Kueling from the Aztec District OCD office was onsite and observed the well strmulation/acidization process. Please let me know if a hard copy of this report needs to be mailed out.

Thanks, Cindy

Cindy Hurtado
Environmental Coordinator
Western Refining Southwest, Inc. - Bloomfield Refinery
cindy.hurtado@wnr.com
505-632-4161

| Submit 3 Copies To Appropriate District Office  District 1                                                                                                                                            | State of New Me<br>Energy, Minerals and Natu                                                                |                                                         |                                                                        | Form C-103<br>May 27, 2004              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------|
| 1625 N. French Dr., Hobbs, NM 88240<br><u>District II</u><br>1301 W. Grand Ave., Artesia, NM 88210                                                                                                    | OIL CONSERVATION                                                                                            | DIVISION                                                | WELL API NO.<br>30-045-29002-00                                        |                                         |
| District III 1000 Rig Brazos Rd., Aztec, NM 87410                                                                                                                                                     | 1220 South St. Fran                                                                                         | icis Dr.                                                | 5. Indicate Type of Lease STATE FI                                     | SE X                                    |
| District IV<br>1220 S. St. Francis Dr., Santa Fe, NM<br>87505                                                                                                                                         | Santa Fe, NM 87                                                                                             | '505                                                    | 6. State Oil & Gas Lease N<br>N/A                                      | 0.                                      |
| SUNDRY NOTIC<br>(DO NOT USE THIS FORM FOR PROPOSA<br>DIFFERENT RESERVOIR. USE "APPLICA                                                                                                                |                                                                                                             | JG BACK TO A                                            | 7. Lease Name or Unit Agr<br>Disposal                                  | eement Name                             |
|                                                                                                                                                                                                       | as Well OtherX (Disposal)                                                                                   |                                                         | 8. Well Number #001                                                    |                                         |
| 2. Name of Operator San Juan Refining Co/Western Refin                                                                                                                                                | ing Southwest Inc - Bloomfeld I                                                                             | Refinery                                                | 9. OGRID Number 037218                                                 |                                         |
| 3. Address of Operator                                                                                                                                                                                | *                                                                                                           |                                                         | 10. Pool name or Wildcat                                               |                                         |
| #50 Road 4990 Bloomfield, NM 87                                                                                                                                                                       | 7413                                                                                                        |                                                         | Blanco/Mesa Verde                                                      |                                         |
|                                                                                                                                                                                                       | et from the South 1                                                                                         | ine and 1250 fee                                        | et from the East line                                                  |                                         |
| Section 27                                                                                                                                                                                            | Township 29 Range                                                                                           | II NMPN                                                 | 1 County San Juan                                                      | 1                                       |
|                                                                                                                                                                                                       | 11. Elevation (Show whether DR,                                                                             | RKB, RT, GR, etc.,                                      |                                                                        |                                         |
| Pit or Below-grade Tank Application Tor C                                                                                                                                                             | losure 🗌                                                                                                    |                                                         |                                                                        |                                         |
| Pit typeDepth to Groundwate                                                                                                                                                                           |                                                                                                             | ater well Dist                                          | ance from nearest surface water                                        |                                         |
| Pit Liner Thickness: mil                                                                                                                                                                              | Below-Grade Tank: Volume                                                                                    | bbls; Co                                                | nstruction Material                                                    |                                         |
| 12. Check Ap                                                                                                                                                                                          | propriate Box to Indicate N                                                                                 | ature of Notice,                                        | Report or Other Data                                                   |                                         |
| TEMPORARILY ABANDON                                                                                                                                                                                   | ENTION TO: PLUG AND ABANDON  CHANGE PLANS  MULTIPLE COMPL                                                   | SUB<br>REMEDIAL WOR<br>COMMENCE DRI<br>CASING/CEMEN     | LLING OPNS. P AND A                                                    | IG CASING 🗌                             |
| OTHER:                                                                                                                                                                                                |                                                                                                             | OTHER: Well Stin                                        | nulation/Acidize Well                                                  | Χ□                                      |
| <ol> <li>Describe proposed or complet<br/>of starting any proposed work<br/>or recompletion.</li> </ol>                                                                                               | ted operations. (Clearly state all p<br>i). SEE RULE 1103. For Multipl                                      |                                                         |                                                                        |                                         |
| On July 7, 2009, Western Refining Soil Injection well referenced above. The gravity "bio" ball sealers downhole. 80 flow back into frac tanks for three how injection Well was put back on line, flow | procedure consisted of pumping 3<br>00 gallons of flush water was used<br>rs. The well was allowed to flowb | 500 gallons of 15%. The well was shuack to the evaporat | 6 HCL acid in addition to 250 in 1 hour and 15 minutes and             | - 1.3 specific<br>then opened to        |
|                                                                                                                                                                                                       |                                                                                                             |                                                         |                                                                        |                                         |
|                                                                                                                                                                                                       | ·                                                                                                           |                                                         |                                                                        |                                         |
|                                                                                                                                                                                                       |                                                                                                             |                                                         |                                                                        |                                         |
| I hereby certify that the information ab                                                                                                                                                              | ove is true and complete to the be<br>used according to NMOCD guidelines                                    | st of my knowledge<br>l, a general permit []            | e and belief. I further certify the or an (attached) alternative OCD-s | nt any pit or below-<br>approved plan . |
| SIGNATURE ( indy ) Into                                                                                                                                                                               | ado title e                                                                                                 | nvironmental Coor                                       | dinatorDATE7/13/09                                                     |                                         |
| Type or print name Cirldy Hurtado For State Use Only                                                                                                                                                  | E-mail address: cindy.hurt                                                                                  | ado@wnr.com                                             | Telephone No. (505)632-4                                               | 161                                     |
| APPROVED BY:                                                                                                                                                                                          | TITLE                                                                                                       |                                                         | DATE                                                                   |                                         |
| Conditions of Approval (if any):                                                                                                                                                                      |                                                                                                             | -                                                       |                                                                        |                                         |
|                                                                                                                                                                                                       |                                                                                                             |                                                         |                                                                        |                                         |

.

| Submit 3 Copies To Appropriate District St                                                                                                                                                                                  | ate of New Mex        | xico                          |                                     | Form C-103             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------|-------------------------------------|------------------------|
|                                                                                                                                                                                                                             | inerals and Natur     | al Resources                  |                                     | May 27, 2004           |
| 1625 N French Dr., Hobbs, NM 88240<br>District II                                                                                                                                                                           |                       |                               | WELL API NO.<br>30-045-29002-00     |                        |
| 1301 W. Grand Avc., Artesia, NM 88210 OIL CON                                                                                                                                                                               | ISERVATION            |                               | 5. Indicate Type of Leas            | e                      |
| 1000 Pio Prozos Pd. Aztan NIA 07410                                                                                                                                                                                         | South St. France      |                               | STATE                               | FEE X                  |
| District IV<br>1220 S. St. Francis Dr., Santa Fc, NM                                                                                                                                                                        | anta Fe, NM 87        | 303                           | 6. State Oil & Gas Lease<br>N/A     | : No.                  |
| 87505                                                                                                                                                                                                                       |                       |                               |                                     |                        |
| SUNDRY NOTICES AND REPO<br>(DO NOT USE THIS FORM FOR PROPOSALS TO DRILL OR<br>DIFFERENT RESERVOIR. USE "APPLICATION FOR PERMI<br>PROPOSALS.)                                                                                | TO DEEPEN OR PLU      | G BACK TO A<br>R SUCH         | 7. Lease Name or Unit A<br>Disposal | Agreement Name         |
| 1                                                                                                                                                                                                                           | therX (Disposal)      |                               | 8. Well Number #001                 |                        |
| 2. Name of Operator                                                                                                                                                                                                         |                       |                               | 9. OGRID Number                     |                        |
| San Juan Refining Co/Western Refining Southwest,                                                                                                                                                                            | Inc. – Bloomfeld R    | Lefinery                      | 037218<br>10. Pool name or Wildca   |                        |
| 3. Address of Operator<br>#50 Road 4990 Bloomfield, NM 87413                                                                                                                                                                |                       |                               | Blanco/Mesa Verde                   |                        |
| 4. Well Location                                                                                                                                                                                                            |                       | 1 1250 6                      | of de Park 1                        |                        |
| Unit Letter 1: 2442 feet from the Se                                                                                                                                                                                        |                       |                               | t from theEastline                  | 1                      |
|                                                                                                                                                                                                                             |                       | 11 NMPN<br>RKB, RT, GR, etc.) |                                     | uan                    |
|                                                                                                                                                                                                                             |                       |                               |                                     |                        |
| Pit or Below-grade Tank Application or Closure                                                                                                                                                                              |                       |                               |                                     |                        |
| Pit typeDepth to GroundwaterDistance                                                                                                                                                                                        |                       |                               | ance from nearest surface wate      | r                      |
| Pit Liner Thickness: mil Below-Grade T                                                                                                                                                                                      |                       |                               | nstruction Material                 |                        |
| 12. Check Appropriate Bo                                                                                                                                                                                                    | x to Indicate Na      | nture of Notice,              | Report or Other Data                |                        |
| NOTICE OF INTENTION TO                                                                                                                                                                                                      | ): l                  | SUB                           | SEQUENT REPORT                      | OF:                    |
| PERFORM REMEDIAL WORK   PLUG AND ABA                                                                                                                                                                                        | ANDON 🗆               | REMEDIAL WORL                 |                                     | RING CASING 🗆          |
| TEMPORARILY ABANDON                                                                                                                                                                                                         |                       | COMMENCE DRI                  |                                     | ) A 📋                  |
| PULL OR ALTER CASING  MULTIPLE COI                                                                                                                                                                                          | WIPL []               | CASING/CEMENT                 | 1 106                               |                        |
| OTHER: Well Stimulation/Acidize Well                                                                                                                                                                                        |                       | OTHER:                        |                                     |                        |
| 13. Describe proposed or completed operations.                                                                                                                                                                              | (Clearly state all pe | ertinent details, and         | d give pertinent dates, inclu       | iding estimated date   |
|                                                                                                                                                                                                                             |                       |                               |                                     |                        |
| of starting any proposed work). SEE RULE or recompletion.  Western Refining Soutwest, Inc. – Bloomfield Refiner Class I Injection well referenced above. Procedures fo The procedure will be scheduled pending approval fro |                       |                               |                                     |                        |
|                                                                                                                                                                                                                             |                       |                               |                                     |                        |
| Western Refining Soutwest, Inc Bloomfield Refiner                                                                                                                                                                           | ry requests permiss   | sion to perform wel           | ll stimulation/acidization p        | ocedares on the        |
| Class I Injection well referenced above. Procedures for                                                                                                                                                                     | r this project are at | tached.                       | <u></u>                             | 213                    |
| The procedure will be scheduled pending approval to                                                                                                                                                                         | ill OCD.              |                               | 20.                                 |                        |
|                                                                                                                                                                                                                             |                       |                               | 8                                   | Ch 20 3                |
|                                                                                                                                                                                                                             |                       |                               | 99                                  |                        |
|                                                                                                                                                                                                                             |                       |                               | 14. X                               | <b>` %</b> `           |
|                                                                                                                                                                                                                             |                       |                               | (2)                                 | 1,00                   |
| I hereby certify that the information above is true and grade tank has been/will be constructed or closed according to I                                                                                                    | complete to the bes   | st of my knowleag             | e and dellet. I further cectify     | that any pit or below- |
| SIGNATURE (indy funtado                                                                                                                                                                                                     | TITLE_ E              | nvironmental Coor             | dinator_DATE9/11/0                  | 9                      |
|                                                                                                                                                                                                                             | address: cindy.hurt   | ado@wnr.com                   | Telephone No. (505)632              | 2-4161                 |
| For State Use Only                                                                                                                                                                                                          | Depu                  | ity Oil & Gas                 | Inspector,                          |                        |
| APPROVED BY: Jaly G. B.D.                                                                                                                                                                                                   | TITLE                 | ity Oil & Gas<br>District #   | dati                                | E SEP 1 4 2009         |
| APPROVED BY: Zelly G. Rode Conditions of Approval (if any): Notify NACOED                                                                                                                                                   | ATTEC 24 H            | lours Prior                   | TO BEGINNING OPE                    | ERATIONS               |

-

#### Western Refining

#### Procedure

August 18, 2009

Well:

Disposal Well #1

Field:

Mesaverde

Location:

Sec 26, T29N, R11W

Elevation:

30-045-29002

By:

San Juan Co, New Mexico John Thompson

API No:

Lease No:

### Project:

Lower injection pressure by pumping 15% HCI acid.

#### Prior to Job:

Spot 2 ea. 400 bbl frac tanks for flowback after acid job. Spot flowback tank for clean out. Use water truck for displacement. Hydrant on location has too much pressure for standard suction lines to acid truck. Hard line well to tank (s) for flowback.

#### Clean out and Acid Spot:

- 1. Hold safety meeting w/ Halliburton, Saniel and Western Refinery personnel and review procedure.
- 2. Rig up Sanjel coil tubing unit & Halliburton to well head and pressure test pumps and lines to'4000 psi.
- 3. RIH w/ 1-1/4" coil tubing to PBTD at 3520' KB. Clean out if necessary.
- 4. Pull coiled tubing up to bottom perforation at 3,460' KB (bottom perforation).
- 5. Spot 200 gal of 15% HCL w/ inhibitors.
- 6. Pull out coiled tubing and shut well in overnight.

#### Acid / Ball Off:

- 7. Establish an injection rate with water. Pump 4,000 gal of 15% HCl acid w/ inihibtors and mutual solvent with 300 ea. bio-degradable ball sealers. Pump 1st 500 gal without
- 8. Displace acid to bottom perforation with ~ 24 bbls of 2% KCl water (or disposal water if available).
- 9. Shut well in for ~ 1 hr and let acid treatment "soak". Rig down and release Halliburton.
- 10. Open well through 2" line and let well flow back to frac tank. Flow back approximately 400 bbls of fluid.
- 11. After flowback, return well to injection status and monitor rates and pressures.

#### Materials & Vendors

Acid: Halliburton Energy Services

Coil Tubing: Sanjel

Frac Tank: M&R Trucking Roustabouts: Englehart

Engineering/Supervision: Walsh Engineering

#### Hurtado, Cindy

From:

Hurtado, Cindy

Sent:

Thursday, September 17, 2009 1:30 PM

To:

 $\hbox{'Chavez, Carl J, EMNRD'; 'charlie.perrin@state.nm.us'; Schmaltz, Randy}\\$ 

Cc:

'kellyg.roberts@state.nm.us'; 'Kuehling, Monica, EMNRD'; Krakow, Bob

Subject:

Follow Up C103 - UICI-9 Acid Job 9-2009

Attachments: C103 Follow Up Report - Acid Job 9-2009.jpg

#### Good Afternoon,

Please find attached the follow up C-103 report for the well stimulation/acidization procedure that was conducted at Bloomfield Refinery's Class I Injection Well on September 15 and 16, 2009. Please contact me if you have questions concerning this report.

Thanks, Cindy

Cindy Hurtado
Environmental Coordinator
Western Refining Southwest, Inc. - Bloomfield Refinery
cindy.hurtado@wnr.com
505-632-4161

| Submit 3 Copies To Appropriate District Office <u>District I</u>                                                                                                                      | State of New Mexico<br>Energy, Minerals and Natural Resou                                                                                                         | Form C-103<br>May 27, 2004                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1625 N. French Dr., Hobbs, NM 88240<br><u>District II</u><br>1301 W. Grand Ave., Artesia, NM 88210<br><u>District III</u><br>1000 Rio Brazos Rd., Aztec, NM 87410<br><u>strict IV</u> | OIL CONSERVATION DIVISI<br>1220 South St. Francis Dr.<br>Santa Fe, NM 87505                                                                                       | 5. Indicate Type of Lease  STATE FEE X  6. State Oil & Gas Lease No.                                                                                                                                                     |
| (DO NOT USE THIS FORM FOR PROPO                                                                                                                                                       | ICES AND REPORTS ON WELLS SALS TO DRILL OR TO DEEPEN OR PLUG BACK T CATION FOR PERMIT" (FORM C-101) FOR SUCH                                                      | 7. Lease Name or Unit Agreement Name Disposal                                                                                                                                                                            |
| PROPOSALS.)                                                                                                                                                                           | Gas Well  OtherX (Disposal)                                                                                                                                       | 8. Well Number #001 9. OGRID Number                                                                                                                                                                                      |
|                                                                                                                                                                                       | fining Southwest, Inc. – Bloomfeld Refinery<br>87413                                                                                                              | 037218 10. Pool name or Wildcat Blanco/Mesa Verde                                                                                                                                                                        |
| 4. Well Location  Unit Letter I: 2442  Section 27  Pit or Below-grade Tank Application                                                                                                | feet from the South line and Township 29 Range 11  11. Elevation (Show whether DR, RKB, RT, por Closure                                                           | NMPM County San Juan                                                                                                                                                                                                     |
|                                                                                                                                                                                       | raterDistance from nearest fresh water well                                                                                                                       | Distance from nearest surface water                                                                                                                                                                                      |
| Pit Liner Thickness: mil                                                                                                                                                              | Below-Grade Tank: Volume Appropriate Box to Indicate Nature of                                                                                                    | bbls: Construction Material                                                                                                                                                                                              |
| NOTICE OF IN PERFORM REMEDIAL WORK TEMPORARILY ABANDON TO THE POLICY OR ALTER CASING                                                                                                  | ITENTION TO: PLUG AND ABANDON  REMED CHANGE PLANS  COMME                                                                                                          | SUBSEQUENT REPORT OF: IAL WORK                                                                                                                                                                                           |
| THER                                                                                                                                                                                  | □ OTHER:                                                                                                                                                          | : Well Stimulation/Acidize Well                                                                                                                                                                                          |
|                                                                                                                                                                                       |                                                                                                                                                                   | etails, and give pertinent dates, including estimated date tions: Attach wellbore diagram of proposed completion                                                                                                         |
| on the Class I Injection well referen<br>September 15, 2009 – Coil tubing of<br>HCL across the perforations – shut<br>September 16, 2009 – Dropped 350                                | ced above.  lean out was performed. Tagged bottom at 352 in the well.  1.18 specific gravity "bio" balls – pumped in 28 bbls. of 2% KCL water. Shut in the well f | nery performed well stimulation/acidization procedures 20° – circulated hole clean – spotted 200 gallons of 15% 4000 gallons of 15% HCL with corrosion inhibitor and for 1 hour 45 minutes. Flowed back 870 bbls to frac |
| I hereby certify that the information                                                                                                                                                 | above is true and complete to the best of my leading to NMOCD guidelines \( \sqrt{1} \), a general                                                                | Knowledge and belief. I further certify that any pit or below-<br>permit □ or an (attached) alternative OCD-approved plan □.                                                                                             |
|                                                                                                                                                                                       |                                                                                                                                                                   | ntal CoordinatorDATE9/17/09                                                                                                                                                                                              |
| pe or print name Cindy Hurtado                                                                                                                                                        |                                                                                                                                                                   |                                                                                                                                                                                                                          |
| APPROVED BY:  Conditions of Approval (if any):                                                                                                                                        | TITLE                                                                                                                                                             | DATE                                                                                                                                                                                                                     |

| Submit 3 Copies To Appropriate District                                                                                                                     | State of New Me                                                   | exico                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Form C-103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Office<br><u>District I</u>                                                                                                                                 | Energy, Minerals and Natu                                         | iral Resources                             | Living Living                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | May 27, 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1625 N. French Dr., Hobbs, NM 88240.<br>District II                                                                                                         |                                                                   | •                                          | WELL API NO.<br>30-045-29002-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1301 W. Grand Ave., Artesia, NM 88210                                                                                                                       | OIL CONSERVATION                                                  |                                            | 5. Indicate Type of Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>District III</u><br>1000 Rio Brazos Rd., Aztec, NM 87410                                                                                                 | 1220 Söuth St. Frai                                               |                                            | STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FEE X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <u>District IV</u>                                                                                                                                          | Santa Fe, NM 81                                                   | 7505                                       | 6. State Oil & Gas Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (220 S. St. Francis Dr., Santa Fe, AM<br>(7505                                                                                                              |                                                                   |                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                             |                                                                   | UG BACK TO A                               | 7. Lease Name or Unit<br>Disposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Agreement Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PROPOSALS.)                                                                                                                                                 |                                                                   |                                            | 8. Well Number #001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I. Type of Well; Oil Well G                                                                                                                                 | is Well [ OtherX (Disposal)                                       |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ol> <li>Name of Operator</li> <li>San Juan Refining Co/Western Refini</li> </ol>                                                                           | nu Sputhwast Inc. Disamfuld                                       | Patinary                                   | 9. OGRID Number<br>037218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3. Address of Operator                                                                                                                                      | ng Southwest, me Bloomfeld                                        | Kermery                                    | 10. Pool name or Wild                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| #50 Road 4990 Bloomfield, NM 87-                                                                                                                            | 413                                                               |                                            | Blanco/Mesa Verde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4. Well Location                                                                                                                                            |                                                                   |                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                             | t from the South                                                  | line and 1250 G                            | et from the East 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Section 27                                                                                                                                                  |                                                                   | TI NMP                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                             | 11. Elevation (Show whether DR                                    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                             | 11. The vactor (Short whenler Est                                 | , KKB, KT, OK, EK                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| it or Below-grade Tank Application 🗌 or C                                                                                                                   | losure 🗌                                                          |                                            | Desire services and a service service service service services services and a service service service service service services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services services se | Personal State of the Parish Control of Parish State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of S |
| rit type Depth to Groundwate:                                                                                                                               | r Distance from nearest fresh v                                   | vater well Di                              | stance from nearest surface wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| it Liner Thickness; mil                                                                                                                                     | Below-Grade Tank: Volume                                          | bbls; (                                    | onstruction Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12 Chack Ap                                                                                                                                                 | propriate Box to Indicate N                                       | lature of Notice                           | Report or Other Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                             | ENTION TO: PLUG AND ABANDON   CHANGE PLANS                        | REMEDIAL WOR                               | BSEQUENT REPOR<br>RK □ ALT<br>RILLING OPNS.□ PAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ERING CASING 🔲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                             | MULTIPLE COMPL                                                    | CASING/CEMEN                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OTHER: Radioactive Tracer Test/M                                                                                                                            |                                                                   | OTHER:                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ol> <li>Describe proposed or complet<br/>of starting any proposed work<br/>or recompletion.</li> </ol>                                                     | ed operations. (Clearly state all.). SEE RULE 1103. For Multip    | pertinent details, a<br>ble Completions: A | nd give pertinent dates, in<br>attach wellbore diagram of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Juding estimated da<br>proposed completion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| For the 5-year review of the permit and perform a Radioactive Tracer test to as efferenced above. Two millicuries of As tentatively scheduled for September | sess the mechanical integrity of landimony B124 isotope will be a | the coment behind                          | the casing on the Class I in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | njection well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Bloomfield Refinery also requests pert<br>ntegrity Test on September 24, 2009.                                                                              | mission to perform the annual Hi                                  | gh Pressure Shutdo                         | own Test, Bradenhead Tes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t, and Mechanical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| hereby certify that the information ab                                                                                                                      |                                                                   |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SIGNATURE Condy Has                                                                                                                                         |                                                                   |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Type or print name   Cindy Hurtado<br>For State Use Only                                                                                                    |                                                                   |                                            | Telephone No. (505)0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| APPROVED BY: Lee J. C. Conditions of Approval (if any):                                                                                                     | house TITLE                                                       | Env. Engr.                                 | DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TE 9/18/69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

#### Hurtado, Cindy

From:

Hurtado, Cindy

Sent:

Monday, September 28, 2009 3:43 PM

To:

Chavez, Carl J, EMNRD; 'Roberts, Kelly G, EMNRD'; Schmaltz, Randy

Cc:

Kuehling, Monica, EMNRD; Krakow, Bob

Subject:

UICI-9 - Follow Up C-103 - Radioactive Tracer Test-MIT

Attachments: C103 Radioactive Test-MIT Follow Up.pdf; Western Refining Western Refining SWD #1.tif

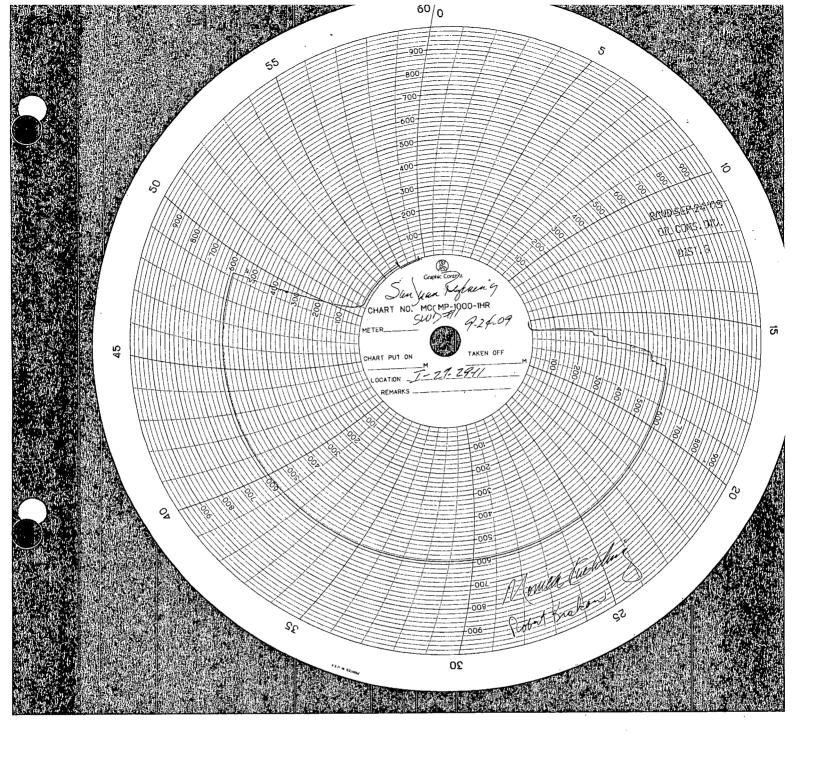
#### Good Afternoon.

Please find attached the follow up C103 for the Radioactive Tracer Test and MIT performed on Bloomfield Refinery's Class I Injection Well (UICI-9). Also, please find attached an electronic copy of the GR/CCL log that was produced during the Radioactive Tracer Test. Please contact me if you have questions.

Thanks, Cindy

Cindy Hurtado
Environmental Coordinator
Western Refining Southwest, Inc. - Bloomfield Refinery
cindy.hurtado@wnr.com
505-632-4161

| Submit 3 Copies To Appropriate District Office                                      | State of New Mexico                                                                                                      | Form C-103                                                                                               |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| District [                                                                          | Energy, Minerals and Natural Resources                                                                                   | May 27, 2004                                                                                             |
| 1625 N. French Dr., Hobbs, NM 88240<br>District H                                   |                                                                                                                          | WELL API NO.                                                                                             |
| 1301 W. Grand Ave., Artesia, NM 88210                                               | OIL CONSERVATION DIVISION                                                                                                | 30-045-29002-00  5. Indicate Type of Lease                                                               |
| District III                                                                        | 1220 South St. Francis Dr.                                                                                               | STATE THE XT                                                                                             |
| 1000 Rio Brazos Rd., Aztec, NM 87410<br>Digmet IV                                   | Santa Fe, NM 87505                                                                                                       | 6. State Oil & Gas Lease No.                                                                             |
| 1220 S. St. Francis Dr., Santa Fe, NM                                               |                                                                                                                          | N/A                                                                                                      |
| 87505                                                                               | ICES AND REPORTS ON WELLS                                                                                                | 7. Lease Name or Unit Agreement Name                                                                     |
| (DO NOT USE THIS FORM FOR PROPO                                                     | ISALS TO DRIEL OR TO DEEPEN OR PLUG BACK TO A CATION FOR PERMIT" (FORM C-101) FOR SUCH                                   | Disposal                                                                                                 |
| 1                                                                                   | Gas Well [ OtherX (Disposal)                                                                                             | 8. Well Number #001                                                                                      |
| 2. Name of Operator                                                                 |                                                                                                                          | 9. OGRID Number                                                                                          |
|                                                                                     | fining Southwest, Inc Bloomfeld Refinery                                                                                 | 037218                                                                                                   |
| 3. Address of Operator                                                              | 00.10                                                                                                                    | 10. Pool name or Wildcat                                                                                 |
| #50 Road 4990 Bloomfield, NM                                                        | 87413                                                                                                                    | Bianco/Mesa Verde                                                                                        |
| 4. Well Location                                                                    |                                                                                                                          |                                                                                                          |
| Unit Letter I: 2442                                                                 | feet from the South line and 1250 fee                                                                                    | et from theEastline                                                                                      |
| Section 27                                                                          | Township 29 Range 11 NMPN                                                                                                |                                                                                                          |
|                                                                                     | 11. Elevation (Show whether DR, RKB, RT, GR, etc.)                                                                       |                                                                                                          |
|                                                                                     |                                                                                                                          |                                                                                                          |
| Pit or Below-grade Tank Application [] o                                            |                                                                                                                          |                                                                                                          |
| Pit type Depth to Groundw                                                           | aterDistance from nearest fresh water wellDist                                                                           |                                                                                                          |
| Pit Liner Thickness: mil                                                            | Below-Grade Tank: Volume bbis: Co                                                                                        | onstruction Material                                                                                     |
| 12. Check A                                                                         | Appropriate Box to Indicate Nature of Notice,                                                                            | Report or Other Data                                                                                     |
| NOTICE OF IN                                                                        | ITENTION TO: SUB                                                                                                         | SEQUENT REPORT OF:                                                                                       |
| PERFORM REMEDIAL WORK                                                               |                                                                                                                          |                                                                                                          |
| TEMPORARILY ABANDON                                                                 |                                                                                                                          | LLING OPNS. P AND A                                                                                      |
| PULL OR ALTER CASING                                                                | MULTIPLE COMPL CASING/CEMEN                                                                                              | T JOB                                                                                                    |
| OTHER []                                                                            |                                                                                                                          | oactive Tracer Test/MIT/BadenheadTest                                                                    |
| 13 Describe proposed or comp                                                        |                                                                                                                          | d give portinent dates, including estimated date                                                         |
|                                                                                     | ork). SEE RULE 1103. For Multiple Completions: Att                                                                       |                                                                                                          |
| or recompletion.                                                                    | ,                                                                                                                        |                                                                                                          |
| ,                                                                                   |                                                                                                                          |                                                                                                          |
| Western Refining Southwest, Inc                                                     | Bloomfield Refinery performed a Radioactive Tracer to<br>nica Kuchling of NMOCD-Aztec witnessed all proceed              | est on September 23, 2009 on the Class I                                                                 |
| Scandium (Sc. 46) was injected down                                                 | phole and flushed with 5000 gallons of water. A Gamm                                                                     | a Ray correlation log was run from 3506' to                                                              |
| the surface. Two passes (up and dow                                                 | n) were logged. The logs indicate that most of the perfo                                                                 | orated intervals are taking fluid. There were                                                            |
| spurious spikes above the packer wh                                                 | ich are usually associated with tubing collars. These sp                                                                 | ikes indicated that there was still some                                                                 |
| radioactive material hung up in the ti                                              |                                                                                                                          |                                                                                                          |
|                                                                                     |                                                                                                                          |                                                                                                          |
|                                                                                     | annual High Pressure Shutdown Test, Bradenhead Test,                                                                     |                                                                                                          |
| 24, 2009. All tests were witnessed by                                               | y Monica Kuehling of NMOCD-Aztec. The MIT held a                                                                         | it 580 psi for 30 minutes.                                                                               |
|                                                                                     |                                                                                                                          |                                                                                                          |
|                                                                                     |                                                                                                                          |                                                                                                          |
|                                                                                     |                                                                                                                          |                                                                                                          |
|                                                                                     |                                                                                                                          |                                                                                                          |
| I hereby certify that the information a grade track has been/will be constructed or | above is true and complete to the best of my knowledge<br>closed according to NMOCD guidelines [], a general permit [] o | e and belief. I further certify that any pit or below-<br>or an (attached) alternative OCD-approved plan |
| SIGNATURE Condy Hunt                                                                | ado TITLE Environmental Coord                                                                                            | dinatorDATE9/28/09                                                                                       |
|                                                                                     |                                                                                                                          |                                                                                                          |
| Type or print name Cindy Hurtado For State Use Only                                 | E-mail address: cindy.hurtado@wnr.com                                                                                    | Telephone No. (505)632-4161                                                                              |
| of State Cae Only                                                                   |                                                                                                                          |                                                                                                          |
| APPROVED BY:                                                                        | TITLE                                                                                                                    | DATE                                                                                                     |
| Conditions of Approval (if any):                                                    | TITLE                                                                                                                    |                                                                                                          |




# NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

# MECHANICAL INTEGRITY TEST REPORT

|                                                                                          | (TA OR UIC)                 |                                                                                                    |
|------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------|
| Date of Test 9-24-09                                                                     | Operator Sun Juun           | Location: Unit Sec 7Twn 29 Rge 1/                                                                  |
| Property Name Swi                                                                        | Well #/                     | Location: Unit Sec 7Twn 29Rge //                                                                   |
| Land Type:  State Federal Private Indian                                                 | Well?<br>BND-528            | Type:  Water Injection  Salt Water Disposal  Gas Injection  Producing Oil/Gas  Pressure obervation |
| Temporarily Abandoned Well (Y/N                                                          | ) TA E                      | xpires:                                                                                            |
| Casing Pres.  Bradenhead Pres.  Tubing Pres.  Int. Casing Pres.  Pressured annulus up to | Tbg. SI Pres Tbg. Inj. Pres | RCVD SEP 24 'OS OIL CONS. DIV. DIST. 3                                                             |
| REMARKS:                                                                                 |                             |                                                                                                    |
|                                                                                          | 01                          |                                                                                                    |
| By Cofet Known (Operator Representative)                                                 | Witness // / //             | (NMOCD)                                                                                            |
| (Position)                                                                               |                             | Revised 02-11-02                                                                                   |

Oil Conservation Division \* 1000 Rio Brazos Road \* Aztec, New Mexico 87410 Phone: (505) 334-6178 \* Fax (505) 334-6170 \* <a href="http://www.emnrd.statc.nm.us">http://www.emnrd.statc.nm.us</a>





# NEW MEXICO ENERGY, MINIERALS & NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION
AZTEC DISTRICT OFFICE
1000 RIO BRAZOS ROAD
AZTEC NM 87410
(505) 334-6178 FAX: (505) 334-6170
http://emord.state.nm.us/ocd/District.lil/3distric.htm

# BRADENHEAD TEST REPORT

(submit 1 copy to above address)

| Date of Test 9 2                   | 4,09 Operato                     | or San yan Cal.      | API #30-0 <u>45.39002</u>                     |
|------------------------------------|----------------------------------|----------------------|-----------------------------------------------|
| Property Name <u>Swf</u>           | Well No                          | Location: Unit       | Section <u>37</u> Township <u>39</u> Range // |
| Well Status(Shut-In or Pro         | oducing) Initial PSI: T          | ubing Intermediate   | VA Casing 16 Bradenhead 0                     |
| OPEN BRADENHEAD A                  | AND INTERMEDIATE                 | TO ATMOSPHERE INDI   | VIDUALLY FOR 15 MINUTES EACH                  |
| PRES Testing Bradenhead BH Int Csg | SURE<br>INTERM<br>Int Csg        |                      | OW CHARACTERISTICS<br>NHEAD INTERMEDIATE      |
| TIME<br>5 min                      |                                  | Steady Flow          |                                               |
| 10 min                             |                                  | Surges               |                                               |
| 15 min                             |                                  | Down to Nothing      |                                               |
| 20 min                             |                                  | Nothing              |                                               |
| 25 min                             |                                  | Gas                  | RCUD SEP 24 '09                               |
| 30 min                             |                                  | Gas & Water          | OIL CONS. DIV.                                |
| -                                  |                                  | Water                | DIST. 3                                       |
| If bradenhead flowed water, c      | heck all of the description      | ns that apply below: |                                               |
| CLEAR FRES                         | SH SALTY                         | SULFURBLACK          | ,                                             |
| 5 MINUTE SHUT-IN PRESSUREMARKS:    | u <b>re</b> bradenhe.<br>um JM J | AD () INTER          | ,                                             |
| 1. ND 00.                          |                                  |                      |                                               |
|                                    |                                  | 1 A                  |                                               |
| By Vobert Krak                     | Eon "                            | Vitness / Ouila (    | Luliling                                      |
| (Position)                         |                                  |                      |                                               |
| E-mail address                     |                                  |                      |                                               |
|                                    | •                                | •                    |                                               |



#### **COVER LETTER**

Thursday, February 12, 2009

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Injection Well 1st QTR 1/28/09

Dear Cindy Hurtado:

Order No.: 0901396

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 1/29/2009 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX



Date: 12-Feb-09

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

0901396

Project:

Injection Well 1st QTR 1/28/09

Lab ID:

0901396-01

Client Sample ID: Injection Well

Collection Date: 1/28/2009 10:30:00 AM

Date Received: 1/29/2009

Matrix: AQUEOUS

| Analyses                       | Result  | PQL     | Qual Unit | s <b>D</b> F | Date Analyzed         |
|--------------------------------|---------|---------|-----------|--------------|-----------------------|
| EPA METHOD 300.0: ANIONS       |         |         |           |              | Analyst: RAG          |
| Chloride                       | 1700    | 10      | mg/L      | 100          | 2/10/2009 12:29:01 AM |
| Sulfate                        | 490     | 5.0     | mg/L      | 10           | 2/6/2009 1:04:51 PM   |
| EPA METHOD 7470: MERCURY       | ,       |         |           | •            | Analyst: SNV          |
| Mercury                        | 0.00021 | 0.00020 | mg/L      | 1            | 2/3/2009 2:37:47 PM   |
| EPA 6010B: TOTAL RECOVERABLE   | METALS  |         |           |              | Analyst: TES          |
| Arsenic                        | ND      | 0.020   | mg/L      | 1            | 2/3/2009 7:14:21 PM   |
| Barium                         | 0.15    | 0.020   | mg/L      | 1            | 2/3/2009 7:14:21 PM   |
| Cadmium                        | ND      | 0.0020  | mg/L      | 1            | 2/3/2009 7:14:21 PM   |
| Calcium                        | 92      | 1.0     | mg/L      | · 1          | 2/3/2009 7:14:21 PM   |
| Chromium                       | ND      | 0.0060  | mg/L      | . 1          | 2/3/2009 7:14:21 PM   |
| Lead                           | ND      | 0.0050  | mg/L      | 1            | 2/3/2009 7:14:21 PM   |
| Magnesium                      | . 25    | 1.0     | mg/L      | 1 "          | 2/3/2009 7:14:21 PM   |
| Potassium                      | 15      | 1.0     | mg/L      | 1            | 2/3/2009 7:14:21 PM   |
| Selenium                       | ND      | 0.050   | mg/L      | 1            | 2/3/2009 7:14:21 PM   |
| Silver                         | ND      | 0.0050  | mg/L      | 1            | 2/3/2009 7:14:21 PM   |
| Sodium                         | 740     | 10      | mg/L      | . 10         | 2/3/2009 10:34:51 PM  |
| EPA METHOD 8270C: SEMIVOLATILE | ES      |         |           | · ·          | Analyst: JDC          |
| Acenaphthene                   | ND      | 50      | μg/L      | 1            | 2/2/2009              |
| Acenaphthylene                 | ND      | 50      | μg/L      | .1           | 2/2/2009              |
| Anlline                        | 60      | 50      | μg/L      | 1            | 2/2/2009              |
| Anthracene                     | ND      | 50      | μg/L      | 1            | 2/2/2009              |
| Azobenzene                     | ND      | 50      | µg/L      | 1            | 2/2/2009              |
| Benz(a)anthracene              | ND      | 50      | μg/L      | 1            | 2/2/2009              |
| Benzo(a)pyrene                 | ND      | 50      | μg/L      | . 1          | 2/2/2009              |
| Benzo(b)fluoranthene           | ND      | 50      | μg/L      | . 1 .        | 2/2/2009              |
| Benzo(g,h,i)perylene           | , ND    | 50      | μg/L      | 1            | 2/2/2009              |
| Benzo(k)fluoranthene           | . ND    | 50      | μg/L      | 1.           | 2/2/2009              |
| Benzoic acid                   | ND      | 100     | µg/L      | 1            | 2/2/2009              |
| Benzyl alcohol                 | ND      | 50      | μg/L      | 1            | 2/2/2009              |
| Bis(2-chloroethoxy)methane     | ND      | 50      | µg/L      | 1            | 2/2/2009              |
| Bis(2-chloroethyl)ether        | · ND    | 50      | μg/L      | 1 -          | 2/2/2009              |
| Bis(2-chloroisopropyl)ether    | ND      | 50      | μg/L      | , 1          | 2/2/2009              |
| Bis(2-ethylhexyl)phthalate     | ND      | 50      | μg/L      | 1            | 2/2/2009              |
| 4-Bromophenyl phenyl ether     | ND      | 50      | μg/L      | 1            | 2/2/2009              |
| Butyl benzyl phthalate         | ND      | 50      | μg/L      | . 1          | 2/2/2009              |
| Carbazole                      | ND ·    | 50      | μg/L      | 1            | 2/2/2009              |
| 4-Chloro-3-methylphenol        | ND      | 50      | μg/L      | . 1          | 2/2/2009              |
| 4-Chloroaniline                | ND      | 50      | μg/L      | 1            | 2/2/2009              |
| 2-Chloronaphthalene            | ND      | 50      | μg/L      | 1            | 2/2/2009              |

Qualifiers:

- Value exceeds Maximum Contaminant Leve!
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 1 of 7

Date: 12-Feb-09



CLIENT:

Western Refining Southwest, Inc.

Client Sample ID: Injection Well

Lab Order:

0901396

Collection Date: 1/28/2009 10:30:00 AM

Project:

Injection Well 1st QTR 1/28/09

Date Received: 1/29/2009

Lab ID:

0901396-01

Matrix: AQUEOUS

| Analyses                    | Result     | PQL Qı | ial Units    | DF                                  | Date Analyzed |
|-----------------------------|------------|--------|--------------|-------------------------------------|---------------|
| EPA METHOD 8270C: SEMIVOLAT | ILES       |        |              | · · · · · · · · · · · · · · · · · · | Analyst: JD0  |
| 2-Chlorophenol              | · ND       | 50     | μg/L         | 1                                   | 2/2/2009      |
| 4-Chlorophenyl phenyl ether | ND         | 50     | μg/L         | 1                                   | 2/2/2009      |
| Chrysene                    | ND         | 50     | μg/L         | 1                                   | 2/2/2009      |
| Di-n-butyl phthalate        | ND         | 50     | μg/L         | 1                                   | 2/2/2009      |
| Di-n-octyl phthalate        | ND         | 50     | μ <b>g/L</b> | 1                                   | 2/2/2009      |
| Dibenz(a,h)anthracene       | ND         | 50     | μg/L         | 1                                   | 2/2/2009      |
| Dibenzofuran                | ·· ND      | 50     | μg/L         | 1                                   | 2/2/2009      |
| 1,2-Dichlorobenzene         | ND         | 50     | µg/L         | -1                                  | 2/2/2009      |
| 1,3-Dichlorobenzene         | ND         | 50     | μg/L         | 1                                   | 2/2/2009      |
| 1,4-Dichlorobenzene         | ND         | 50     | μg/L         | 1                                   | 2/2/2009      |
| 3,3'-Dichlorobenzidine      | ND         | 50     | μg/L         | 1                                   | 2/2/2009      |
| Diethyl phthalate .         | ND         | 50     | µg/L         | 1                                   | 2/2/2009      |
| Dimethyl phthalate          | ND         | 50     | µg/L         | 1                                   | 2/2/2009      |
| 2,4-Dichlorophenol          | ND         | 100    | μg/L         | 1                                   | 2/2/2009      |
| 2,4-Dimethylphenol          | ND         | 50     | µg/L         | 1                                   | 2/2/2009      |
| 4,6-Dinitro-2-methylphenol  | ~ ND       | 100    | µg/L         | 1                                   | 2/2/2009      |
| 2;4-Dinitrophenol           | ND         | 100    | µg/L         | 1                                   | 2/2/2009      |
| 2,4-Dinitrotoluene          | ND         | 50     | µg/L         | 1                                   | 2/2/2009      |
| 2,6-Dinitrotoluene          | ND         | 50     | μg/L         | 1                                   | 2/2/2009      |
| Fluoranthene                | ND         | 50     | μg/L         | 1                                   | 2/2/2009      |
| Fluorene                    | ND         | 50     | µg/L         | 1                                   | 2/2/2009      |
| Hexachlorobenzene           | <b>N</b> D | 50     | ug/L         | 1                                   | 2/2/2009      |
| Hexachlorobutadiene         | ND         | 50     | μg/L         | 1                                   | 2/2/2009      |
| Hexachlorocyclopentadiene   | ND         | 50     | μg/L         | 1                                   | 2/2/2009      |
| Hexachloroethane            | ND         | 50     | μg/L         | 1                                   | 2/2/2009      |
| Indeno(1,2,3-cd)pyrene      | ND.        | 50     | μg/L         | 1                                   | 2/2/2009      |
| Isophorone                  | ND         | 50     | µg/L         | 1                                   | 2/2/2009      |
| 2-Methylnaphthalene         | ND         | 50     | μg/L         | 1                                   | 2/2/2009      |
| 2-Methylphenol              | 120        | 50     | μg/L         | 1                                   | 2/2/2009      |
| 3+4-Methylphenol            | 120        | 50     | ug/L         | 1                                   | 2/2/2009      |
| N-Nitrosodi-n-propylamine   | ND         | 50     | μg/L         | 1                                   | 2/2/2009      |
| N-Nitrosodimethylamine      | NÐ         | 50     | μg/L         | 1                                   | 2/2/2009      |
| N-Nitrosodiphenylamine      | ND         | 50     | μg/L         | , 1                                 | 2/2/2009      |
| Naphthalene                 | ND         | 50     | µg/L         | 1                                   | 2/2/2009      |
| 2-Nitroaniline              | ND         | 50     | µg/L         | 1                                   | 2/2/2009      |
| 3-Nitroaniline              | ND         | 50     | μg/L         | 1                                   | 2/2/2009      |
| 4-Nitroaniline              | ND         | 50     | μg/L         | 1                                   | 2/2/2009      |
| Nitrobanzena                | ND         | 50     | µg/L         | 1                                   | 2/2/2009      |
| 2-Nitrophanol               | ND         | 50     | µg/L         | 1                                   | 2/2/2009      |
| I-Nitrophenol               | ND         | 50     | μg/L         | 1                                   | 2/2/2009      |
| Pentachlorophenol           | ND         | 100    | μg/L         | 1                                   | 2/2/2009      |
| Phenanthrene                | ND         | 50     | μg/L         | 1                                   | 2/2/2009      |



- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 2 of 7



Date: 12-Feb-09

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

0901396

Injection Well 1st QTR 1/28/09

Project:
Lab ID:

0901396-01

Client Sample ID: Injection Well

Collection Date: 1/28/2009 10:30:00 AM

Date Received: 1/29/2009

Matrix: AQUEOUS

| Analyses                       | Result | PQL       | Qual Units   | DF   | Date Analyzed        |
|--------------------------------|--------|-----------|--------------|------|----------------------|
| EPA METHOD 8270C: SEMIVOLATIL  | ES     |           |              | **** | Analyst: JDC         |
| Phenol                         | ND     | 50        | μg/L         | 1    | 2/2/2009             |
| Pyrene                         | , ND   | 50        | μg/L         | 1    | 2/2/2009             |
| Pyridine                       | ND     | 50        | µg/L         | 1 1  | 2/2/2009             |
| 1,2,4-Trichlorobenzene         | ND     | 50        | <b>ր</b> g/L | 1    | 2/2/2009             |
| 2,4,5-Trichlorophenol          | ND     | 50        | μġ/L         | 1    | 2/2/2009             |
| 2,4,6-Trichlorophenol          | ND     | 50        | µg/L         | 1    | 2/2/2009             |
| Surr: 2,4,6-Tribromophenol     | 69.8   | 16.6-150  | %REC         | 1    | 2/2/2009             |
| Surr: 2-Fluorobiphenyl         | 45.2   | 19.6-134  | %REC         | 1    | 2/2/2009             |
| Surr: 2-Fluorophenol           | 33.0   | 9.54-113  | %REC         | 1    | 2/2/2009             |
| Surr: 4-Terphenyl-d14          | 54.0   | 22.7-145  | %REC         | 1 .  | 2/2/2009             |
| Surr: Nitrobenzene-d5          | 45.2   | 14.6-134  | %REC         | 1    | 2/2/2009             |
| Surr: Phenol-d5                | 25.5   | 10.7-80.3 | %REC         | 1    | 2/2/2009             |
| EPA METHOD 8260B: VOLATILES    |        |           |              |      | Analyst: HL          |
| Benzene                        | 11     | 1.0       | μg/L         | 1    | 1/29/2009 8:43:18 PM |
| Toluene                        | 16     | 1.0       | μg/L         | 1    | 1/29/2009 8:43:18 PM |
| Ethylbenzene                   | 1.8    | 1.0       | μg/L         | 1    | 1/29/2009 8:43:18 PM |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0       | μg/L         | 1    | 1/29/2009 8:43:18 PM |
| 1,2,4-Trimethylbenzene         | 6.6    | 1.0       | µg/L         | 1    | 1/29/2009 8:43:18 PM |
| 1,3,5-Trimethylbenzene         | , 2.6  | 1.0       | µg/L         | 1    | 1/29/2009 8:43:18 PM |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0       | μg/L         | 1    | 1/29/2009 8:43:18 PM |
| 1,2-Dibromoethane (EDB)        | ND.    | 1.0       | μg/L         | 1    | 1/29/2009 8:43:18 PM |
| Naphthalene                    | 6.8    | 2.0       | μg/L         | 1    | 1/29/2009 8:43:18 PM |
| 1-Methylnaphthalene            | 9.2    | 4.0       | μg/L         | 1    | 1/29/2009 8:43:18 PM |
| 2-Methylnaphthalene            | 12     | 4.0       | μg/L         | . 1  | 1/29/2009 8:43:18 PM |
| Acetone                        | 2700   | 200       | μg/L         | . 20 | 1/31/2009 3:01:14 PM |
| Bromobenzene                   | ND     | 1.0       | μg/L         | 1    | 1/29/2009 8:43:18 PM |
| Bromodichloromethane           | ND     | 1.0       | μg/L         | 1.   | 1/29/2009 8:43:18 PM |
| Bromoform                      | ND     | 1.0       | µg/L         | 4 -  | 1/29/2009 8:43:18 PM |
| Bromomethane                   | ND     | 1.0       | μg/L         | . 1  | 1/29/2009 8:43:18 PM |
| 2-Butanone                     | 190    | 50        | μg/L         | 5    | 1/31/2009 3:31:10 PM |
| Carbon disulfide               | 42     | . 10      | · μg/L       | . 1  | 1/29/2009 8:43:18 PM |
| Carbon Tetrachloride           | ND     | 1.0       | μg/L         | 1    | 1/29/2009 8:43:18 PM |
| Chlorobenzene                  | ND     | 1.0       | µg/L         | 1    | 1/29/2009 8:43:18 PM |
| Chloroethane                   | . ND   | 2.0       | μg/L         | 1    | 1/29/2009 8:43:18 PM |
| Chloroform                     | ,ND    | 1.0       | μg/L         | 1    | 1/29/2009 8:43:18 PM |
| Chloromethane                  | ND     | 1.0       | μg/L         | 1    | 1/29/2009 8:43:18 PM |
| 2-Chlorotoluene                | ND     | 1.0       | μg/L         | 1    | 1/29/2009 8:43:18 PM |
| 4-Chlorotoluene                | ND     | 1.0       | μg/L         | 1    | 1/29/2009 8:43:18 PM |
| cis-1,2-DCE                    | ND     | 1.0       | µg/L         | 1    | 1/29/2009 8:43:18 PM |
| cis-1,3-Dichtoropropene        | ND     | 1.0       | μg/L         | · 1  | 1/29/2009 8:43:18 PM |
| 1,2-Dibromo-3-chloropropane    | ND     | 2.0       | μg/L         | 1    | 1/29/2009 8:43:18 PM |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 3 of 7



Date: 12-Feb-09



Western Refining Southwest, Inc.

Lab Order:

0901396

Injection Well 1st QTR 1/28/09

Project: Lab ID:

0901396-01

Client Sample ID: Injection Well

Collection Date: 1/28/2009 10:30:00 AM

Date Received: 1/29/2009

Matrix: AQUEOUS

| Analyses                    | Result                                 | PQL      | Qual Units | DF          | Date Analyzed        |
|-----------------------------|----------------------------------------|----------|------------|-------------|----------------------|
| EPA METHOD 8260B: VOLATILES | ······································ |          |            | <del></del> | Analyst: HL          |
| Dibromochloromethane        | ND                                     | 1.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| Dibromomethane              | ND                                     | 1.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| 1,2-Dichlorobenzene         | ND                                     | 1.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| 1,3-Dichlorobenzene         | . ND                                   | 1.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| 1,4-Dichlorobenzene         | ND                                     | 1.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| Dichlorodifluoromethane     | · ND                                   | 1.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| 1,1-Dichloroethane          | ND                                     | 1.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| 1,1-Dichloroethene          | ND                                     | 1.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| 1,2-Dichloropropane         | ND                                     | 1.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| 1,3-Dichloropropane         | ND                                     | 1.0      | µg/L       | 1           | 1/29/2009 8:43:18 PM |
| 2,2-Dichloropropane         | ND                                     | 2.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| 1,1-Dichloropropene         | ND                                     | 1.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| Hexachlorobutadiene         | ND                                     | 1.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| 2-Hexanone                  | ND                                     | 10       | µg/L       | 1           | 1/29/2009 8:43:18 PM |
| Isopropylbenzene            | ND                                     | 1.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| 4-Isopropyltoluene          | ND                                     | 1.0      | µg/L       | 1           | 1/29/2009 8:43:18 PM |
| 4-Methyl-2-pentanone        | ND                                     | 10       | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| Methylene Chloride          | ND                                     | 3.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| n-Butylbenzene              | 1.1                                    | 1.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| n-Propylbenzene             | · ND                                   | 1.0      | µg/L       | 1           | 1/29/2009 8:43:18 PM |
| sec-Butylbenzene            | ND                                     | 1.0      | µg/L       | 1           | 1/29/2009 8:43:18 PM |
| Styrene                     | ND                                     | 1.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| tert-Butylbenzene           | ND                                     | 1.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| 1,1,1,2-Tetrachlorosthane   | ND                                     | 1.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| 1,1,2,2-Tetrachloroethane   | ND                                     | 2.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| Tetrachloroethene (PCE)     | ND                                     | 1.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| trans-1,2-DCE               | ND                                     | 1.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| trans-1,3-Dichloropropene   | ND                                     | . 1.0    | μg/L       | - 1         | 1/29/2009 8:43:18 PM |
| 1,2,3-Trichlorobenzene      | ND                                     | 1.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| 1,2,4-Trichlorobenzene      | ND                                     | 1.0      | μg/L       | . 1         | 1/29/2009 8:43:18 PM |
| 1,1,1-Trichloroethane       | ND                                     | 1.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| 1,1,2-Trichloroethane       | ND                                     | 1.0      | µg/L       | 1           | 1/29/2009 8:43:18 PM |
| Trichloroethene (TCE)       | ND                                     | 1.0      | µg/L       | 1           | 1/29/2009 8:43:18 PM |
| Trichtorofluoromethane      | ND                                     | 1.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| 1,2,3-Trichloropropane      | ND                                     | 2.0      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| Vinyl chloride              | ND                                     | 1.0      | µg/L       | 1           | 1/29/2009 8:43:18 PM |
| Xylenes, Total              | 18                                     | 1.5      | μg/L       | 1           | 1/29/2009 8:43:18 PM |
| Surr: 1,2-Dichloroethane-d4 | 111                                    | 68.1-123 | %REC       | 1           | 1/29/2009 8:43:18 PM |
| Surr: 4-Bromofluorobenzene  | 93.0                                   | 53.2-145 | %REC       | 1           | 1/29/2009 8:43:18 PM |
| Surr: Dibromofluoromethane  | 104                                    | 68.5-119 | %REC       | 1           | 1/29/2009 8:43:18 PM |
| Surr: Toluene-d8            | 109                                    | 64-131   | %REC       | 1           | 1/29/2009 8:43:18 PM |



- Value exceeds Maximum Contaminant Level
- E Estimated value
- Analyte detected below quantitation limits
- Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
  - RL Reporting Limit

Page 4 of 7

Date: 12-Feb-09

CLIENT:

Western Refining Southwest, Inc.

Lab Order: Project: 0901396

r: 0901.

Injection Well 1st QTR 1/28/09

Lab ID:

0901396-01

Client Sample ID: Injection Well

Collection Date: 1/28/2009 10:30:00 AM

Date Received: 1/29/2009

Matrix: AQUEOUS

| Analyses                          | Result | PQL   | Qual Units | $\mathbf{DF}$ | Date Analyzed       |
|-----------------------------------|--------|-------|------------|---------------|---------------------|
| SM 2320B: ALKALINITY              |        |       |            |               | Analyst: KMS        |
| Alkalinity, Total (As CaCO3)      | 540    | 40    | mg/L CaCO3 | 2             | 2/4/2009            |
| Carbonate                         | ·ND    | 4.0   | mg/L CaCO3 | 2             | 2/4/2009            |
| Bicarbonate                       | 540    | . 40  | mg/L CaCO3 | 2             | 2/4/2009            |
| EPA 120.1: SPECIFIC CONDUCTANCE   |        |       |            |               | Analyst: KMS        |
| Specific Conductance              | 6700   | 0.010 | μmhos/cm   | 1             | 2/5/2009            |
| SM4500-H+B: PH                    |        |       |            |               | Analyst: KMS        |
| pH'                               | 7.56   | 0.1   | pH units   | 1             | 1/29/2009           |
| SM 2540 C: TOTAL DISSOLVED SOLIDS |        |       |            |               | Analyst: <b>KMS</b> |
| Total Dissolved Solids            | 3800   | 100   | mg/L       | 1             | 1/29/2009           |

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 5 of 7

Date: 12-Feb-09

CLIENT:

Western Refining Southwest, Inc.

Lab Order: Project:

Lab ID:

0901396

Injection Well 1st QTR 1/28/09

0901396-02

Client Sample ID: TRIP BLANK

Collection Date:

onection Date.

Date Received: 1/29/2009

Matrix: TRIP BLANK

| Analyses                       | Result     | PQL Q | ual Units | DF  | Date Analyzed        |
|--------------------------------|------------|-------|-----------|-----|----------------------|
| EPA METHOD 8260B: VOLATILES    | ····       |       |           |     | Analyst: HL          |
| Benzene                        | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| Toluene                        | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| Ethylbenzene                   | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| Methyl tert-butyl ether (MTBE) | ND         | 1.0   | μg/L      | 1 · | 1/29/2009 9:12:26 PM |
| 1,2,4-Trimethylbenzene         | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PN |
| 1,3,5-Trimethylbenzene         | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| 1,2-Dichloroethane (EDC)       | ND         | 1.0   | µg/L      | 1   | 1/29/2009 9:12:28 PM |
| 1,2-Dibromoethane (EDB)        | ND         | 1.0   | μg/L      | · 1 | 1/29/2009 9:12:26 PN |
| Naphthalene                    | ND         | 2.0   | µg/L      | 1   | 1/29/2009 9:12:26 PM |
| 1-Methylnaphthalene            | ND         | 4.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| 2-Methylnaphthalene            | ND         | 4.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| Acetone                        | ND         | 10    | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| Bromobenzene                   | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| Bromodichloromethane           | ND         | 1.0   | µg/L      | 1   | 1/29/2009 9:12:26 PM |
| Bromoform                      | ND         | 1.0   | µg/L      | 1   | 1/29/2009 9:12:26 PM |
| Bromomethane                   | . ND       | 1.0   | µg/L      | 1   | 1/29/2009 9:12:26 PM |
| 2-Butanone                     | ND         | 10    | µg/L      | 1   | 1/29/2009 9:12:26 PM |
| Carbon disulfide               | ND         | 10    | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| Carbon Tetrachloride           | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| Chlorobenzene                  | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| Chloroethane                   | ND         | 2.0   | µg/L      | 1   | 1/29/2009 9:12:26 PM |
| Chloroform                     | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| Chloromethane                  | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| 2-Chlorotoluene                | ND         | 1.0   | µg/L      | 1   | 1/29/2009 9:12:26 PM |
| 4-Chlorotoluene                | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| cis-1,2-DCE                    | ND         | 1.0   | µg/L      | 1   | 1/29/2009 9:12:26 PM |
| cis-1,3-Dichloropropene        | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| 1,2-Dibromo-3-chloropropane    | <b>N</b> D | 2.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| Dibromochloromethane           | ND         | 1.0   | µg/L      | 1   | 1/29/2009 9:12:26 PM |
| Dibromomethane                 | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| 1,2-Dichlorobenzene            | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| 1,3-Dichlorobenzene            | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| 1,4-Dichlorobenzene            | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| Dichlorodifluoromethane        | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| 1,1-Dichloroethane             | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| 1,1-Dichloraethene             | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| 1,2-Dichloropropane            | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| 1,3-Dichloropropane            | ND         | 1.0   | µg/L      | 1   | 1/29/2009 9:12:26 PM |
| 2,2-Dichloropropane            | ND         | 2.0   | µg/L      | 1   | 1/29/2009 9:12:26 PM |
| 1,1-Dichloropropene            | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| Hexachlorobutadiene            | ND         | 1.0   | μg/L      | 1   | 1/29/2009 9:12:26 PM |
| 2-Hexanone                     | ND         | 10    | µg/L      | 1   | 1/29/2009 9:12:26 PM |

Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 6 of 7

Date: 12-Feb-09

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

0901396

der: 090139

Injection Well 1st QTR 1/28/09

Project: Lab ID:

0901396-02

Client Sample ID: TRIP BLANK

Collection Date:

Date Received: 1/29/2009

Matrix: TRIP BLANK

| Analyses                    | Result                                | PQL      | Qual Units   | DF    | Date Analyzed        |
|-----------------------------|---------------------------------------|----------|--------------|-------|----------------------|
| EPA METHOD 8260B: VOLATILES | · · · · · · · · · · · · · · · · · · · |          |              | ····· | Analyst: HL          |
| Isopropylbenzene            | ND                                    | 1.0      | μg/L         | 1     | 1/29/2009 9:12:26 PM |
| 4-Isopropyitoluene          | ND                                    | 1.0      | μg/L         | . 1   | 1/29/2009 9:12:26 PM |
| 4-Methyl-2-pentanone        | ND                                    | . 10     | μg/L         | 1     | 1/29/2009 9:12:26 PM |
| Methylene Chloride          | ND                                    | 3.0      | μg/L         | 1     | 1/29/2009 9:12:26 PM |
| n-Butylbenzene              | ND                                    | 1.0      | μg/L         | 1     | 1/29/2009 9:12:26 PM |
| n-Propylbenzene             | ND                                    | 1.0      | μg/L         | 1     | 1/29/2009 9:12:26 PM |
| sec-Butylbanzene            | ND                                    | 1.0      | µg/L         | 1     | 1/29/2009 9:12:26 PM |
| Styrene                     | ND                                    | 1.0      | µg/L         | 1     | 1/29/2009 9:12:26 PM |
| tert-Butylbenzene           | ND                                    | 1.0      | μg/L         | 1     | 1/29/2009 9:12:26 PM |
| 1,1,1,2-Tetrachloroethane   | ND                                    | 1.0      | μg/L         | 1 .   | 1/29/2009 9:12:26 PM |
| 1,1,2,2-Tetrachloroethane   | ND                                    | 2.0      | μg/L         | 1     | 1/29/2009 9:12:26 PM |
| Tetrachloroethene (PCE)     | ND                                    | 1.0      | μg/L         | 1     | 1/29/2009 9:12:26 PM |
| trans-1,2-DCE               | ND                                    | 1.0      | μg/L         | . 1   | 1/29/2009 9:12:26 PM |
| trans-1,3-Dichloropropene   | ND                                    | 1.0      | μg/L         | 1     | 1/29/2009 9:12:26 PM |
| 1,2,3-Trichlorobenzene      | , ND                                  | 1.0      | μg/L         | 1     | 1/29/2009 9:12:26 PM |
| 1,2,4-Trichlorobenzene      | ND                                    | 1.0      | μg/L         | 1     | 1/29/2009 9:12:26 PM |
| 1,1,1-Trichloroethane       | ND                                    | 1.0      | μg/L         | 1     | 1/29/2009 9:12:26 PM |
| 1,1,2-Trichloroethane       | ND                                    | 1.0      | μg/L         | 1     | 1/29/2009 9:12:26 PM |
| Trichloroethene (TCE)       | ND                                    | 1.0      | μ <b>g/L</b> | 1     | 1/29/2009 9:12:26 PM |
| Trichlorofluoromethane      | ND ·                                  | 1.0      | μg/L         | .1    | 1/29/2009 9:12:26 PM |
| 1,2,3-Trichloropropane      | ND                                    | 2.0      | μg/L         | 1     | 1/29/2009 9:12:26 PM |
| Vinyl chloride              | ND                                    | 1.0      | µg/L         | .1    | 1/29/2009 9:12:26 PM |
| Xylenes, Total              | ND                                    | 1.5      | μg/L         | 1     | 1/29/2009 9:12:26 PM |
| Surr: 1,2-Dichloroethane-d4 | 99.6                                  | 68.1-123 | %REC         | 1     | 1/29/2009 9:12:26 PM |
| Surr: 4-Bromofluorobenzene  | 98.2                                  | 53.2-145 | %REC         | . 1   | 1/29/2009 9:12:26 PM |
| Surr: Dibromofluoromethane  | 96.5                                  | 68.5-119 | %REC         | 1     | 1/29/2009 9:12:26 PM |
| Surr: Toluene-d8            | 104                                   | 64-131   | %REC         | 1     | 1/29/2009 9:12:26 PM |

| One | otif | ìers: |
|-----|------|-------|
| Vu  |      | 1010. |

Value exceeds Maximum Contaminant Level

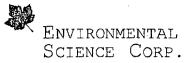
Page 7 of 7



E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit


S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit



12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

February 05, 2009

Anne Thorne Hall Environmental Analysis Laborat 4901 Hawkins NE

Albuquerque, NM 87109

Date Received

January 0901396

30, 2009

ESC Sample # : L385818-01

Description

Site ID :

Sample ID

INJECTION WELL

Project # :

0901396

Collected By

Collection Date :

01/28/09 10:30

| Parameter                      | Result        | Det. Limit | Units | Method     | Date     | Dil. |
|--------------------------------|---------------|------------|-------|------------|----------|------|
| Corrosivity                    | Non-Corrosive |            |       | 9040C      | 02/04/09 | 1    |
| Flashpoint                     | See Footnote  |            | deg F | D93/1010A  | 02/02/09 | 1    |
| Reactive CN (SW846 7.3.3.2)    | BDL           | 0.125      | mg/l  | 9012B      | 02/04/09 | 1    |
| Reactive Sulf. (SW846 7.3.4.1) | BDL           | 25.        | mg/l  | 9034/9030B | 02/02/09 | 1    |

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)
Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 02/05/09 09:47 Printed: 02/05/09 09:48 L38\$818-01 (FLASHPOINT) - Did Not Flash @170f

Date: 12-Feb-09

## QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1st QTR 1/28/09

Work Order:

0901396

| Analyte<br>                  | Result | Units    | PQL  | %Rec | LowLimit HighLimit | %RPD RP           | DLimit Qual          |
|------------------------------|--------|----------|------|------|--------------------|-------------------|----------------------|
| Method: EPA Method 300.0: A  | nions  |          |      |      |                    |                   |                      |
| Sample ID: MB                |        | MBLK     |      |      | Batch ID: R323     | 35 Analysis Date: | 2/6/2009 9:01:08 AM  |
| Chloride                     | ND     | mg/L     | 0.10 |      |                    |                   |                      |
| Sulfate                      | ND     | mg/L     | 0.50 |      |                    |                   |                      |
| Sample ID: MB-2              |        | MBLK     |      |      | Batch ID; R323     | 35 Analysis Date: | 2/7/2009 3:35:14 AM  |
| Chloride                     | ND     | mg/L     | 0.10 |      |                    |                   |                      |
| Sulfate                      | ND     | mg/L     | 0.50 |      |                    |                   |                      |
| Sample ID: MB                |        | MBLK     |      |      | Batch ID: R323     | 55 Analysis Date: | 2/9/2009 10:16:02 AM |
| Chloride                     | ND     | mg/L     | 0.10 |      |                    | •                 |                      |
| Sulfate                      | ND     | mg/L     | 0.50 |      | 4                  |                   |                      |
| Sample ID: LCS               |        | LCS      |      |      | Batch ID: R323     | 55 Analysis Date: | 2/6/2009 9:18:33 AM  |
| Chloride                     | 4.976  | mg/L     | 0.10 | 99.5 | 90 110             |                   |                      |
| Sulfate                      | 10.16  | mg/L     | 0.50 | 102  | 90 110             | • .               |                      |
| Sample ID: LCS-2             |        | LCS      |      |      | Batch ID: R323     | 15 Analysis Date: | 2/7/2009 3:52:39 AM  |
| Chloride                     | 4.881  | mg/L     | 0.10 | 97.6 | 90 110             |                   | •                    |
| Sulfate                      | 9.984  | mg/L     | 0.50 | 99.8 | 90 110             |                   |                      |
| Sample ID: LCS               |        | LCS      |      |      | Batch ID: R323     | 55 Analysis Date: | 2/9/2009 10:33:26 AM |
| Chloride                     | 4.873  | mg/L     | 0.10 | 97.5 | 90 110             | •                 |                      |
| Sulfate                      | 10.06  | mg/L     | 0.50 | 101  | 90 110             | ·                 |                      |
| Wethod: SM 2320B: Alkalinity |        |          |      |      |                    | •                 |                      |
| Sample ID: MB                |        | MBLK     |      |      | Batch ID: R322     | 6 Analysis Date:  | 2/4/2009             |
| Alkalinity, Total (As CaCO3) | ND     | mg/L CaC | 20   |      | ·                  | •                 |                      |
| Carbonate                    | ND     | mg/L CaC | 2.0  |      |                    |                   |                      |
| Bicarbonate                  | ND     | mg/L CaC | 20   |      |                    |                   |                      |
| Sample ID: LCS               |        | LCS      |      |      | Batch ID: R322     | 6 Analysis Date:  | 2/4/2009             |
| Alkalinity, Total (As CaCO3) | 85.00  | mg/L CaC | 20   | 104  | 80 120             |                   | A Section 1          |

| Qua | lifiers: |
|-----|----------|

E Estimated value

j Analyte detected below quantitation limits

· R RPD outside accepted recovery limits Н

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits



**Date:** 12-Feb-09

### QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

ject:

Injection Well 1st QTR 1/28/09

Work Order:

0901396

| Analyte                     | Result          | Units     | PQL | %Rec | LowLimit | Hig | hLimit | %RPD         | RPDLimit | Qual |         |
|-----------------------------|-----------------|-----------|-----|------|----------|-----|--------|--------------|----------|------|---------|
| Method: EPA Method 8270C    | : Semivolatiles |           |     |      |          | 10  | 45.55  | A = 5 1 = 70 |          |      | 0/0/000 |
| Sample ID: mb-18194         |                 | MBLK      |     |      | Batch    | ID: | 18194  | Analysis D   | rate:    |      | 2/2/200 |
| Acenaphthene                | ND              | µg/L      | 10  |      |          |     |        |              |          |      |         |
| Acenaphthylene              | ND              | µg/L      | 10  |      |          |     |        |              |          |      |         |
| Aniline                     | ND              | µg/L      | 10  |      |          |     |        |              |          |      |         |
| Anthracene                  | ND              | µg/L      | 10  |      |          |     | *      |              |          |      |         |
| Azobenzene                  | ND              | µg/L      | 10  |      |          |     |        |              |          |      |         |
| Benz(a)anthracene           | ND              | μg/L      | 10  |      |          |     |        |              |          |      |         |
| Benzo(a)pyrene              | ND              | µg/L      | 10  |      |          |     |        |              |          |      |         |
| Benzo(b)fluoranthene        | ND              | μg/L      | 10  |      |          |     |        |              |          |      |         |
| Benzo(g,h,i)perylene        | ND              | μg/L      | 10  |      |          |     |        |              |          |      |         |
| Benzo(k)fluoranthene        | ND              | μg/L      | 10  |      |          |     |        |              |          |      |         |
| Benzoic acid                | ND              | μg/L      | 20  |      |          |     |        |              |          |      |         |
| Benzyl alcohol              | ND              | μg/L      | 10  |      |          |     |        |              |          |      |         |
| Bis(2-chloroethoxy)methane  | ND              | µg/L      | 10  |      |          |     |        |              |          |      |         |
| Bis(2-chloroethyl)ether     | ND              | µg/L      | 10  |      |          |     |        |              |          |      |         |
| Bis(2-chloroisopropyl)ether | ND              | μg/L      | 10  |      |          |     |        |              |          |      |         |
| Bis(2-ethylhexyl)phthalate  | ND              | μg/L      | 10  |      |          |     |        |              |          |      |         |
| 4-Bromophenyl phenyl ether  | ND              | μg/L      | 10  |      |          |     |        |              |          |      |         |
| Butyl benzyl phthalate      | ND              | μg/L      | 10  |      |          |     |        |              |          |      |         |
| Carbazole                   | ND              | μg/L      | 10  |      |          |     |        |              |          |      |         |
| 4-Chloro-3-methylphenol     | ND              | μg/L      | 10  | •    |          |     |        |              |          |      |         |
| hloroaniline                | ND              | μg/L      | 10  |      |          |     |        |              |          |      |         |
| nloronaphthalene            | ND              | μg/L      | 10  |      |          |     |        |              |          |      |         |
| 2-Chlorophenol              | ND              | μg/L      | 10  |      |          |     |        |              |          |      |         |
| 4-Chlorophenyl phenyl ether | ND              | μg/L      | 10  |      |          |     |        |              |          |      |         |
| Chrysene                    | ND              | μg/L      | 10  |      |          |     |        |              |          |      |         |
| Di-n-butyl phthalate        | ND .            | μg/L      | 10  |      |          |     |        |              |          |      |         |
|                             |                 |           | 10  |      |          |     |        |              |          |      |         |
| Di-n-octyl phthalate        | ND              | µg/L      |     |      |          |     |        |              |          |      |         |
| Dibenz(a,h)anthracene       | ND              | µg/L      | 10  |      |          |     |        |              |          |      |         |
| Dibenzofuran                | ND              | μg/L      | 10  |      |          |     |        |              |          |      |         |
| 1,2-Dichlorobenzene         | ND              | μg/L<br>" | 10  |      |          |     |        |              |          |      |         |
| 1,3-Dichlorobenzene         | ND              | μg/L      | 10  |      |          |     |        |              |          |      |         |
| 1,4-Dichlorobenzene         | ND              | µg/L      | 10  |      |          |     |        |              |          |      |         |
| 3,3'-Dichlorobenzidine      | ND              | µg/L      | 10  |      |          |     |        |              |          |      |         |
| Diethyl phthalate           | ND              | μg/L      | 10  |      |          |     |        |              |          |      |         |
| Dimethyl phthalate          | ND              | μg/L<br>" | 10  |      |          |     |        |              |          |      |         |
| 2,4-Dichlorophenol          | ND              | µg/L      | 20  |      |          |     |        |              |          |      |         |
| 2,4-Dimethylphenol          | ND              | µg/L      | 10  |      |          |     |        |              |          |      |         |
| 4,6-Dinitro-2-methylphenol  | ND              | μg/L      | 20  |      |          |     |        |              |          |      |         |
| 2,4-Dinitrophenol           | ND              | μg/L      | 20  |      |          |     |        |              |          |      |         |
| 2,4-Dinitrotoluene          | ND              | μg/L<br>  | 10  |      |          |     |        |              |          |      |         |
| 2,6-Dinitrotoluene          | ND              | μg/L      | 10  |      |          |     |        |              |          |      |         |
| Fluoranthene                | ND              | ug/L      | 10  |      |          |     |        |              |          |      |         |
| Fluorene                    | ND              | µg/L      | 10  |      |          |     |        |              |          |      |         |
| Hexachlorobenzene           | ND              | μg/L      | 10  |      |          |     |        |              |          |      |         |





Estimated value

Analyte detected below quantitation limits

RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Client:

Western Refining Southwest, Inc.

Project: Injection Well 1st QTR 1/28/09

Analyte detected below quantitation limits

RPD outside accepted recovery limits

Work Order:

0901396

| Analyte                                 | Result          | Units        | PQL      | %Rec         | LowLimit   | HighL | .imit | %RPD       | RPDLimit | Qual |          |
|-----------------------------------------|-----------------|--------------|----------|--------------|------------|-------|-------|------------|----------|------|----------|
| Method: EPA Method 82700                | : Semivolatiles |              |          |              |            |       |       |            |          |      |          |
| Sample ID: mb-18194                     |                 | MBLK         |          |              | Batch I    | ID:   | 18194 | Analysis D | ate:     |      | 2/2/2009 |
| Hexachlorobutadiene                     | ND              | µg/L         | 10       |              |            |       |       |            |          |      |          |
| Hexachlorocyclopentadiene               | ND              | µg/L         | 10       |              |            |       |       |            |          |      |          |
| Hexachloroethane                        | ND              | μg/L         | 10       |              |            |       |       |            |          |      |          |
| Indeno(1,2,3-cd)pyrene                  | ND              | μg/L         | 10       | ,            |            |       |       |            |          |      | •        |
| Isophorone                              | ND              | μg/L         | 10       |              |            |       |       |            |          |      |          |
| 2-Methylnaphthalene                     | ND              | μg/L         | 10       |              |            |       |       |            |          |      |          |
| 2-Methylphenol                          | ND              | µg/L         | 10       |              |            |       |       |            |          |      |          |
| 3+4-Methylphenol                        | ND              | μg/L         | 10       |              |            |       |       |            |          |      |          |
| N-Nitrosodi-n-propylamine               | ND              | µg/L         | 10       |              |            |       | •     |            |          |      |          |
| N-Nitrosodimethylamine                  | ND              | μg/L         | 10       |              |            |       |       |            |          | •    |          |
| N-Nitrosodiphenylamine                  | ND              | μg/L         | 10       |              |            |       | *     |            |          |      |          |
| Naphthalene                             | ND              | μg/L         | 10       |              |            |       |       |            |          |      |          |
| 2-Nitroaniline                          | ND              | μg/L         | 10       |              |            |       | ~     |            |          |      |          |
| 3-Nitroaniline                          | ND              | µg/L         | 10       |              |            |       |       |            |          |      |          |
| 4-Nitroaniline                          | ND              | µg/L         | 10       |              |            |       |       |            |          |      |          |
| Nitrobenzene                            | ND              | μg/L         | .10      |              |            |       |       |            |          |      |          |
| 2-Nitrophenol                           | ND              | µg/L         | 10       |              |            |       |       |            |          |      |          |
| 4-Nitrophenol                           | ND              | μg/L         | 10       |              |            |       |       |            |          |      |          |
| Pentachlorophenol                       | ND              | μg/L         | 20       |              |            |       | •     |            | •        |      |          |
| Phenanthrene                            | ND              | μg/L         | 10       |              |            |       |       |            |          |      |          |
| Phenol                                  | ND              | µg/L         | 10       |              |            |       |       |            |          |      |          |
| Pyrene                                  | ND              | μg/L         | 10       |              |            |       |       |            |          |      |          |
| Pyridine                                | ND              | µg/L         | - 10     |              |            |       |       |            |          |      |          |
| 1,2,4-Trichlorobenzene                  | ND              | µg/L         | 10       |              |            |       |       |            |          |      |          |
| 2,4,5-Trichlorophenol                   | ND              | µg/L         | 10       |              |            |       |       |            |          |      |          |
| 2,4,6-Trichlorophenol                   | ND              | μg/L         | 10       |              |            |       |       |            |          |      |          |
| Sample ID: lcs-18194                    | ,               | LCS          |          |              | Batch I    | D:    | 18194 | Analysis D | ate:     |      | 2/2/2009 |
| •                                       | 64.00           |              | 40       | 66.0         |            | 123   |       | •          |          |      |          |
| Acenaphthene<br>4-Chloro-3-methylpheno) | 64.96<br>125,2  | μg/L         | 10<br>10 | 65.0<br>62.6 | 11<br>15.4 | 119   |       |            |          |      |          |
| 4-Chlorophenol                          | 114.8           | µg/L<br>µg/L | 10       | 57.4         | 12.2       | 122   |       |            |          |      |          |
| •                                       | 50.48           |              | 10       | 50.5         | 16.9       | 100   |       |            |          |      |          |
| 1,4-Dichlorobenzene                     | 70.42           | µg/L<br>µg/L | 10       | 70.4         | 13         | 138   |       |            |          |      |          |
| 2,4-Dinitrotoluene                      | 70.42<br>59.14  |              | 10       | 59.1         | 9.93       | 122   |       |            | •        |      |          |
| N-Nitrosodi-n-propylamine               | 92.52           | µg/L<br>µg/L | 10       | 46.3         | 12.5       | 87.4  |       |            |          |      |          |
| 4-Nitrophenol                           | 92.92<br>144.4  |              | 20       | 72.2         | 3.55       | 114   |       |            |          |      |          |
| Pentachlorophenol                       |                 | hg/L<br>hg/L | 10       | 37.4         | 7.53       | 73.1  |       |            |          | *    |          |
| Phenol                                  | 74.86<br>60.86  | hg/L         | 10       | 60.9         | 12.6       | 140   |       |            |          |      |          |
| Pyrene                                  | 50.20           | μg/L         | 10       | 50.2         | 17.4       | 98.7  |       |            |          |      |          |
| 1,2,4-Trichlorobenzene                  | 50.20           | LCSD         | 10       | 30.2         | Batch I    |       | 18194 | Analysis D | ete:     |      | 2/2/2009 |
| Sample ID: 1csd-18194                   |                 |              |          |              |            |       | 10104 | -          |          |      | 21212000 |
| Acenaphthene                            | 62.40           | μg/L         | 10       | 62.4         | 11         | 123   |       | 4.02       | 30.5     |      |          |
| 1-Chloro-3-methylphenol                 | 127.2           | µg/L         | 10       | 63.6         | 15.4       | 119   |       | 1.55       | 28.6     |      |          |
| 2-Chlorophenol                          | 113.1           | μg/L         | 10       | 56.5         | 12.2       | 122   |       | 1.56       | 107      |      |          |
| 1,4-Dichlorobenzene                     | 49.72           | μg/L         | 10       | 49.7         | 16.9       | 100   |       | 1.52       | 62.1     |      |          |
| 2,4-Dinitrotoluene                      | 71.28           | μg/L         | 10       | 71.3         | 13         | 138   |       | 1.21       | 14.7     |      |          |



Page 3

ND

Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits

Date: 12-Feb-09

# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

icct: Injection Well 1st QTR 1/28/09

Work Order:

0901396

| Analyte                        | Result          | Units | PQL                                   | %Rec       | LowLimit        | High    | ıLimit      | %RPD       | RPDL  | imit Qual          |
|--------------------------------|-----------------|-------|---------------------------------------|------------|-----------------|---------|-------------|------------|-------|--------------------|
| Wethod: EPA Method 8270C       | : Semivolatiles |       |                                       |            |                 |         |             | -          |       |                    |
| Sample ID: Icsd-18194          |                 | LCSD  |                                       |            | Batch I         | ID;     | 18194       | Analysis   | Date: | 2/2/200            |
| N-Nitrosodi-n-propylamine      | 58.68           | µg/L  | 10                                    | 58.7       | 9.93            | 12      | 2           | 0.781      | 30.3  |                    |
| -Nitrophenol                   | 96.82           | μg/Ľ  | 10                                    | 48.4       | 12.5            | 87      | .4          | 4.54       | 36.3  |                    |
| entachiorophenol               | 153.2           | μg/L  | 20                                    | 76.6       | 3.55            | 11      | 4           | 5.95       | 49    |                    |
| Phenol                         | 75.12           | μg/L  | 10                                    | 37.6       | 7.53            | 73      | .1          | 0.347      | 52.4  |                    |
| yrene                          | 65.42           | μg/L  | 10                                    | 65.4       | 12.6            | 14      | 0           | 7.22       | 16.3  |                    |
| ,2,4-Trichlorobenzene          | 48.16           | µg/L  | 10                                    | 48.2       | 17.4            | 98      | .7          | 4.15       | 36.4  |                    |
| lethod: EPA Method 7470: I     | Mercury         |       | •                                     |            |                 |         |             |            |       |                    |
| ample ID: MB-18218             |                 | MBLK  |                                       |            | Batch I         | D:      | 18218       | Analysis   | Date: | 2/3/2009 2:10:52 F |
| lercury                        | ND              | mg/L  | 0.00020                               |            |                 |         |             |            |       |                    |
| iample ID: LCS-18218           |                 | LCS   |                                       |            | Batch I         | D:      | 18218       | Analysis I | Date: | 2/3/2009 2:12:36 P |
| fercury                        | 0.004727        | mg/L  | 0.00020                               | 94.5       | 80              | 12      | 0 .         |            |       |                    |
| lethod: EPA 6010B: Total R     | ecoverable Met  |       |                                       |            |                 |         |             |            |       |                    |
| ample ID: MB-18221             |                 | MBLK  |                                       |            | Batch I         | D:      | 18221       | Analysis I | Date: | 2/3/2009 6:24:44 P |
| rsenic                         | ND              | mg/L  | 0.020                                 |            |                 |         |             |            |       |                    |
| arium                          | ND              | mg/L  | 0.010                                 |            |                 |         |             |            |       |                    |
| admium                         | ND              | mg/L  | 0.0020                                |            |                 |         |             |            |       |                    |
| alcium                         | ND              | mg/L  | 0.50                                  |            |                 |         |             |            |       |                    |
| hromium                        | ND              | mg/L  | 0.0060                                |            |                 |         |             |            |       |                    |
| ad                             | ND              | mg/L  | 0.0050                                |            |                 |         |             |            |       |                    |
| pnesium                        | ND              | mg/L  | 0.50                                  |            |                 |         |             |            |       |                    |
| otassium                       | ND              | mg/L  | 1.0                                   |            |                 |         |             |            |       |                    |
| elenium                        | ND              | mg/L  | 0.050                                 |            |                 |         |             |            |       |                    |
| lver                           | ND              | mg/L  | 0.0050                                |            |                 |         |             |            |       |                    |
| odium                          | ND              | mg/L  | 0.50                                  |            |                 |         |             |            |       |                    |
| ample ID: LCS-18221            |                 | LCS   |                                       |            | Batch I         | D:      | 18221       | Analysis I | Date: | 2/3/2009 6:28:32 P |
| senic                          | 0.5244          | mg/L  | 0.020                                 | 105        | 80              | 12      | 0           |            |       |                    |
| arium                          | 0.4913          | mg/L  | 0.010                                 | 98.3       | 80              | 12      | 0           |            |       |                    |
| admium                         | 0.5001          | mg/L  | 0.0020                                | 100        | 80              | 12      | 0           |            |       |                    |
| alcium                         | 50.82           | mg/L  | 0.50                                  | 102        | 80              | 12      |             |            |       | •                  |
| nromium                        | 0.5023          | mg/L  | 0.0060                                | 100        | 80              | 120     |             |            |       |                    |
| ad                             | 0.4975          | mg/L  | 0.0050                                | 98.7       | 80              | 120     |             |            |       |                    |
| agnesium                       | 50.55           | mg/L  | 0.50                                  | 101        | 80              | 120     |             |            |       |                    |
| otassium                       | 53.97           | mg/L  | 1.0                                   | 108        | 80              | 120     |             |            |       |                    |
| elenium                        | 0.4843          | mg/L  | 0.050                                 | 96.9       | 80              | . 120   |             |            |       |                    |
| lver                           | 0.5147          | mg/L  | 0.0050                                | 102        | 80              | 120     |             |            |       |                    |
| odium                          | 55.05           | mg/L  | 0.50                                  | 110        | 80              | 120     |             |            |       |                    |
| ethod: SM 2540 C: Total Dis    | ssoived Solids  |       | · · · · · · · · · · · · · · · · · · · |            |                 |         |             |            |       |                    |
| ample ID: MB-18191             |                 | MBLK  |                                       |            | Batch II        | D:      | 18191       | Analysis [ | Date: | 1/29/200           |
| otal Dissolved Solids          | 20.00           | mg/L  | 20                                    |            |                 |         |             |            |       |                    |
| ample ID: LCS-18191            |                 | LCS   |                                       |            | Batch II        | D:      | 18191       | Analysis E | Pate: | 1/29/200           |
| otal Dissolved Solids          | 1036            | mg/L  | 20                                    | 102        | 80              | 120     | )           |            |       |                    |
| )                              |                 |       |                                       |            |                 |         |             |            |       |                    |
| Qualifiers:  E Estimated value |                 |       | Н                                     | Holding ti | mes for prepar  | ation ( | or analveic | exceeded   |       |                    |
| Analyte detected below quan    | titation limits |       | ND                                    |            | ed at the Repo  |         |             |            |       |                    |
| RPD outside accepted recove    |                 |       | S                                     |            | very outside ac | _       |             |            |       | Page 4             |

Date: 12-Feb-09

### QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1st QTR 1/28/09

Work Order:

0901396

| Analyte                                     | Result    | Units         | PQL | %Rec  | LowLimit HighLimit | %RPD        | RPDLimit    | Qual            |
|---------------------------------------------|-----------|---------------|-----|-------|--------------------|-------------|-------------|-----------------|
| Method: EPA Method 8260B:                   | VOLATILES |               |     | - 17. |                    |             |             | `               |
| Sample ID: b2                               |           | MBLK          |     |       | Batch ID: R32209   | Analysis Da | ate: 1/29/2 | 009 10:23:08 Af |
| Benzene                                     | ND        | μg/L          | 1.0 |       |                    |             | •           |                 |
| Toluene                                     | ND        | µg/L          | 1.0 |       |                    |             |             |                 |
| Ethylbenzene                                | ND        | µg/L          | 1.0 |       |                    |             |             | •               |
| Methyl tert-butyl ether (MTBE)              | ND.       | μg/L          | 1.0 |       | •                  |             |             |                 |
| 1,2,4-Trimethylbenzene                      | ND        | μg/L          | 1.0 |       |                    | •           |             |                 |
| 1,3,5-Trimethylbenzene                      | ND        | µg/L          | 1.0 |       |                    |             |             |                 |
| 1,2-Dichloroethane (EDC)                    | ND        | µg/L .        | 1.0 |       |                    |             |             |                 |
| 1,2-Dibromoethane (EDB)                     | ND        | µg/L          | 1.0 |       | •                  | -           |             |                 |
| Naphthalene                                 | ND        | μg/L          | 2.0 | ,     |                    |             |             |                 |
| 1-Methylnaphthalene                         | ND        | μg/ <b>L</b>  | 4.0 |       |                    |             |             |                 |
| 2-Methylnaphthalene                         | ND        | µg/L          | 4.0 |       |                    |             |             |                 |
| Acetone                                     | ND        | μg/L          | 10  |       |                    |             |             |                 |
| Bromobenzene                                | ŅD        | µg/L          | 1.0 |       |                    |             |             |                 |
| Bromodichloromethane                        | ND        | μg/L          | 1.0 |       |                    |             |             |                 |
| Bromoform                                   | ND        | hg/F          | 1.0 |       |                    |             |             |                 |
| Bromomethane                                | ND        | µg/L          | 1.0 |       | •                  |             |             |                 |
| 2-Butanone                                  | ND        | µg/L          | 10  |       |                    |             |             |                 |
| Carbon disulfide                            | ND        | µg/L          | 10  |       |                    |             |             |                 |
| Carbon Tetrachloride                        | ND '      | µg/L          | 1.0 |       |                    |             |             |                 |
| Chlorobenzene                               | ND        | µg/L          | 1.0 |       |                    |             |             |                 |
| Chloroethane                                | ND        | µg/L          | 2.0 |       |                    |             | •           |                 |
| Chloroform                                  | ND        | μg/L          | 1.0 |       |                    |             |             |                 |
| Chloromethane                               | ND .      | µg/L          | 1.0 |       |                    |             |             |                 |
| -Chlorotoluene                              | ND .      | μg/L          | 1.0 |       |                    |             |             |                 |
| I-Chlorotoluene                             | ND        | µg/L          | 1.0 |       |                    |             |             |                 |
| sis-1,2-DCE                                 | ND        | μg/L<br>μg/L  | 1.0 |       |                    |             | •           |                 |
|                                             | ND        | µg/L          | 1.0 |       |                    |             |             |                 |
| is-1,3-Dichloropropene                      | ND        | μg/L          | 2.0 |       |                    |             |             |                 |
| ,2-Dibromo-3-chloropropane                  | ND        | μg/L<br>μg/L  | 1.0 |       |                    |             |             |                 |
|                                             | ND        | μg/L          | 1.0 |       |                    |             |             |                 |
| Dibromomethane<br>i,2-Dichlorobenzene       | ND        | µg/L          | 1.0 |       |                    |             |             |                 |
| 1,3-Dichlorobenzene                         | ND        | μg/L          | 1.0 |       |                    |             |             |                 |
| ,4-Dichlorobenzene                          | ND        | μg/L          | 1.0 |       |                    |             | •           |                 |
| Dichlorodifluoromethane                     | ND .      | µg/L          | 1.0 |       |                    |             |             |                 |
| 1,1-Dichloroethane                          | 445       | µg/L          | 1.0 |       |                    |             |             |                 |
| ,1-Dichloroethene                           | ND ,      | µg/L          | 1.0 |       |                    |             |             |                 |
| ,2-Dichloropropane                          | ND        | h8/F          | 1.0 |       |                    |             |             |                 |
| ,3-Dichloropropane                          | ND        | µg/L          | 1.0 |       | ,                  |             |             |                 |
| ,3-Dichloropropane                          | ND        | µg/L<br>µg/L  | 2.0 |       |                    | •           | •           |                 |
| ,1-Dichloropropene                          | ND        | μg/L          | 1.0 |       |                    |             | •           |                 |
| l, 1-Dichioropropene<br>lexachlorobutadiene | ND<br>ND  | μg/L          | 1.0 |       |                    |             |             |                 |
|                                             | ND        | μg/L<br>.μg/L | 1.0 |       |                    |             |             |                 |
| ?-Hexanone                                  |           |               |     | •     |                    |             |             |                 |
| sopropylbenzene                             | ND .      | µg/L          | 1.0 |       | •                  |             |             |                 |
| l-Isopropyltoluene                          | ND        | µg/L          | 1.0 |       |                    |             |             |                 |

E Estimated value

J Analyte detected below quantitation limits

RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

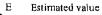
ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Client:

Western Refining Southwest, Inc.

oject:


Injection Well 1st QTR 1/28/09

Work Order:

0901396

| Analyte                        | Result    | Units | PQL | %Rec | LowLimit Hi | ghLimit | %RPD R         | PDLimit Qual          |
|--------------------------------|-----------|-------|-----|------|-------------|---------|----------------|-----------------------|
| Method: EPA Method 8260B:      | VOLATILES |       |     |      |             |         | ,              |                       |
| Sample ID: b2                  |           | MBLK  |     |      | Batch ID:   | R32209  | Analysis Date: | 1/29/2009 10:23:08 Al |
| 4-Methyl-2-pentanone           | ND        | μg/L  | 10  |      |             |         |                |                       |
| Methylene Chloride             | ND        | μg/L  | 3.0 |      |             |         |                |                       |
| n-Butylbenzene                 | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| n-Propylbenzene                | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| sec-Butylbenzene               | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| Styrene                        | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| tert-Butylbenzene              | ND        | µg/L  | 1.0 |      |             |         |                |                       |
| 1,1,1,2-Tetrachloroethane      | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| 1,1,2,2-Tetrachloroethane      | ND        | μg/L  | 2.0 |      |             |         |                |                       |
| Tetrachloroethene (PCE)        | ND        | µg/L  | 1.0 |      |             |         |                |                       |
| trans-1,2-DCE                  | ND        | μg/L  | 1.0 |      |             |         |                | •                     |
| trans-1,3-Dichloropropene      | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| 1,2,3-Trichlorobenzene         | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| 1,2,4-Trichlorobenzene         | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| 1,1,1-Trichloroethane          | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| 1,1,2-Trichloroethane          | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| Trichloroethene (TCE)          | ND        | μg/L  | 1.0 |      |             |         |                | **                    |
| Trichlorofluoromethane         | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| 1,2,3-Trichtoropropane         | ND        | μg/L  | 2.0 |      |             |         |                |                       |
| Vinyl chloride                 | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| Nenes, Total                   | ND        | μg/L  | 1.5 |      |             |         |                |                       |
| mple ID: 5ml rb                |           | MBLK  |     |      | Batch ID:   | R32237  | Analysis Date: | 1/30/2009 8:28:07 Aft |
| Banzena                        | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| Toluene                        | ND        | μg/L  | 1.0 |      |             |         | •              |                       |
| Ethylbenzene                   | ND.       | μg/L  | 1.0 |      |             |         |                |                       |
| Methyl tert-butyl ether (MTBE) | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| 1,2,4-Trimethylbenzene         | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| 1,3,5-Trimethylbenzene         | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| 1,2-Dichloroethane (EDC)       | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| 1,2-Dibromoethane (EDB)        | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| Naphthalene                    | ND        | μg/L  | 2.0 |      |             |         |                |                       |
| 1-Methylnaphthalene            | ND        | μg/L  | 4.0 |      |             |         |                |                       |
| 2-Methylnaphthalene            | ND        | μg/L  | 4.0 |      |             |         |                |                       |
| Acetone                        | ND        | μg/L  | 10  |      |             |         |                | • •                   |
| Bromobenzene                   | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| Bromodichloromethane           | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| Bromoform                      | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| Bromomethane                   | ND        | µg/L  | 1.0 |      |             |         |                |                       |
| 2-Butanone                     | ND        | μg/L  | 10  |      |             |         |                |                       |
| Carbon disulfide               | ND        | μg/L  | 10  |      | •           |         |                |                       |
| Carbon Tetrachloride           | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| Chlorobenzene                  | ND        | μg/L  | 1.0 |      |             |         |                |                       |
| Chloroethane                   | ND        | μg/L  | 2.0 |      |             |         |                |                       |
| Chloroform                     | ND        | μg/L  | 1.0 |      |             |         |                |                       |





Analyte detected below quantitation limits

RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

H Holding times for preparation or analysis exceeded

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1st QTR 1/28/09

Work Order:

0901396

| Analyte                     | Result      | Units        | PQL  | %Rec | LowLimit Hi | ghLimit | %RPD RP        | DLimit Qual              |
|-----------------------------|-------------|--------------|------|------|-------------|---------|----------------|--------------------------|
| Method: EPA Method 8260B    | : VOLATILES |              |      |      |             |         |                |                          |
| Sample ID: 6ml rb           |             | MBLK         |      |      | Batch ID:   | R32237  | Analysis Date: | 1/30/2009 8:28:07 AN     |
| Chloromethane               | ND          | µg/∟         | 1.0  |      |             |         |                |                          |
| 2-Chlorotoluene             | ND          | μg/L         | 1.0  |      |             |         |                |                          |
| 4-Chiorotoluene             | ND          | µg/L         | 1.0  |      |             |         |                | •                        |
| cis-1,2-DCE                 | ND          | µg/L         | 1.0  |      |             |         |                |                          |
| cis-1,3-Dichloropropene     | ND          | µg/L         | 1.0  |      |             |         |                |                          |
| 1,2-Dibromo-3-chloropropane | ND          | .µg/L        | 2.0  |      |             |         |                |                          |
| Dibromochloromethane        | ND          | µg/L         | 1.0  |      |             |         |                |                          |
| Dibromomethane              | ND          | µg/L         | 1.0  |      |             |         |                |                          |
| 1,2-Dichlorobenzene         | ND          | hg/L         | 1.0  |      | •           |         |                |                          |
| 1,3-Dichlorobenzene         | ND          | µg/L         | 1.0  |      |             |         |                |                          |
| 1,4-Dichlorobenzene         | ND          | µg/∟         | 1.0  |      |             |         | •              |                          |
| Dichlorodifluoromethane     | ND          | µg/L         | 1.0  |      |             |         |                |                          |
| 1,1-Dichloroethane          | ND          | µg/L         | 1.0  |      |             |         |                |                          |
| 1,1-Dichloroethene          | ND          | μg/L         | 1.0  |      |             |         |                | *                        |
| 1,2-Dichloropropane         | ND          | μg/L         | 1.0  |      |             |         |                |                          |
| 1,3-Dichioropropane         | ND          | μg/L         | 1.0  |      |             |         |                |                          |
| 2,2-Dichloropropane         | ND          | μg/L         | 2.0  |      |             |         |                |                          |
| 1,1-Dichloropropene         | ND          | µg/L         | 1.0  |      |             |         |                |                          |
| Hexachlorobutadiene         | ND          | µg/L         | 1.0  |      |             |         |                |                          |
| 2-Hexanone                  | ND          | µg/L         | 10   |      |             |         | •              |                          |
| Isopropylbenzene            | ND          | µg/L         | 1.0  |      |             |         |                | •                        |
| 4-Isopropyltoluene          | ND          | μg/L         | 1.0  |      |             |         |                |                          |
| 4-Methyl-2-pentanone        | ND          | μg/L         | . 10 |      |             |         |                | •                        |
| Methylene Chlorida          | ND          | μg/L         | 3.0  |      | *           |         |                |                          |
| n-Butylbenzene              | ND          | hâ/r         | 1.0  |      |             |         |                |                          |
| n-Propylbenzene             | ND          | hâ∖⊏<br>bâ∖⊏ | 1.0  |      |             |         |                |                          |
| sec-Butylbenzene            | ND          | μg/L         | 1.0  |      |             |         |                |                          |
| Styrene                     | ND          | μg/L         | 1.0  |      | •           |         |                |                          |
| tert-Butylbenzene           | ND          | µg/L         | 1.0  |      |             |         |                |                          |
| 1,1,1,2-Tetrachloroethane   | ND          | µg/L         | 1.0  |      |             |         |                |                          |
| 1,1,2,2-Tetrachloroethane   | ND          | μg/L         | 2.0  |      |             | •       |                |                          |
| Tetrachioroethene (PCE)     | ND          | µg/L         | 1.0  |      |             |         |                |                          |
| trans-1,2-DCE               | ND          | μg/L         | 1.0  |      |             |         |                |                          |
| trans-1,3-Dichloropropene   | ND ND       | µg/L         | 1.0  |      |             |         |                |                          |
| 1,2,3-Trichlorobenzene      | ND          | μg/L         | 1.0  |      |             |         |                |                          |
| 1,2,4-Trichlorobenzene      | ND .        | μg/L         | 1.0  |      |             |         |                | •                        |
| 1,1,1-Trichloroethane       | ND          | μg/L         | 1.0  |      |             |         |                |                          |
| 1,1,2-Trichloroethane       | ND          | μg/L         | 1.0  |      |             |         |                |                          |
| Trìchloroethene (TCE)       | ND          | μg/L         | 1.0  |      |             |         |                |                          |
| Trichlorofluoromethane      | ND          | μg/L         | 1.0  |      |             |         |                |                          |
| 1,2,3-Trichloropropane      | ND          | μg/L         | 2.0  |      |             |         |                |                          |
| Vinyl chloride              | ND          | μg/L         | 1.0  |      |             |         |                |                          |
| Xylenes, Total              | ND          | µg/L         | 1.5  |      |             |         |                |                          |
|                             | 110         | MBLK         |      |      | Batch ID:   | R32237  | Analysis Date: | 1/30/2009 11:32:07 PM    |
| Sample ID: b6               |             | WIDLE        |      |      | Daton 10.   | 1104401 |                | ., 90, 200 / 1,02.01 / 1 |



E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

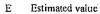


Date: 12-Feb-09

## QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.


ject: Injection Well 1st QTR 1/28/09

Work Order:

0901396

| Analyte                        | Result      | Units | PQL | %Rec | LowLimit Hig | ghLimit | %RPD RP        | DLimit Qual           |
|--------------------------------|-------------|-------|-----|------|--------------|---------|----------------|-----------------------|
| Method: EPA Method 8260B       | : VOLATILES |       |     |      |              |         |                |                       |
| Sample ID: b6                  |             | MBLK  |     |      | Batch ID:    | R32237  | Analysis Date: | 1/30/2009 11:32:07 PI |
| Benzene                        | ND          | µg/L  | 1.0 |      |              |         |                |                       |
| Toluane                        | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| Ethylbenzene                   | ND          | µg/L  | 1.0 |      |              |         |                |                       |
| Methyl tert-butyl ether (MTBE) | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| 1,2,4-Trimethylbenzene         | ND          | μg/L  | 1.0 | •    |              |         |                |                       |
| 1,3,5-Trimethylbenzene         | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| 1,2-Dichloroethane (EDC)       | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| 1,2-Dibromoethane (EDB)        | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| Naphthalene                    | ND          | μg/L  | 2.0 |      |              |         |                |                       |
| 1-Methylnaphthalene            | ND          | µg/L  | 4.0 |      |              |         |                |                       |
| 2-Methylnaphthalene            | ND          | µg/L  | 4.0 |      |              |         |                |                       |
| Acetone                        | ND          | μg/L  | 10  |      |              |         |                |                       |
| Bromobenzene                   | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| Bromodichloromethane           | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| Bromoform                      | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| Bromomethane                   | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| 2-Butanone                     | ND          | μg/L  | 10  |      |              |         |                |                       |
| Carbon disulfide               | ND          | μg/L  | 10  |      |              |         |                |                       |
| Carbon Tetrachloride           | ND          | ug/L  | 1.0 |      |              |         |                |                       |
| Chlorobenzene                  | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| `oroethane                     | ND          | μg/L  | 2.0 |      |              |         |                |                       |
| oroform                        | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| Chloromethane                  | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| 2-Chlorotoluene                | ND          | µg/L  | 1.0 |      |              |         |                |                       |
| 4-Chlorotoluene                | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| cis-1,2-DCE                    | ND          | µg/L  | 1.0 |      |              |         |                |                       |
| cis-1,3-Dichloropropene        | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| 1,2-Dibromo-3-chioropropane    | ND          | μg/L  | 2.0 |      |              |         |                |                       |
| Dibromochloromethane           | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| Dibromomethane                 | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| 1,2-Dichlorobenzene            | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| 1,3-Dichlorobenzene            | ND          | µg/L  | 1.0 |      |              |         |                |                       |
| 1,4-Dichlorobenzene            | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| Dichlorodifluoromethane        | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| 1,1-Dichloroethane             | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| 1,1-Dichloroethene             | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| 1,2-Dichloropropane            | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| 1,3-Dichloropropane            | ND          | µg/L  | 1.0 |      |              |         | •              |                       |
| 2,2-Dichloropropane            | ND          | µg/L  | 2.0 |      |              |         |                |                       |
| 1,1-Dichloropropene            | ND          | µg/L  | 1.0 |      |              |         |                |                       |
| Hexachlorobutadiene            | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| 2-Hexanone                     | ND          | μg/L  | 10  |      |              |         |                |                       |
| Isopropylbenzene               | ND          | μg/L  | 1.0 |      |              |         |                |                       |
| 4-Isopropyltoluene             | ND          | µg/L  | 1.0 |      |              |         |                |                       |

#### Qualifiers:



Analyte detected below quantitation limits RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Date: 12-Feb-09

## QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1st QTR 1/28/09

Work Order:

0901396

| Analyte                        | Result      | Units  | PQL   | %Rec | LowLimit Hig | ghLimit | %RPD RP        | DLimit Qual           |
|--------------------------------|-------------|--------|-------|------|--------------|---------|----------------|-----------------------|
| Method: EPA Method 8260B       | : VOLATILES |        |       |      |              |         |                |                       |
| Sample ID: b6                  |             | MBLK   |       |      | Batch ID:    | R32237  | Analysis Date: | 1/30/2009 11:32:07 PN |
| 4-Methyl-2-pentanone           | ND          | hg/r   | 10    |      |              |         |                |                       |
| Methylene Chloride             | ND          | μg/L   | 3.0   |      |              |         |                |                       |
| n-Butylbenzene                 | ND          | μg/L   | 1.0   |      |              |         |                |                       |
| n-Propylbenzene                | ND          | µg/L   | 1.0   | •    |              |         |                |                       |
| sec-Butylbenzene               | ND          | µg/L   | 1.0   |      |              |         |                |                       |
| Styrene                        | ND          | μg/L   | 1.0   |      |              |         |                | •                     |
| tert-Butylbenzene              | ND -        | μg/L   | 1.0   |      |              |         | •              |                       |
| 1,1,1,2-Tetrachloroethane      | ND .        | µg/L   | 1.0   |      |              | ,       |                |                       |
| 1,1,2,2-Tetrachloroethane      | ND          | µg/L   | 2.0   |      |              |         |                | •                     |
| Tetrachloroethene (PCE)        | ND          | μg/L   | 1.0   |      |              |         |                |                       |
| trans-1,2-DCE                  | ND          | μg/L   | 1.0   |      |              |         |                |                       |
| trans-1,3-Dichloropropene      | ND          | μg/L   | 1.0   |      |              |         |                |                       |
| 1,2,3-Trichlorobenzene         | ND          | - μg/L | 1.0   |      |              |         |                |                       |
| 1,2,4-Trichtorobenzene         | ND          | µg/L   | 1.0   |      |              |         |                |                       |
| 1,1,1-Trichtoroethane          | ND          | μg/L   | 1.0   |      |              |         |                |                       |
| 1,1,2-Trichloroethane          | ND          | μg/L   | - 1.0 |      |              |         |                |                       |
| Trichloroethene (TCE)          | ND          | µg/L   | 1.0   |      |              |         |                | •                     |
| Trichlorofluoromethane         | ND          | μg/L   | 1.0   |      |              |         |                |                       |
| 1,2,3-Trichloropropane         | ND          | μg/L   | 2.0   |      |              |         |                |                       |
| Vinyl chloride                 | ND          | μg/L   | 1.0   |      |              |         |                |                       |
| Xylenes, Total                 | ND          | µg/L   | 1.5   |      | •            |         |                |                       |
| Sample ID: b7                  |             | MBLK   |       |      | Batch ID:    | R32237  | Analysis Date: | 1/31/2009 10:11:51 AM |
| Benzene                        | ND          | µg/L   | 1.0   |      |              |         | ,              |                       |
| Toluene                        | ND          | µg/L   | 1.0   |      |              |         |                |                       |
| Ethylbenzene                   | ND          | µg/L   | 1.0   |      |              |         |                |                       |
| Methyl tert-butyl ether (MTBE) | ND          | µg/L   | 1.0   |      |              |         |                | •                     |
| 1,2,4-Trimethylbenzene         | ND          | μg/L   | 1.0   |      |              |         |                |                       |
| 1,3,5-Trimethylbenzene         | ND .        | µg/L   | 1.0   |      |              |         |                |                       |
| 1,2-Dichloroethane (EDC)       | ND          | µg/L   | 1.0   |      |              |         |                |                       |
| 1,2-Dibromoethane (EDB)        | ND          | µg/L   | 1.0   |      |              |         |                |                       |
| Naphthalene                    | ND          | µg/L   | 2.0   |      |              |         |                |                       |
| 1-Methylnaphthalene            | ND          | µg/L   | 4.0   |      |              |         |                |                       |
| 2-Methylnaphthalene            | ND          | µg/L   | 4.0   |      |              |         |                |                       |
| Acetone                        | ND          | µg/L   | 10    |      |              |         |                |                       |
| Bromobenzene                   | ND          | µg/L   | 1.0   |      |              |         |                |                       |
| Bromodichtoromethane           | ND          | µg/L   | 1.0   |      |              |         |                |                       |
| Bromoform                      | ND          | µg/L   | 1.0   |      |              |         |                |                       |
| Bromomethane                   | ND          | µg/L   | 1.0   |      |              |         |                |                       |
| 2-Butanone                     | ND          | µg/L   | 10    |      |              |         |                |                       |
| Carbon disulfide               | ND          | µg/L   | 10    |      |              |         |                |                       |
| Carbon Tetrachloride           | ND          | μg/L   | 1.0   |      |              |         |                |                       |
| Chlorobanzene                  | ND          | µg/Ł   | 1.0   |      |              |         |                |                       |
| Chloroethane                   | ND          | μg/L   | 2.0   |      |              |         |                | •                     |
| Chloroform                     | ND          | μg/L   | 1.0   |      |              |         |                |                       |



E Estimated value



J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Client:

Western Refining Southwest, Inc.

Injection Well 1st QTR 1/28/09

Work Order:

0901396

| Analyte                                      | Result    | Units        | PQL        | %Rec | LowLimit Hi | ighLimit | %RPD RF        | PDLimit Qual            |
|----------------------------------------------|-----------|--------------|------------|------|-------------|----------|----------------|-------------------------|
| Method: EPA Method 8260B:                    | VOLATILES |              |            |      |             |          |                |                         |
| Sample ID: b7                                |           | MBLK         |            |      | Batch ID:   | R32237   | Analysis Date: | 1/31/2009 10:11:51 A    |
| Chloromethane                                | ND        | µg/L         | 1.0        |      |             |          |                |                         |
| 2-Chlorotoluene                              | ND        | µg/L         | 1.0        |      |             |          |                |                         |
| 4-Chlorotoluene                              | ND        | μg/L         | 1.0        |      |             |          |                |                         |
| cis-1,2-DCE                                  | ND        | μg/L         | 1.0        |      |             |          |                | •                       |
| cis-1,3-Dichloropropene                      | ND        | μg/L         | 1.0        |      |             |          |                |                         |
| 1,2-Dibromo-3-chloropropane                  | ND        | µg/L         | 2.0        |      |             |          |                |                         |
| Dibromochloromethane                         | ND        | μg/L         | 1.0        |      |             |          |                |                         |
| Dibromomethane                               | ND        | μg/L         | 1.0        |      |             |          | •              |                         |
| 1,2-Dichlorobenzene                          | ND        | μg/L         | 1.0        |      |             |          |                |                         |
| 1,3-Dichlorobenzene                          | ND        | μg/L         | 1.0        |      |             |          |                |                         |
| 1,4-Dichlorobenzene                          | ND        | µg/L         | 1.0        |      |             |          |                |                         |
| Dichlorodifluoromethane                      | ND        | µg/L         | 1.0        |      |             |          |                |                         |
| 1,1-Dichloroethane                           | ND        | µg/L         | 1.0        |      |             |          |                |                         |
| 1,1-Dichloroethene                           | ND        | µg/L         | 1.0        |      |             |          |                |                         |
| 1,2-Dichloropropane                          | ND        | µg/L         | 1.0        |      |             |          |                |                         |
| 1,3-Dichloropropane                          | ND        | µg/L         | 1.0        |      |             |          |                | •                       |
| 2,2-Dichloropropane                          | ND        | μg/L         | 2.0        |      |             |          |                |                         |
| 1,1-Dichloropropene                          | ND        | μg/L         | 1.0        |      |             |          |                |                         |
| Hexachlorobutadiene                          | ND        | μg/L         | 1.0        |      |             | *        |                |                         |
| *Hexanone                                    | ND        | hâ\ŗ         | 10         |      |             |          |                |                         |
| propylbenzene                                | ND        | µg/L         | 1.0        |      |             |          |                |                         |
| Sopropyltoluene                              | ND        | μg/L         | 1.0        |      |             |          |                |                         |
| 4-Methyl-2-pentanone                         | ND        | µg/L         | 10         |      |             |          |                |                         |
| • •                                          | ND        | μg/L         | 3.0        |      |             |          |                |                         |
| Methylene Chloride                           | ND        |              | 1.0        |      |             |          |                |                         |
| n-Butylbenzene                               |           | μg/L         | 1.0        |      |             |          |                |                         |
| n-Propylbenzene                              | ND<br>ND  | µg/L         |            |      |             |          |                |                         |
| sec-Butylbenzene                             | ND        | μg/L         | 1.0        |      |             |          |                |                         |
| Styrene                                      | ND        | µg/L         | 1.0        |      |             |          |                |                         |
| tert-Butylbenzene                            | ND        | µg/L         | 1.0        |      |             |          |                |                         |
| 1,1,1,2-Tetrachloroethane                    | ND        | μg/L         | 1.0        |      |             | -        |                |                         |
| 1,1,2,2-Tetrachloroethane                    | ND        | μg/L         | 2.0        |      |             |          |                |                         |
| Tetrachloroethene (PCE)                      | ND        | μg/L         | 1.0        |      |             |          |                |                         |
| trans-1,2-DCE                                | ND<br>ND  | µg/L         | 1.0<br>1.0 |      |             |          |                |                         |
| trans-1,3-Dichloropropene                    | ND<br>ND  | µg/L         | 1.0        |      |             |          |                |                         |
| 1,2,3-Trichlorobenzene                       |           | µg/L<br>µg/L | 1.0        |      | •           |          |                |                         |
| 1,2,4-Trichlorobenzene                       | ND        | µg/L<br>µg/L | 1.0        |      |             |          | •              |                         |
| 1,1,1-Trichloroethane                        | ND<br>ND  |              |            |      |             |          |                |                         |
| 1,1,2-Trichloroethane                        | ND<br>ND  | μg/L         | 1.0        |      |             |          |                |                         |
| Trichloroethene (TCE) Trichlorofluoromethane | ND<br>ND  | μg/L         | 1.0<br>1.0 | •    |             |          |                |                         |
| 1,2,3-Trichloropropane                       |           | µg/L         | 2.0        |      |             |          |                |                         |
|                                              | ND        | μg/L         | 1.0        |      |             |          |                |                         |
| Vinyl chloride                               | ND<br>ND  | μg/L         |            |      |             |          |                |                         |
| Xylenes, Total                               | ND        | µg/L         | 1.5        |      | Datab ID:   | пассос   | Analysis Date: | 4/20/2000 40-00-07 1044 |
| Sample ID: 100ng ics                         |           | LCS          |            |      | Batch ID:   | R32209   | Analysis Date: | 1/29/2009 12:00:27 PM   |





Estimated value

Analyte detected below quantitation limits RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Date: 12-Feb-09

### QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1st QTR 1/28/09

Work Order:

0901396

| Analyte                  | Result       | Units | PQL | %Rec | LowLimit | HighLimit         | %RPD RP        | DLimit Qual           |
|--------------------------|--------------|-------|-----|------|----------|-------------------|----------------|-----------------------|
| Method: EPA Method 82601 | 3: VOLATILES |       |     |      |          |                   |                |                       |
| Sample ID: 100ng lcs     |              | LCS - |     |      | Batch    | ID: R32209        | Analysis Date: | 1/29/2009 12:00:27 PM |
| Benzene                  | 19.05        | µg/L  | 1.0 | 95.3 | 88       | 116               |                |                       |
| Toluene                  | 17.46        | µg/L  | 1.0 | 87.3 | 82.9     | 112               |                |                       |
| Chlorobenzene            | 17.06        | μg/L  | 1.0 | 85.3 | 71.4     | 133               |                |                       |
| 1,1-Dichloroethene       | 22.17        | μg/L  | 1.0 | 111  | 97.9     | 140               |                |                       |
| Trichloroethene (TCE)    | 17.96        | µg/∟  | 1.0 | 89.8 | 90.5     | 112               | •              | S                     |
| Sample ID: 100ng lcs     |              | LCS   |     |      | Batch    | ID: R32237        | Analysis Date: | 1/30/2009 9:24:52 AM  |
| Benzene                  | 19.75        | μg/L  | 1.0 | 98.8 | 88       | 116 ∈             | •              |                       |
| Toluene                  | 18.36        | μg/L  | 1.0 | 91.8 | 82.9     | 112               |                |                       |
| Chlorobenzene            | 20.10        | μg/L  | 1.0 | 100  | 71.4     | 133               |                |                       |
| 1,1-Dichloroethene       | 21.35        | μg/L  | 1.0 | 107  | 97.9     | 140               |                |                       |
| Trichloroethene (TCE)    | 20.09        | μg/L  | 1.0 | 100  | 90.5     | 112               |                |                       |
| Sample ID: 100ng lcs_b   |              | LCS   |     |      | Batch    | ID: <b>R32237</b> | Analysis Date: | 1/30/2009 10:06:56 PM |
| Benzene                  | 19.67        | μg/L  | 1.0 | 98.3 | 88       | 116               |                |                       |
| Toluene                  | 18.47        | µg/L  | 1.0 | 92.3 | 82.9     | 112               | •              |                       |
| Chlorobenzene            | 20.43        | µg/L  | 1.0 | 102  | 71.4     | 133               |                |                       |
| 1,1-Dichloroethene       | 21.09        | μg/L  | 1.0 | 105  | 97.9     | 140               |                |                       |
| Trichloroethene (TCE)    | 19.93        | μg/L  | 1.0 | 99.7 | 90.5     | 112               |                |                       |
| Sample ID: 100ng lcs_c   | •            | LCS   |     |      | Batch    | ID: R32237        | Analysis Date: | 1/31/2009 11:09:01 AM |
| Benzene                  | 20.00        | μg/L  | 1.0 | 100  | 88       | 116               | ·              |                       |
| Toluene                  | 18.11        | μg/L  | 1.0 | 90.5 | 82.9     | 112               | ,              |                       |
| Chlorobenzene            | 19.86        | µg/L  | 1.0 | 99.3 | 71.4     | 1 <b>3</b> 3      |                |                       |
| 1,1-Dichtoroethene       | 20.06        | μg/L  | 1.0 | 100  | 97.9     | 140               |                |                       |
| Trichloroethene (TCE)    | 19.56        | μg/L  | 1.0 | 97.8 | 90.5     | 112               |                |                       |

| Qu | ali | fie | rs |
|----|-----|-----|----|

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits



#### Sample Receipt Checklist

| Ant Name WESTERN REFINING SOUT    Matrix:   Carrier name   LPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>A</b>                                           | Sample I            |        | sipt O                  |                    |                 |     | 4 (00/0000  |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------|--------|-------------------------|--------------------|-----------------|-----|-------------|---|
| Matrix:  Carrier name  PS  Shipping container/cooler in good condition?  Custody seals infact on shipping container/cooler?  Ves No No Not Present Not Shipped  Custody seals infact on shipping container/cooler?  Ves No No Not Present Not Shipped  Custody seals infact on sample boths?  Custody seals infact on sample boths?  Ves No No Not Present Not Shipped  Custody present?  Ves No No Not Present Not Shipped  Custody present?  Ves No No Not Present Not Shipped  Chain of custody agned when relinquished and received?  Ves No No Sample container infact?  Ves No No No Not Not Present Not Shipped  Chain of custody agned when relinquished and received?  Ves No No No Not Not Present Not Shipped  Sample on proper container/bettle?  Ves No No No Not Not Not Shipped  Not Shipped Not Not Shipped Not Shipped Not Not Shipped Not Not Shipped Not Not Shipped Not Not Shipped Not Not Not Shipped Not Not Not Shipped Not Not Not Shipped Not Not Not Shipped Not Not Not Shipped Not Not Not Shipped Not Not Not Shipped Not Not Not Not Shipped Not Not Not Shipped Not Not Not Shipped Not Not Not Not Not Shipped Not Not Not Not Not Not Not Not Not Not | nt Name WESTERN REFINING SOUT                      |                     |        |                         |                    |                 |     | 1/29/2009   |   |
| Cherckitist completed by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Work Order Number 0901396                          |                     |        | 1                       | ,                  |                 |     | 11          |   |
| Matrix: Carrier name UPS  Shipping container/cooler in good condition? Yes  No  Not Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Checklist completed by:                            |                     |        | 1/5                     | Sample ID          | abels checked   | by: | Initials    |   |
| Shipping container/coder in good condition?  Ves  No  Not Present  Not Present  Not Shipped  Not Shipped  Not Shipped  Not Shipped  Not Shipped  Not Custody seals infact on shipping container/cooler?  Ves  No  No  Not Present  Not Shipped  Not Custody seals infact on sample bottles?  Chain of custody gined when relinquished and received?  Ves  No  No  Samples in proper container/bottle?  Sample sontainers what?  Sample containers what?  Ves  No  No  No  Not Present  No  No  No  No  No  No  No  No  No  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |                     | $\top$ | Date                    | 10                 |                 |     |             |   |
| Custody seals intact on shipping container/cooler?  Ves No No NtA V  Custody seals intact on sample bottles?  Yes No No NtA V  Chain of custody present?  Chain of custody signed when relinquished and received?  Chain of custody signed when relinquished and received?  Chain of custody signed when relinquished and received?  Chain of custody signed when relinquished and received?  Yes No No No No No No No No No No No No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Matrix:                                            | Carrier name        | JPS    |                         |                    |                 |     |             |   |
| Custody seals intact on sample bottles?  Yes No No No No No No No No No No No No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Shipping container/cooler in good condition?       | •                   | res.   | V                       | No 🗌               | Not Present     |     |             |   |
| Chain of custody present?  Chain of custody signed when relinquished and received?  Chain of custody agrees with sample labels?  Chain of custody agrees with sample labels?  Yes  No  No  No  Samples in proper container/bottle?  Samples in proper container/bottle?  Yes  No  No  No  No  No  No  No  No  No  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Custody seals intact on shipping container/cooler? | ,                   | /es    | V                       | No 🗀               | Not Present     |     | Not Shipped |   |
| Chain of custody signed when relinquished and received? Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Custody seals intact on sample bottles?            | ,                   | /es    |                         | No 🗆               | N/A             | V   |             |   |
| Chain of custody agrees with sample labels?  Samples in proper container/bottle?  Sample containers intact?  Sufficient sample volume for indicated test?  Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chain of custody present?                          | ,                   | /es    | V                       | No 🗆               |                 |     |             |   |
| Samples in proper container/bottle?  Sample containers intact?  Sufficient sample volume for indicated test?  All samples received within holding time?  Water - VOA vials have zero headspace?  No VOA vials submitted  Yes  No   No   Water - VOA vials have zero headspace?  No VOA vials submitted  Yes  No  NA   Vater - Preservation labels on bottle and cap match?  Yes  No  NA   Vater - pH acceptable upon receipt?  Yes  No  NA   Container/Temp Blank temperature?  1º   **6° C Acceptable*  If given sufficient time to cool.  Client contacted  Date contacted:  Person contacted  Contacted by:  Regarding:  Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chain of custody signed when relinquished and rec  | ceived?             | /es    | $\checkmark$            | No 🔲               |                 |     |             |   |
| Sample containers intact?  Sufficient sample volume for indicated test?  Sufficient samples volume for indicated test?  All samples received within holding time?  Water - VOA vials have zero headspace?  No VOA vials submitted  Yes No No NA  Vater - Preservation labels on bottle and cap match?  Yes No No NA  Vater - PH acceptable upon receipt?  Yes No NA  Container/Temp Blank temperature?  1º <6° C Acceptable  If given sufficient time to cool.  Cilient contacted  Date contacted:  Person contacted  Contacted by:  Regarding:  Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chain of custody agrees with sample labels?        | )                   | es/    | $\overline{\mathbf{V}}$ | No 🗆               |                 |     | •           |   |
| Sufficient samples volume for indicated test?  All samples received within holding time?  Water - VOA vials have zero headspace?  No VOA vials submitted  Yes No No No No No No No No No No No No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Samples in proper container/bottle?                | `                   | es/    | $\checkmark$            | No 🗌               |                 |     | •           |   |
| All samples received within holding time?  Water - VOA vials have zero headspace? No VOA vials submitted  Yes  No  No  No  No  No  No  No  No  No  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample containers intact?                          | ١                   | 'es    |                         | No 🗆               |                 |     |             |   |
| Water - VOA vials have zero headspace? No VOA vials submitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sufficient sample volume for indicated test?       | · Y                 | es.    | $\checkmark$            | No 🗆               |                 |     |             |   |
| teter - Preservation labels on bottle and cap match?  Yes ✓ No No N/A Container/Temp Blank temperature?  Yes ✓ No N/A Container/Temp Blank temperature?  Yes ✓ No N/A Container/Temp Blank temperature?  1º <6° C Acceptable  If given sufficient time to cool.  Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All samples received within holding time?          | Y                   | 'es    | V                       | No 🗌               | •               |     |             |   |
| Vater - pH acceptable upon receipt?  Container/Temp Blank temperature?  1° <6° C Acceptable If given sufficient time to cool.  COMMENTS:  Client contacted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Water - VOA vials have zero headspace?             | No VOA vials submit | ed     |                         | Yes 🗹              | No 🗆            |     |             |   |
| Comments:  1° <6° C Acceptable If given sufficient time to cool.  Client contacted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ater - Preservation labels on bottle and cap matc  | ch? Y               | es .   | $\mathbf{V}$            | No 🗆               | N/A             |     |             |   |
| COMMENTS:  If given sufficient time to cool.  Client contacted Date contacted: Person contacted  Contacted by: Regarding:  Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vater - pH acceptable upon receipt?                | Y                   | 'es    | V                       | No 🗆               | N/A             |     |             |   |
| Client contacted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Container/Temp Blank temperature?                  |                     | •      | 1°                      |                    |                 |     |             | , |
| Contacted by:  Regarding:  Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COMMENTS:                                          |                     |        |                         | If given sufficien | t time to cool. |     |             |   |
| Contacted by:  Regarding:  Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |                     |        |                         |                    |                 |     |             |   |
| Contacted by:  Regarding:  Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |                     |        |                         |                    |                 |     |             |   |
| Contacted by:  Regarding:  Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |                     |        | ==                      |                    |                 |     |             |   |
| Contacted by:  Regarding:  Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |                     |        |                         |                    |                 |     |             |   |
| Contacted by:  Regarding:  Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Client contacted                                   | ate contacted:      |        |                         | Dare               | on contacted    |     |             |   |
| Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dien contacted                                     | ato contacted.      |        |                         |                    | on contacted    |     |             |   |
| Corrective Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Contacted by: Re                                   | egarding:           |        |                         |                    |                 |     | <del></del> |   |
| Corrective Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Comments:                                          |                     |        |                         |                    |                 |     |             |   |
| Corrective Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                     |        |                         |                    |                 |     |             |   |
| Corrective Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                     |        |                         |                    |                 |     |             |   |
| Corrective Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                     |        |                         |                    |                 |     |             |   |
| Corrective Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                     |        |                         |                    |                 |     |             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Corrective Action                                  | ·                   |        | ···                     |                    |                 |     |             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |                     |        |                         |                    |                 |     | <del></del> |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )                                                  |                     |        |                         |                    |                 |     |             |   |

| Chain-of-Custody Record                                            | Turn-Around Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                     |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------|
| Client, West of Polivins                                           | Er Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HALL ENVIRONMENTAL                                             | _, ≥                |
|                                                                    | Project Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I THE TANK THE THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK TH | Mark Hallenvironmental com                                     | .d                  |
| Mailing Address: # 50 CR 4990                                      | Nection well 1st all 1-28-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4901 Hawkins NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4901 Hawkins NE - Albuquerque, NM 87109                        |                     |
| 13100mf, eld, NM 874,3                                             | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tel. 505-345-3975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fax 505-345-4107                                               | . , ,               |
| 0115-                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GO THE WAY                                                     |                     |
| email or Fax#: 505-632-3911                                        | Project Manager:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Vlr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                              |                     |
| QA/QC Package:                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Si Dies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                | }                   |
| ☑ Standard ☐ Level 4 (Full Validation)                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Ca (Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nys.                                                           | 0 <sup>+</sup>      |
| □ Other                                                            | Sampler: Soh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) E<br>(\f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2801<br>200                                                    | <sub>!)</sub><br>गह |
| □ EDD (Type)                                                       | On the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th | 1 +<br>181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (V)                                                            | A jo                |
|                                                                    | Sample temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 98 d<br>4 bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sebi                                                           | ), ()<br>()         |
|                                                                    | Confainer Presentative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HTM +<br>contraction<br>ontraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OVO)<br>-imec<br>idabi                                         | səjq<br>H           |
| Date Time Matrix Sample Request ID                                 | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8TEX -<br>BTEX -<br>M HQT<br>M) HQT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ARDA<br>Anions<br>8081 P<br>8260B<br>8270 (9<br>12017<br>12017 | G 53<br>Air Bub     |
| 1-28-09 10:30 HzD injection well                                   | 3-10A HC1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                              |                     |
|                                                                    | 1-Liter Amber 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                              |                     |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Y</b>                                                       |                     |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                              |                     |
|                                                                    | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                              |                     |
|                                                                    | 1-5mm 201ate 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                              |                     |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                              | メ                   |
|                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ž                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - D- M-1                                                       |                     |
|                                                                    | 1-500 m / N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -<br>×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                | -                   |
| Trip Blank                                                         | 2-104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>&gt;</b>                                                    |                     |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۵,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                     |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                     |
| Date: Time: Relinquished by:                                       | Received by: Date Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remarks:<br>Per BK- no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7310                                                           |                     |
| Time: Relinquished by:                                             | Received by Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                     |
| If necessary, samples submitted to Hall Environmental may be subco | If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oossibility. Any sub-contracted data w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | be clearly notated on the analytical report.                   |                     |



#### **COVER LETTER**

Monday, May 04, 2009

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413

TEL: (505) 632-4161, FAX (505) 632-3911

RE: Injection Well 2nd QTR 4/14/09

Dear Cindy Hurtado:

Order No.: 0904211

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 4/15/2009 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Business Manager
Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX



Date: 04-May-09

CLIENT:

Western Refining Southwest, Inc.

Lab Order: Project:

0904211

Injection Well 2nd QTR 4/14/09

Lab ID:

0904211-01

Client Sample ID: Injection Well

Collection Date: 4/14/2009 8:45:00 AM

Date Received: 4/15/2009

Matrix: AQUEOUS

| Analyses                       | Result      | PQL        | Qual Units | DF   | Date Analyzed         |
|--------------------------------|-------------|------------|------------|------|-----------------------|
| EPA METHOD 300.0: ANIONS       | <del></del> |            |            |      | Analyst: T <b>A</b> F |
| Chloride                       | 1400        | 5.0        | mg/L       | 50   | 5/2/2009 5:22:26 PM   |
| Sulfate                        | , 550       | 25         | mg/L       | . 50 | 5/2/2009 5:22:26 PM   |
| EPA METHOD 7470: MERCURY       |             |            |            |      | Analyst: <b>MMS</b>   |
| Mercury                        | 0.0012      | 0.00020    | mg/L       | 1    | 4/24/2009 2:48:03 PM  |
| EPA 6010B: TOTAL RECOVERABLE   | METALS      | •          |            |      | Analyst: <b>NM</b> O  |
| Arsenic                        | ND          | 0.020      | mg/L       | 1    | 4/20/2009 9:16:14 AM  |
| Barium                         | 0.23        | 0.020      | mg/L       | 1    | 4/20/2009 9:16:14 AM  |
| Cadmium                        | ND          | 0.0020     | mg/L       | 1    | 4/20/2009 9:16:14 AM  |
| Calcium                        | 120         | 10         | mg/L       | 10   | 4/20/2009 10:16:47 AM |
| Chromium                       | ND          | 0.0060     | mg/L       | 1    | 4/20/2009 9:16:14 AM  |
| Lead                           | ND          | 0.0050     | mg/L       | 1    | 4/20/2009 9:16:14 AM  |
| Magnesium                      | 24          | 1.0        | mg/L       | 1    | 4/20/2009 9:16:14 AM  |
| Potassium                      | 18          | 1.0        | mg/L       | . 1  | 4/20/2009 9:16:14 AM  |
| Selenium                       | ND          | 0.050      | mg/L       | 1    | 4/20/2009 9:16:14 AM  |
| Silver                         | ND          | 0.0050     | mg/L       | 1    | 4/20/2009 9:16:14 AM  |
| Sodium                         | 770         | 10         | mg/L       | 10   | 4/20/2009 10:16:47 AM |
| EPA METHOD 8270C: SEMIVOLATILI | ES          |            |            |      | Analyst: JDC          |
| Acenaphthene                   | ND          | 50         | μg/L       | 1    | 4/20/2009             |
| Acenaphthylene                 | ND          | 50         | μg/L       | 1    | 4/20/2009             |
| Aniline                        | ND          | 50         | µg/L       | 1    | 4/20/2009             |
| Anthracene                     | ND          | 50         | µg/L       | 1    | 4/20/2009             |
| Azobenzene                     | ND          | 50         | μg/L       | 1    | 4/20/2009             |
| Benz(a)anthracene              | ND          | 50         | μg/L       | 1    | 4/20/2009             |
| Benzo(a)pyrene                 | . ND        | 50         | μg/L       | 1    | 4/20/2009             |
| Benzo(b)fluoranthene           | ND          | 50         | µg/L       | . 1  | 4/20/2009             |
| Benzo(g,h,i)perylens           | ND          | 50         | µg/L       | 1    | 4/20/2009             |
| Benzo(k)fluoranthene           | ND          | 50         | μg/L       | 1    | 4/20/2009             |
| Benzoic acid                   | ND          | 100        | μg/L       | 1    | 4/20/2009             |
| Benzyl alcohol                 | ND          | 50         | μg/L       | 1    | 4/20/2009             |
| Bis(2-chloroethoxy)methane     | ND          | 50         | µg/L       | 1    | 4/20/2009             |
| Bis(2-chloroethyi)ether        | . ND        | 50         | μg/L       | 1    | 4/20/2009             |
| Bis(2-chloroisopropyl)ether    | ND          | 50         | μg/L       | 1 .  | 4/20/2009             |
| Bis(2-ethylhexyl)phthalate     | ND          | 50         | μg/L       | 1    | 4/20/2009             |
| 4-Bromophenyl phenyl ether     | ND          | 5 <b>0</b> | µg/L       | 1    | 4/20/2009             |
| Butyl benzyl phthalate         | ND          | 50         | μg/L       | 1    | 4/20/2009             |
| Carbazole                      | ND          | 50         | μg/L       | 1    | 4/20/2009             |
| 4-Chioro-3-methylphenol        | ND          | 50         | μg/L       | 1    | 4/20/2009             |
| 4-Chioroaniline                | ND          | 50         | hg/F       | 1    | 4/20/2009             |
| 2-Chloronaphthalene            | ND          | 50         | μg/L       | 1    | 4/20/2009             |

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Estimated value
- Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- MCL Maximum Contaminant Level
- Reporting Limit

Page 1 of 7

Date: 04-May-09

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

0904211

Project:

Injection Well 2nd QTR 4/14/09

Lab ID:

0904211-01

Client Sample ID: Injection Well

Collection Date: 4/14/2009 8:45:00 AM

Date Received: 4/15/2009

Matrix: AQUEOUS

| Analyses                    | Result | PQL | Qual Units | DF  | Date Analyzed |
|-----------------------------|--------|-----|------------|-----|---------------|
| EPA METHOD 8270C: SEMIVOLA  | TILES  |     |            |     | Analyst: JD   |
| 2-Chlorophenol              | ND     | 50  | µg/L       | 1   | 4/20/2009     |
| 4-Chlorophenyl phenyl ether | ND     | 50  | µg/L       | 1   | 4/20/2009     |
| Chrysene                    | ND     | 50  | μg/L       | . 1 | 4/20/2009     |
| Di-n-butyl phthalate        | ND     | 50  | μg/L       | 1   | 4/20/2009     |
| Di-n-octyl phthalate        | ND     | 50  | μg/L       | 1   | 4/20/2009     |
| Dibenz(a,h)anthracene       | ND     | 50  | µg/L       | . 1 | 4/20/2009     |
| Dibenzofuran                | ND     | 50  | μg/L       | 1   | 4/20/2009     |
| 1,2-Dichlorobenzene         | ND     | 50  | µg/L       | 1   | 4/20/2009     |
| 1,3-Dichlorobenzene         | - ND   | 50  | μg/L       | 1   | 4/20/2009     |
| 1,4-Dichlorobenzene         | ND     | 50  | µg/L       | 1   | 4/20/2009     |
| 3,3'-Dichlorobenzidine      | ND     | 50  | μg/L       | 1   | 4/20/2009     |
| Diethyl phthalate           | ND     | 50  | μg/L       | 1   | 4/20/2009     |
| Dimethyl phthalate          | ND     | 50  | µg/L       | 1   | 4/20/2009     |
| 2,4-Dichlorophenol          | ND     | 100 | μg/L       | 1   | 4/20/2009     |
| 2,4-Dimethylphenol          | ND     | 50  | μg/L       | 1   | 4/20/2009     |
| 4,6-Dinitro-2-methylphenol  | ND     | 100 | µg/L       | 1   | 4/20/2009     |
| 2,4-Dinitrophenol           | ND     | 100 | μg/L       | 1   | 4/20/2009     |
| 2,4-Dinitrotoluene          | ND     | 50  | μg/L       | 1   | 4/20/2009     |
| 2,6-Dinitrotoluene          | ND     | 50  | μg/L       | 1   | 4/20/2009     |
| Fluoranthene                | ND     | 50  | μg/L       | 1   | 4/20/2009     |
| Fluorene                    | ND     | 50  | μg/L       | 1   | 4/20/2009     |
| Hexachiorobenzene           | ND     | 50  | µg/L       | 1   | 4/20/2009     |
| Hexachlorobutadiene         | ND     | 50  | μg/L       | ` 1 | 4/20/2009     |
| Hexachlorocyclopentadiene   | ND     | 50  | μg/L       | 1   | 4/20/2009     |
| Hexachloroethane            | ND     | 50  | μg/L       | 1   | 4/20/2009     |
| Indeno(1,2,3-cd)pyrene      | ND     | 50  | μg/L       | 1   | 4/20/2009     |
| Isophorone                  | ND     | 50  | µg/L       | 1   | 4/20/2009     |
| 2-Methylnaphthalene         | ND     | 50  | μg/L       | 1   | 4/20/2009     |
| 2-Methylphenol              | ND     | 50  | μg/L       | 1   | 4/20/2009     |
| 3+4-Methylphenol            | ND     | 50  | µg/L       | 1   | 4/20/2009     |
| N-Nitrosodi-n-propylamine   | ND     | 50  | µg/L       | 1   | 4/20/2009     |
| N-Nitrosodimethylamine      | ND     | 50  | μg/L       | 1   | 4/20/2009     |
| N-Nitrosodiphenylamine      | ND     | 50  | μg/L       | 1   | 4/20/2009     |
| Naphthalene                 | ND     | 50  | µg/L       | 1   | 4/20/2009     |
| 2-Nitroaniline              | ND     | 50  | µg/L       | 1   | 4/20/2009     |
| 3-Nitroaniline              | ND     | 50  | μg/L       | 1   | 4/20/2009     |
| 4-Nitroaniline              | ND     | 50  | μg/L       | 1   | 4/20/2009     |
| Nitrobenzene                | ND     | 50  | μg/L       | 1   | 4/20/2009     |
| 2-Nitrophenol               | ND     | 50  | µg/L       | 1   | 4/20/2009     |
| 4-Nitrophenol               | ND     | 50  | µg/L       | 1   | 4/20/2009     |
| Pentachlorophenol           | ND     | 100 | μg/L       | 1   | 4/20/2009     |
| Phenanthrene                | ND     | 50  | μg/L       | 1   | 4/20/2009     |



- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
  - RL Reporting Limit

Page 2 of 7



Date: 04-May-09

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

0904211

Injection Well 2nd QTR 4/14/09

Project: Lab ID:

0904211-01

Client Sample ID: Injection Well

Collection Date: 4/14/2009 8:45:00 AM

Date Received: 4/15/2009

Matrix: AQUEOUS

| Analyses                               | Result          | PQL        | Qual Units | DF                                     | Date Analyzed        |
|----------------------------------------|-----------------|------------|------------|----------------------------------------|----------------------|
| <b>EPA METHOD 8270C: SEMIVOLATILES</b> | ;               |            |            | ······································ | Analyst: JDC         |
| Phenol                                 | ND              | 50         | μg/L       | 1                                      | 4/20/2009            |
| Pyrene                                 | ND              | 50         | μg/L       | 1                                      | 4/20/2009            |
| Pyridine                               | ND              | 50         | μg/L       | 1                                      | 4/20/2009            |
| 1,2,4-Trichlorobenzene                 | ND.             | 50         | μg/L       | . 1                                    | 4/20/2009            |
| 2,4,5-Trichlorophenol                  | ND              | <b>5</b> 0 | μg/L       | 1                                      | 4/20/2009            |
| 2,4,6-Trichlorophenol                  | ND              | 50         | μg/L       | 1                                      | 4/20/2009            |
| Surr: 2,4,6-Tribromophenol             | 101             | 16.6-150   | %REC       | . 1                                    | 4/20/2009            |
| Surr: 2-Fluorobiphenyl                 | 83.3            | 19.6-134   | %REC       | . 1                                    | 4/20/2009            |
| Surr: 2-Fluorophenol                   | 66.7            | 9.54-113   | %REC       | 1                                      | 4/20/2009            |
| Surr: 4-Terphenyl-d14                  | 71.6            | 22.7-145   | %REC       | 1                                      | 4/20/2009            |
| Surr: Nitrobenzene-d5                  | 83.0            | 14.6-134   | %REC       | 1                                      | 4/20/2009            |
| Surr: Phenol-d5                        | 61.9            | 10.7-80.3  | %REC       | 1                                      | 4/20/2009            |
| EPA METHOD 8260B: VOLATILES            |                 |            |            |                                        | Analyst: HL          |
| Benzene                                | ND              | 1.0        | μg/L       | 1                                      | 4/21/2009 6:01:15 PM |
| Toluene                                | ND              | 1.0        | μg/L       | 1                                      | 4/21/2009 6:01:15 PM |
| Ethylbenzene                           | ND              | 1.0        | μg/L       | 1                                      | 4/21/2009 6:01:15 PM |
| Methyl tert-butyl ether (MTBE)         | ND              | 1.0        | μg/L       | 1                                      | 4/21/2009 6:01:15 PM |
| 1,2,4-Trimethylbenzene                 | ND              | 1.0        | µg/L       | 1                                      | 4/21/2009 6:01:15 PM |
| 1,3,5-Trimethylbenzene                 | ND .            | 1.0        | μg/L       | 1                                      | 4/21/2009 6:01:15 PM |
| 1,2-Dichloroethane (EDC)               | ND              | 1.0        | μg/L       | 1                                      | 4/21/2009 6:01:15 PM |
| 1,2-Dibromoethane (EDB)                | ND              | 1.0        | μg/L       | 1                                      | 4/21/2009 6:01:15 PM |
| Naphthalene                            | ND              | 2.0        | μg/L       | 1                                      | 4/21/2009 6:01:15 PM |
| 1-Methylnaphthalene                    | ND              | 4.0        | µg/L       | 1 "                                    | 4/21/2009 6:01:15 PM |
| 2-Methylnaphthalene                    | ND              | 4.0        | µg/L       | 1.                                     | 4/21/2009 6:01:15 PM |
| Acetone                                | 520             | 50         | ug/L       | 5                                      | 4/21/2009 5:32:27 PM |
| Bromobenzene                           | ND              | 1.0        | μg/L       | 1                                      | 4/21/2009 6:01:15 PM |
| Bromodichloromethane                   | ND              | 1.0        | μg/L       | 1                                      | 4/21/2009 6:01:15 PM |
| Bromoform                              | ND              | 1.0        | µg/L       | 1                                      | 4/21/2009 6:01:15 PM |
| Bromomethane                           | ND              | 1.0        | µg/L       | 1                                      | 4/21/2009 6:01:15 PM |
| 2-Butanone                             | 36              | 10         | μg/L       | 1                                      | 4/21/2009 6:01:15 PM |
| Carbon disulfide                       | 21              | 10         | μg/L       | 1 '                                    | 4/21/2009 6:01:15 PM |
| Carbon Tetrachloride                   | ND              | 1.0        | μg/L       | 1                                      | 4/21/2009 6:01:15 PM |
| Chlorobenzene                          | ND              | 1.0        | μg/L       | 1                                      | 4/21/2009 6:01:15 PM |
| Chloroethane                           | ND <sup>*</sup> | 2.0        | µg/L       | • 1                                    | 4/21/2009 6:01:15 PM |
| Chloroform                             | ND              | 1.0        | μg/L       | . 1                                    | 4/21/2009 6:01:15 PM |
| Chloromethane                          | ND              | 1.0        | μg/L       | 1                                      | 4/21/2009 6:01:15 PM |
| 2-Chlorotoluene                        | ND              | 1.0        | μg/L       | 1                                      | 4/21/2009 6:01:15 PM |
| 4-Chlorotoluene                        | · ND            | 1.0        | μg/L       | 1                                      | 4/21/2009 6:01:15 PM |
| cis-1,2-DCE                            | ND              | 1.0        | μg/L       | 1                                      | 4/21/2009 6:01:15 PM |
| cis-1,3-Dichloropropene                | ND              | 1.0        | μg/L       | 1                                      | 4/21/2009 6:01:15 PM |
| 1,2-Dibromo-3-chloropropane            | ND              | 2.0        | μg/L       | . 1                                    | 4/21/2009 6:01:15 PM |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
  - RL Reporting Limit

Page 3 of 7

Date: 04-May-09

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

0904211

Injection Well 2nd QTR 4/14/09

Project: Lab ID:

0904211-01

Client Sample ID: Injection Well

Collection Date: 4/14/2009 8:45:00 AM

Date Received: 4/15/2009

Matrix: AQUEOUS

| Analyses                    | Result     | PQL      | Qual L   | Jnits       | DF  | Date Analyzed        |
|-----------------------------|------------|----------|----------|-------------|-----|----------------------|
| EPA METHOD 8260B: VOLATILES |            |          | <u>,</u> | <del></del> |     | Analyst: HL          |
| Dibromochloromethane        | ND         | 1.0      | μ        | g/L         | 1   | 4/21/2009 6:01:15 PM |
| Dibromomethane              | ND         | 1.0      | μ        | g/L         | 1   | 4/21/2009 6:01:15 PM |
| 1,2-Dichlorobenzene         | ND         | 1.0      | μ        | g/L         | 1   | 4/21/2009 6:01:15 PM |
| 1,3-Dichlorobenzene         | ND         | 1.0      | μ        | g/L         | . 1 | 4/21/2009 6:01:15 PM |
| 1,4-Dichlorobenzene         | ND         | 1,0      | μ        | g/L         | 1   | 4/21/2009 6:01:15 PM |
| Dichlorodifluoromethane     | ND         | 1.0      | $\mu$    | g/L         | 1   | 4/21/2009 6:01:15 PM |
| 1,1-Dichloroethane          | ND         | 1.0      | μ        | g/L         | 1   | 4/21/2009 6:01:15 PM |
| 1,1-Dichloroethene          | ND         | 1.0      | μ        | g/L         | 1   | 4/21/2009 6:01:15 PM |
| 1,2-Dichloropropane         | ND         | 1.0      | μ̈́      | g/L         | 1   | 4/21/2009 6:01:15 PM |
| 1,3-Dichloropropane         | ND         | 1.0      | μ        | g/L         | 1,  | 4/21/2009 6:01:15 PM |
| 2,2-Dichloropropane         | ND .       | 2.0      | μ        | g/L         | 1   | 4/21/2009 6:01:15 PM |
| 1,1-Dichloropropene         | ND         | 1.0      | μ        | g/L         | 1   | 4/21/2009 6:01:15 PM |
| Hexachlorobutadiene         | ND         | 1.0      | þí       | g/L         | 1   | 4/21/2009 6:01:15 PM |
| 2-Hexanone                  | ND         | 10       | μ        | g/L         | 1   | 4/21/2009 6:01:15 PM |
| Isopropylbenzene            | ND         | 1.0      | μ        | g/L         | 1   | 4/21/2009 6:01:15 PM |
| 4-Isopropyltoluene          | ND         | 1.0      | μ        | g/L         | 1   | 4/21/2009 6:01:15 PM |
| 4-Methyl-2-pentanone        | ND         | 10       | μ        | g/L         | 1   | 4/21/2009 6:01:15 PM |
| Methylene Chloride          | ND         | 3.0      | μ        | g/L         | 1   | 4/21/2009 6:01:15 PM |
| n-Butylbenzene              | ND         | 1.0      | μί       | g/L         | 1   | 4/21/2009 6:01:15 PM |
| n-Propyibenzene             | ND         | 1.0      | μί       | g/L         | 1   | 4/21/2009 6:01:15 PM |
| sec-Butylbenzene            | ND         | 1.0      | · hí     | g/L         | 1   | 4/21/2009 6:01:15 PM |
| Styrene                     | ND         | 1.0      | μ        | g/L         | 1   | 4/21/2009 6:01:15 PM |
| tert-Butylbenzene           | ND         | 1.0      | μ        | g/L         | 1   | 4/21/2009 6:01:15 PM |
| 1,1,1,2-Tetrachloroethane   | ND         | 1.0      | μg       | g/L         | 1   | 4/21/2009 6:01:15 PM |
| 1,1,2,2-Tetrachloroethane   | ND         | 2.0      | μ        | g/L         | 1   | 4/21/2009 6:01:15 PM |
| Tetrachioroethene (PCE)     | <b>N</b> D | 1.0      | μ        | g/L         | 1   | 4/21/2009 6:01:15 PM |
| trans-1,2-DCE               | ND         | 1.0      | μ        | g/L         | 1   | 4/21/2009 6:01:15 PM |
| trans-1,3-Dichloropropene   | ND         | 1.0      | μί       | g/L         | 1   | 4/21/2009 6:01:15 PM |
| 1,2,3-Trichlorobenzene      | ND         | 1.0      | μg       | g/L         | 1   | 4/21/2009 6:01:15 PM |
| 1,2,4-Trichlorobenzene      | ND         | 1.0      | μį       | g/L         | 1   | 4/21/2009 6:01:15 PM |
| 1,1,1-Trichloroethane       | ND         | 1.0      | μο       | g/L         | 1   | 4/21/2009 6:01:15 PM |
| 1,1,2-Trichloroethane       | ND         | 1.0      | μο       | g/L         | 1   | 4/21/2009 6:01:15 PM |
| Trichloroethene (TCE)       | ND         | 1.0      | μς       | g/L         | 1   | 4/21/2009 6:01:15 PM |
| Trichtorofluoromethane      | ND         | 1.0      | μg       | g/L         | 1   | 4/21/2009 6:01:15 PM |
| 1,2,3-Trichloropropane      | ND         | 2.0      | μg       | g/L         | 1   | 4/21/2009 6:01:15 PM |
| Vinyl chloride              | ND         | 1.0      | μg       | j/L         | 1   | 4/21/2009 6:01:15 PM |
| Xylenes, Total              | ND         | 1.5      | μg       | J/L         | 1   | 4/21/2009 6:01:15 PM |
| Surr: 1,2-Dichloroethane-d4 | 87.9       | 68.1-123 | %        | REC         | 1   | 4/21/2009 6:01:15 PM |
| Surr: 4-Bromofluorobenzene  | 104        | 53.2-145 | %        | REC         | 1   | 4/21/2009 6:01:15 PM |
| Surr: Dibromofluoromethane  | 94.2       | 68.5-119 |          | REC         | 1   | 4/21/2009 6:01:15 PM |
| Surr: Toluene-d8            | 99.0       | 64-131   | %        | REC         | 1   | 4/21/2009 6:01:15 PM |



- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit





Date: 04-May-09

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

0904211

Project:

Injection Well 2nd QTR 4/14/09

Lab ID:

0904211-01

Client Sample ID: Injection Well

Collection Date: 4/14/2009 8:45:00 AM

Date Received: 4/15/2009

Matrix: AQUEOUS

| Analyses                        | Result | PQL Q | ual Units                               | DF | Date Analyzed        |
|---------------------------------|--------|-------|-----------------------------------------|----|----------------------|
| SM 2320B: ALKALINITY            |        |       | *************************************** |    | Analyst: NSB         |
| Alkalinity, Total (As CaCO3)    | 330    | 20    | mg/L CaCO3                              | 1  | 4/15/2009            |
| Carbonate                       | ND     | 2.0   | mg/L CaCO3                              | 1  | 4/15/2009            |
| Bicarbonate                     | 330    | 20    | mg/L CaCO3                              | 1  | 4/15/2009            |
| EPA 120.1: SPECIFIC CONDUCTANCE |        |       |                                         |    | Analyst: <b>NS</b> B |
| Specific Conductance            | 5000   | 0.010 | µmhos/cm                                | 1  | 4/15/2009            |
| SM4500-H+B: PH                  |        |       |                                         |    | Analyst: NSB         |
| На                              | 7.44   | 0.1   | pH units                                | 1  | 4/15/2009            |
| SM2540C MOD; TOTAL DISSOLVED S  | OLIDS  |       |                                         |    | Analyst: <b>JMP</b>  |
| Total Dissolved Solids          | 2800   | 100   | mg/L                                    | 1  | 4/15/2009            |

| Oualifier | ٥. |
|-----------|----|

- Value exceeds Maximum Contaminant Level
- Estimated value Ε
- Analyte detected below quantitation limits
- Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- Reporting Limit



Date: 04-May-09



Western Refining Southwest, Inc.

Lab Order:

0904211

Project: Inj

Injection Well 2nd QTR 4/14/09

Lab ID:

0904211-02

Client Sample ID: TRIP BLANK

**Collection Date:** 

Date Received: 4/15/2009

Matrix: TRIP BLANK

| Analyses                       | Result | PQL   | Qual | Units | DF  | Date Analyzed        |
|--------------------------------|--------|-------|------|-------|-----|----------------------|
| EPA METHOD 8260B: VOLATILES    | ····   | ····· |      |       |     | Analyst: HL          |
| Benzene                        | ND     | 1.0   |      | μg/L  | 1   | 4/21/2009 6:30:01 PM |
| Toluene                        | ND -   | 1.0   |      | μg/L  | 1   | 4/21/2009 6:30:01 PM |
| Ethylbenzene                   | ND     | 1.0   | •    | µg/L  | 1   | 4/21/2009 6:30:01 PM |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0   |      | µg/L  | 1   | 4/21/2009 6:30:01 PM |
| 1,2,4-Trimethylbenzene         | ND     | 1.0   |      | μg/L  | 1   | 4/21/2009 6:30:01 PM |
| 1,3,5-Trimethylbenzene         | ND     | 1.0   |      | µg/L  | 1   | 4/21/2009 6:30:01 PM |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0   |      | μg/L  | 1   | 4/21/2009 6:30:01 PM |
| 1,2-Dibromoethane (EDB)        | ND     | . 1.0 |      | µg/L  | 1   | 4/21/2009 6:30:01 PM |
| Naphthalene                    | ND     | 2.0   |      | µg/L  | 1   | 4/21/2009 6:30:01 PM |
| 1-Methylnaphthalene            | ND     | 4.0   |      | µg/L  | 1   | 4/21/2009 6:30:01 PM |
| 2-Methylnaphthalene            | ND     | 4.0   |      | μg/L  | 1   | 4/21/2009 6:30:01 PM |
| Acetone                        | ND     | 10    |      | µg/L  | 1   | 4/21/2009 6:30:01 PM |
| Bromobenzene                   | ND     | 1.0   |      | µg/L  | 1   | 4/21/2009 6:30:01 PM |
| Bromodichloromethane           | ND     | 1.0   |      | µg/L  | 1   | 4/21/2009 6:30:01 PM |
| Bromoform                      | ND     | 1.0   |      | μg/L  | 1   | 4/21/2009 6:30:01 PM |
| Bromomethane                   | ND     | 1.0   |      | µg/L  | 1   | 4/21/2009 6:30:01 PM |
| 2-Butanone                     | ND     | 10    |      | μg/L  | 1   | 4/21/2009 6:30:01 PM |
| Carbon disulfide               | ND     | 10    |      | μg/L  | 1   | 4/21/2009 6:30:01 PM |
| Carbon Tetrachloride           | ND     | 1.0   |      | μg/L  | 1   | 4/21/2009 6:30:01 PM |
| Chlorobenzene                  | ND     | 1.0   |      | μg/L  | 1   | 4/21/2009 6:30:01 PM |
| Chloroethane                   | ND     | 2.0   |      | µg/L  | 1   | 4/21/2009 6:30:01 PM |
| Chloroform                     | ND     | 1.0   |      | µg/L  | 1   | 4/21/2009 6:30:01 PM |
| Chloromethane                  | ND     | 1.0   |      | µg/L  | 1   | 4/21/2009 6:30:01 PM |
| 2-Chlorotoluene                | ND     | 1.0   |      | µg/L  | 1   | 4/21/2009 8:30:01 PM |
| 4-Chlorotoluene                | ND     | 1.0   |      | μg/L  | 1   | 4/21/2009 6:30:01 PM |
| cis-1,2-DCE                    | ND     | 1.0   |      | μg/L  | 1   | 4/21/2009 6:30:01 PM |
| cis-1,3-Dichloropropene        | ND     | 1.0   |      | μg/L  | 1   | 4/21/2009 6:30:01 PM |
| 1,2-Dibromo-3-chloropropane    | ND     | 2.0   |      | μg/L  | 1   | 4/21/2009 6:30:01 PM |
| Dibromochloromethane           | ND     | 1.0   |      | µg/L  | 1   | 4/21/2009 6:30:01 PM |
| Dibromomethane                 | ND     | 1.0   |      | µg/L  | 1   | 4/21/2009 6:30:01 PM |
| 1,2-Dichlorobenzene            | ND     | 1.0   |      | µg/L  | 1   | 4/21/2009 6:30:01 PM |
| 1,3-Dichlorobenzene            | ND     | 1.0   |      | µg/L  | 1   | 4/21/2009 6:30:01 PM |
| 1,4-Dichlorobenzene            | ND     | 1.0   |      | μg/L  | 1   | 4/21/2009 6:30:01 PM |
| Dichlorodifluoromethane        | ND     | 1.0   |      | μg/L  | 1   | 4/21/2009 6:30:01 PM |
| 1,1-Dichloroethane             | ND     | 1.0   |      | μg/L  | 1   | 4/21/2009 6:30:01 PM |
| 1,1-Dichloroethene             | ND     | 1.0   |      | µg/L  | 1   | 4/21/2009 6:30:01 PM |
| 1,2-Dichloropropane            | ND     | 1.0   |      | μg/L  | . 1 | 4/21/2009 6:30:01 PM |
| 1,3-Dichloropropane            | ND     | 1.0   |      | µg/L  | 1   | 4/21/2009 6:30:01 PM |
| 2,2-Dichloropropane            | ND     | 2.0   |      | µg/L  | 1   | 4/21/2009 6:30:01 PM |
| 1,1-Dichloropropene            | ND     | 1.0   |      | μg/L  | 1   | 4/21/2009 6:30:01 PM |
| Hexachlorobutadiene            | ND     | 1.0   |      | ha\r  | 1   | 4/21/2009 6:30:01 PM |
| 2-Hexanone                     | ND     | 10    |      | µg/L  | 1   | 4/21/2009 6:30:01 PM |



- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
  - RL Reporting Limit

Page 6 of 7



Date: 04-May-09

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

0904211

0704211

Project: Lab ID: Injection Well 2nd QTR 4/14/09

0904211-02

Client Sample ID: TRIP BLANK

Collection Date:

Date Received: 4/15/2009

Matrix: TRIP BLANK

| Analyses                    | Result     | PQL      | Qual Units    | DF                                    | Date Analyzed        |
|-----------------------------|------------|----------|---------------|---------------------------------------|----------------------|
| EPA METHOD 8260B: VOLATILES |            |          |               | · · · · · · · · · · · · · · · · · · · | Analyst: HL          |
| isopropylbenzene            | ND         | 1.0      | hg/L          | 1 .                                   | 4/21/2009 8:30:01 PM |
| 4-Isopropyitoluene          | ND         | · 1.0    | μg/L          | 1                                     | 4/21/2009 6:30:01 PM |
| 4-Methyl-2-pentanone        | ND         | 10       | μg/L          | 1                                     | 4/21/2009 6:30:01 PM |
| Methylene Chloride          | ND         | 3.0      | μg/L          | 1                                     | 4/21/2009 6:30:01 PM |
| n-Butylbenzene              | ND         | 1.0      | μg/L          | 1                                     | 4/21/2009 6:30:01 PM |
| n-Propylbenzene             | ND         | 1.0      | μg/L          | 1                                     | 4/21/2009 6:30:01 PM |
| sec-Butylbenzene            | ND         | 1.0      | μg/L          | . 1                                   | 4/21/2009 6:30:01 PM |
| Styrene                     | , ND       | 1.0      | μ <b>g</b> /L | . 1                                   | 4/21/2009 6:30:01 PM |
| tert-Butylbenzene           | ND         | 1.0      | µg/L          | 1                                     | 4/21/2009 6:30:01 PM |
| 1,1,1,2-Tetrachloroethane   | ND         | 1.0      | μg/L          | 1                                     | 4/21/2009 6:30:01 PM |
| 1,1,2,2-Tetrachloroethane   | ND         | 2.0      | μg/L          | 1                                     | 4/21/2009 6:30:01 PM |
| Tetrachloroethene (PCE)     | ND         | 1.0      | μg/L          | 1                                     | 4/21/2009 6:30:01 PM |
| trans-1,2-DCE               | ND         | 1.0      | μg/L          | 1                                     | 4/21/2009 6:30:01 PM |
| trans-1,3-Dichloropropene   | ND         | 1.0      | · μg/L        | 1                                     | 4/21/2009 6:30:01 PM |
| 1,2,3-Trichlorobenzene      | ND         | 1.0      | µg/L          | 1                                     | 4/21/2009 6:30:01 PM |
| 1,2,4-Trichlorobenzene      | <b>N</b> D | 1.0      | μg/L          | 1                                     | 4/21/2009 6:30:01 PM |
| 1,1,1-Trichloroethane       | ND         | 1.0      | µg/L          | 1                                     | 4/21/2009 6:30:01 PM |
| 1,1,2-Trichloroethane       | ND         | 1.0      | µg/L          | 1 .                                   | 4/21/2009 6:30:01 PM |
| Trichloroethene (TCE)       | ND         | 1.0      | μg/L:         | 1                                     | 4/21/2009 6:30:01 PM |
| Trichlorofluoromethane      | ND         | 1.0      | μg/L          | 1                                     | 4/21/2009 6:30:01 PM |
| 1,2,3-Trichloropropane      | · , ND     | 2.0      | μg/L          | . 1                                   | 4/21/2009 6:30:01 PM |
| Vinyl chloride              | <b>N</b> D | 1.0      | µg/L          | 1                                     | 4/21/2009 6:30:01 PM |
| Xylenes, Total              | ND         | 1.5      | μg/L          | 1                                     | 4/21/2009 6:30:01 PM |
| Surr: 1,2-Dichloroethane-d4 | 86.8       | 68.1-123 | %REC          | 1                                     | 4/21/2009 6:30:01 PM |
| Surr: 4-Bromofluorobenzene  | 102        | 53.2-145 | %REC          | 1                                     | 4/21/2009 6:30:01 PM |
| Surr: Dibromofluoromethane  | 92.2       | 68.5-119 | %REC          | 1                                     | 4/21/2009 6:30:01 PM |
| Surr: Toluene-d8            | 97.4       | 64-131   | %REC          | 1                                     | 4/21/2009 6:30:01 PM |

| Ana | 1161 |  |
|-----|------|--|

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 7 of 7

#### LABORATORY ANALYTICAL REPORT

Client:

Hall Environmental

Project: Lab ID:

0904211

B09041551-001

Client Sample ID: 0904211-01E, Injection Well

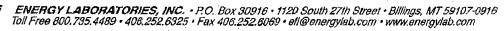
Report Date: 04/27/09

Collection Date: 04/14/09 08:45

DateReceived: 04/16/09 -

Matrix: Aqueous

| Analyses                   | Result | Unite | Qualifiers | RL.  | GCF<br>MCF/ | Method     | Analysis Date / By   |
|----------------------------|--------|-------|------------|------|-------------|------------|----------------------|
| IGNITABILITY               |        |       |            |      |             |            |                      |
| Flash Point (Ignitability) | >200   | ٠F    |            | 30   |             | SW1010A    | 02/17/09 15:00 / cir |
| CORROSIVITY                |        |       |            |      |             |            |                      |
| pH of Liquid Waste         | 7.35   | s.u.  |            | 0.10 |             | SW9040C    | 04/17/09 11:30 / clr |
| REACTIVITY                 | . •    |       |            |      |             |            |                      |
| Cyanide, Readive           | , ND   | mg/kg |            | 0.05 | 250         | 8W846 Ch 7 | 04/21/09 09:57 / kjp |
| Sulfide, Reactive          | ND     | mg/kg |            | 20   | 500         | SW846 Ch 7 | 04/17/09 08:00 / pwo |




RL - Analyte reporting limit.

QCL - Quality control limit.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.







### **QA/QC Summary Report**

Client: Hall Environmental

Report Date: 04/22/09

Project: 0904211

Work Order: B09041551

| Analyte                                  | Result Units              | RL          | %REC Low Limit High Limit RP | D RPDLimit Quai |
|------------------------------------------|---------------------------|-------------|------------------------------|-----------------|
| Method: SW846 Ch 7                       |                           | <del></del> |                              | Batch: 38348    |
| Sample ID: MB-38348<br>Cyanide, Reactive | Method Blank<br>ND mg/kg  | 0.05        | Run: AUTOAN201-8_090421A     | 04/21/09 10:01  |
| Method: SW846 Ch 7                       |                           |             | · ·                          | Batch: R127981  |
| Sample ID: MB-R127981                    | Method Blank              |             | Run: MISC-HZW_090417A        | 04/17/09 08:00  |
| Sulfide, Reactive                        | ND mg/kg                  | 10          |                              |                 |
| Sample ID: LCS-R127981                   | Laboratory Control Sample |             | Run: MISC-HZW_090417A        | 04/17/09 08:00  |
| Sulfide, Reactive                        | <b>32</b> mg/kg           | 20          | 110 50 150                   |                 |
| Method: SW9040C                          |                           |             |                              | Batch: R127984  |
| Sample ID: B09041650-001ADUP             | Sample Duplicate          |             | Run: MISC-HZW_090417B        | 04/17/09 11:30  |
| pH of Liquid Waste                       | 7.22 s.u.                 | 0.10        |                              |                 |



RL - Analyte reporting limit.

ND - Not detected at the reporting limit.



Date: 04-May-09

## QA/QC SUMMARY REPORT

ent: Oject: Western Refining Southwest, Inc. Injection Well 2nd QTR 4/14/09

Work Order:

0904211

| Analyte                      | Result | Units    | PQL  | %Rec | LowLimit Hi | ghLimit | %RPD RP        | DLimit Qual           |
|------------------------------|--------|----------|------|------|-------------|---------|----------------|-----------------------|
| Method: EPA Method 300.0:    | Anions |          |      |      |             |         |                |                       |
| Sample ID: MB                |        | MBLK     |      |      | Batch ID:   | R33495  | Analysis Date: | 4/30/2009 12:42:50 PM |
| Chloride                     | ND     | mg/L     | 0.10 |      |             |         |                |                       |
| Sulfate                      | ND     | mg/L     | 0.50 |      |             |         |                |                       |
| Sample ID: MB                |        | MBLK     |      |      | Batch ID:   | R33509  | Analysis Date: | 5/2/2009 1:01:19 PM   |
| Chloride                     | ND     | mg/L     | 0.10 |      |             |         |                |                       |
| Sulfate                      | ND     | mg/L     | 0.50 |      |             |         |                |                       |
| Sample ID: LCS               |        | LCS      |      |      | Batch ID:   | R33495  | Analysis Date: | 4/30/2009 1:00:14 PM  |
| Chloride                     | 4.968  | mg/L     | 0.10 | 99.4 | 90          | 110     |                |                       |
| Sulfate                      | 9.991  | mg/L     | 0.50 | 99.9 | 90          | 110     |                |                       |
| Sample ID: LCS               |        | LCS      |      |      | Batch ID:   | R33509  | Analysis Date: | 5/2/2009 1:18:43 PM   |
| Chloride                     | 5.064  | mg/L     | 0.10 | 101  | 90          | 110     |                | •                     |
| Sulfate                      | 10.20  | mg/L     | 0.50 | 102  | 90          | 110     |                |                       |
| Method: SM 2320B: Alkalinity | y      |          |      |      |             |         |                |                       |
| Sample ID: MB                |        | MBLK     |      |      | Batch ID:   | R33262  | Analysis Date: | 4/15/2009             |
| Alkalinity, Total (As CaCO3) | ND     | mg/L CaC | 20   |      |             | *       |                |                       |
| Carbonate                    | ND     | mg/L CaC | 2.0  |      |             |         |                |                       |
| Bicarbonate                  | ND     | mg/L CaC | 20   |      |             |         |                |                       |
| Sample ID: 80PPM LCS         |        | LCS      |      |      | Batch ID:   | R33262  | Analysis Date: | 4/15/2009             |
| kalinity, Total (As CaCO3)   | 82.16  | mg/L CaC | 20   | 103  | 80 1        | 120     |                |                       |





Estimated value

Analyte detected below quantitation limits

RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Client:

Western Refining Southwest, Inc.

Project: Injection Well 2nd QTR 4/14/09

Work Order:

0904211

|           |      |     | %Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | hLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %RPD RPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OLimit Qual          |
|-----------|------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| VOLATILES |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           | MBLK |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Batch ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R33331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analysis Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4/20/2009 8:54:55 AM |
| ND        | µg/L | 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| 4         |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                    |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                    |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|           |      | ND  | ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 | ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 | ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 4.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 | ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 ND μg/L 1.0 | ND                   |



E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits



ent: ject: Western Refining Southwest, Inc.

Injection Well 2nd QTR 4/14/09

Work Order:

0904211

| Analyte                        | Result      | Units | PQL | %Rec | LowLimit Hi | ghLimit | %RPD RP        | DLimit Qual          |
|--------------------------------|-------------|-------|-----|------|-------------|---------|----------------|----------------------|
| Method: EPA Method 8260B       | : VOLATILES |       |     |      |             |         |                |                      |
| Sample ID: 5ml rb              |             | MBLK  |     |      | Batch ID:   | R33331  | Analysis Date: | 4/20/2009 8:54:55 AN |
| 4-Methyl-2-pentanone           | ND          | µg/L  | 10  |      |             |         |                |                      |
| Methylene Chloride             | ND          | µg/L  | 3.0 |      |             |         |                |                      |
| n-Butylbenzene                 | ND          | µg/L  | 1.0 |      |             |         |                |                      |
| n-Propylbenzene                | ND          | μg/L  | 1.0 |      |             |         |                |                      |
| sec-Butylbenzene               | ND          | μg/L  | 1.0 |      |             |         |                |                      |
| Styrene                        | ND          | μg/L  | 1.0 |      |             |         |                |                      |
| tert-Butylbenzene              | ND          | μg/L  | 1.0 |      |             |         |                |                      |
| 1,1,1,2-Tetrachtoroethane      | ND          | μg/L  | 1.0 |      |             |         |                |                      |
| 1,1,2,2-Tetrachioroethane      | ND          | µg/L  | 2.0 |      |             |         |                | I                    |
| Tetrachloroethene (PCE)        | ND          | µg/L  | 1.0 |      |             |         |                |                      |
| trans-1,2-DCE                  | ND          | µg/L  | 1.0 |      |             |         |                |                      |
| trans-1,3-Dichloropropene      | ND          | µg/L  | 1.0 |      |             |         |                |                      |
| 1,2,3-Trichlorobenzene         | ND          | µg/L  | 1.0 |      |             | •       |                |                      |
| 1,2,4-Trichlorobenzene         | ND          | µg/L  | 1.0 |      |             |         |                |                      |
| 1,1,1-Trichloroethane          | ND          | µg/L  | 1.0 |      |             |         | •              |                      |
| 1,1,2-Trichloroethane          | ND          | µg/L  | 1.0 |      |             |         |                |                      |
| Trichloroethene (TCE)          | ND          | μg/L  | 1.0 |      |             |         |                |                      |
| Trichlorofluoromethane         | ND          | μg/L  | 1.0 |      |             |         |                |                      |
| 1,2,3-Trichloropropane         | ND          | μg/L  | 2.0 |      |             |         |                |                      |
| vi chloride                    | ND          | μg/L  | 1.0 |      |             |         |                |                      |
| nes, Total                     | ND          | μg/L  | 1.5 | *    |             |         |                |                      |
| Sample ID: b4                  |             | MBLK  |     |      | Batch ID:   | R33331  | Analysis Date: | 4/20/2009 9:25:32 PM |
| Benzene                        | ND          | μg/L  | 1.0 |      |             |         | *              |                      |
| Toluene                        | ND          | μg/L  | 1.0 |      |             |         |                |                      |
| Ethylbenzene                   | ND          | µg/L  | 1.0 |      |             |         |                |                      |
| Methyl tert-butyl ether (MTBE) | ND          | µg/L  | 1.0 |      |             |         |                |                      |
| 1,2,4-Trimethylbenzene         | ND          | μg/L  | 1.0 |      | •           |         |                |                      |
| 1,3,5-Trimethylbenzene         | ND          | μg/L  | 1.0 |      |             |         |                |                      |
| 1,2-Dichloroethane (EDC)       | ND          | μg/L  | 1.0 |      |             |         |                |                      |
| 1,2-Dibromoethane (EDB)        | ND          | μg/L  | 1.0 |      |             |         |                | •                    |
| Naphthalene                    | ND          | μg/L  | 2.0 |      |             |         |                |                      |
| 1-Methylnaphthalene            | ND          | µg/L  | 4.0 |      |             |         |                |                      |
| 2-Methylnaphthalene            | ND "        | µg/L  | 4.0 |      |             |         |                |                      |
| Acetone                        | ND          | µg/L  | 10  |      |             |         |                |                      |
| Bromobenzene                   | ND          | µg/L  | 1.0 |      |             |         |                |                      |
| Bromodichloromethane           | ND          | µg/L  | 1.0 |      |             |         |                |                      |
| Bromoform                      | ND          | μg/L  | 1.0 |      |             |         |                |                      |
| Bromomethane                   | ND          | μg/L  | 1.0 |      |             |         |                |                      |
| 2-Butanone                     | ND          | µg/L  | 10  |      |             |         |                |                      |
| Carbon disulfide               | ND          | µg/L  | 10  |      |             |         |                |                      |
| Carbon Tetrachloride           | ND          | μg/L  | 1.0 |      |             |         |                |                      |
| Chlorobenzene                  | ND          | μg/L  | 1.0 |      |             |         |                |                      |
| Chloroethane                   | ND          | µg/L  | 2.0 |      |             |         |                |                      |
| Chloroform                     | ND          | µg/L  | 1.0 |      |             |         |                |                      |





Estimated value

Analyte detected below quantitation limits RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Client:

Western Refining Southwest, Inc.

Project: Injection Well 2nd QTR 4/14/09

Work Order:

0904211

| Analyte                     | Result    | Units | PQL   | %Rec | LowLimit HighLimit | %RPD RPI       | DLimit Qual          |
|-----------------------------|-----------|-------|-------|------|--------------------|----------------|----------------------|
| Method: EPA Method 8260B:   | VOLATILES | 4.00  |       |      | Date In            | 0 1            | 1/00/0000 0 55 00 55 |
| Sample ID: b4               |           | MBLK  |       |      | Batch ID: R33331   | Analysis Date: | 4/20/2009 9:25:32 PM |
| Chloromethane               | ND        | µg/L  | . 1.0 |      |                    |                |                      |
| 2-Chlorotoluene             | ND        | μg/L  | 1.0   |      | •                  |                |                      |
| 4-Chlorotoluene             | ND        | µg/L  | 1.0   |      | •                  |                | 1 / 1 / 2            |
| cis-1,2-DCE                 | ND        | µg/L  | 1.0   |      |                    | ,              |                      |
| cis-1,3-Dichloropropene     | ND        | μg/L  | 1.0   |      |                    |                |                      |
| 1,2-Dibromo-3-chloropropane | ND        | µg/L  | 2.0   |      |                    |                |                      |
| Dibromochloromethane        | ND        | µg/L  | 1.0   |      | ·                  | •              |                      |
| Dibromomethane              | ND        | µg/L  | 1.0   |      |                    |                |                      |
| 1,2-Dichlorobenzene         | ND        | μg/L  | 1.0   |      |                    | 4              |                      |
| 1,3-Dichlorobenzene         | ND        | µg/L  | 1.0   |      |                    |                |                      |
| 1,4-Dichlorobenzene         | ND        | μg/L  | 1.0   |      |                    |                | •                    |
| Dichlorodifluoromethane     | ND        | μg/L  | 1.0   |      |                    |                |                      |
| 1,1-Dichloroethane          | ND        | μg/L  | 1.0   |      | •                  |                |                      |
| 1,1-Dichloroethene          | ND        | µg/L  | 1.0   |      |                    |                |                      |
| 1,2-Dichloropropane         | ND        | µg/L  | 1.0   |      |                    |                |                      |
| 1,3-Dichloropropane         | ND        | μg/L  | 1.0   |      |                    |                |                      |
| 2,2-Dichloropropane         | ND        | µg/L  | 2.0   |      |                    |                |                      |
| 1,1-Dichloropropene         | ND        | µg/L  | 1.0   |      | •                  |                |                      |
| Hexachlorobutadiene         | ND        | µg/L  | 1.0   |      |                    |                |                      |
| 2-Hexanone                  | ND        | µg/L  | 10    |      |                    |                |                      |
| tsopropylbenzene            | ND        | µg/L  | 1.0   |      |                    | •              |                      |
| 4-Isopropyitoluene          | ND        | µg/L  | 1.0   |      |                    |                |                      |
| 4-Methyl-2-pentanone        | ND        | µg/L  | 10    |      |                    |                |                      |
| Methylene Chloride          | ND -      | µg/L  | 3.0   |      |                    |                | i .                  |
| n-Butylbenzene              | ND .      | μg/L  | 1.0   |      |                    |                |                      |
| n-Propylbenzene             | , ND      | µg/L  | 1.0   |      | •                  |                |                      |
| sec-Butylbenzene            | ND        | µg/L  | 1.0   |      |                    |                |                      |
| Styrene                     | ND        | µg/L  | 1.0   |      |                    |                |                      |
| tert-Butylbenzene           | ND        | µg/L  | 1,0   |      |                    |                |                      |
| 1,1,1,2-Tetrachloroethane   | ND        | µg/L  | 1.0   |      |                    |                |                      |
| 1,1,2,2-Tetrachloroethane   | ND        | µg/L  | 2.0   |      |                    |                |                      |
| Tetrachloroethene (PCE)     | ND        | µg/L  | 1.0   |      |                    |                |                      |
| trans-1,2-DCE               | ND        | µg/L  | 1.0   |      |                    |                | ٠.                   |
| trans-1,3-Dichtoropropene   | ND        | µg/L  | 1.0   |      |                    |                |                      |
| 1,2,3-Trichlorobenzene      | ND        | µg/L  | 1.0   |      |                    |                |                      |
| 1,2,4-Trichlorobenzene      | ND        | µg/L  | 1.0   |      |                    |                |                      |
| 1,1,1-Trichloroethane       | ND        | µg/L  | 1.0   |      |                    |                |                      |
| 1,1,2-Trichloroethane       | ND        | µg/L  | 1.0   |      |                    |                |                      |
| Trichloroethene (TCE)       | ND        | µg/L  | 1.0   |      |                    |                |                      |
| Trichlorofluoromethane      | ND        | μg/L  | 1.0   |      |                    |                |                      |
| 1,2,3-Trichloropropane      | ND        | µg/L  | 2.0   |      |                    |                |                      |
| Vinyl chloride              | ND        | µg/L  | 1.0   |      |                    |                | •                    |
| Xylenes, Total              | ND        | μg/L  | 1.5   |      |                    |                |                      |
| Sample ID: 5ml rb           |           | MBLK  |       |      | Batch ID: R33347   | Analysis Date: | 4/21/2009 B:37:30 AM |



E Estimated value

J Analyte detected below quantitation limits

R. RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits



ent: ject: Western Refining Southwest, Inc. Injection Well 2nd QTR 4/14/09

Work Order:

0904211

| Analyte                        | Result    | Units        | PQL | %Rec | LowLimit Hi | ghLimit | %RPD RP        | DLimit Qual          |
|--------------------------------|-----------|--------------|-----|------|-------------|---------|----------------|----------------------|
| Method: EPA Method 8260B:      | VOLATILES |              |     |      |             |         |                |                      |
| Sample ID: 5ml rb              |           | MBLK         |     |      | Batch ID:   | R33347  | Analysis Date: | 4/21/2009 8:37:30 AM |
| Benzene                        | ND        | μg/L         | 1.0 |      |             |         |                | •                    |
| Toluene                        | ND        | μg/L         | 1.0 |      |             |         |                |                      |
| Ethylbenzene                   | ND        | μg/L         | 1.0 |      |             |         |                |                      |
| Methyl tert-butyl ether (MTBE) | ND        | μg/L         | 1.0 |      |             |         |                |                      |
| 1,2,4-Trimethylbenzene         | ND        | μg/L         | 1.0 |      |             |         |                |                      |
| 1,3,5-Trimethylbenzene         | ND        | μg/L         | 1.0 |      |             |         |                |                      |
| 1,2-Dichloroethane (EDC)       | ND        | μg/L         | 1.0 |      |             |         |                |                      |
| 1,2-Dibromoethane (EDB)        | ND ·      | μg/L         | 1.0 |      |             |         |                |                      |
| Naphthalene                    | ND        | µg/L         | 2.0 |      |             |         |                |                      |
| 1-Methylnaphthalene            | ND        | μg/L         | 4.0 |      |             |         |                |                      |
| 2-Methylnaphthalene            | ND        | μg/L         | 4.0 |      |             |         |                |                      |
| Acetone                        | ND        | μg/L         | 10  |      |             |         |                |                      |
| Bromobenzene                   | ND        | μg/L         | 1.0 |      |             |         |                |                      |
| Bromodichloromethane           | ND        | μg/L         | 1.0 |      |             |         |                |                      |
| Bromoform                      | ND        | µg/L         | 1.0 |      |             |         |                |                      |
| Bromomethane                   | ND        | µg/L         | 1.0 |      |             |         |                | •                    |
| 2-Butanone                     | ND        | μg/L         | 10  |      |             |         |                |                      |
| Carbon disulfide               | ND        | μg/L         | 10  |      |             |         |                |                      |
| Carbon Tetrachloride           | ND        | μg/L<br>μg/L | 1.0 |      |             |         |                |                      |
| oanon retracmonde  Norobenzene | ND        | μg/L<br>μg/L | 1.0 |      |             |         |                |                      |
| proethane                      | ND        | μg/L         | 2.0 |      |             |         |                |                      |
| Chloroform                     | ND        | μg/L<br>μg/L | 1.0 |      |             |         |                |                      |
| Chloromethane                  | ND        | μg/L<br>μg/L | 1.0 |      |             |         |                |                      |
| 2-Chlorotoluene                | ND        |              | 1.0 |      |             |         |                |                      |
| 4-Chlorotoluene                |           | μg/L         | 1.0 |      |             |         |                |                      |
| cis-1,2-DCE                    | ND<br>ND  | μg/L         | 1.0 |      |             |         |                |                      |
|                                | ND        | . μg/L       |     |      |             |         |                |                      |
| cis-1,3-Dichloropropene        | ND        | μg/L         | 1.0 |      |             |         |                |                      |
| 1,2-Dibromo-3-chloropropane    | ND        | µg/L         | 2.0 |      |             |         |                |                      |
| Dibromochloromethane           | ND        | µg/L         | 1.0 |      |             |         |                |                      |
| Dibromomethane                 | ND        | µg/L         | 1.0 |      |             |         |                |                      |
| 1,2-Dichlorobenzene            | ND        | μg/L         | 1.0 |      |             |         |                |                      |
| 1,3-Dichlorobenzene            | ND        | µg/L         | 1.0 |      |             |         |                |                      |
| 1,4-Dichlorobenzene            | ND        | µg/L         | 1.0 |      |             |         |                |                      |
| Dichlorodifluoromethane        | ND        | μg/L         | 1.0 |      |             |         |                |                      |
| 1,1-Dichloroethane             | ND        | µg/L         | 1.0 |      |             |         |                |                      |
| 1,1-Dichloroethene             | ND        | µg/L         | 1.0 |      |             |         |                |                      |
| 1,2-Dichloropropane            | ND        | µg/L         | 1.0 |      |             |         |                |                      |
| 1,3-Dichloropropane            | ND<br>ND  | µg/L         | 1.0 |      |             |         |                |                      |
| 2,2-Dichloropropane            | ND        | µg/L         | 2.0 |      |             |         |                |                      |
| 1,1-Dichloropropene            | ND        | µg/L         | 1.0 |      |             |         |                |                      |
| Hexachlorobutadiene            | ND        | μg/L         | 1.0 |      |             |         |                |                      |
| 2-Hexanone                     | ND        | μg/L         | 10  |      |             |         |                |                      |
| Isopropylbenzene               | ND        | µg/L         | 1.0 |      |             |         |                |                      |
| 4-isopropyltoluene             | ND        | µg/L         | 1.0 |      |             |         |                |                      |





Estimated value

Analyte detected below quantitation limits

RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 2nd QTR 4/14/09

Work Order:

0904211

| Analyte                                                                                                                              | Result                                 | Units                                                | PQL                                         | %Rec | LowLimit Hip | ghLimit | %RPD RPI       | OLimit Qual          |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|---------------------------------------------|------|--------------|---------|----------------|----------------------|
| Method: EPA Method 8260B;                                                                                                            | VOLATILES                              |                                                      |                                             |      |              |         |                |                      |
| Sample ID: 5ml rb                                                                                                                    |                                        | MBLK                                                 |                                             |      | Batch ID:    | R33347  | Analysis Date: | 4/21/2009 8:37:30 AM |
| 4-Methyl-2-pentanone                                                                                                                 | ND                                     | µg/L                                                 | 10                                          |      |              |         |                |                      |
| Methylene Chloride                                                                                                                   | : ND                                   | µg/L                                                 | 3.0                                         |      |              |         |                |                      |
| n-Butylbenzene                                                                                                                       | ND                                     | µg/L                                                 | 1.0                                         |      |              |         |                |                      |
| n-Propylbenzene                                                                                                                      | ND                                     | µg/L                                                 | 1.0                                         |      |              |         |                |                      |
| sec-Butylbenzene                                                                                                                     | ND                                     | μg/L                                                 | 1.0                                         |      |              |         | ·              |                      |
| Styrene                                                                                                                              | ND                                     | μg/L                                                 | 1.0                                         |      |              |         |                |                      |
| tert-Butylbenzene                                                                                                                    | ND                                     | μg/L                                                 | 1.0                                         |      |              |         |                |                      |
| 1,1,1,2-Tetrachloroethane                                                                                                            | ND                                     | µg/L                                                 | 1.0                                         |      |              |         |                |                      |
| 1,1,2,2-Tetrachloroethane                                                                                                            | ND                                     | µg/L                                                 | 2.0                                         |      |              |         |                |                      |
| Tetrachloroethene (PCE)                                                                                                              | ND                                     | μg/L                                                 | 1.0                                         |      |              |         |                |                      |
| rans-1,2-DCE                                                                                                                         | ND                                     | hg/r                                                 | 1.0                                         |      |              |         |                |                      |
| trans-1,3-Dichloropropene                                                                                                            | ND                                     | µg/L                                                 | 1.0                                         |      |              |         |                | •                    |
| 1,2,3-Trichtorobenzene                                                                                                               | ND                                     | μg/L                                                 | 1.0                                         |      |              |         |                |                      |
| 1,2,4-Trichlorobenzene                                                                                                               | ND                                     | µg/L                                                 | 1.0                                         |      |              |         |                |                      |
| 1,1,1-Trichtoroethane                                                                                                                | ND                                     | μg/L                                                 | 1.0                                         |      |              |         |                |                      |
| 1,1,2-Trichloroethane                                                                                                                | ND                                     | µg/L                                                 | 1.0                                         |      |              |         |                |                      |
| Trichloroethene (TCE)                                                                                                                | ND                                     | μg/L                                                 | 1.0                                         |      |              |         |                |                      |
| Trichlorofluoromethane                                                                                                               | ND                                     | hg/L                                                 | 1.0                                         |      |              |         |                |                      |
| 1,2,3-Trichloropropane                                                                                                               | ND                                     | µg/L                                                 | 2.0                                         |      |              |         |                |                      |
| /inyl chloride                                                                                                                       | ND                                     | μg/L                                                 | 1.0                                         |      |              |         |                |                      |
| Kylenes, Total                                                                                                                       | ND                                     | μg/L                                                 | 1.5                                         |      |              |         |                |                      |
| Sample ID: b4                                                                                                                        |                                        | MBLK                                                 |                                             |      | Batch ID:    | R33347  | Analysis Date: | 4/21/2009 8:24:43 PM |
| Benzene                                                                                                                              | ND                                     | µg/L                                                 | 1.0                                         |      |              |         | •              |                      |
| Toluene                                                                                                                              | ND                                     | µg/L                                                 | 1.0                                         |      |              |         |                |                      |
| Ethylbenzene                                                                                                                         | ND                                     | μg/L                                                 | 1.0                                         | •    |              |         |                |                      |
| Methyl tert-butyl ether (MTBE)                                                                                                       | ND                                     | μg/L                                                 | 1.0                                         |      |              |         |                |                      |
| 1,2,4-Trimethylbenzene                                                                                                               | ND                                     | μg/L                                                 | 1.0                                         |      |              |         |                |                      |
| ,3,5-Trimethylbenzene                                                                                                                | ND                                     | µg/L                                                 | 1.0                                         |      |              |         |                |                      |
| ,2-Dichloroethane (EDC)                                                                                                              | ND                                     | μg/L                                                 | 1.0                                         |      |              |         |                |                      |
| ,2-Dibromoethane (EDB)                                                                                                               | ND                                     | μg/L                                                 | 1.0                                         |      | •            |         |                |                      |
| Naphthalene                                                                                                                          | ND                                     | µg/L                                                 | 2.0                                         |      |              |         |                |                      |
| l-Methylnaphthalene                                                                                                                  | ND                                     | µg/L                                                 | 4.0                                         |      |              |         |                |                      |
| 2-Methylnaphthalene                                                                                                                  | ND                                     | μg/L                                                 | 4.0                                         |      |              |         |                |                      |
| Acetone                                                                                                                              | ND                                     | µg/L                                                 | 10                                          |      |              |         |                |                      |
| nosione .                                                                                                                            |                                        | und                                                  | 1.0                                         |      |              |         |                |                      |
| •                                                                                                                                    | ND                                     | μg/L                                                 |                                             |      |              |         |                |                      |
| Bromobenzene                                                                                                                         | ND<br>D                                | μg/L                                                 | 1.0                                         |      |              |         |                |                      |
| Bromobenzene<br>Bromodichloromethane                                                                                                 | ND<br>ND                               |                                                      | 1.0<br>1.0                                  |      |              | ,       |                |                      |
| Bromobenzene<br>Bromodichloromethane<br>Bromoform                                                                                    | ND<br>ND<br>ND                         | μg/L                                                 | 1.0<br>1.0<br>1.0                           |      |              |         |                |                      |
| Bromobenzene<br>Bromodichloromethane<br>Bromoform<br>Bromomethane<br>2-Butanone                                                      | ND<br>ND<br>ND<br>ND                   | h8\r<br>h8\r<br>h8\r<br>h8\r                         | 1.0<br>1.0<br>1.0<br>10                     |      |              | •       |                |                      |
| Bromobenzene<br>Bromodichloromethane<br>Bromoform<br>Bromomethane<br>2-Butanone                                                      | ND<br>ND<br>ND                         | µg/L<br>µg/L                                         | 1.0<br>1.0<br>1.0<br>10                     |      |              | •       |                |                      |
| Bromobenzene<br>Bromodichloromethane<br>Bromoform<br>Bromomethane<br>2-Butanone<br>Carbon disulfide                                  | ND<br>ND<br>ND<br>ND                   | h8\r<br>h8\r<br>h8\r<br>h8\r                         | 1.0<br>1.0<br>1.0<br>10<br>10               |      |              |         |                |                      |
| Bromobenzene<br>Bromodichloromethane<br>Bromoform<br>Bromomethane<br>2-Butanone<br>Carbon disulfide<br>Carbon Tetrachloride          | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | ha\r<br>ha\r<br>ha\r<br>ha\r<br>ha\r<br>ha\r<br>ha\r | 1.0<br>1.0<br>1.0<br>10<br>10<br>1.0<br>1.0 |      |              |         |                |                      |
| Bromobenzene Bromodichloromethane Bromoform Bromomethane 2-Butanone Carbon disulfide Carbon Tetrachloride Chlorobenzene Chloroethane | ND<br>ND<br>ND<br>ND<br>ND<br>ND       | h8\r<br>h8\r<br>h8\r<br>h8\r<br>h8\r                 | 1.0<br>1.0<br>1.0<br>10<br>10               |      |              |         |                |                      |



E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits



ent: ject: Western Refining Southwest, Inc. Injection Well 2nd QTR 4/14/09

Work Order:

0904211

| Analyte                     | Result      | Units         | PQL  | %Rec | LowLimit H | lighLimit | %RPD R         | PDLimit Qual         |
|-----------------------------|-------------|---------------|------|------|------------|-----------|----------------|----------------------|
| Method: EPA Method 8260B:   | : VOLATILES |               |      |      |            |           |                |                      |
| Sample ID: b4               |             | MBLK          |      |      | Batch ID:  | R33347    | Analysis Date: | 4/21/2009 8:24:43 PN |
| Chloromethane               | ND          | μg/L          | 1.0  |      |            |           | •              |                      |
| 2-Chlorotoluene             | ND          | μg/L          | 1.0  |      |            |           |                | •                    |
| 4-Chlorotoluene             | ND          | μg/L          | 1.0  |      |            |           |                |                      |
| cis-1,2-DCE                 | ND          | μg/L          | 1.0  |      |            |           |                |                      |
| cis-1,3-Dichloropropene     | ND          | µg/L          | 1.0  | ٠    |            |           |                |                      |
| 1,2-Dibromo-3-chloropropane | ND          | µg/L          | 2.0  |      |            |           |                |                      |
| Dibromochloromethane        | ND          | μg/L          | 1.0  |      |            |           |                |                      |
| Dibromomethane              | ND          | μg/L          | 1.0  |      |            |           |                |                      |
| 1,2-Dichlorobenzene         | ND          | μg/L          | 1.0  |      |            |           |                |                      |
| 1,3-Dichlorobenzene         | ND          | μg/L          | 1.0  |      |            |           |                |                      |
| 1,4-Dichlorobenzene         | ND 1        | µg/L          | 1.0  |      |            |           |                |                      |
| Dichlorodifluoromethane     | ND          | µg/L          | 1.0  |      |            |           |                |                      |
| 1,1-Dichloroethane          | ND          | µg/L          | 1.0  |      |            |           |                |                      |
| 1,1-Dichloroethene          | ND          | µg/L          | 1.0  |      |            |           |                |                      |
| 1,2-Dichloropropane         | . ND        | μ <b>g</b> /L | 1.0  |      |            |           |                |                      |
| 1,3-Dichloropropane         | ND          | µ <b>g/</b> L | 1.0  |      |            |           |                | •                    |
| 2,2-Dichloropropane         | ND          | µg/L          | 2.0  |      |            |           |                |                      |
| 1,1-Dichloropropene         | ND          | μg/L          | 1.0  |      |            |           |                |                      |
| Hexachlorobutadiene         | NĎ          | μg/L          | 1.0  |      |            |           |                |                      |
| texanone                    | ND          | μg/L          | 10   |      |            |           |                |                      |
| propylbenzene               | ND          | μg/L          | 1.0  |      |            |           |                |                      |
| 4-Isopropyltoluene          | ND          | μg/L          | 1.0  |      |            |           |                |                      |
| 4-Methyl-2-pentanone        | ND          | μg/L          | 10   |      |            |           |                |                      |
| Methylene Chloride          | ND          | μg/L          | 3.0  |      |            |           |                |                      |
| n-Butylbenzene              | ND          | µg/L          | 1.0  |      |            |           |                |                      |
| n-Propylbenzene             | ND          | μg/L          | 1.0  |      |            |           |                |                      |
| sec-Butylbenzene            | ND          | μ <b>g</b> /L | 1.0  |      |            |           |                |                      |
| Styrene                     | ND          | μg/L          | 1.0  |      |            |           |                |                      |
| tert-Butylbenzene           | ND          | μg/L          | 1.0  |      |            |           |                |                      |
| 1,1,1,2-Tetrachioroethane   | ND          | μg/L          | 1.0  |      |            |           |                |                      |
| 1,1,2,2-Tetrachloroethane   | ND          | μg/L          | 2.0. |      |            |           |                |                      |
| Tetrachloroethene (PCE)     | ND          | μg/L          | 1.0  |      |            |           |                |                      |
| trans-1,2-DCE               | ND -        | μg/L          | 1.0  |      |            |           |                |                      |
| trans-1,3-Dichloropropene   | ND          | μg/L          | 1.0  |      |            |           |                |                      |
| 1,2,3-Trichlorobenzene      | ND          | µg/L          | 1.0  |      |            |           |                |                      |
| 1,2,4-Trichlorobenzene      | ND          | μg/L          | 1.0  |      |            |           |                |                      |
| 1,1,1-Trichloroethane       | ND          | µg/L          | 1.0  |      |            |           |                |                      |
| 1,1,2-Trichloroethane       | ND          | μg/L          | 1.0  |      |            |           |                |                      |
| Trichloroethene (TCE)       | ND          | µg/L          | 1.0  |      |            |           |                |                      |
| Trichlorofluoromethane      | ND          | μg/L          | 1.0  |      |            |           |                | •                    |
| 1,2,3-Trichloropropane      | ND          | µg/L          | 2.0  |      |            |           |                |                      |
| Vinyl chloride              | ND          | μg/L          | 1.0  |      |            |           |                |                      |
| Kylenes, Total              | ND          | μg/L          | 1.5  |      |            |           |                |                      |
| Sample ID: 100ng lcs        |             | LCS           |      |      | Batch ID:  | R33347    | Analysis Date: | 4/21/2009 9:37:16 AM |

Qualifiers:



Estimated value

Analyte detected below quantitation limits

RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Date: 04-May-09

# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project: Injection Well 2nd QTR 4/14/09

Work Order:

0904211

| Analyte                   | Result    | Units | PQL | %Rec | LowLimit | HighLimit         | %RPD RP        | DLimit Qual          |
|---------------------------|-----------|-------|-----|------|----------|-------------------|----------------|----------------------|
| Method: EPA Method 8260B: | VOLATILES |       |     |      |          |                   |                |                      |
| Sample ID: 100ng Ics      |           | LCS   |     |      | Batch    | ID: R33347        | Analysis Date: | 4/21/2009 9:37:16 AM |
| Benzene                   | 21.59     | μg/L  | 1.0 | 108  | 88       | 116               |                |                      |
| Toluene                   | 19.82     | μg/L  | 1.0 | 99.1 | 82.9     | 112               |                |                      |
| Chlorobenzene             | 22.11     | µg/L  | 1.0 | 111  | 71.4     | 133               |                |                      |
| 1,1-Dichtoroethene        | 22.45     | µg/L  | 1.0 | 112  | 97.9     | 140               |                |                      |
| Trichtoroethene (TCE)     | 18.97     | µg/L  | 1.0 | 94.8 | 90.5     | 112               |                | •                    |
| Sample ID: 100ng ics_b    |           | LCS   |     |      | Batch    | ID: <b>R33347</b> | Analysis Date: | 4/21/2009 9:22:10 PM |
| Benzene                   | 17.19     | μg/L  | 1.0 | 85.9 | 88       | 116               |                | S                    |
| Toluene                   | 22.31     | μg/L  | 1.0 | 112  | 82.9     | 112               |                |                      |
| Chlorobenzene             | 22.16     | μg/L  | 1.0 | 111  | 71.4     | 133               |                |                      |
| 1,1-Dichloroethene        | 21.75     | µg/L  | 1.0 | 109  | 97.9     | 140               |                |                      |
| Trichloroethene (TCE)     | 17.51     | µg/L  | 1.0 | 87.5 | 90.5     | 112               |                | \$                   |



E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits



0904211

## QA/QC SUMMARY REPORT

ent: oject: Western Refining Southwest, Inc.

Injection Well 2nd QTR 4/14/09 Work Order:

| Analyte                     | Result          | Units | PQL | %Rec | LowLimit | HighLimit | %RPD       | RPDLimit | Qual     |
|-----------------------------|-----------------|-------|-----|------|----------|-----------|------------|----------|----------|
| Method: EPA Method 8270C:   | : Semivolatiles |       |     |      |          |           |            |          |          |
| Sample ID: mb-18876         |                 | MBLK  |     |      | Batch    | ID: 18876 | Analysis I | Date:    | 4/20/200 |
| Acenaphthene                | ND              | μg/L  | 10  |      |          |           |            |          |          |
| Acenaphthylene              | ND              | µg/L  | 10  |      |          |           |            |          |          |
| Aniline                     | ND              | μg/L  | 10  |      |          |           |            |          |          |
| Anthracene                  | ND              | μg/L  | 10  |      |          |           |            | •        |          |
| Azobenzene                  | ND              | μg/L  | 10  |      |          |           |            |          |          |
| Benz(a)anthracene           | ND              | μg/L  | 10  |      |          |           |            |          |          |
| Benzo(a)pyrene              | ND              | μg/L  | 10  |      |          |           |            |          |          |
| Benzo(b)fluoranthene        | ND              | μg/L  | 10  |      |          |           |            |          |          |
| Benzo(g,h,i)perylene        | ND              | µg/L  | 10  |      |          |           |            |          |          |
| Benzo(k)fluoranthene        | ND              | μg/L  | 10  |      |          |           |            |          |          |
| Benzoic acid                | ND              | μg/L  | 20  |      |          |           |            |          |          |
| Benzyl alcohol              | ND              | μg/L  | 10  |      |          |           |            |          |          |
| Bis(2-chloroethoxy)methane  | ND              | µg/L  | 10  |      |          |           |            |          |          |
| Bis(2-chloroethyl)ether     | ND              | µg/L  | 10  |      |          |           |            |          |          |
| Bis(2-chloroisopropyl)ether | ND              | μg/L  | 10  |      |          |           |            |          |          |
| Bis(2-ethylnexyl)phthalate  | ND              | μg/L  | 10  |      |          |           |            |          |          |
| 4-Bromophenyl phenyl ether  | ND              | μg/L  | 10  |      |          |           |            |          |          |
| Butyl benzyl phthalate      | ND              | μg/L  | 10  |      |          |           |            |          |          |
| Carbazole                   | ND              | μg/L  | 10  |      |          |           |            |          |          |
| hloro-3-methylphenol        | ND              | μg/L  | 10  |      |          |           |            |          |          |
| Chloroaniline               | ND              | µg/L  | 10  |      |          |           |            |          |          |
| 2-Chloronaphthalene         | ND              | μg/L  | 10  |      |          |           |            |          |          |
| 2-Chlorophenol              | ND              | μg/L  | 10  |      |          |           |            |          |          |
| 4-Chlorophenyl phenyl ether | ND              | µg/L  | 10  |      |          |           |            |          |          |
| Chrysene                    | ND ·            | μg/L  | 10  |      |          |           |            |          |          |
| Di-n-butyl phthalate        | ND              | μg/L  | 10  |      |          |           |            |          |          |
| Di-n-octyl phthalate        | ND              | μg/L  | 10  |      |          |           |            |          |          |
| Dibenz(a,h)anthracene       | ND              | µg/L  | 10  |      |          |           |            |          |          |
| Dibenzofuran                | ND              | µg/L  | 10  |      |          |           |            |          |          |
| 1,2-Dichlorobenzene         | ND              | μg/L  | 5.0 |      |          |           |            |          |          |
| 1,3-Dichlorobenzene         | ND              | µg/∟  | 10  |      |          |           |            |          |          |
| 1,4-Dichlorobenzene         | . ND            | μg/L  | 5.0 |      |          |           |            |          |          |
| 3,31-Dichlorobenzidine      | ND              | µg/Ļ  | 10  |      |          |           |            |          |          |
| Diethyl phthalate           | ND              | μg/L  | 10  |      |          |           |            |          |          |
| Dimethyl phthalate          | ND              | μg/L  | 10  |      |          |           |            |          |          |
| 2,4-Dichlorophenol          | ND              | μg/L  | 20  |      |          |           |            |          |          |
| 2,4-Dimethylphenol          | ND              | μg/L  | 10  |      |          |           |            |          |          |
| 4,6-Dinitro-2-methylphenol  | ND              | μg/L  | 20  |      |          |           |            |          |          |
| 2,4-Dinitrophenol           | ND              | μg/L  | 5.0 |      |          |           |            |          |          |
| 2,4-Dinitrotoluene          | ND              | µg/L  | 5.0 |      |          |           |            |          |          |
| 2,6-Dinitrotoluene          | ND              | μg/L  | 10  |      |          |           |            |          |          |
| Fluoranthene                | ND              | µg/L  | 10  |      |          |           |            |          |          |
| Fluorene                    | ND              | µg/L  | 10  |      |          |           |            |          |          |
| Hexachlorobenzene           | ND              | µg/L  | 5.0 |      |          |           |            |          |          |





Analyte detected below quantitation limits

RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Date: 04-May-09

### QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project: Injection Well 2nd QTR 4/14/09

Work Order:

0904211

| Analyte                    | Result          | Units  | PQL     | %Rec | LowLimit H | HighLimit | %RPD RI        | PDLimit Qual         |
|----------------------------|-----------------|--------|---------|------|------------|-----------|----------------|----------------------|
| Method: EPA Method 8270C   | : Semivolatiles |        |         |      |            |           |                | `                    |
| Sample ID: mb-18876        |                 | MBLK   |         |      | Batch ID   | 18876     | Analysis Date: | 4/20/2009            |
| Hexachlorobutadiene        | ND ·            | µg/L   | 10      | •    |            |           |                |                      |
| Hexachlorocyclopentadiene  | ND              | µg/L   | 10      |      | -          |           |                |                      |
| Hexachloroethane           | ND              | µg/L   | 5.0     | •    |            |           |                |                      |
| Indeno(1,2,3-cd)pyrene     | ND              | µg/L   | 10      |      |            |           |                |                      |
| Isophorone                 | ND              | µg/Ł   | 10      |      | •          |           |                |                      |
| 2-Methylnaphthalene        | ND -            | μg/L   | 10      |      |            |           |                |                      |
| 2-Methylphenol             | ND              | μg/L   | 5.0     |      |            |           |                |                      |
| 3+4-Methylphenol           | ND              | µg/L   | 5.0     |      | •          |           |                | •                    |
| N-Nitrosodi-n-propylamine  | ND              | μg/L   | 10      |      |            |           |                |                      |
| N-Nitrosodimethylamine     | ND              | µg/L   | 10      |      |            |           |                |                      |
| N-Nitrosodiphenylamine     | ND              | µg/L   | 10      |      |            |           | 4              |                      |
| Naphthalene                | ND              | µg/L   | 10      |      |            |           |                |                      |
| 2-Nitroaniline             | ND ·            | µg/L   | 10      |      |            |           |                |                      |
| 3-Nitroaniline             | ND              | µg/L   | 10      |      |            |           |                |                      |
| 4-Nitroaniline             | ND .            | μg/L   | 10      |      |            |           |                |                      |
| Nitrobenzene               | ND              | µg/L   | 5.0     |      |            |           |                |                      |
| 2-Nitrophenol              | ND              | · µg/L | 10      |      |            |           |                |                      |
| 4-Nitrophenol              | ND              | µg/L   | 10      |      |            |           |                |                      |
| Pentachlorophenol          | ND              | µg/L   | 5.0     |      |            |           |                |                      |
| Phenanthrene               | ND              | µg/L   | 10      |      |            |           |                |                      |
| Phenol                     | ND              | µg/L   | 10      |      |            |           | *              |                      |
| Pyrene                     | ND              | μg/L   | 10      |      |            |           |                |                      |
| Pyridine                   | ND              | μg/L   | 5.0     |      |            |           |                |                      |
| 1,2,4-Trichlorobenzene     | ND              | µg/L   | 10      |      |            |           |                |                      |
| 2,4,5-Trichlorophenol      | ND              | μg/L   | 10      |      |            |           |                |                      |
| 2,4,6-Trichtorophenol      | ND              | µg/L   | 10      |      |            |           |                |                      |
| Method: EPA Method 7470; M | Mercury         |        |         |      |            |           |                |                      |
| Sample ID: MB-18932        |                 | MBLK   |         |      | Batch ID:  | 18932     | Analysis Date: | 4/24/2009 2:22:57 PM |
| Mercury                    | ND .            | mg/L   | 0.00020 |      |            |           |                |                      |
| Sample ID: LCS-18932       |                 | LCS    |         |      | Batch ID:  | 18932     | Analysis Date: | 4/24/2009 2:24:42 PM |
| Mercury                    | 0.004984        | mg/L   | 0.00020 | 98.9 | 80         | 120       |                | •                    |
| •                          |                 | ~      |         |      |            |           |                |                      |

| _ |    | _  |    |     |
|---|----|----|----|-----|
| 0 | ua | li | ĩe | rs: |

Estimated value

Analyte detected below quantitation limits

R RPD outside accepted recovery limits

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits



jent: oject: Western Refining Southwest, Inc. Injection Well 2nd QTR 4/14/09

Work Order:

0904211

| Analyte              | Result               | Units | PQL    | %Rec | LowLimit | High        | Limit | %RPD RP        | DLimit Qual          |
|----------------------|----------------------|-------|--------|------|----------|-------------|-------|----------------|----------------------|
| Method: EPA 6010B:   | Total Recoverable Me | tals  |        |      |          |             |       |                |                      |
| Sample ID: MB-18866  |                      | MBLK  |        |      | Batch    | ID:         | 18866 | Analysis Date: | 4/20/2009 9:07:16 A  |
| Arsenic              | ND                   | mg/L  | 0.020  |      |          |             |       |                |                      |
| Barium               | ND                   | mg/L  | 0.010  |      |          |             |       | •              |                      |
| Cadmium              | . ND                 | mg/L  | 0.0020 |      |          |             |       |                |                      |
| Calcium              | ND                   | mg/L  | 0.50   |      |          |             |       |                |                      |
| Chromium             | ND                   | mg/L  | 0,0060 |      |          |             |       |                |                      |
| Lead                 | ND                   | mg/L  | 0.0050 |      |          |             |       |                |                      |
| Magnesium            | ND                   | mg/L  | 0.50   |      |          |             |       |                |                      |
| Potassium            | ND                   | mg/L  | 1.0    |      |          |             |       |                |                      |
| Selenium             | ND                   | mg/L  | 0.050  |      |          |             |       |                |                      |
| Silver               | ND                   | mg/L  | 0.0050 |      |          |             |       |                |                      |
| Sodium               | ND                   | mg/L  | 0.50   |      |          |             |       |                |                      |
| Sample ID: MB-18866  |                      | MBLK  |        |      | Batch    | ID:         | 18866 | Analysis Date: | 4/19/2009 5:51:34 PI |
| Arsenic              | ND                   | mg/L  | 0.020  |      |          |             |       |                | ·                    |
| Barium               | ND                   | mg/L  | 0.010  |      |          |             |       |                |                      |
| Cadmium              | ND                   | mg/L  | 0:0020 |      |          |             |       |                |                      |
| Calcium              | ND                   | mg/L  | 0.50   |      |          |             |       |                |                      |
| Chromium             | ND                   | mg/L  | 0.0060 |      |          |             |       |                |                      |
| Lead                 | ND                   | mg/L  | 0.0050 |      |          |             |       |                |                      |
| Magnesium            | ND                   | mg/L  | 0.50   |      |          |             |       |                |                      |
| assium               | ND                   | mg/L  | 1.0    |      |          |             |       |                |                      |
| lenium               | ND                   | mg/L  | 0.050  |      |          |             |       |                |                      |
| Silver               | ND                   | mg/L  | 0.0050 |      |          |             |       |                |                      |
| Sodium               | ND                   | mg/L  | 0.50   |      |          |             |       |                |                      |
| Sample ID: LCS-18866 |                      | LCS   |        |      | Batch    | ID:         | 18866 | Analysis Date: | 4/20/2009 8:31:59 AM |
| Arsenic              | 0.5145               | mg/L  | 0.020  | 103  | 80       | 120         |       |                |                      |
| Barium               | 0.4941               | mg/L  | 0.010  | 98.8 | 80       | 120         |       |                |                      |
| Cadmium              | 0.4979               | mg/L  | 0.0020 | 99.6 | 80       | 120         |       |                |                      |
| Calcium              | 51.97                | mg/L  | 0.50   | 104  | 80       | 120         |       |                |                      |
| Chromium             | 0.4953               | mg/L  | 0.0060 | 99.1 | 80       | 120         |       |                |                      |
| -ead                 | 0.4924               | mg/L  | 0.0050 | 98.5 | 80       | 120         |       |                |                      |
| //Aagnesium          | 51.02                | mg/L  | 0.50   | 102  | 80       | 120         |       |                |                      |
| Potassium            | 52.96                | mg/L  | 1.0    | 106  | 80       | 120         |       |                |                      |
| Selenium             | 0.4778               | mg/L  | 0.050  | 95.6 | 80       | 120         |       |                |                      |
| Silver               | 0.4988               | mg/L  | 0.0050 | 99.6 | 80       | 120         |       |                |                      |
| Sodium               | 54.68                | mg/L  | 0.50   | 109  | 80       | 120         |       |                |                      |
| ample ID: LCS-18866  |                      | LCS   |        |      | Batch (  | D:          | 18866 | Analysis Date: | 4/19/2009 5:54:40 PM |
| rsenic               | 0.5018               | mg/L  | 0.020  | 100  | 80       | 120         |       |                |                      |
| arium .              | 0.4664               | mg/L  | 0.010  | 93.3 | 80       | 120         |       |                |                      |
| admium               | 0.4711               | mg/L  | 0.0020 | 94.2 | 80       | 120         |       |                |                      |
| alclum               | 48.32                | mg/L  | 0.50   | 96.3 | 80       | 120         |       |                |                      |
| Chromium             | 0.4885               | mg/L  | 0.0060 | 97.7 | 80       | <b>12</b> 0 |       |                |                      |
| ead                  | 0.4853               | mg/L  | 0.0050 | 97.1 | 80       | 120         |       |                |                      |
| 1agnesium            | 46.35                | mg/L  | 0.50   | 92.6 | 80       | 120         |       |                |                      |





Estimated value

Analyte detected below quantitation limits RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Date: 04-May-09

# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project: Injection Well 2nd QTR 4/14/09

Work Order:

0904211

| Analyte                    | Result         | Units | PQL    | %Rec | LowLimit | HighLimit         | %RPD RPI       | OLimit Qual          |
|----------------------------|----------------|-------|--------|------|----------|-------------------|----------------|----------------------|
| Method: EPA 6010B: Total R | ecoverable Me  | tals  |        |      |          |                   | ,              |                      |
| Sample ID: LCS-18866       |                | LCS   |        |      | Batch    | ID: <b>1886</b> 6 | Analysis Date: | 4/19/2009 5:54:40 PM |
| Potassium                  | 50.17          | mg/L  | 1.0    | 100  | 80       | 120               |                |                      |
| Selenium                   | 0.4736         | mg/L  | 0.050  | 94.7 | 80       | 120               |                |                      |
| Silver                     | 0.4660         | mg/L  | 0.0050 | 93.0 | 80       | 120               |                |                      |
| Sodium                     | 48.74          | mg/L  | 0.50   | 97.2 | 80       | . 120             |                |                      |
| Method: SM2540C MOD: Total | al Dissolved S | olids |        |      |          |                   | •              |                      |
| Sample ID: MB-18843        |                | MBLK  |        |      | Batch    | D: 18843          | Analysis Date: | 4/15/2009            |
| Total Dissolved Solids     | ND             | mg/L  | 20     |      |          |                   |                |                      |
| Sample ID: LCS-18843       |                | LCS   |        |      | Batch 1  | ID: 18843         | Analysis Date: | 4/15/2009            |
| Total Dissolved Solids     | 1006           | mg/L  | 20     | 101  | 80       | 120               |                |                      |

| Oug | lifie | 121 |
|-----|-------|-----|

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits



| •                                                                                         | Sample Rece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eipt       | Checklist                            |                    |               |             |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------|--------------------|---------------|-------------|
| Client Name WESTERN REFINING SOUT                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Date Received                        | <b>i</b> :         | 4/15/2009     |             |
| Work Order Number 0904211                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Received by:                         | ARS                |               |             |
| Checklist completed by:                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4          | Sample ID la                         | bels checked b     | y: Initiats   | )<br>       |
| Matrix:                                                                                   | Carrier name; <u>UPS</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                      |                    |               |             |
| Objective contained and an addition?                                                      | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V          | No 🗀                                 | Not Present        |               |             |
| Shipping container/cooler in good condition?                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>V</b>   | No 🗆                                 |                    | □ Not Shipped | · 🗆         |
| Custody seals intact on shipping container/cooler?                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | No 🗀                                 |                    | ■ Not Simpped | , ,         |
| Custody seals intact on sample bottles?                                                   | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | No 🗆                                 | 14//               |               |             |
| Chain of custody present?                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | No 🗆                                 |                    |               |             |
| Chain of custody signed when relinquished and received                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Y</b>   | No 🗆                                 |                    |               |             |
| Chain of custody agrees with sample labels?                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          |                                      |                    |               |             |
| Samples in proper container/bottle?                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | No 🗀                                 |                    |               |             |
| Sample containers intact?                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | · No ☐                               |                    |               |             |
| Sufficient sample volume for indicated test?                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | No ∐<br>□                            |                    |               |             |
| All samples received within holding time?                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>2</b> . | No ☐<br>Yes 🗹                        | No∙□               |               |             |
| VValci - VO/V Viais Have 2010 houdspace                                                   | OA vials submitted Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | No 🗌                                 | N/A                |               |             |
| Nater - Preservation labels on bottle and cap match?  Water - pH acceptable upon receipt? |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>☑</b>   | No 🗆                                 | N/A                | ·             |             |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                      |                    |               |             |
| Container/Temp Blank temperature?                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4°         | <6° C Acceptable If given sufficient |                    |               |             |
| COMMENTS:                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                      |                    |               |             |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                      |                    |               |             |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                      |                    |               |             |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                      | ar man and and and |               |             |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                      |                    |               |             |
| Client contacted Date co                                                                  | intacted:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | Perso                                | n contacted        | ****          |             |
| Contacted by: Regardl                                                                     | Ing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                      |                    |               |             |
| Comments:                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                      |                    |               | <del></del> |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                      |                    |               |             |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                      |                    |               |             |
| ·                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                      |                    |               |             |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                      |                    |               |             |
| Corrective Action                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                      |                    |               |             |
| <b>\</b>                                                                                  | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |            |                                      |                    |               |             |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                      |                    |               |             |



#### **COVER LETTER**

Friday, July 24, 2009

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Injection Well 3rd QTR 7/1/09

Dear Cindy Hurtado:

Order No.: 0907049

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 7/2/2009 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Business Manager
Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX



Date: 24-Jul-09

CLIENT:

Western Refining Southwest, Inc.

Project:

Injection Well 3rd QTR 7/1/09

Lab Order:

0907049

CASE NARRATIVE

Analytical Comments for METHOD 8260\_W, SAMPLE 0907049-01a: pH=7.0



Date: 24-Jul-09

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

0907049

Injection Well 3rd QTR 7/1/09

Project: Lab ID:

0907049-01

Client Sample ID: Injection Well

Collection Date: 7/1/2009 10:30:00 AM

Date Received: 7/2/2009

Matrix: AQUEOUS

| Analyses                        | Result | PQL | Qual                                  | Units | DF  | Date Analyzed         |
|---------------------------------|--------|-----|---------------------------------------|-------|-----|-----------------------|
| EPA METHOD 300.0: ANIONS        |        |     | · · · · · · · · · · · · · · · · · · · |       |     | Analyst: TAF          |
| Chloride                        | 2200   | 20  |                                       | mg/L  | 200 | 7/20/2009 10:14:14 AM |
| Sulfate                         | 570    | 10  |                                       | mg/L  | 20  | 7/20/2009 9:56:50 AM  |
| EPA METHOD 8270C: SEMIVOLATILES |        |     |                                       |       |     | Analyst: JDC          |
| Acenaphthene                    | ND     | 50  |                                       | μg/L  | 1   | 7/7/2009              |
| Acenaphthylene                  | ND     | 50  |                                       | μg/L  | 1   | 7/7/2009              |
| Aniline                         | ND     | 50  |                                       | μg/L  | 1   | 7/7/2009              |
| Anthracene                      | ND     | 50  |                                       | µg/L  | 1   | 7/7/2009              |
| Azobenzene                      | ND     | 50  |                                       | μg/L  | 1 . | 7/7/2009              |
| Benz(a)anthracene               | ND.    | 50  |                                       | μg/L  | 1   | 7/7/2009              |
| Benzo(a)pyrene                  | ND     | 50  |                                       | µg/L  | 1   | 7/7/2009              |
| Benzo(b)fluoranthene            | ND     | 50  |                                       | µg/L  | 1   | 7/7/2009              |
| Benzo(g,h,i)perylene            | ND     | 50  |                                       | μg/L  | 1   | 7/7/2009              |
| Benzo(k)fluoranthene            | ND     | 50  |                                       | μg/L  | 1   | 7/7/2009              |
| Benzoic acid                    | ND     | 100 |                                       | μg/L  | 1   | 7/7/2009              |
| Benzyl alcohol                  | ND     | 50  |                                       | μg/L  | 1   | 7/7/2009              |
| Bis(2-chloroethoxy)methane      | ND     | 50  |                                       | μg/L  | 1   | 7/7/2009              |
| Bis(2-chloroethyl)ether         | ND     | 50  |                                       | µg/L  | 1   | 7/7/2009              |
| Bis(2-chloroisopropyl)ether     | ND     | 50  |                                       | μg/L  | 1   | 7/7/2009              |
| Bis(2-ethylhexyl)phthalate      | ND     | 50  |                                       | μg/L  | 1   | 7/7/2009              |
| 4-Bromophenyl phenyl ether      | ND     | 50  |                                       | µg/L  | 1   | 7/7/2009              |
| Butyl benzyl phthalate          | ND     | 50  |                                       | μg/L  | 1   | 7/7/2009              |
| Carbazole                       | ND     | 50  |                                       | μg/L  | 1   | 7/7/2009              |
| 4-Chloro-3-methylphenol         | ND     | 50  |                                       | μg/L  | 1   | 7/7/2009              |
| 4-Chloroaniline                 | ND     | 50  |                                       | μg/L  | 1   | 7/7/2009              |
| 2-Chloronaphthalene             | ND     | 50  |                                       | μg/L  | 1   | 7/7/2009              |
| 2-Chlorophenol                  | ND     | 50  |                                       | µg/L  | 1   | 7/7/2009              |
| 4-Chlorophenyi phenyl ether     | ND     | 50  |                                       | μg/L  | 1   | 7/7/2009              |
| Chrysene                        | ND     | 50  |                                       | μg/L  | 1   | 7/7/2009              |
| Di-n-butyl phthalate            | ND     | 50  |                                       | µg/L  | 1   | 7/7/2009              |
| Di-n-octyl phthalate            | ND     | 50  |                                       | µg/L  | 1   | 7/7/2009              |
| Dibenz(a,h)anthracene           | ND     | 50  |                                       | μg/L  | 1   | 7/7/2009              |
| Dibenzofuran                    | ND     | 50  |                                       | μg/L  | 1   | 7/7/2009              |
| 1,2-Dichlorobenzene             | ND     | 50  |                                       | μg/L  | 1   | 7/7/2009              |
| 1,3-Dichlorobenzene             | ND     | 50  |                                       | µg/L  | 1   | 7/7/2009              |
| 1,4-Dichlorobenzene             | ND     | 50  |                                       | µg/L  | 1   | 7/7/2009              |
| 3,3'-Dichlorobenzidine          | ND     | 50  |                                       | µg/L  | 1   | 7/7/2009              |
| Diethyl phthalate               | ND     | 50  |                                       | μg/L  | 1   | 7/7/2009              |
| Dimethyl phthalate              | ND     | 50  | '-                                    | μg/L  | 1   | 7/7/2009              |
| 2,4-Dichlorophenol              | ND     | 100 |                                       | µg/L  | 1   | 7/7/2009              |
| 2,4-Dimethylphenol              | ND     | 50  |                                       | µg/L  | 1   | 7/7/2009              |
| 4,6-Dinitro-2-methylphenol      | ND     | 100 |                                       | ug/L  | 1   | 7/7/2009              |



- \* Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 1 of 6

Date: 24-Jul-09

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

0907049

Project:

Injection Well 3rd QTR 7/1/09

Lab ID:

0907049-01

Client Sample ID: Injection Well

Collection Date: 7/1/2009 10:30:00 AM

Date Received: 7/2/2009

Matrix: AQUEOUS

| Analyses                      | Result | PQL       | Qual Units | DF     | Date Analyzed       |
|-------------------------------|--------|-----------|------------|--------|---------------------|
| EPA METHOD 8270C: SEMIVOLATIL | .ES    |           |            |        | Analyst: JD0        |
| 2,4-Dinitrophenol             | ND     | 100       | μg/L       | 1      | 7/7/2009            |
| 2,4-Dinitrotoluene            | ND ND  | 50        | μg/L       | 1      | 7/7/2009            |
| 2,6-Dinitrotoluene            | ND     | 50-       | µg/L       | 1      | 7/7/2009            |
| Fluoranthene                  | ND     | 50        | µg/∟       | 1      | 7/7/2009            |
| Fluorene                      | ND     | .50       | μg/L       | 1      | 7/7/2009            |
| Hexachlorobenzene             | ND     | 50        | μg/L       | . 1    | 7/7/2009            |
| Hexachlorobutadiene           | ND     | 50        | μg/L       | 1      | 7/7/2009            |
| Hexachlorocyclopentadiene     | . ND   | 50        | μg/L       | 1      | 7/7/2009            |
| Hexachloroethane              | ND     | 50        | µg/L       | 1      | 7/7/2009            |
| Indeno(1,2,3-cd)pyrene        | ND     | 50        | μg/L       | 1      | 7/7/2009            |
| Isophorone                    | ND     | 50        | μg/L       | 1      | 7/7/2009            |
| 2-Methylnaphthalene           | ND     | 50        | μg/L       | 1      | 7/7/2009            |
| 2-Methylphenol                | ND     | 50        | µg/L       | 1      | 7/7/2009            |
| 3+4-Methylphenol              | ND     | 50        | μg/L       | 1      | 7/7/2009            |
| N-Nitrosodi-n-propylamine     | ND     | 50        | μg/L       | .1 ⋅ . | 7/7/2009            |
| N-Nitrosodimethylamine        | ND     | 50        | μg/L       | 1      | 7/7/2009            |
| N-Nitrosodiphenylamine        | ND     | 50        | µg/L       | 1      | 7/7/2009            |
| Naphthalene                   | ND     | 50        | μg/L       | 1      | 7/7/2009            |
| 2-Nitroaniline                | ND     | 50        | µg/L       | 1      | .7/7/2009           |
| 3-Nitroaniline                | ND     | 50        | μg/L       | 1      | 7/7/2009            |
| 4-Nitroaniline                | ND     | 50        | μg/L       | 1      | 7/7/2009            |
| Nitrobenzene                  | ND     | 50        | μg/L       | 1      | 7/7/2009            |
| 2-Nitrophenol                 | ND     | 50        | μg/L       | 1      | 7/7/2009            |
| 4-Nitrophenol                 | ND     | 50        | μg/L       | 1      | 7/7/2009            |
| Pentachlorophenol             | ND     | 100       | μg/L       | 1      | 7/7/2009            |
| Phonanthrene                  | ND     | 50        | μg/Ľ       | 1      | 7/7/2009            |
| Phenof                        | ND     | 50        | μg/L       | 1      | 7/7/2009            |
| Pyrene                        | ND     | 50        | μg/L       | 1      | 7/7/2009            |
| Pyridine                      | ИD     | 50        | μg/L       | 1      | 7/7/2009            |
| 1,2,4-Trichlorobenzene        | ND     | 50        | μg/L       | 1      | 7/7/2009            |
| 2,4,5-Trichlorophenol         | ND ·   | . 50      | µg/L       | 1      | 7/7/2009            |
| 2,4,6-Trichlorophenol         | ND     | 50        | μg/L       | 1      | 7/7/2009            |
| Surr: 2,4,6-Tribromophenol    | 70.8   | 16.6-150  | %REC       | 1.     | 7/7/2009            |
| Surr: 2-Fluorobiphenyl        | 77.5   | 19.6-134  | %REC       | 1      | 7/7/2009            |
| Surr: 2-Fluorophenol          | 59.6   | 9.54-113  | %REC       | 1      | 7/7/2009            |
| Surr: 4-Terphenyl-d14         | 76.2   | 22.7-145  | %REC       | . 1    | 7/7/2009            |
| Surr: Nitrobenzene-d5         | 73.0   | 14.6-134  | %REC       | 1      | 7/7/2009            |
| Surr: Phenol-d5               | 47.2   | 10.7-80.3 | %REC       | 1      | 7/7/2009            |
| PA METHOD 8280B: VOLATILES    |        |           |            |        | Analyst: HL         |
| Benzene                       | ND     | 1.0       | μg/L       | 1      | 7/9/2009 3:41:27 PM |
| Toluene                       | ND     | 1.0       | μg/L       | 1      | 7/9/2009 3:41:27 PM |



- Value exceeds Maximum Contaminant Level
- E Estimated value
- Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
  - Reporting Limit



Date: 24-Jul-09

CLIENT:

Western Refining Southwest, Inc.

Lab Order: Project:

Lab ID:

0907049

Injection Well 3rd QTR 7/1/09

0907049-01

Collection Date: 7/1/2009 10:30:00 AM

Date Received: 7/2/2009

Client Sample ID: Injection Well

Matrix: AQUEOUS

| Analyses                       | Result      | PQL | Qual Units | DF  | Date Analyzed       |
|--------------------------------|-------------|-----|------------|-----|---------------------|
| EPA METHOD 8260B: VOLATILES    | <del></del> |     | 712277     |     | Analyst: HL         |
| Ethylbenzene                   | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| Methyl tert-butyl ether (MTBE) | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| 1,2,4-Trimethylbenzene         | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| 1,3,5-Trimethylbenzene         | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| 1,2-Dichloroethane (EDC)       | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| 1,2-Dibromoethane (EDB)        | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| Naphthalene                    | ND          | 2.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| 1-Methylnaphthalene            | ND          | 4.0 | μg/L       | 1   | 7/9/2009 3;41:27 PM |
| 2-Methylnaphthalene            | ND          | 4.0 | µg/L       | 1   | 7/9/2009 3:41:27 PM |
| Acetone                        | ND          | 10  | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| Bromobenzene                   | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| Bromodichloromethane           | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| Bromoform                      | ND          | 1.0 | µg/L       | · 1 | 7/9/2009 3:41:27 PM |
| Bromomethane                   | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| 2-Butanone                     | ND          | 10  | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| Carbon disulfide               | ND          | 10  | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| Carbon Tetrachloride           | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| Chlorobenzene                  | ND          | 1.0 | µg/∟       | 1   | 7/9/2009 3:41:27 PM |
| Chloroethane                   | ND          | 2.0 | µg/L       | 1   | 7/9/2009 3:41:27 PM |
| Chloroform                     | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| Chloromethane                  | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| 2-Chlorotoluene                | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| 4-Chlorotoluene                | ND          | 1.0 | µg/L       | . 1 | 7/9/2009 3:41:27 PM |
| cis-1,2-DCE                    | ND          | 1.0 | µg/L       | 1   | 7/9/2009 3:41:27 PM |
| cis-1,3-Dichloropropene        | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| 1,2-Dibromo-3-chloropropane    | , ND        | 2.0 | µg/L       | 1   | 7/9/2009 3:41:27 PM |
| Dibromochloromethane           | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| Dibromomethane                 | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| 1,2-Dichlorobenzene            | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| 1,3-Dichlorobenzene            | ND          | 1.0 | µg/L       | 1   | 7/9/2009 3:41:27 PM |
| 1,4-Dichlorobenzene            | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| Dichlorodifluoromethane        | ND          | 1.0 | µg/L       | 1   | 7/9/2009 3:41:27 PM |
| 1.1-Dichloroethane             | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| 1,1-Dichloroethene             | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| 1,2-Dichloropropane            | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| 1,3-Dichloropropane            | ND          | 1.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| 2,2-Dichloropropane            | ND          | 2.0 | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| 1,1-Dichloropropene            | ND          | 1.0 | µg/L       | 1   | 7/9/2009 3:41:27 PM |
| Hexachlorobutadiene            | ND          | 1.0 | µg/L       | 1   | 7/9/2009 3:41:27 PM |
| 2-Hexanone                     | ND          | 10  | μg/L       | 1   | 7/9/2009 3:41:27 PM |
| Isopropylbenzene               | ND          | 1.0 | µg/L       | 1   | 7/9/2009 3:41:27 PM |
| 4-isopropyltoluene             | ND          | 1.0 | µg/L       | 1   | 7/9/2009 3:41:27 PM |

Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
  - RL Reporting Limit

Page 3 of 6

Date: 24-Jul-09

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

0907049

Client Sample ID: Injection Well

Injection Well 3rd QTR 7/1/09

Collection Date: 7/1/2009 10:30:00 AM

Project: Lab ID:

0907049-01

Date Received: 7/2/2009

Matrix: AQUEOUS

| Analyses                        | Result       | PQL      | Qual U | Jnits      | DF              | Date Analyzed       |
|---------------------------------|--------------|----------|--------|------------|-----------------|---------------------|
| EPA METHOD 8260B: VOLATILES     | <del></del>  |          |        |            |                 | Analyst: HL         |
| 4-Methyl-2-pentanone            | ND           | 10       | μ      | ıg/L       | 1               | 7/9/2009 3:41:27 PM |
| Methylene Chloride              | ND           | 3.0      | μ      | ıg/L       | 1 .             | 7/9/2009 3:41:27 PM |
| n-Butylbenzene                  | ND           | 1.0      | μ      | g/L        | 1               | 7/9/2009 3:41:27 PM |
| n-Propyibenzene                 | ND           | 1.0      | μ      | g/L        | 1               | 7/9/2009 3:41:27 PM |
| sec-Butylbenzene                | ND           | 1.0      | μ      | g/L        | 1               | 7/9/2009 3:41:27 PM |
| Styrene                         | , <b>N</b> D | 1.0      | μ      | g/L        | 1               | 7/9/2009 3:41:27 PM |
| tert-Butylbenzene               | ND           | 1.0      | μ      | g/L        | 1               | 7/9/2009 3:41:27 PM |
| 1,1,1,2-Tetrachloroethane       | ND           | 1.0      | μ      | g/L        | 1               | 7/9/2009 3:41:27 PM |
| 1,1,2,2-Tetrachloroethane       | ND           | 2.0      | μ      | g/L        | 1               | 7/9/2009 3:41:27 PM |
| Tetrachloroethene (PCE)         | ND           | 1.0      | μ      | g/L        | 1               | 7/9/2009 3:41:27 PM |
| trans-1,2-DCE                   | ND           | 1.0      | μ      | g/L        | 1               | 7/9/2009 3:41:27 PM |
| trans-1,3-Dichioropropene       | ND           | 1.0      | . μ    | g/L        | 1               | 7/9/2009 3:41:27 PM |
| 1,2,3-Trichlorobenzene          | ND           | - 1.0    | μ      | g/L        | 1               | 7/9/2009 3:41:27 PM |
| 1,2,4-Trichlorobenzene          | ND           | 1.0      | μ      | g/L        | 1               | 7/9/2009 3:41:27 PM |
| 1,1,1-Trichloroethane           | ND           | 1.0      | μ      | g/L        | 1               | 7/9/2009 3:41:27 PM |
| 1,1,2-Trichloroethane           | ND           | 1.0      | μ      | g/L        | 1               | 7/9/2009 3:41:27 PM |
| Trichloroethene (TCE)           | ND           | 1.0      | μ      | g/L        | 1               | 7/9/2009 3:41:27 PM |
| Trichlorofluoromethane          | ND           | 1.0      | μ      | g/L        | 1               | 7/9/2009 3:41:27 PM |
| 1,2,3-Trichloropropane          | ND           | 2.0      | μ      | g/L        | 1.              | 7/9/2009 3:41:27 PM |
| Vinyl chloride                  | ND           | 1.0      | μ      | g/L        | 1 .             | 7/9/2009 3:41:27 PM |
| Xylenes, Total                  | ND           | 1.5      | μ      | g/L        | 1               | 7/9/2009 3:41:27 PM |
| Surr: 1,2-Dichloroethane-d4     | 105          | 68.1-123 | - %    | %REC       | 1 .             | 7/9/2009 3:41:27 PM |
| Surr: 4-Bromofluorobenzene      | 95.5         | 53.2-145 | . %    | REC .      | 1               | 7/9/2009 3:41:27 PM |
| Surr: Dibromofluoromethane      | 107          | 68.5-119 | . %    | REC .      | 1               | 7/9/2009 3:41:27 PM |
| Surr: Toluene-d8                | 110          | 64-131   | 9/     | &REC       | <sup>10</sup> 1 | 7/9/2009 3:41:27 PM |
| SM 2320B: ALKALINITY            |              |          |        |            |                 | Analyst: DAM        |
| Alkalinity, Total (As CaCO3)    | 270          | 20       | m      | ng/L CaCO3 | -1              | 7/2/2009            |
| Carbonate                       | 26           | 2.0      |        | ng/L CaCO3 | 1               | 7/2/2009            |
| Bicarbonate                     | 240          | 20       | m      | ng/L CaCO3 | 1               | 7/2/2009            |
| EPA 120.1: SPECIFIC CONDUCTANCE |              |          |        |            |                 | Analyst: DAM        |
| Specific Conductance            | 6400         | 0.010    | μ      | mhos/cm    | 1               | 7/2/2009            |
| SM4500-H+B: PH                  |              |          |        |            |                 | Analyst: DAM        |
| pH                              | 8.49         | 0.1      | р      | H units    | 1               | 7/2/2009            |
| SM2540C MOD: TOTAL DISSOLVED SO | oi ins       |          |        |            |                 | Analyst: <b>KMS</b> |
| Total Dissolved Solids          | 4400         | 100      | m      | ng/L       | 1               | 7/7/2009            |
|                                 |              |          |        | ~          |                 |                     |

| Oua | 1:  | £  |   | - 0 |
|-----|-----|----|---|-----|
| Qu4 | -11 | 11 | C | 3   |

- Value exceeds Maximum Contaminant Level
- Ε Estimated value
- Analyte detected below quantitation limits
- Not Detected at the Reporting Limit ND
- Spike recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- MCL Maximum Contaminant Level
- Reporting Limit

Page 4 of 6



Date: 24-Jul-09



Western Refining Southwest, Inc.

Lab Order:

0907049

Project:

Injection Well 3rd QTR 7/1/09

Lab ID:

0907049-02

Client Sample ID: TRIP BLANK

Collection Date:

Date Received: 7/2/2009

Matrix: TRIP BLANK

| Analyses                       | Result | PQL Q | ual Units     | DF  | Date Analyzed       |
|--------------------------------|--------|-------|---------------|-----|---------------------|
| EPA METHOD 8260B: VOLATILES    |        |       |               |     | Analyst: HL         |
| Benzene                        | ND     | 1.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| Toluene                        | ND     | 1.0   | µg/L          | 1   | 7/9/2009 4:40:51 PM |
| Ethylbenzene                   | ND     | 1.0   | µg/L          | 1   | 7/9/2009 4:40:51 PM |
| Methyl tert-butyl ether (MTBE) | NĎ     | 1.0   | µg/L          | 1   | 7/9/2009 4:40:51 PM |
| 1,2,4-Trimethylbenzene         | ND     | 1.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| 1,3,5-Trimethylbenzene         | ND     | 1.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| Napřithalene                   | ND     | 2.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| 1-Methylnaphthalene            | ND     | 4.0   | μg/L          | · 1 | 7/9/2009 4:40:51 PM |
| 2-Methylnaphthalene            | ND     | 4.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| Acetone                        | ND     | 10    | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| Bromobenzene                   | ND     | 1.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| Bromodichloromethane           | ND     | 1.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| Bromoform                      | ND     | 1.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| Bromomethane                   | ND     | 1.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| 2-Butanone                     | ND     | 10    | µg/L          | 1   | 7/9/2009 4:40:51 PM |
| Carbon disulfide               | ND     | 10    | μg/L          | 1 . | 7/9/2009 4:40:51 PM |
| Carbon Tetrachloride           | ND     | 1.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| Chlorobenzene                  | ND     | 1.0   | µg/L          | 1   | 7/9/2009 4:40:51 PM |
| Chloroethane                   | ND     | 2.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| Chloroform                     | ND     | 1.0   | μg/L          | 1 - | 7/9/2009 4:40:51 PM |
| Chloromethane                  | ND     | 1.0   | µg/L          | 1   | 7/9/2009 4:40:51 PM |
| 2-Chlorotoluene                | ND     | 1.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| 4-Chlorotoluene                | ND     | 1.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| cis-1,2-DCE                    | ND     | 1.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| cls-1,3-Dichloropropene        | ND     | 1.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| 1,2-Dibromo-3-chloropropane    | ND     | 2.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| Dibromochloromethane           | ND     | 1.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| Dibromomethane                 | ND     | 1.0   | μg/L          | · 1 | 7/9/2009 4:40:51 PM |
| 1,2-Dichlorobenzene            | ND     | 1.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| 1,3-Dichlorobenzene            | ND     | 1.0   | µg/∟          | 1   | 7/9/2009 4:40:51 PM |
| 1,4-Dichlorobenzene            | ND     | 1.0   | µg/L          | 1   | 7/9/2009 4:40:51 PM |
| Dichlorodifluoromethane        | ND     | 1.0   | μ <b>g</b> /L | 1   | 7/9/2009 4:40:51 PM |
| 1,1-Dichloroethane             | ND     | 1.0   | µg/L          | 1   | 7/9/2009 4:40:51 PM |
| 1,1-Dichloroethene             | ND     | 1.0   | µg/L          | 1   | 7/9/2009 4:40:51 PM |
| 1,2-Dichloropropane            | ND     | 1.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| 1,3-Dichloropropane            | ND     | 1.0.  | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| 2,2-Dichloropropane            | ND     | 2.0   | µg/L          | 1 ' | 7/9/2009 4:40:51 PM |
| 1,1-Dichloropropene            | ND     | 1.0   | µg/L          | 1   | 7/9/2009 4:40:51 PM |
| Hexachlorobutadiene            | ND     | 1.0   | μg/L          | 1   | 7/9/2009 4:40:51 PM |
| 2-Hexanone                     | ND     | 10    | µg/L          | 1   | 7/9/2009 4:40:51 PM |



- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 5 of 6



Date: 24-Jul-09

CLIENT:

Western Refining Southwest, Inc.

Client Sample ID: TRIP BLANK

Lab Order:

0907049

Collection Date:

Project:

Injection Well 3rd QTR 7/1/09

Date Received: 7/2/2009

Lab ID:

0907049-02

Matrix: TRIP BLANK

| Analyses                    | Result | PQL      | Qual Units | DF         | Date Analyzed       |
|-----------------------------|--------|----------|------------|------------|---------------------|
| EPA METHOD 8260B: VOLATILES |        |          |            |            | Analyst: HL         |
| Isopropylbenzene            | ND     | 1.0      | μg/L       | 1          | 7/9/2009 4:40:51 PM |
| 4-Isopropyltoluene          | ND     | 1.0      | µg/L       | 1 .        | 7/9/2009 4:40:51 PM |
| 4-Methyl-2-pentanone        | · ND   | 10       | µg/L       | 1          | 7/9/2009 4:40:51 PM |
| Methylene Chloride          | ND     | 3.0      | µg/L       | 1          | 7/9/2009 4:40:51 PM |
| n-Butylbenzene              | ND     | 1.0      | µg/L       | 1          | 7/9/2009 4:40:51 PM |
| n-Propylbenzene             | ND     | . 1.0    | μg/L       | ; <b>1</b> | 7/9/2009 4:40:51 PM |
| sec-Butylbenzene            | ND     | 1.0      | µg/L       | 1          | 7/9/2009 4:40:51 PM |
| Styrene                     | ND     | 1.0      | µg/L       | 1          | 7/9/2009 4:40:51 PM |
| tert-Butylbenzene           | ND     | 1.0      | µg/L       | 1 .        | 7/9/2009 4:40:51 PM |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0      | μg/L       | 1          | 7/9/2009 4:40:51 PM |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0      | μg/L       | 1          | 7/9/2009 4:40:51 PM |
| Tetrachloroethene (PCE)     | ND     | 1.0      | μg/L       | 1          | 7/9/2009 4:40:51 PM |
| trans-1,2-DCE               | ND     | 1.0      | μg/L       | 1          | 7/9/2009 4:40:51 PM |
| trans-1,3-Dichloropropene   | ND     | 1.0      | μg/L       | 1          | 7/9/2009 4:40:51 PM |
| 1,2,3-Trichlorobenzene      | ND     | 1.0      | μg/L       | 1          | 7/9/2009 4:40:51 PM |
| 1,2,4-Trichlorobenzene      | ND     | 1.0      | μg/L       | 1          | 7/9/2009 4:40:51 PM |
| 1,1,1-Trichloroethane       | ND     | 1.0      | µg/L       | 1          | 7/9/2009 4:40:51 PM |
| 1,1,2-Trichloroethane       | ND     | 1.0      | μg/L       | 1          | 7/9/2009 4:40:51 PM |
| Trichloroethene (TCE)       | ND     | 1.0      | μg/L       | 1          | 7/9/2009 4:40:51 PM |
| Trichlorofluoromethane      | ND     | 1.0      | μg/L       | 1          | 7/9/2009 4:40:51 PM |
| 1,2,3-Trichloropropane      | ND     | 2.0      | μg/L       | 1          | 7/9/2009 4:40:51 PM |
| Vinyl chloride              | ND     | 1.0      | μg/L       | 1          | 7/9/2009 4:40:51 PM |
| Xylenes, Total              | ND     | 1.5      | μg/L       | 1          | 7/9/2009 4:40:51 PM |
| Surr: 1,2-Dichloroethane-d4 | 103    | 68.1-123 | %REC       | 1          | 7/9/2009 4:40:51 PM |
| Surr: 4-Bromofluorobenzene  | 100    | 53.2-145 | %REC       | 1          | 7/9/2009 4:40:51 PM |
| Surr: Dibromofluoromethane  | 107    | 68.5-119 | %REC       | 1 .        | 7/9/2009 4:40:51 PM |
| Surr: Toluene-d8            | 108    | 64-131   | %REC       | 1          | 7/9/2009 4:40:51 PM |

| Oua | 113 |  |  |
|-----|-----|--|--|
|     |     |  |  |
|     |     |  |  |

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 6 of 6







12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758~5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Anne Thorne Hall Environmental Analysis Laborat 4901 Hawkins NE Albuquerque, NM 87109

July 15, 2009

L410913-01

Date Received

07, 2009

ESC Sample # :

Description

July 0907049

Site ID :

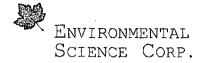
Sample ID

INJECTION WELL

Project # :

0907049

Collected By : Collection Date :


07/01/09 10:30

| Parameter | Result         | Det. Limit | Units | Method | Date     | Dil |
|-----------|----------------|------------|-------|--------|----------|-----|
| Mercury   | $\mathtt{BDL}$ | 0.00020    | mg/l  | 7470A  | 07/08/09 | 1   |
| Arsenic   | BDL            | 0.020      | mq/1  | 6010B  | 07/12/09 | 1   |
| Barium    | 0.36           | 0.0050     | mq/1  | 6010B  | 07/12/09 | 1   |
| Cadmium   | BDL            | 0.0050     | mq/1  | 6010B  | 07/12/09 | 1   |
| Calcium   | 170            | 0.50       | mg/1  | 6010B  | 07/12/09 | 1   |
| Chromium  | BDI,           | 0.010      | mg/1  | 6010B  | 07/12/09 | 1   |
| Lead      | BDL            | 0.0050     | mg/l  | 6010B  | 07/12/09 | 1   |
| Magnesium | 43.            | 0.10       | mg/l  | 6010B  | 07/12/09 | 1   |
| Potassium | 28.            | 0.50       | mq/l  | 6010B  | 07/12/09 | 1   |
| Selenium  | 0.021          | 0.020      | mg/l  | 6010B  | 07/12/09 | ī   |
| Silver    | BDL            | 0.010      | mg/l  | 6010B  | 07/14/09 | 1   |
| Sodium    | 2700           | 2.5        | mg/l  | 6010B  | 07/13/09 | 5   |

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)

Note:
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 07/15/09 12:42 Printed: 07/15/09 12:43



12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax 1.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Anne Thorne Hall Environmental Analysis Laborat 4901 Hawkins NE Albuquerque, NM 87109

07, 2009

Date Received Description

July 0907049

Sample ID

Collected By : Collection Date :

INJECTION WELL

07/01/09 10:30

L410913-02 ESC Sample # :

Site ID :

July 15, 2009

Project # : 0907049

Parameter Result Det. Limit Units Method Date Dil. Corrosivity Non-Corrosive 9040C 07/14/09 1 D93/1010A 07/09/09 Flashpoint See Footnote deg F 1 Reactive CN (SW846 7.3.3.2) 0.125 9012B BDL mg/l07/14/09 25. 07/10/09 Reactive Sulf. (SW846 7.3.4.1) BDL mg/l9034/9030B

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 07/15/09 12:42 Printed: 07/15/09 12:43 L410913-02 (FLASHPOINT) - Did Not Flash @ 170F

#### Attachment A List of Analytes with QC Qualifiers

| Sample<br>Number         | Work<br>Group        | Sample<br>Type | Analyte               | Run<br>ID          | Qualifier        |
|--------------------------|----------------------|----------------|-----------------------|--------------------|------------------|
|                          |                      |                |                       |                    |                  |
| L410913-01<br>L410913-02 | WG430503<br>WG430800 | SAMP<br>SAMP   | Silver<br>Corrosivity | R816846<br>R816188 | Ј6<br><b>т</b> 8 |

### Attachment B Explanation of QC Qualifier Codes

| Qualifier | Meaning                                                                                                     |
|-----------|-------------------------------------------------------------------------------------------------------------|
| J6        | The sample matrix interfered with the ability to make any accurate determination; spike value is low        |
| Т8        | (ESC) - Additional method/sample information: Sample(s) received past/too close to holding time expiration. |
|           | Qualifier Report Information                                                                                |

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable unless qualified as 'R' (Rejected).

# Definitions Accuracy - The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.

- Precision The agreement between a set of samples or between duplicate samples.

  Relates to how close together the results are and is represented by Relative Percent Difference.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- TIC Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, or surrogates.



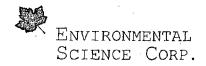
12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Hall Environmental Analysia Laboratory Anne Thorne 4901 Hawkins NE

Albuquerque, MM 87109


Quality Assurance Report

Level II L410913

July 15, 2009

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Result                                                             |                                              | akokyvetanky<br>s 8 r                  |                          | Limit             | Batch I                                                                                                        | ate Analyzed                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------|----------------------------------------|--------------------------|-------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| NELEURVING PEURUS (EDVINIO PARS CORPORTANT DE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21 <b>9</b> 2000                                                   | oren etter av <b>hø</b> yt                   |                                        | 10.45.EEC.43.H           | PPSZWWERST        | ATTENNIO DE DE CONTRETE DE CONTRETE DE CONTRETE DE CONTRETE DE CONTRETE DE CONTRETE DE CONTRETE DE CONTRETE DE | 7709700,21:3                                 |
| Reactive Sulf. (SMB46 7.3.4.1)<br>Corrosivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 25<br>3.30                                                       | mg/1                                         |                                        | <b>.</b>                 |                   |                                                                                                                | 7/10/09 18:2<br>7/14/09 09:3                 |
| Barium<br>Cadmium<br>Chromium<br>Chromium<br>Lead<br>Magnesium<br>Potassium<br>Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < .00<br>< .00<br>< .00<br>< .01<br>< .00<br>< .5<br>< .5<br>< .02 | mg/1<br>mg/1<br>mg/1<br>mg/1<br>mg/1<br>mg/1 | NATIVE SAFE                            |                          |                   | WG430503 0<br>WG430503 0<br>WG430503 0<br>WG430503 0<br>WG430503 0<br>WG430503 0<br>WG430503 0                 | 7/02/09/10:5<br>7/12/09 10:5<br>7/12/09 10:5 |
| 8301007 75 6 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 8 7 8 7 8 7 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < .01                                                              | mg/1                                         |                                        |                          |                   |                                                                                                                | 7/14/09 18:0                                 |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Units                                                              | Result                                       | uplicate<br>Duplicate                  | RPD                      | Limit             | Ref Samp                                                                                                       | Batch                                        |
| ercurative and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e'my7Io                                                            | VATA 0.5033A-1                               | SELVI OSIO PATE                        | Lienceo dota             | 10737120772545    | X-7-7.01019630                                                                                                 | ]<br>]                                       |
| Flashpoint<br>Reactive Sulf.(SW846 7.3.4.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | deg F<br>mg/l                                                      | 0.00<br>0.00                                 | 0.00<br>0.00                           | 0.00<br>0.00             | 20<br>20<br>20    | L410913-0<br>L410913-0                                                                                         | 09000000                                     |
| BEFFRIVLEY AS LINE BEFORE THE TOTAL OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION | 102002                                                             | ALEXESSO OF A PE                             | corridado estada                       | Pannaha.                 | KALUTOS JURI      |                                                                                                                | 1.40 MG) 3080                                |
| Reactive CN (SW846 7.3.3.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/l<br>mg/l                                                       | 0.00<br>0.00                                 | 0.00<br>0.00                           | 0.00<br>0.00             | 20<br>20<br>20    | L410913-0<br>L411103-0                                                                                         | WG43050                                      |
| darium<br>Edulum<br>Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/l<br>  mg/l<br>  mg/l                                           | 0.0775<br>0.002<br>6.43                      | 6,30                                   | 0.643<br>2.04            | 20                | L411103-0<br>L71610686<br>L411103-0<br>L411103-0                                                               | 1 WG43050:                                   |
| Chromium<br>Bedraut<br>Jagnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/l<br>/mg/l<br>mg/l                                              | 0.00<br>AAK 0.0173K//<br>6.42                | 0.000500<br>0.00178<br>6.30            | na<br>Definition<br>1.89 | 20<br>20<br>20    | L411103-0<br>L411103-0<br>L411103-0                                                                            | 1316 NG 13050.                               |
| otassium<br>81501000<br>odium<br>iilver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/1<br>mg/1<br>mg/1<br>mg/1                                       | 1.90<br>0.000<br>0.686<br>0.00               | 2.00<br>2.00<br>0.770<br>0.00          | 5.13                     | 20                | L411103-0<br>1411103-0<br>L411103-0<br>L411103-0                                                               | 1 WG430503<br>1 WG430503<br>1 WG430503       |
| malyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Units                                                              |                                              | y.controlisu                           |                          | % Rec             | Limit                                                                                                          | Batch                                        |
| WEBUNKA PARAMANANAN AND AND AND AND AND AND AND AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Z WANT S                                                           |                                              | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 1003245 15VI             | \$\$%.406.3000000 |                                                                                                                | W0480207                                     |
| Plashpoint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | deg F                                                              | 82                                           | 82.                                    | .0                       | 100.              | 96-104                                                                                                         | WG430692                                     |

hpoint deg F 82 82.0 100.
\* Performance of this Analyte is outside of established críteria.
For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'



12065 Lebanon Rd. Mt. Jullet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Hall Environmental Analysis Laboratory Anne Thorne 4901 Hawkins NE

Quality Assurance Report Level II

Albuquerque, NM 87109

L410913

July 15, 2009

| Analyte                                                                                                     | Units                                    | Maboratory;                                            | Control Sambl                                                    |                                                | % Rec                                          | Limit                                                                             | Batch                                                    |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------|
|                                                                                                             | EMBLAREA                                 |                                                        |                                                                  |                                                | TRONO PROTECTION                               | ······································                                            | WG130672                                                 |
| Corrosivity Arsenic Barium Daddion                                                                          | mg/1<br>mg/1                             | 9.04<br>1.13<br>1.13                                   | 8.90<br>1.14<br>1.18                                             |                                                | 98.5<br>101.<br>104.                           | 97.4-102.6<br>85-115<br>85-115                                                    | WG430800<br>WG430503<br>WG430503                         |
| Calcium<br>Chromium<br>West Chromium<br>Magnesium<br>Potassium                                              | mg/l<br>mg/l<br>mg/l<br>mg/l<br>mg/l     | 11.3<br>1.13<br>1.13<br>11.3                           | 11.8<br>1.16<br>1.18<br>12.1<br>11.6                             |                                                | 104.<br>103.<br>107.<br>103.                   | 85-115<br>85-115<br>05-115<br>85-115<br>85-115                                    | WG430503<br>WG430503<br>WG430503<br>WG430503<br>WG430503 |
| Silving Silver                                                                                              | mg/l<br>mg/l                             | 11.3<br>11.3<br>1.13                                   | 11.7<br>11.7<br>1.05                                             |                                                | 1.9773<br>104.<br>92.9                         | 85-115<br>85-115                                                                  | WG430503<br>WG430503<br>WG430503                         |
| Analyte                                                                                                     |                                          | apo <b>ratory contr</b><br>Result Ref                  | ile gample bub<br>Rec                                            | li <b>eds</b><br>L                             | imit                                           | RPD Limit                                                                         | : Batch                                                  |
| KATOREITERS TON TAKETE TELEFONIST                                                                           | edeoles.                                 | #0.1017.471.374.1124.                                  | erinaneori                                                       | 144761444                                      | 6-1043/75/7                                    | 2.2.479\7847\KH                                                                   | WGX30692                                                 |
| Reactive Sulf.(SW846 7.3.4.1)                                                                               | mg/l                                     | 9.00 8.                                                | (IAWAAA MIRA                                                     | waatii eu                                      | 0-130<br>7.4-102.6                             | 4.88 20<br>1.12 10                                                                | WG430672<br>WG430800                                     |
| Analyte                                                                                                     | Units                                    | MS Res Ref                                             | Res TV                                                           | % Rec                                          | Limit                                          | Ref Samp                                                                          | Batch                                                    |
| Recommendation of the second second                                                                         | 2007 EUS                                 | 04003287746                                            | (\$600E-11.00031.1                                               | TART BALL                                      | 776107107170                                   |                                                                                   | <b></b>                                                  |
| Arsenic<br>Benjum<br>Cadmium<br>Calcium<br>Throm un                                                         | mg/l<br>mg/l<br>mg/l<br>mg/l<br>mg/l     | 1.19 0<br>18.0 6<br>1.18 0                             | .00 1.13<br>.0060/1.13<br>.00011 1.13<br>.30 11.3<br>.00050/1.13 | 101.<br>1048.<br>105.<br>104.<br>103.          | 75-125<br>75-125<br>75-125<br>75-125<br>75-125 | L411103-01<br>L411103-01<br>L411103-01<br>L411103-01<br>L411103-01                | WG430503<br>WG430503<br>WG430503<br>WG430503             |
| Magnesium<br>Bocayatom<br>Selenium<br>Sodium<br>SATARA                                                      | mg/l<br>/mg/l<br>/mg/l<br>/mg/l<br>/mg/l | 1.10                                                   | 30 11.3<br>00 1.13<br>.00 1.13<br>.770 11.3                      | 105.<br>21.00 W<br>97.3<br>103.                | 75-125<br>75-125<br>75-125<br>75-125<br>76-125 | L411103-01<br>L411103-01                                                          | ₩G430503<br>₩G430503<br>₩G430503<br>₩G430503             |
| Analyte                                                                                                     | Units 1                                  | Mathix Spl<br> <br>  Mathix Spl                        | (e Dupil date.                                                   | Limit                                          | RPD                                            | Limit Ref Samp                                                                    | Batch                                                    |
| Werdury (1)                                                                                                 | (k <b>m</b> q73/ (C)                     | 70.0032.17.0700                                        |                                                                  | - To3436543                                    |                                                | 20436-141-0895-015                                                                | WG430207                                                 |
| Arsenic BLICOM Cadmium Calcium Chrontum * Performance of this Analyte is c For additional information, plea |                                          | 1.21 1.19<br>17.8 18.0<br>1/17 1/16<br>f established c |                                                                  | 75-125<br>75-125<br>75-125<br>75-125<br>75-128 | 1.67<br>1.12<br>(0.858)                        | 20 1411103-01<br>20 1411103-01<br>20 1411103-01<br>20 1411103-01<br>20 1411103-01 | WG430503<br>WG430503<br>WG430503<br>WG430503             |



12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax 1.D. 62-0814289

Est. 1970

Hall Environmental Analysis Laboratory

Anne Thorne 4901 Hawkins NE

Albuquerque, NM 87109

Quality Assurance Report

Level II

July 15, 2009

| Analyte .                                             | Units        | MAN<br>MSD   | PTINEDIK<br>Ref      | Moonia<br>Rec | 466%<br>Limit                        | RPD | Limit                                  | kef Sa | mp Batch                                           |
|-------------------------------------------------------|--------------|--------------|----------------------|---------------|--------------------------------------|-----|----------------------------------------|--------|----------------------------------------------------|
| Aggresium<br>Potassium<br>Eighnum<br>Sodium<br>Silver | mg/l<br>mg/l | 18.5<br>13.1 | 18.2<br>13.3<br>12.4 | 108.<br>98.2  | 75-125<br>75-125<br>75-125<br>75-125 | 1.6 | 3 20<br>2 <b>20</b><br>0 20 23<br>3 20 | L41110 | 3-01 WG430503<br>5032 44 WG430503<br>3-01 WG430503 |

Batch number /Run number / Sample number cross reference

WG430207: R810349: L410913-01 WG430692: R819907: L410913-02 WG430672: R815006: L410913-02 WG430800: R816188: L410913-02 WG430669: R816207: L410913-02 WG430503: R816846: L410913-01

 $<sup>^{\</sup>star}$   $^{\star}$  Calculations are performed prior to rounding of reported values  $\,$  .

<sup>\*</sup> Performance of this Analyte is outside of established criteria.

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 3rd QTR 7/1/09

Work Order: . 0907049

| Analyte                      | Result | Units.   | PQL                                   | %Rec | LowLimit HighLimit | %RPD RP                                 | DLimit Qual          |
|------------------------------|--------|----------|---------------------------------------|------|--------------------|-----------------------------------------|----------------------|
| Method: EPA Method 300.0:    | Anions |          | · · · · · · · · · · · · · · · · · · · |      |                    | *************************************** |                      |
| Sample ID: MB                |        | MBLK     |                                       |      | Batch ID: R34584   | Analysis Date:                          | 7/20/2009 9:22:02 AM |
| Chloride                     | ND     | mg/L     | 0.10                                  |      |                    | ·                                       | •                    |
| Sulfate                      | ND     | mg/L     | 0.50                                  |      |                    |                                         |                      |
| Sample ID: LCS               |        | LCS      |                                       | •    | Batch ID: R34584   | Analysis Date:                          | 7/20/2009 9:39:26 AM |
| Chloride                     | 4.881  | mg/L     | 0.10                                  | 97.6 | 90 110             |                                         |                      |
| Sulfate                      | 10.02  | mg/L     | 0.50                                  | 100  | 90 110             |                                         |                      |
| Method: SM 2320B: Alkalinit  | · ·    |          |                                       |      |                    |                                         |                      |
| Sample ID: MB                |        | MBLK     |                                       |      | Batch ID: R34382   | Analysis Date:                          | 7/2/2009             |
| Alkalinity, Total (As CaCO3) | ND     | mg/L CaC | 20                                    |      |                    | •                                       |                      |
| Carbonate                    | ND     | mg/L CaC | 2.0                                   |      |                    |                                         |                      |
| Bicarbonate                  | ND     | mg/L CaC | 20                                    |      | ,                  |                                         |                      |
| Sample ID: LCS               |        | LCS      |                                       |      | Batch ID: R34382   | Analysis Date:                          | 7/2/2009             |
| Alkalinity, Total (As CaCO3) | 80.40  | mg/L CaC | 20                                    | 101  | 80 120             |                                         |                      |
| 4                            |        |          |                                       |      |                    |                                         |                      |

| fiers: |
|--------|
|        |

Estimated value E

Analyte detected below quantitation limits

RPD outside accepted recovery limits

Holding times for preparation or analysis exceeded Н

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits S

# QA/QC SUMMARY REPORT

ient: oject: Western Refining Southwest, Inc.

Injection Well 3rd QTR 7/1/09

Work Order:

0907049

| Analyte                        | Result    | Units        | PQL | %Rec | LowLimit | High | Limit  | %RPD       | RPI  | DLimit | Qual           |
|--------------------------------|-----------|--------------|-----|------|----------|------|--------|------------|------|--------|----------------|
| Method: EPA Method 8260B:      | VOLATILES |              |     |      |          |      |        |            |      |        |                |
| Sample ID: 5ml rb              |           | MBLK -       |     |      | Batch II | D: 1 | R34458 | Analysis [ | ate: | 7/9/20 | 009 10:46:20 A |
| Benzene                        | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| Toluene                        | ND        | µg/L         | 1.0 |      |          |      |        |            |      |        |                |
| Ethylbenzene                   | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| Methyl tert-butyl ether (MTBE) | ND        | µg/L         | 1.0 |      |          |      |        |            |      |        |                |
| 1,2,4-Trimethylbenzene         | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        | •              |
| 1,3,5-Trimethylbenzene         | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| 1,2-Dichloroethane (EDC)       | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| 1,2-Dibromoethane (EDB)        | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| Naphthalene                    | ND        | µg/L         | 2.0 |      |          |      |        |            |      |        |                |
| 1-Methylnaphthalene            | ND        | μg/L         | 4.0 |      |          |      |        |            |      |        |                |
| 2-Methylnaphthalene            | ND        | μg/L         | 4.0 |      |          |      |        |            |      |        |                |
| Acetone                        | ND        | μg/L         | 10  |      |          |      |        |            |      |        |                |
| Bromobenzene                   | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| Bromodichloromethane           | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| Bromoform                      | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| Bromomethane                   | ND        | µg/L         | 1.0 |      |          |      |        |            |      |        |                |
| 2-Butanone                     | ND        | μg/L         | 10  |      |          |      |        |            |      |        |                |
| Carbon disulfide               | ND        | μg/L         | 10  |      |          |      |        |            |      |        |                |
| Carbon Tetrachloride           | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| hlorobenzene                   | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| loroethane                     | ND        | μg/L         | 2.0 |      |          |      |        |            |      |        |                |
| Chloroform                     | , ND      | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| Chloromethane                  | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| 2-Chlorotoluene                | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| 4-Chiorotoluene                | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| cis-1,2-DCE                    | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| cis-1,3-Dichloropropene        | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| 1,2-Dibromo-3-chloropropane    | ND        | μg/L         | 2.0 |      |          |      |        |            |      |        |                |
| Dibromechloromethane           | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| Dibromomethane                 | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| 1,2-Dichlorobenzene            | ND        | hâ\r<br>hâ\r | 1.0 |      |          |      |        |            |      |        |                |
| 1,3-Dichlorobenzene            | ND        | µg/L         | 1.0 |      |          |      |        |            |      |        |                |
| 1,4-Dichlorobenzene            | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| Dichlorodifluoromethane        | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| 1,1-Dichloroethane             | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| 1,1-Dichloroethene             | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| 1,2-Dichloropropane            | ND        | μg/L<br>μg/L | 1.0 |      |          |      |        |            |      |        |                |
| 1,3-Dichloropropane            | ND        | μg/L<br>μg/L | 1.0 |      |          |      |        |            |      |        |                |
| 2,2-Dichloropropane            | ND        | μg/L<br>μg/L | 2.0 |      |          |      |        |            |      |        |                |
| 1,1-Dichioropropene            | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |
| Hexachlorobutadiene            | ND        | μg/L<br>μg/L | 1.0 |      |          |      |        |            |      |        |                |
| 2-Hexanone                     | ND        | μg/L<br>μg/L | 10  |      |          |      |        |            |      |        |                |
| Isopropylbenzene               | ND        | μg/L<br>μg/L | 1.0 |      |          |      |        |            |      |        |                |
| 4-Isopropyltoluene             | ND        | μg/L         | 1.0 |      |          |      |        |            |      |        |                |





Estimated value

Analyte detected below quantitation limits

RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

#### Date: 24-Jul-09

# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 3rd QTR 7/1/09

Work Order:

0907049

| Analyte                     | Result    | Units | PQL | %Rec | LowLimit F | lighLimit | %RPD         | RPDLimit Qual            |
|-----------------------------|-----------|-------|-----|------|------------|-----------|--------------|--------------------------|
| Method: EPA Method 8260B    | VOLATILES |       |     |      |            |           |              |                          |
| Sample ID: 5ml rb           |           | MBLK  |     |      | Batch ID   | R34458    | Analysis Dat | te: 7/9/2009 10:46:20 AN |
| 4-Methyl-2-pentanone        | ND        | hg/L  | 10  |      |            |           |              |                          |
| Methylene Chloride          | ND        | µg/L  | 3.0 |      |            |           |              |                          |
| n-Butylbenzene              | ND        | µg/L  | 1.0 |      |            |           |              |                          |
| n-Propylbenzene             | ND        | µg/L  | 1.0 |      |            |           |              |                          |
| sec-Butylbenzene            | ND        | μg/L  | 1.0 |      |            |           |              |                          |
| Styrene                     | ND        | µg/L  | 1.0 |      |            |           |              |                          |
| tert-Butylbenzene           | ND        | µg/L  | 1.0 |      | -          |           |              |                          |
| 1,1,1,2-Tetrachloroethane   | ND        | µg/L  | 1.0 |      |            |           |              |                          |
| 1,1,2,2-Tetrachloroethane   | ND        | μg/L  | 2.0 |      |            |           |              |                          |
| Tetrachloroethene (PCE)     | ND        | μg/L  | 1.0 |      |            |           |              |                          |
| trans-1,2-DCE               | ND        | μg/L  | 1.0 |      |            |           |              |                          |
| trans-1,3-Dichloropropene   | ND        | μg/L  | 1.0 |      |            |           |              |                          |
| 1,2,3-Trichlorobenzene      | ND        | μg/L  | 1.0 |      |            |           |              |                          |
| 1,2,4-Trichlorobenzene      | ND        | μg/L  | 1.0 |      |            |           |              |                          |
| 1,1,1-Trichloroethane       | ND        | μg/L  | 1.0 |      |            |           |              |                          |
| 1,1,2-Trichloroethane       | ND        | µg/L  | 1.0 |      |            |           | •            |                          |
| Trichloroethene (TCE)       | ND        | μg/L  | 1.0 |      |            |           |              |                          |
| Trichlorofluoromethane      | ND        | μg/L  | 1.0 |      |            |           |              |                          |
| 1,2,3-Trichioropropane      | ND        | μg/L  | 2.0 |      |            |           |              |                          |
| Vinyl chloride              | ND        | μg/L  | 1.0 |      |            |           |              |                          |
| Xylenes, Total              | ND .      | μg/L  | 1.5 |      |            |           |              |                          |
| Surr: 1,2-Dichloroethane-d4 | 10.42     | μg/L  | 0   | 104  | 68.1       | 123       |              |                          |
| Surr: 4-Bromofluorobenzene  | 11.26     | μg/L  | 0   | 113  | 53.2       | 145       |              |                          |
| Surr: Dibromofluoromethane  | 11.26     | μg/L  | 0   | 113  | 68.5       | 119       |              |                          |
| Surr: Toluene-d8            | 9.824     | μg/L  | 0   | 98.2 | 64         | 131       |              |                          |
| Sample ID: 100ng lcs        |           | LCS   |     |      | Batch ID:  | R34458    | Analysis Dat | te: 7/9/2009 11:44:36 AM |
| Benzene                     | 20.62     | μg/L  | 1.0 | 103  | 76.7       | 114       |              |                          |
| Toluene                     | 20.57     | μg/L  | 1.0 | 103  | 78.4       | 117       |              |                          |
| Chlorobenzene               | 20.21     | μg/L  | 1.0 | 101  | 80.7       | 127       |              | •                        |
| 1,1-Dichloroethene          | 23.91     | μg/L  | 1.0 | 120  | 80.2       | 128       |              |                          |
| Trichloroethene (TCE)       | 21.14     | μg/L  | 1.0 | 106  | 77.4       | 115       |              | •                        |
| Surr: 1,2-Dichloroethane-d4 | 10.29     | μg/L  | 0   | 103  | 68.1       | 123 .     |              |                          |
| Surr: 4-Bromofluorobenzene  | 10.86     | µg/L  | . 0 | 109  | 53.2       | 145       |              |                          |
| Surr: Dibromofluoromethane  | 10.93     | μg/L  | 0   | 109  | 68.5       | 119       |              |                          |
| Surr: Toluene-d8            | 10.53     | μg/L  | 0   | 105  | 64         | 131       |              |                          |

| Q | ual | ifi | er | s: |
|---|-----|-----|----|----|

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits



# QA/QC SUMMARY REPORT

lient: oject: Western Refining Southwest, Inc.

Injection Well 3rd QTR 7/1/09

Work Order:

0907049

| Analyte                          | Result          | Units        | PQL      | %Rec | LowLimit | Hig | hLimit | %RPD       | RPDLimit | Qual | <u>.</u> |
|----------------------------------|-----------------|--------------|----------|------|----------|-----|--------|------------|----------|------|----------|
| Method: EPA Method 8270C         | : Semivolatiles |              |          |      |          |     |        |            |          |      |          |
| Sample ID: mb-19539              |                 | MBLK         |          |      | Batch    | ID: | 19539  | Analysis I | Date:    |      | 7/7/200  |
| Acenaphthene                     | ND              | µg/L         | 10       | •    |          |     |        |            |          |      |          |
| Acenaphthylene                   | ND .            | μg/L         | 10       |      |          |     |        |            |          |      |          |
| Aniline                          | ND              | μg/L         | 10       |      |          |     |        |            |          |      |          |
| Anthracene                       | ND              | µg/L         | 10       |      |          |     |        |            |          |      |          |
| Azobenzene                       | ND              | μg/L         | 10       |      |          |     |        |            |          |      |          |
| Benz(a)anthracene                | ND              | hâ\r<br>hâ\r | 10       |      |          |     |        |            |          |      |          |
| Benzo(a)pyrene                   | ND              | μg/L         | 10       |      |          |     |        |            |          |      |          |
| Benzo(b)fluoranthene             | ND              | μg/L         | 10       |      |          |     |        |            |          |      |          |
| Benzo(g,h,i)perylene             | ND              | μg/L         | 10       |      |          |     |        |            |          |      |          |
| Benzo(k)fluoranthene             | ND              | μg/L         | 10       |      |          |     |        |            |          |      |          |
| Benzoic acid                     | ND              | µg/L         | 20       |      |          |     |        |            |          |      |          |
| Benzyl alcohol                   | ND              | μg/L         | 10       |      |          |     |        |            |          |      |          |
| Bis(2-chloroethoxy)methane       | ND              | μg/L         | 10       |      |          |     |        |            |          |      |          |
| Bis(2-chloroethyl)ether          | ND              | μg/L         | 10       |      |          |     |        |            |          |      |          |
| Bis(2-chloroisopropyl)ether      | ND              | μg/L         | 10       |      |          |     |        |            |          |      |          |
| Bis(2-ethylhexyl)phthalate       | ND              | μg/L<br>μg/L | 10       |      |          |     |        |            |          |      |          |
| 4-Bromophenyl phenyl ether       | ND .            | μg/L         | 10       |      |          |     |        |            |          |      |          |
|                                  |                 |              | 10       |      |          |     |        |            |          |      |          |
| Butyl benzyl phthalate Carbazole | ND<br>ND        | μg/L<br>μg/L | 10       |      |          |     |        |            |          |      |          |
| Chloro-3-methylphenol            | ND              |              | 10       |      |          |     |        |            |          |      |          |
| Chloroaniline                    |                 | μg/L         | 10       |      |          |     |        |            |          |      |          |
| 2-Chloronaphthalene              | ND .            | μg/L         | 10       |      |          |     |        |            |          |      |          |
| •                                | ND<br>ND        | μg/L         | 10       |      |          |     |        |            |          |      |          |
| 2-Chlorophenol                   | ND              | μg/L         |          |      |          |     |        |            |          |      |          |
| 4-Chlorophenyl phenyl ether      | ND<br>ND        | μg/L         | 10       |      |          |     |        |            | *        |      |          |
| Chrysene                         | ND              | μg/L         | 10       |      |          |     |        |            |          |      |          |
| Di-n-butyl phthalate             | ND              | µg/L         | 10       |      |          |     |        |            |          |      |          |
| Di-n-octyl phthalate             | ND              | μg/L         | 10       |      |          |     |        |            |          |      |          |
| Dibenz(a,h)anthracene            | ND              | µg/L         | 10       |      |          |     |        |            |          |      |          |
| Dibenzofuran                     | ND              | µg/L         | 10       |      |          |     |        |            |          |      |          |
| 1,2-Dichlorobenzene              | ND              | μg/L         | 10       |      |          |     |        |            |          |      |          |
| 1,3-Dichlorobenzene              | ND              | μg/L         | 10       |      |          |     |        |            |          |      |          |
| 1,4-Dichlorobenzene              | ND              | µg/L         | 10       |      |          |     |        |            |          |      |          |
| 3,3'-Dichlorobenzidine           | ND              | μg/L<br>··-/ | 10       |      |          |     |        |            |          |      |          |
| Diethyl phthalate                | ND              | μg/L         | 10       |      |          |     |        |            |          |      |          |
| Dimethyl phthalate               | ND              | µg/L         | 10       |      |          |     |        |            |          |      |          |
| 2,4-Dichlorophenol               | ND              | μg/L         | 20       |      |          |     |        |            |          |      |          |
| 2,4-Dimethylphenol               | ND              | µg/L         | 10       |      |          |     |        |            |          |      |          |
| 4,6-Dinitro-2-methylphenol       | ND<br>ND        | µg/L         | 20<br>20 |      |          |     |        |            |          |      |          |
| 2,4-Dinitrophenol                | ND              | pg/L         | 20<br>10 |      |          |     |        |            |          |      |          |
| 2,4-Dinitrotoluene               | ND              | μg/L<br>ug/l | 10<br>10 |      |          |     |        |            |          |      |          |
| 2,6-Dinitrotoluene Fluoranthene  | ND              | μg/L         | 10<br>10 |      |          |     |        |            |          |      |          |
|                                  | ND<br>ND        | μg/L         | 10       |      |          |     |        |            |          |      |          |
| Fluorene                         | ND              | μg/L         | 10       |      |          |     |        |            |          |      |          |
| Hexachlorobenzene                | ND              | µg/L         | 10       |      |          |     |        |            |          |      |          |





Estimated value

Analyte detected below quantitation limits ...

RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

# Date: 24-Jul-09

# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project: Injection Well 3rd QTR 7/1/09

Work Order:

0907049

| Analyte                    | Result.       | Units         | PQL | %Rec | LowLimit | HighLimit         | %RPD        | RPDLimit | Qual    |          |
|----------------------------|---------------|---------------|-----|------|----------|-------------------|-------------|----------|---------|----------|
| Method: EPA Method 8270C;  | Semivolatiles |               |     |      |          |                   |             |          | <b></b> |          |
| Sample ID: mb-19539        |               | MBLK .        |     |      | Batch    | ID: <b>1953</b> 9 | Analysis Da | ate:     |         | 7/7/200  |
| Hexachlorobutadiene        | ND            | µg/L          | 10  |      |          |                   |             |          |         |          |
| Hexachlorocyclopentadiene  | ND            | µg/L          | 10  |      |          |                   |             |          |         |          |
| Hexachloroethane           | ND            | µg/L          | 10  |      |          |                   |             |          |         |          |
| indeno(1,2,3-cd)pyrene     | ND            | μg/L          | 10  |      |          |                   |             |          |         |          |
| tsophorone                 | ND            | μg/L          | 10  |      |          |                   |             |          |         |          |
| 2-Methylnaphthalene        | ND            | μg/L          | 10  |      |          |                   |             |          |         |          |
| 2-Methylphenol             | ND            | µg/L          | 10  |      |          |                   |             |          |         |          |
| 3+4-Methylphenol           | ND            | μg/L          | 10  |      |          |                   |             |          |         |          |
| N-Nitrosodi-n-propylamine  | ND            | µg/∟          | 10  |      |          |                   |             |          |         |          |
| N-Nitrosodimethylamine     | ND            | μg/L          | 10  |      |          |                   |             |          |         |          |
| N-Nitrosodiphenylamine     | ND            | μg/L          | 10  |      |          |                   |             |          |         |          |
| Naphthalene                | ND            | μg/L          | 10  |      |          |                   |             |          |         |          |
| 2-Nitroaniline             | ND            | μg/L          | 10  |      |          |                   |             |          |         |          |
| 3-Nitroaniline             | ND            | μg/L          | 10  |      |          |                   |             |          |         |          |
| 4-Nitroaniline             | ND .          | μg/L          | 10  |      |          |                   |             |          |         |          |
| Nitrobenzene               | ND            | μg/L          | 10  | ,    |          |                   |             |          |         |          |
| 2-Nitrophenol              | ND            | μ <b>g</b> /L | 10  |      |          | •                 |             |          |         |          |
| 4-Nitrophenol              | ND            | μg/L          | 10  |      |          |                   |             |          |         |          |
| Pentachlorophenol          | ND            | μg/L          | 20  |      |          |                   |             |          |         |          |
| Phenanthrene               | ND            | μg/Ĺ          | 10  |      |          |                   |             |          |         |          |
| Phenol                     | , ND          | μg/L          | 10  |      |          |                   |             |          |         |          |
| Pyrene .                   | ND            | μg/L          | 10  |      |          |                   |             |          |         |          |
| Pyridine                   | ND            | μg/L          | 10  |      |          |                   |             |          |         |          |
| 1,2,4-Trichiorobenzene     | ND            | μg/L          | 10  |      |          |                   |             |          |         |          |
| 2,4,5-Trichlorophenol      | ND            | µg/L          | 10  |      |          |                   |             |          |         |          |
| 2,4,6-Trichlorophenol      | ND            | μg/L          | 10  |      |          |                   |             |          |         |          |
| Surr: 2,4,6-Tribromophenol | 173.1         | μg/L          | 0   | 86.6 | 16.6     | 150               |             |          |         |          |
| Surr: 2-Fluorobiphenyl     | 99.28         | μg/L          | 0   | 99.3 | 19.6     | 134               | •           |          |         |          |
| Surr: 2-Fluorophenol       | 158.7         | µg/L          | 0   | 79.3 | 9.54     | 113               |             | •        |         |          |
| Surr: 4-Terphenyl-d14      | 141.4         | μg/L          | 0   | 141  | 22.7     | 145               |             |          |         |          |
| Surr: Nitrobenzene-d5      | 97.54         | µg/L          | 0   | 97.5 | 14.6     | 134               |             |          |         |          |
| Surr: Phenol-d5            | 102.2         | μg/L          | 0   | 51.1 | 10.7     | 80:3              |             |          |         |          |
| Sample ID: lcs-19539       |               | LCS .         |     |      | Batch I  | D: 19539          | Analysis Da | ite:     |         | 7/7/2009 |
| Acenaphihene               | 81.48         | µg/L          | 10  | 81.5 | 33.2     | 88.1              |             |          |         |          |
| 4-Chloro-3-methylphenol    | 144.8         | μg/L          | 10  | 72.4 | 26.5     | 101               |             |          |         |          |
| 2-Chlorophenol             | 138.8         | μg/L          | 10  | 69.4 | 27.5     | 88.7              |             |          |         |          |
| 1,4-Dichlorobenzene        | 75.04         | μg/L          | 10  | 75.0 | 27.2     | 74.1              |             |          | S       |          |
| 2,4-Dinitrotoluene         | 67.16         | µg/L          | 10  | 67.2 | 32.6     | 107               |             |          |         |          |
| N-Nitrosodi-n-propylamine  | 80.24         | μg/L          | 10  | 80.2 | 27.1     | 96.3              |             |          |         |          |
| 4-Nitrophenol              | 74.64         | μg/L          | 10  | 37.3 | 6.78     | 74.7              |             |          |         |          |
| Pentachlorophenol          | 129.8         | μg/L          | 20  | 64.9 | 14.8     | 113               |             |          |         |          |
| Phenol                     | 86.90         | μg/L<br>μg/L  | 10  | 43.5 | 17       | 53.4              |             |          |         |          |
| Pyrene '                   | 120.1         | μg/L          | 10  | 120  | 27       | 96.3              |             |          | S       |          |
| 1,2,4-Trichlorobenzene     | 82.94         | μg/L<br>μg/L  | 10  | 82.9 | 30       | 77.9              |             |          | s       |          |



E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits



Date: 24-Jul-09

# QA/QC SUMMARY REPORT

ent:

Western Refining Southwest, Inc.

Injection Well 3rd QTR 7/1/09

Work Order:

0907049

| Analyte                        | Result        | Units    | PQL   | %Rec | LowLimit        | HighLimit        | %RPD        | RPDLimit     | Qual |          |
|--------------------------------|---------------|----------|-------|------|-----------------|------------------|-------------|--------------|------|----------|
| Wethod: EPA Method 8270C: S    | iemivolatiles |          |       |      |                 |                  |             |              |      |          |
| Sample ID: ics-19539           |               | LCS      |       |      | Batch           | ID: 19539        | Analysis E  | Date:        |      | 7/7/200  |
| Surr: 2,4,6-Tribromophenol     | 160.2         | μg/L     | 0     | 80.1 | 16.6            | 150              |             |              |      |          |
| Surr: 2-Fluoroblphenyl         | 90.38         | μg/L     | 0     | 90.4 | 19.6            | 134              |             |              |      |          |
| Surr: 2-Fluorophenol           | 141.5         | μg/L     | 0     | 70.8 | 9.54            | 113              |             |              |      |          |
| Surr: 4-Terphenyl-d14          | 126.4         | μg/L     | 0     | 126  | 22.7            | 145              |             |              |      |          |
| Surr: Nitrobenzene-d5          | 83.56         | µg/L     | 0     | 83.6 | 14.6            | 134              |             |              |      |          |
| Surr: Phenol-d5                | 106.4         | µg/∟     | 0     | 53.2 | 10.7            | 80.3             |             |              |      |          |
| Sample ID: lcsd-19539          |               | LCSD     |       |      | Batch           | ID: 19539        | Analysis E  | ate:         |      | 7/7/200  |
| Acenaphthene                   | 76.20         | μg/L     | · 10  | 76.2 | 33.2            | 88.1             | 6.70        | 30.5         |      |          |
| 1-Chloro-3-methylphenol        | 145.7         | μg/L     | 10    | 72.9 | 26.5            | 101              | 0.619       | 28.6         |      |          |
| 2-Chlorophenol                 | 135.8         | μg/L     | 10    | 67.9 | 27.5            | 88.7             | 2.18        | 107          |      |          |
| I,4-Dichlorobenzene            | 74.80         | µg/L     | 10    | 74.8 | 27.2            | 74.1             | 0.320       | 62.1         | S    |          |
| 2,4-Dinitrotoluene             | 67.00         | µg/L     | 10    | 67.0 | 32.6            | 107              | 0.239       | 14.7         |      |          |
| N-Nitrosodi-n-propylamine      | 76.28         | µg/L     | 10    | 76.3 | 27.1            | 96.3             | 5.06        | 30.3         |      |          |
| I-Nitrophenol                  | 65.22         | μg/L     | 10    | 32.6 | 6.78            | 74.7             | 13.5        | 36.3         |      |          |
| Pentachiorophenol              | 116.2         | µg/L     | 20    | 58.1 | 14.8            | 113              | 11.1        | 49           |      |          |
| Phenol                         | 83.98         | µg/L     | 10    | 42.0 | 17              | 53.4             | 3.42        | 52.4         |      |          |
| Pyrene                         | 133.1         | μg/L     | 10    | 133  | 27              | 96.3             | 10.2        | 16.3         | S    |          |
| ,2,4-Trichlorobenzene          | 82.66         | µg/L     | 10    | 82.7 | 30              | 77.9             | 0.338       | 36.4         | S    |          |
| Surr: 2,4,6-Tribromophenol     | 148.5         | μg/L     | 0     | 74.2 | 16.6            | 150              | 0           | 0            |      |          |
| Surr: 2-Fluorobiphenyl         | 86.90         | µg/L     | 0     | 86.9 | 19.6            | 134              | 0           | 0            |      |          |
| Surr: 2-Fluorophenol           | 137.0         | μg/L     | 0     | 68.5 | 9.54            | 113              | 0           | 0            |      |          |
| Surr: 4-Terphenyl-d14          | 130.0         | μg/L     | 0     | 130  | 22.7            | 145              | 0           | O            |      |          |
| Surr: Nitrobenzene-d5          | 80.06         | µg/L     | 0     | 80.1 | 14.6            | 134              | 0           | 0            |      |          |
| Surr: Phenol-d5                | 101.8         | µg/L     | 0     | 50.9 | 10.7            | 80.3             | 0           | 0            |      |          |
| Лethod: EPA 120.1: Specific Co | onductance    |          |       |      |                 |                  |             |              |      |          |
| Sample ID: 0907003-01B DUP     |               | DUP      |       |      | Batch I         | D: <b>R34382</b> | Analysis D  | ate:         |      | 7/2/2009 |
| Specific Conductance           | 15600         | µmhos/cm | 0.010 |      |                 |                  | 0.957       | 20           |      |          |
| flethod: SM4500-H+B: pH        |               |          |       |      |                 |                  |             |              |      |          |
| Sample ID: 0907003-01B DUP     |               | DUP      |       |      | Batch I         | D: <b>R34382</b> | Analysis D  | ate:         |      | 7/2/2009 |
| Н                              | 7.020         | pH units | 0.1   |      |                 |                  | 0.710       | 15           |      |          |
| flethod: SM2540C MOD: Total    | Dissolved Sc  | llds     |       |      |                 |                  |             |              |      |          |
| ample ID: 0907049-01CMSD       |               | MSD      |       |      | Batch I         | D: <b>19553</b>  | Analysis D  | ate:         |      | 7/7/2009 |
| otal Dissolved Solids          | 9475          | mg/L     | 100   | 101  | 80              | 120              | 0.945       | 20           |      |          |
| ample ID: MB-19553             |               | MBLK     |       |      | Batch I         |                  | Analysis D  |              |      | 7/7/2009 |
| otal Dissolved Solids          | ND            | mg/L     | 20    |      |                 |                  | •           |              |      |          |
| ample ID: LCS-19553            | 110           | LCS      | 20    |      | Batch II        | D: <b>19553</b>  | Analysis D  | ate.         |      | 7/7/2009 |
| •                              | 4040          |          | 0.0   | 404  |                 |                  | . maryolo D | <b>4.0</b> . |      | 1112008  |
| otal Dissolved Solids          | 1012          | mg/L     | 20    | 101  | 80<br>Batala II | 120              | A           | -4           |      | 7/7/200  |
| ample ID: 0907049-01CMS        |               | MS       |       |      | Batch II        |                  | Analysis D  | are:         |      | 7/7/2009 |
| otal Dissolved Solids          | 9565          | mg/L     | 100   | 103  | 80              | 120              |             | -            |      |          |
|                                |               |          |       |      |                 |                  |             |              |      |          |



Estimated value

Analyte detected below quantitation limits

RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

#### Sample Receipt Checklist

| Client Name WESTERN REFINING SOUT                        |              |              | I    | Date Re                                      | sceived   | :                                     |              | 7/2/2009                                |
|----------------------------------------------------------|--------------|--------------|------|----------------------------------------------|-----------|---------------------------------------|--------------|-----------------------------------------|
| Work Order Number 0907049                                |              |              |      | Receiv                                       | ved by:   | TLS                                   | ;            |                                         |
| Checklist completed by:                                  |              |              | 1/2  | Sampl                                        | le ID lai | oels check                            | ed by:       | trittals                                |
| Signature                                                | 1            | Da           | 6    | <u>/                                    </u> |           |                                       |              |                                         |
| Matrix: Carrier name:                                    | UPS          | ļ            |      |                                              |           |                                       | • -          | · .                                     |
| Shipping container/cooler in good condition?             | Yes          | V            |      | No 🗌                                         |           | Not Prese                             | nt 🗆         |                                         |
| Custody seals intact on shipping container/cooler?       | Yes          | V            |      | No 🗆                                         |           | Not Prese                             | nt 🗆         | Not Shipped                             |
| Custody seals intact on sample bottles?                  | Yes          |              |      | No 🗆                                         |           | N/A                                   | $\checkmark$ |                                         |
| Chain of custody present?                                | Yes          | V            |      | No 🗆                                         |           |                                       |              |                                         |
| Chain of custody signed when relinquished and received?  | Yes          | V            |      | No 🗌                                         |           |                                       |              |                                         |
| Chain of custody agrees with sample labels?              | Yes          | V            |      | No 🗆                                         |           |                                       |              |                                         |
| Samples in proper container/bottle?                      | Yes          | V            |      | No 🗆                                         |           |                                       |              |                                         |
| Sample containers intact?                                | Yes          | V            |      | No 🗆                                         |           |                                       |              |                                         |
| Sufficient sample volume for indicated test?             | Yes          | $\checkmark$ |      | No 🗆                                         |           |                                       |              |                                         |
| All samples received within holding time?                | Yes          | V            |      | No 🗆                                         |           |                                       |              | Number of preserved bottles checked for |
| Water - VOA vials have zero headspace? No VOA vials sub- | nitted       |              | Υ    | es 🗹                                         |           | No                                    |              | pH:                                     |
| Water - Preservation labels on bottle and cap match?     | Yes          | $\checkmark$ |      | No 🗆                                         |           | N/A                                   |              | 5                                       |
| Water - pH acceptable upon receipt?                      | Yes          | Y            |      | No 🗀                                         |           | N/A (                                 |              | C3 >12 unless noted<br>below.           |
| Container/Temp Blank temperature?                        | 2.           | 6°           |      | C Acc                                        | •         |                                       |              |                                         |
| COMMENTS:                                                |              |              | lf g | iven suf                                     | Micient 1 | time to coo                           | 1.           |                                         |
|                                                          |              |              |      |                                              |           |                                       |              |                                         |
|                                                          |              |              |      |                                              |           |                                       |              |                                         |
|                                                          |              | ===          |      |                                              |           |                                       |              |                                         |
|                                                          |              |              |      |                                              | ٠,        | •                                     |              | •                                       |
|                                                          |              |              |      |                                              |           |                                       |              | V.                                      |
|                                                          |              |              |      |                                              |           |                                       |              |                                         |
| Client contacted Date contacted:                         |              |              |      |                                              | Perso     | n contacte                            | d            |                                         |
| Contacted by: Regarding:                                 |              |              |      |                                              |           |                                       | <del></del>  |                                         |
| Comments:                                                |              |              |      |                                              |           |                                       |              |                                         |
|                                                          |              |              |      |                                              |           |                                       |              |                                         |
|                                                          |              |              |      |                                              |           |                                       |              |                                         |
|                                                          |              |              |      |                                              |           | · · · · · · · · · · · · · · · · · · · |              |                                         |
|                                                          |              |              |      |                                              |           |                                       | ,            |                                         |
| Corrective Action                                        |              |              |      |                                              |           |                                       |              |                                         |
|                                                          | <del>-</del> |              |      |                                              |           |                                       |              |                                         |
|                                                          |              |              |      |                                              |           |                                       |              | 1144                                    |



|                      | HALL ENVIRONMENTAL      | www.hallenvironmental.com | 4901 Hawkins NE - Albuquerque, NM 87109 | 5-345-3975 Fax 505-345-4107 | halysis               |                  | OS'*O          | Z80°1°2°1°2°1°2°1°2°1°2°1°2°1°2°1°2°1°2°1° | (AO)         | 16t8<br>10,10<br>(A(0)<br>(A(0)<br>1,0 | TPH (Methern Prions (F, 18081 Pesti 8081 Pesti 8270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Sem 18270 (Se | ×                               | ×             | ×            | *              | ×              | × | ×           | ×             | ×           |              |   |    |                                                      |                       | b-contracted data will be clearly notated on the analytical report.                                                                                                                                                             |
|----------------------|-------------------------|---------------------------|-----------------------------------------|-----------------------------|-----------------------|------------------|----------------|--------------------------------------------|--------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------|--------------|----------------|----------------|---|-------------|---------------|-------------|--------------|---|----|------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                         |                           | 4901 H                                  | Tel. 505                    |                       | (VII             | no seĐ         | ) На                                       | <u> </u>     | 38T                                    | M + X3T8<br>rheM H9T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |               |              |                |                |   |             |               |             |              |   |    | Remarks:                                             |                       | ibility. Any su                                                                                                                                                                                                                 |
| Turn-Around Time:    | ☐ Standard □ Rush       |                           | INJECTION Well 3 LOTE July, 09          |                             |                       | Project Manager: |                | Sampler: Bah                               |              |                                        | Container Preservative Factoring + Type Type Type Type Factoring Type House Type House Factoring Type House Factoring Type House Factoring Type House Factoring Factoring Type House Factoring Type Factoring Factoring Factoring Type Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Factoring Facto | 3-voA Hel 1                     | 1-Liter Amber | 1-500m1 HNO3 | 1-500 ml N/A 1 | 1-500 m1 Nx OH |   | FSBMI NJA 1 | 1-20m H250y 1 | 1-50m N/A 1 | 2-102        |   |    | 7) Sate Time (1015)                                  | Received by Date Time | If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratones. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report |
| in-of-Custody Record | Client Western Refining |                           | Mailing Address: # 50 CR 4890           | Bloomfield, NW 87413        | Phone #: 505-632-4/6/ | ,                | OA/OC Package: | □ Other                                    | □ EDD (Type) |                                        | Date Time Matrix Sample Request ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7-1-09 10:30 Has injection well |               |              |                |                |   |             |               |             | 1 TRIP BLANK | - | į. | Date: Irme: Relinquished by. 7-69 2:30 (Later Frake) | Time:                 | If necessary, samples submitted to Hall Environmental may be sub-                                                                                                                                                               |



#### **COVER LETTER**

Monday, October 26, 2009

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Injection Well 4th QTR 10/1/09

Dear Cindy Hurtado:

Order No.: 0910042

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 10/2/2009 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX



Date: 26-Oct-09

CLIENT:

Western Refining Southwest, Inc.

Project:

Injection Well 4th QTR 10/1/09

Lab Order:

0910042

# Work Order Sample Summary

| Lab Sample ID | Client Sample ID | Batch ID | Test Name                           | Collection Date       |
|---------------|------------------|----------|-------------------------------------|-----------------------|
| 0910042-01A   | Injection Well   | R35601   | EPA Method 8260B: VOLATILES         | 10/1/2009 10:10:00 AM |
| 0910042-01A   | Injection Well   | R35601   | EPA Method 8260B; VOLATILES         | 10/1/2009 10:10:00 AM |
| 0910042-01A   | Injection Well   | R35601   | EPA Method 8260B: VOLATILES         | 10/1/2009 10:10:00 AM |
| .0910042-01B  | Injection Well   | 20263    | EPA Method 8270C: Semivolatiles     | 10/1/2009 10:10:00 AM |
| 0910042-01C   | Injection Well   | R35577   | EPA Method 300.0: Anions            | 10/1/2009 10:10:00 AM |
| 0910042-01C   | Injection Well   | R35559   | EPA Method 300.0: Anions            | 10/1/2009 10:10:00 AM |
| 0910042-01C   | Injection Well   | R35559   | EPA Method 300.0: Anions            | 10/1/2009 10:10:00 AM |
| 0910042-01C   | Injection Well   | R35564   | SM4500-H+B: pH                      | 10/1/2009 10:10:00 AM |
| 0910042-01C   | Injection Well   | R35564   | SM 2320B: Alkalinity                | 10/1/2009 10:10:00 AM |
| 0910042-01C   | Injection Well   | 20238    | SM 2540 C: Total Dissolved Solids   | 10/1/2009 10:10:00 AM |
| 0910042-01C   | Injection Well   | R35564   | EPA 120.1: Specific Conductance     | 10/1/2009 10:10:00 AM |
| 0910042-01D   | Injection Well   | 20279    | EPA Method 7470; Mercury            | 10/1/2009 10:10:00 AM |
| 0910042-01D   | Injection Well   | 20291    | EPA 6010B: Total Recoverable Metals | 10/1/2009 10:10:00 AM |
| 0910042-01D   | Injection Well   | 20291    | EPA 6010B: Total Recoverable Metals | 10/1/2009 10:10:00 AM |
| 0910042-01D   | Injection Well   | 20291    | EPA 6010B: Total Recoverable Metals | 10/1/2009 10:10:00 AM |
| 0910042-02A   | TRIP BLANK       | R35624   | EPA Method 8260B: VOLATILES         |                       |
| 0910042-02A   | TRIP BLANK       | R35601   | EPA Method 8260B: VOLATILES         |                       |



Date: 26-Oct-09

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

0910042

Project:

Injection Well 4th QTR 10/1/09

Lab ID:

0910042-01

Client Sample ID: Injection Well

Collection Date: 10/1/2009 10:10:00 AM

Date Received: 10/2/2009

Matrix: AQUEOUS

| Analyses                       | Result      | PQL      | Qual U     | nits | DF  | Date Analyzed         |
|--------------------------------|-------------|----------|------------|------|-----|-----------------------|
| EPA METHOD 300.0: ANIONS       | <del></del> | <u> </u> |            |      |     | Analyst: TAF          |
| Chloride                       | 1200        | 10       | m          | ng/L | 100 | 10/5/2009 10:25:09 PM |
| Sulfate                        | 180         | 50       | · m        | ıg/L | 100 | 10/5/2009 10:25:09 PM |
| EPA METHOD 7470: MERCURY       |             | •        |            |      |     | Analyst: MMS          |
| Mercury                        | 0.00044     | 0.00020  | m          | ng/L | 1   | 10/9/2009 4:02:44 PM  |
| EPA 6010B: TOTAL RECOVERABLE   | METALS      |          |            |      |     | Analyst: SNV          |
| Arsenic                        | ND          | 0.020    | m          | ıg/L | 1   | 10/16/2009 1:38:07 PM |
| Barium                         | 0.27        | 0.020    | m          | g/L  | 1   | 10/16/2009 1:38:07 PM |
| Cadmium                        | ND          | 0.0020   | m          | ig/L | 1   | 10/16/2009 1:38:07 PM |
| Calcium                        | 100         | 1.0      | m          | g/L  | 1   | 10/16/2009 1:38:07 PM |
| Chromium                       | ND          | 0.0060   |            | g/L  | 1   | 10/16/2009 1:38:07 PM |
| Lead                           | 0.0072      | 0.0050   | m          | g/L  | 1   | 10/16/2009 1:38:07 PM |
| Magnesium                      | 24          | 1.0      | m          | g/L  | . 1 | 10/16/2009 1:38:07 PM |
| Potassium                      | 17          | 1.0      | m          | g/L  | 1   | 10/16/2009 1:38:07 PM |
| Selenium                       | ND          | 0.050    | m          | g/L  | 1   | 10/16/2009 1:38:07 PM |
| Silver                         | ND          | 0.0050   |            | g/L  | 1   | 10/16/2009 1:38:07 PM |
| Sodium                         | 770         | 10       |            | g/L  | 10  | 10/22/2009 2:46:11 PM |
| EPA METHOD 8270C: SEMIVOLATILI | Eq          |          |            |      |     | Analyst: JDC          |
| Acenaphthene                   | ND ND       | 50       | μg         | 3/1  | 1   | 10/13/2009 2:46:46 PM |
| Acenaphthylene                 | ND          | 50       | μg         |      | 1   | 10/13/2009 2:46:46 PM |
| Aniline                        | 60          | 50       | μg         |      | 1   | 10/13/2009 2:46:46 PM |
| Anthracene                     | ND          | 50       | µg         |      | 1   | 10/13/2009 2:46:46 PM |
| Azobenzene                     | ND          | 50       | µg         |      | 1   | 10/13/2009 2:46:46 PM |
| Benz(a)anthracene              | ND<br>ND    | 50       | на<br>рд   |      | 1   | 10/13/2009 2:46:46 PM |
| Benzo(a)pyrene                 | ND          | 50       | րց         |      | 1   | 10/13/2009 2:46:46 PM |
| Benzo(b)fluoranthene           | ND          | 50       | pg.        | •    | 1   | 10/13/2009 2:46:46 PM |
| Benzo(g,h,i)perylene           | ND ND       | 50       | µg.        |      | 1   | 10/13/2009 2:46:46 PM |
| Benzo(k)fluoranthene           | ND          | 50       | μg.        |      | 1   | 10/13/2009 2:46:46 PM |
| Benzoic acid                   | ND          | 100      | pg.        |      | 1   | 10/13/2009 2:46:46 PM |
| Benzyl alcohol                 | ND          | 50       | pg.        |      | 1   | 10/13/2009 2:46:46 PM |
| Bis(2-chloroethoxy)methane     | ND          | 50       | µg.        |      | 1   | 10/13/2009 2:46:46 PM |
| Bis(2-chloroethyl)ether        | ND          | 50       | µg.        |      | 1   | 10/13/2009 2:46:46 PM |
| Bis(2-chloroisopropyl)ether    | ND          | 50       | μg         |      | 1   | 10/13/2009 2:46:46 PM |
| Bis(2-ethylhexyl)phthalate     | ND          | 50       | μg/        |      | 1   | 10/13/2009 2:46:46 PM |
| 4-Bromophenyl phenyl ether     | ND          | 50       | µg/        |      | 1   | 10/13/2009 2:46:46 PM |
| Butyl benzyl phthalate         | ND          | 50       | µg/        |      | 1   | 10/13/2009 2:46:46 PM |
| Carbazole                      | ND          | 50       | μg/        |      | 1   | 10/13/2009 2:46:46 PM |
| 4-Chloro-3-methylphenol        | ND<br>ND    | 50       | hā\<br>hā\ |      | 1   | 10/13/2009 2:46:46 PM |
| 4-Chloroaniline                | ND<br>ND    | 50       | μg/<br>μg/ |      | 1   | 10/13/2009 2:46:46 PM |
|                                |             |          |            |      |     |                       |



- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
  - RL Reporting Limit

Page 1 of 7



Date: 26-Oct-09

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

0910042

0910042

Injection Well 4th QTR 10/1/09

Project: Lab ID:

0910042-01

Client Sample ID: Injection Well

Collection Date: 10/1/2009 10:10:00 AM

Date Received: 10/2/2009

Matrix: AQUEOUS

| Analyses                     | Result | PQL Qu | al Units      | DF  | Date Analyzed         |
|------------------------------|--------|--------|---------------|-----|-----------------------|
| EPA METHOD 8270C: SEMIVOLATI | LES    | * *    |               |     | Analyst: JD0          |
| 2-Chlorophenol               | ND     | 50     | μg/L          | 1   | 10/13/2009 2:46:46 PM |
| 4-Chlorophenyl phenyl ether  | ND     | 50     | μg/L          | 1   | 10/13/2009 2:46:46 PN |
| Chrysene                     | ND     | 50     | µg/L          | 1   | 10/13/2009 2:46:46 PN |
| Di-n-butyl phthalate         | ND     | 50     | µg/L          | 1   | 10/13/2009 2:46:46 PN |
| Di-n-octyl phthalate         | ND     | 50     | μg/L          | 1   | 10/13/2009 2:46:46 PM |
| Dibenz(a,h)anthracene        | ND     | 50     | · µg/L        | 1   | 10/13/2009 2:46:46 PN |
| Dibenzofuran                 | ND     | 50     | µg/L          | 1   | 10/13/2009 2:46:46 PN |
| 1,2-Dichlorobenzene          | ND     | 50     | µg/L          | 1   | 10/13/2009 2:46:46 PN |
| 1,3-Dichtorobenzene          | ND     | 50     | μg/L          | 1   | 10/13/2009 2:46:46 PM |
| 1,4-Dichlorobenzene          | ND     | 50     | μg/L          | 1   | 10/13/2009 2:46:46 PM |
| 3,3'-Dichlorobenzidine       | ND     | 50     | µg/L          | 1   | 10/13/2009 2:46:46 PM |
| Diethyl phthalate            | , ND   | 50     | µg/L          | 1   | 10/13/2009 2:46:46 PN |
| Dimethyl phthalate           | ND     | 50     | µg/L          | 1   | 10/13/2009 2:46:46 PN |
| 2,4-Dichlorophenol           | · ND   | 100    | μg/L          | 1   | 10/13/2009 2:46:46 PM |
| 2,4-Dimethylphenol           | 120    | 50     | μg/L          | 1   | 10/13/2009 2:46:46 PM |
| 4,6-Dinitro-2-methylphenol   | ND     | 100    | µg/L          | 1   | 10/13/2009 2:46:46 PM |
| 2,4-Dinitrophenol            | ND     | 100    | µg/L          | 1   | 10/13/2009 2:46:46 PN |
| 2,4-Dinitrotoluene           | ND     | 50     | µg/L          | . 1 | 10/13/2009 2:46:46 PN |
| 2,6-Dinitrotoluene           | ND     | 50     | μg/L          | 1   | 10/13/2009 2:46:46 PN |
| Fluoranthene                 | ND     | 50     | µg/L          | 1   | 10/13/2009 2:46:46 PM |
| Fluorene                     | . ND   | 50     | µg/L          | 1   | 10/13/2009 2:46:46 PN |
| Hexachlorobenzene            | ND     | -50    | μg/L          | 1   | 10/13/2009 2:46:46 PN |
| Hexachlorobutadiene          | ND     | 50     | µg/L          | 1   | 10/13/2009 2:46:46 PN |
| Hexachlorocyclopentadiene    | ND     | 50     | µg/L          | 1   | 10/13/2009 2:46:46 PN |
| Hexachloroethane             | ND     | 50     | μg/L          | · 1 | 10/13/2009 2:46:46 PM |
| indeno(1,2,3-cd)pyrene       | ND     | 50     | μg/L          | 1   | 10/13/2009 2:46:46 PN |
| Isophorone                   | ND     | 50     | μg/L          | 1   | 10/13/2009 2:46:46 PN |
| 2-Methylnaphthalene          | ND     | 50     | μg/L          | 1   | 10/13/2009 2:46:46 PN |
| 2-Methylphenol               | ND     | 50     | μg/L          | 1   | 10/13/2009 2:46:46 PN |
| 3+4-Methylphenol             | ND     | 50     | μg/L          | 1   | 10/13/2009 2:46:46 PN |
| N-Nitrosodi-n-propylamine    | ND     | 50     | μg/L          | 1   | 10/13/2009 2:46:46 PN |
| N-Nitrosodimethylamine       | ND     | 50     | μg/L          | 1   | 10/13/2009 2:46:46 PN |
| N-Nitrosodiphenylamine       | ND     | 50     | μg/L          | 1   | 10/13/2009 2:46:46 PM |
| Naphthalene                  | ND     | 50     | μ <b>g</b> /L | 1   | 10/13/2009 2:46:46 PM |
| 2-Nitroaniline               | ND     | 50     | µg/L          | 1   | 10/13/2009 2:46:46 PN |
| 3-Nitroaniline               | ND     | 50     | µg/L          | 1   | 10/13/2009 2:46:46 PN |
| 4-Nitroaniline               | ND     | - 50   | μg/L          | 1   | 10/13/2009 2:46:46 PN |
| Nitrobenzene                 | ND     | 50     | µg/L          | 1   | 10/13/2009 2:46:46 PN |
| 2-Nitrophenol                | ND     | 50     | μg/L          | 1   | 10/13/2009 2:46:46 PN |
| 4-Nitrophenol                | ND     | 50     | µg/L          | 1   | 10/13/2009 2:46:46 PN |
| Pentachlorophenol            | ND     | 100    | μg/L          | 1   | 10/13/2009 2:46:48 PN |
| Phenanthrene                 | , ND   | 50     | μg/L          | 1   | 10/13/2009 2:46:46 PM |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 2 of 7

Date: 26-Oct-09



CLIENT:

Western Refining Southwest, Inc.

Lab Order:

0910042

Project:

Injection Well 4th QTR 10/1/09

Lab ID:

0910042-01

Client Sample ID: Injection Well

Collection Date: 10/1/2009 10:10:00 AM

Date Received: 10/2/2009

Matrix: AQUEOUS

| Analyses                        | Result | PQL (     | dual Units | DF | Date Analyzed         |
|---------------------------------|--------|-----------|------------|----|-----------------------|
| EPA METHOD 8270C: SEMIVOLATILES |        |           |            |    | Analyst: JDC          |
| Phenol                          | ND     | 50        | µg/L       | 1  | 10/13/2009 2:46:46 PM |
| Pyrene                          | ND     | 50        | µg/L       | 1  | 10/13/2009 2:46:46 PM |
| Pyridine                        | ND     | 50        | μg/L       | 1  | 10/13/2009 2:46:46 PM |
| 1,2,4-Trichlorobenzene          | ND     | 50        | µg/L       | 1  | 10/13/2009 2:46:46 PM |
| 2,4,5-Trichlorophenol           | ND     | 50        | μg/L       | 1  | 10/13/2009 2:46:46 PM |
| 2,4,6-Trichlorophenol           | ND     | 50        | µg/L       | 1  | 10/13/2009 2:46:46 PM |
| Surr: 2,4,6-Tribromophenol      | 58.0   | 16.6-150  | %REC       | 1  | 10/13/2009 2:46:46 PM |
| Surr: 2-Fluorobiphenyl          | 56.1   | 19.6-134  | %REC       | 1  | 10/13/2009 2:46:46 PM |
| Surr: 2-Fluorophenol            | 34.1   | 9.54-113  | %REC       | 1  | 10/13/2009 2:46:46 PM |
| Surr: 4-Terphenyl-d14           | 57.0   | 22.7-145  | %REC       | 1  | 10/13/2009 2:46:46 PM |
| Surr: Nitrobenzene-d5           | 51.3   | 14.6-134  | %REC       | 1  | 10/13/2009 2:46:46 PM |
| Surr: Phenol-d5                 | 29.6   | 10.7-80.3 | %REC       | 1  | 10/13/2009 2:46:46 PM |
| EPA METHOD 8260B: VOLATILES     |        |           |            |    | Analyst: HL           |
| Benzene                         | ND     | 5.0       | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| Toluene                         | ND     | 5.0       | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| Ethylbenzene                    | ND     | 5.0       | µg/L       | 5  | 10/6/2009 9:23:19 PM  |
| Methyl tert-butyl ether (MTBE)  | ND     | 5.0       | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| 1,2,4-Trimethylbenzene          | ND     | 5.0       | µg/L       | 5  | 10/6/2009 9:23:19 PM  |
| 1,3,5-Trimethylbenzene          | ND     | 5.0       | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| 1,2-Dichloroethane (EDC)        | ND     | 5.0       | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| 1,2-Dibromoethane (EDB)         | ND     | 5.0       | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| Naphthalene                     | ND     | 10        | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| 1-Methylnaphthalene             | ND     | 20        | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| 2-Methylnaphthalene             | ND     | 20        | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| Acetone                         | 3200   | 500       | μg/L       | 50 | 10/6/2009 8:47:29 PM  |
| Bromobenzene                    | ND     | 5.0       | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| Bromodichloromethane            | ND     | 5.0       | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| Bromoform                       | ND     | 5.0       | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| Bromomethane                    | ND     | 5.0       | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| 2-Butanone                      | 280    | 50        | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| Carbon disulfide                | ND     | 50        | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| Carbon Tetrachloride            | ND     | 5.0       | μg/L       | -5 | 10/6/2009 9:23:19 PM  |
| Chlorobenzene                   | ND     | 5.0       | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| Chloroethane                    | ND     | 10        | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| Chloroform                      | ND     | 5.0       | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| Chloromethane                   | ND     | 5.0       | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| 2-Chlorotoluene                 | ND     | 5.0       | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| 4-Chlorotoluene                 | ND     | 5.0       | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| cis-1,2-DCE                     | ND     | 5.0       | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| cis-1,3-Dichloropropene         | ND     | 5.0       | µg/L       | 5  | 10/6/2009 9:23:19 PM  |
| 1,2-Dibromo-3-chloropropane     | ND     | 10        | μg/L       | 5  | 10/6/2009 9:23:19 PM  |
| · •                             |        |           |            |    |                       |



- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 3 of 7



Date: 26-Oct-09

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

0910042

Injection Well 4th QTR 10/1/09

Project: Lab ID:

0910042-01

Client Sample ID: Injection Well

Collection Date: 10/1/2009 10:10:00 AM

Date Received: 10/2/2009

Matrix: AQUEOUS

| Analyses                    | Result | PQL Q    | ual Units     | DF  | Date Analyzed        |
|-----------------------------|--------|----------|---------------|-----|----------------------|
| EPA METHOD 8260B: VOLATILES |        |          |               |     | Analyst: HL          |
| Dibromochloromethane        | ND     | 5.0      | μg/L          | 5   | 10/6/2009 9:23:19 PM |
| Dibromomethane              | . ND   | 5.0      | μg/L          | 5   | 10/6/2009 9:23:19 PM |
| 1,2-Dichlorobenzene         | ND     | 5.0      | μg/L          | 5   | 10/6/2009 9:23:19 PM |
| 1,3-Dichlorobenzene         | ND     | 5.0      | µg/∟          | 5   | 10/6/2009 9:23:19 PM |
| 1,4-Dichlorobenzene         | . ND   | 5.0      | μg/L          | 5   | 10/6/2009 9:23:19 PM |
| Dichlorodifluoromethane     | · ND   | 5.0      | µg/L          | 5   | 10/6/2009 9:23:19 PM |
| 1,1-Dichloroethane          | ND     | 5.0      | µg/L          | . 5 | 10/8/2009 9:23:19 PM |
| 1,1-Dichloroethene          | ND     | 5.0      | μg/L          | 5   | 10/6/2009 9:23:19 PM |
| 1,2-Dichloropropane         | ND     | 5.0      | μg/L          | 5   | 10/6/2009 9:23:19 PM |
| 1,3-Dichloropropane         | ND     | 5.0      | μg/L          | 5   | 10/6/2009 9:23:19 PM |
| 2,2-Dichloropropane         | · ND   | 10       | μg/L          | 5   | 10/6/2009 9:23:19 PM |
| 1,1-Dichloropropene         | ND     | 5.0      | µg/∟          | 5   | 10/6/2009 9:23:19 PM |
| Hexachlorobutadiene         | ND     | 5.0      | μg/L          | 5   | 10/6/2009 9:23:19 PM |
| 2-Hexanone                  | ND     | 50       | μg/L          | 5   | 10/6/2009 9:23:19 PM |
| Isopropylbenzene            | ND     | 5.0      | μg/L          | 5   | 10/6/2009 9:23:19 PM |
| 4-isopropyltoluene          | ND     | 5.0      | μg/L          | 5   | 10/6/2009 9:23:19 PM |
| 4-Methyl-2-pentanone        | ND     | 50       | µg/L          | 5   | 10/6/2009 9:23:19 PM |
| Methylene Chloride          | ND     | 15       | µg/L          | 5   | 10/6/2009 9:23:19 PM |
| n-Butylbenzene              | ND     | 5.0      | μg/L          | 5   | 10/6/2009 9:23:19 PM |
| n-Propylbenzene             | ND     | 5.0      | μg/L          | 5   | 10/6/2009 9:23:19 PM |
| sec-Butylbenzene            | ND     | 5.0      | · μg/L        | 5   | 10/6/2009 9:23:19 PM |
| Styrene                     | ND     | 5.0      | µg/L          | 5   | 10/6/2009 9:23:19 PM |
| tert-Butylbenzene           | ND     | 5.0      | μg/L          | 5   | 10/6/2009 9:23:19 PM |
| 1,1,1,2-Tetrachioroethane   | ND     | 5.0      | μg/L          | 5   | 10/6/2009 9:23:19 PM |
| 1,1,2,2-Tetrachloroethane   | ND ·   | 10       | μg/L          | 5   | 10/6/2009 9:23:19 PM |
| Tetrachloroethene (PCE)     | ND     | 5.0      | µg/L          | - 5 | 10/6/2009 9:23:19 PM |
| trans-1,2-DCE               | ND     | 5.0      | μg/L          | 5   | 10/6/2009 9:23:19 PM |
| trans-1,3-Dichloropropene   | ND     | 5.0      | μg/L          | 5.  | 10/6/2009 9:23:19 PM |
| 1,2,3-Trichlorobenzene      | ND     | 5.0      | μg/L          | 5   | 10/6/2009 9:23:19 PM |
| 1,2,4-Trichlorobenzene      | ND     | 5.0      | µg/L          | 5   | 10/6/2009 9:23:19 PM |
| 1,1,1-Trichloroethane       | ND     | 5.0      | μg/L          | . 5 | 10/6/2009 9:23:19 PM |
| 1,1,2-Trichloroethane       | , ND   | 5.0      | μg/∟          | 5   | 10/6/2009 9:23:19 PM |
| Trichloroethene (TCE)       | ND     | 5.0      | μ <b>g</b> /L | 5   | 10/6/2009 9:23:19 PM |
| Trichlorofluoromethane      | ND     | 5.0      | µg/L          | 5   | 10/6/2009 9:23:19 PM |
| 1,2,3-Trichloropropane      | ND     | 10       | μg/L          | 5   | 10/6/2009 9:23:19 PM |
| Vinyl chloride              | ND     | 5.0      | µg/L          | 5   | 10/6/2009 9:23:19 PM |
| Xylenes, Total              | ND     | 7.5      | µg/L          | 5   | 10/6/2009 9:23:19 PM |
| Surr: 1,2-Dichloroethane-d4 | 98.4   | 54.6-141 | %REC          | 5   | 10/6/2009 9:23:19 PM |
| Surr: 4-Bromofluorobenzene  | 101    | 60.1-133 | %REC          | 5   | 10/6/2009 9:23:19 PM |
| Surr: Dibromofluoromethane  | 93.7   | 78.5-130 | · %REC        | 5   | 10/6/2009 9:23:19 PM |
| Surr: Toluene-d8            | 96.9   | 79.5-126 | %REC          | 5   | 10/6/2009 9:23:19 PM |

Qualifiers:

Page 4 of 7

Value exceeds Maximum Contaminant Level

Estimated value Ε

Analyte detected below quantitation limits J

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

Reporting Limit

Date: 26-Oct-09

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

0910042

Project:

Injection Well 4th QTR 10/1/09

Lab ID:

0910042-01

Client Sample ID: Injection Well

Collection Date: 10/1/2009 10:10:00 AM

Date Received: 10/2/2009

Matrix: AQUEOUS

| Analyses                        | Result   | PQL Qua                               | l Units    | DF | Date Analyzed        |
|---------------------------------|----------|---------------------------------------|------------|----|----------------------|
| SM 2540 C: TOTAL DISSOLVED SOLI | DS       | · · · · · · · · · · · · · · · · · · · |            |    | Analyst: MMS         |
| Total Dissolved Solids          | 2630     | 20.0                                  | mg/L       | 1  | 10/5/2009            |
| SM 2320B: ALKALINITY            |          |                                       |            |    | Analyst: NSB         |
| Alkalinity, Total (As CaCO3)    | 680      | 20                                    | mg/L CaCO3 | 1  | 10/2/2009 5:08:00 PM |
| Carbonate                       | ND       | 2.0                                   | mg/L CaCO3 | 1  | 10/2/2009 5:08:00 PM |
| Bicarbonate                     | 680      | 20                                    | mg/L CaCO3 | 1  | 10/2/2009 5:08:00 PM |
| EPA 120.1: SPECIFIC CONDUCTANC  | <b>E</b> |                                       |            |    | Analyst: NSB         |
| Specific Conductance            | 4500     | 0.010                                 | µmhos/cm   | 1  | 10/2/2009 5:08:00 PM |
| SM4500-H+B: PH                  | •        |                                       |            |    | Analyst: NSB         |
| pH                              | 7.84     | 0.1                                   | pH units   | 1  | 10/2/2009 5:08:00 PM |



Value exceeds Maximum Contaminant Level

E Estimated value

.J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 5 of 7



Date: 26-Oct-09

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

0910042

Project:

Injection Well 4th QTR 10/1/09

Lab ID:

0910042-02

Client Sample ID: TRIP BLANK

Collection Date:

Date Received: 10/2/2009

Matrix: TRIP BLANK

| Analyses                       | Result | PQL Qua | I Units       | DF  | Date Analyzed         |
|--------------------------------|--------|---------|---------------|-----|-----------------------|
| EPA METHOD 8260B: VOLATILES    |        |         |               |     | Anaiyst: HL           |
| Benzene                        | ND     | 1.0     | μg/L          | 1   | 10/7/2009 10:51:37 PM |
| Toluene                        | ND     | 1.0     | μg/L          | 1   | 10/7/2009 10:51:37 PM |
| Ethylbenzene                   | ND     | 1.0     | µg/L          | 1   | 10/7/2009 10:51:37 PM |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0     | µg/L          | 1   | 10/7/2009 10:51:37 PM |
| 1,2,4-Trimethylbenzene         | ND     | 1.0     | µg/L          | 1 . | 10/7/2009 10:51:37 PM |
| 1,3,5-Trimethylbenzene         | 1 ND   | 1.0     | µg/L          | 1   | 10/7/2009 10:51:37 PM |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0     | µg/L          | 1   | 10/7/2009 10:51:37 PM |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0     | μ <b>g/</b> L | 1   | 10/7/2009 10:51:37 PM |
| Naphthalene                    | ND     | 2.0     | µg/L          | 1   | 10/7/2009 10:51:37 PM |
| 1-Methylnaphthalene            | ND     | 4.0     | μg/L          | 1   | 10/7/2009 10:51:37 PM |
| 2-Methylnaphthalene            | ND     | 4.0     | μg/L          | 1   | 10/7/2009 10:51:37 PM |
| Acetone                        | ND     | 10      | μg/L          | 1   | 10/7/2009 10:51:37 PM |
| Bromobenzene                   | ND     | 1.0     | μg/L          | 1   | 10/7/2009 10:51:37 PM |
| Bromodichloromethane           | ND     | - 1.0   | μg/L          | 1   | 10/7/2009 10:51:37 PM |
| Bromoform                      | ND     | 1.0     | µg/L          | 1   | 10/7/2009 10:51:37 PM |
| Bromomethane                   | ND     | 1.0     | μg/L          | 1   | 10/7/2009 10:51:37 PM |
| 2-Butanone                     | ND     | 10      | µg/L          | 1   | 10/7/2009 10:51:37 PM |
| Carbon disulfide               | ND     | 10      | µg/L          | 1   | 10/7/2009 10:51:37 PM |
| Carbon Tetrachloride           | ND     | 1.0     | µg/L          | 1   | 10/7/2009 10:51:37 PM |
| Chlorobenzene                  | ND     | 1.0     | μg/L          | 1   | 10/7/2009 10:51:37 PM |
| Chloroethane                   | ND     | 2.0     | μg/L          | 1   | 10/7/2009 10:51:37 PM |
| Chioroform                     | ND     | 1.0     | µg/L          | 1   | 10/7/2009 10:51:37 PM |
| Chloromethane                  | ND     | 1.0     | μg/L          | 1   | 10/7/2009 10:51:37 PM |
| 2-Chlorotoluene                | ND     | 1.0     | µg/L          | 1   | 10/7/2009 10:51:37 PM |
| 4-Chlorotoluene                | ND     | 1.0     | µg/L          | 1   | 10/7/2009 10:51:37 PM |
| cis-1,2-DCE                    | ND     | 1.0     | μg/L          | . 1 | 10/7/2009 10:51:37 PM |
| cis-1,3-Dichloropropene        | ND     | 1.0     | µg/L          | 1   | 10/7/2009 10:51:37 PM |
| 1,2-Dibromo-3-chioropropane    | ND     | 2.0     | μg/L          | 1   | 10/7/2009 10:51:37 PM |
| Dibromochloromethane           | ND     | 1.0     | µg/L          | 1   | 10/7/2009 10:51:37 PM |
| Dibromomethane                 | ND     | 1.0     | μg/L          | 1   | 10/7/2009 10:51:37 PM |
| 1,2-Dichlorobenzene            | ND     | 1.0     | µg/L          | 1   | 10/7/2009 10:51:37 PM |
| 1,3-Dichlorobenzene            | ND.    | 1.0     | μg/L          | · 1 | 10/7/2009 10:51:37 PM |
| 1,4-Dichlorobenzene            | ND     | 1.0     | µg/L          | 1   | 10/7/2009 10:51:37 PM |
| Dichlorodifluoromethane        | ND     | 1.0     | µg/L          | 1   | 10/7/2009 10:51:37 PM |
| 1,1-Dichloroethane             | ND     | 1.0 -   | μg/L          | 1   | 10/7/2009 10:51:37 PM |
| 1,1-Dichloroethene             | ND     | 1.0     | μg/L          | 1   | 10/7/2009 10:51:37 PM |
| 1,2-Dichloropropane            | ND     | 1.0     | μg/L          | 1   | 10/7/2009 10:51:37 PM |
| 1,3-Dichloropropane            | ND     | 1.0     | µg/L          | 1   | 10/7/2009 10:51:37 PM |
| 2,2-Dichloropropane            | ND     | 2.0     | μg/L          | 1   | 10/7/2009 10:51:37 PM |
| 1,1-Dichioropropene            | ND     | 1.0     | µg/L          | 1   | 10/7/2009 10:51:37 PM |
| Hexachlorobutadiene            | ND     | 1.0     | μg/L          | 1   | 10/7/2009 10:51:37 PM |
| 2-Hexanone                     | ND     | 10      | μg/L"         | 1   | 10/7/2009 10:51:37 PM |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 6 of 7

Date: 26-Oct-09

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

0910042

0910042

Injection Well 4th QTR 10/1/09

Project: Lab ID:

0910042-02

Client Sample ID: TRIP BLANK

**Collection Date:** 

Date Received: 10/2/2009

Matrix: TRIP BLANK

| Analyses                    | Result | PQL      | Qual U | nits | DF | Date Analyzed         |
|-----------------------------|--------|----------|--------|------|----|-----------------------|
| EPA METHOD 8260B: VOLATILES |        |          |        |      |    | Analyst: HL           |
| Isopropylbenzene            | ND     | 1.0      | μ      | g/L  | 1  | 10/7/2009 10:51:37 PM |
| 4-Isopropyltoluene          | ND     | 1.0      | μ      | g/L  | 1  | 10/7/2009 10:51:37 PM |
| 4-Methyl-2-pentanone        | ND     | 10       | μ      | g/L  | 1  | 10/7/2009 10:51:37 PM |
| Methylene Chloride          | ND     | 3.0      | μ      | g/L  | 1  | 10/7/2009 10:51:37 PM |
| n-Butylbenzene              | ND     | 1.0      | μ      | g/L  | 1  | 10/7/2009 10:51:37 PM |
| n-Propylbenzene             | ND     | 1.0      | μį     | g/L  | 1  | 10/7/2009 10:51:37 PM |
| sec-Butylbenzene            | ND     | 1.0      | . µg   | g/L  | 1  | 10/7/2009 10:51:37 PM |
| Styrene                     | , ND   | 1.0      | μ      | g/L  | 1  | 10/7/2009 10:51:37 PM |
| tert-Butylbenzene           | ND     | 1.0      | րն     | g/L  | 1  | 10/7/2009 10:51:37 PM |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0      | μį     | g/L  | 1  | 10/7/2009 10:51:37 PM |
| 1,1,2,2-Tetrachioroethane   | ND     | 2.0      | μί     | g/L  | 1  | 10/7/2009 10:51:37 PM |
| Tetrachloroethene (PCE)     | ND     | 1.0      | μg     | g/L  | 1  | 10/7/2009 10:51:37 PM |
| trans-1,2-DCE               | ND     | 1.0      | μί     | g/L  | 1  | 10/7/2009 10:51:37 PM |
| trans-1,3-Dichloropropene   | ND     | 1.0      | μς     | g/L  | 1  | 10/7/2009 10:51:37 PM |
| 1,2,3-Trichlorobenzene      | ND     | 1.0      | μg     | g/L  | 1  | 10/7/2009 10:51:37 PM |
| 1,2,4-Trichlorobenzene      | ND     | 1.0      | μς     | g/L  | 1  | 10/7/2009 10:51:37 PM |
| 1,1,1-Trichloroethane       | ND     | 1.0      | μ      | g/L  | 1  | 10/7/2009 10:51:37 PM |
| 1,1,2-Trichloroethane       | ND     | 1.0      | μς     | J/L  | 1  | 10/7/2009 10:51:37 PM |
| Trichloroethene (TCE)       | ND     | 1.0      | μg     | 3/L  | 1  | 10/7/2009 10:51:37 PM |
| Trichlorofluoromethane      | ND     | 1.0      | μ      | g/L  | 1  | 10/7/2009 10:51:37 PM |
| 1,2,3-Trichloropropane      | ND     | 2.0      | μ      | 3/L  | 1  | 10/7/2009 10:51:37 PM |
| Vinyl chloride              | ND     | 1.0      | ցւլ    | g/L  | 1  | 10/7/2009 10:51:37 PM |
| Xylenes, Total              | ND     | 1.5      | μg     | ı/L  | 1  | 10/7/2009 10:51:37 PM |
| Surr: 1,2-Dichloroethane-d4 | 92.5   | 54.6-141 | %      | REC  | 1  | 10/7/2009 10:51:37 PM |
| Surr: 4-Bromofluorobenzene  | 93.0   | 60.1-133 | %      | REC  | 1  | 10/7/2009 10:51:37 PM |
| Surr: Dibromofluoromethane  | 94.2   | 78.5-130 | %      | REC  | 1  | 10/7/2009 10:51:37 PM |
| Surr: Toluene-d8            | 99.0   | 79.5-126 | %      | REC  | 1  | 10/7/2009 10:51:37 PM |
|                             |        |          |        |      |    |                       |

Qualifiers:

Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit



12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Anne Thorne Hall Environmental Analysis Laborat 4901 Hawkins NE Albuquerque, NM 87109

October 12, 2009

Date Received

06, 2009

ESC Sample # : L425671-01

Description

October 0910042

Site ID :

Sample ID

INJECTION WELL

Project # : 0910042

Collected By : Collection Date :

10/01/09 10:10

| Parameter                     | Result        | Det. Limit | Units | Method     | Date     | Dil. |
|-------------------------------|---------------|------------|-------|------------|----------|------|
| Corrosivity                   | Non-Corrosive |            |       | 9040C      | 10/10/09 | 1    |
| Flashpoint                    | See Footnote  |            | deg F | D93/1010A  | 10/08/09 | 1    |
| Reactive CN (SW846 7.3.3.2)   | BDL           | 0.125      | mg/l  | 9012B      | 10/09/09 | 1    |
| Reactive Sulf.(SW846 7.3.4.1) | 39.           | 25.        | mg/l  | 9034/9030B | 10/09/09 | 1    |

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)
Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 10/12/09 11:17 Printed: 10/12/09 14:23 L425671-01 (FLASHPOINT) - Did Not Flash @ 170F

#### Attachment A List of Analytes with QC Qualifiers

| Sample<br>Number | Work<br>Group        | Sample<br>Type | Analyte                                   | Run<br>ID          | Qualifier |
|------------------|----------------------|----------------|-------------------------------------------|--------------------|-----------|
| L425671-01       | WG445108<br>WG444644 | SAMP<br>SAMP   | Corrosivity Reactive Sulf.(SW846 7.3.4.1) | R943948<br>R940988 | тв<br>J3  |

#### Attachment B Explanation of QC Qualifier Codes

| Qualifier | Meaning                                                                                                     |
|-----------|-------------------------------------------------------------------------------------------------------------|
| J3 ·      | The associated batch QC was outside the established quality control range for precision.                    |
| Т8 .      | (ESC) - Additional method/sample information: Sample(s) received past/too close to holding time expiration. |

#### Qualifier Report Information

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC, Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable unless qualified as 'R' (Rejected).

- Definitions

  Accuracy The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.
- Precision The agreement between a set of samples or between duplicate samples.

  Relates to how close together the results are and is represented by Relative Percent Difference.
- Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses. Surrogate -
- Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, TIC or surrogates.



12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Hall Environmental Analysis Laboratory Anne Thorne 4901 Hawkins NE

Albuquerque, NM 87109

Quality Assurance Report

Level II L425671

October 12, 2009

| ·                                         |             | 6.16                                   | boráfo          | ry Blank         |                  | <del></del>  |                     |                     | <del></del>                            |
|-------------------------------------------|-------------|----------------------------------------|-----------------|------------------|------------------|--------------|---------------------|---------------------|----------------------------------------|
| Analyte                                   | Result      | L L                                    | nits            | \$ Rec           | 2                | Limit        | Bato                | h Dat               | e Analyzed                             |
| Reactive Suit ISW846 7-374:17             | 76 F25      |                                        | <b>岭</b> 70年1   | erneenen         | Child.           |              | ( ) WO 44           | 4644,107            | 09709709:0                             |
| Corrosivity                               | 6.20        |                                        |                 |                  |                  |              | WG44                | 5108 10/            | 10/09 14:2                             |
| Analyte                                   | Units       | Result                                 | 1960<br>D       | Cafe<br>uplicate | RPD              | Limit        | Ref                 | Samp                | Batch                                  |
| Flashpoint                                | deg F       | 0 / 10 / 10 / 10 / 10 / 10 / 10 / 10 / | [*/*/F0,<br>0   | Mickel           |                  | 20 7.3<br>20 |                     | 5457+137<br>5939-01 | WG44465<br>WG44465                     |
| Readtive soult vews as of the action      | (mg/1)      | 6.000000000000000000000000000000000000 | (E. 1.1.1)      | 9/07/2014/9      | 25.5             |              | \$                  | 5671901             | W044464                                |
| Reactive CN (SW846 7.3.3.2) Corrosivity   | mg/l        | 0                                      | 0<br>(444)<br>0 | (j. 1849.72)     | 0                | 20<br>10     |                     | 5671-01<br>5671-01  | WG444642<br>WG445108                   |
|                                           |             | Labora                                 | tory co         | ontrol Samp      |                  |              |                     |                     |                                        |
| Analyte                                   | Units       | Known                                  | vaı             | Kes              | ult              | % Rec        | Limi                |                     | Batch                                  |
| Flashdoint                                | deg         | 62                                     | DV4CLA          | 80,0             |                  | 97.76        | 96-1                | 04                  | . WG44465                              |
| Reactive Sulf.(SWB46 7.3.4.1) Corrosivity | mg/l        | 100<br>9.68                            | indrote         | 89.0<br>9.70     | 18.EZ 290.E      | 89.0<br>100. | 70-1<br>97.9        | 30<br>-100.8        | WG44464                                |
|                                           | wäh:        | Laboratory                             | 744FF81         | on alomes        | ol tear          | · ·          |                     |                     | <del>, ,,, , ,, ,, ,, ,, ,, ,, ,</del> |
| Analyte                                   | Units       | Result                                 | Ref             | Rec \$           | hra <i>ka</i> ee | Limit        | RPD                 | Limit               | Batch                                  |
| Flashpoint                                | deg F       | 79.0                                   | 90,0            | 96.0             |                  | 96-104       |                     | w.L. Cons           | ₩ <b>Ğ</b> 444653                      |
| Reactive Sulf.(SW846 7.3.4.1)             | mg/l        | 89.0                                   | 89.0            | 89.0             | iwaseer          | 70-130       | 0<br>VII) 18 CVIII) | 20                  | WG444544                               |
| Corrosivity                               | e ay mara n | 9.70                                   | 9.70            | 100.             | 2021 NASSON NEWS | 97.9-100.8   | 0                   | 10                  | WG445108                               |

Batch number /Run number / Sample number cross reference

WG444653; R940428: L425671-01 WG444644: R940988: L425671-01 WG444642: R942048: L425671-01 WG445108: R943948: L425671-01

Calculations are performed prior to rounding of reported values .
 Performance of this Analyte is outside of established criteria.
 For additional information, please see Attachment A 'List of Analytes with OC Qualifiers.'

DATES REPORT

# Hall Environmental Analysis Laboratory, Inc.

| Western Refining Southwest, Inc. |  |
|----------------------------------|--|
| Client:                          |  |

0910042

Lab Order:

| Injection Well 4th OTR 10/1/09 |  |
|--------------------------------|--|
| Project:                       |  |

| Sample ID   | Client Sample ID | Collection Date               | Matrix     | Sample ID Client Sample ID Collection Date Matrix Test Name Instrument Run ID QC Batch ID Pr | Instrument Run ID QC Batch ID | QC Batch ID |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p Date Analysis Date |
|-------------|------------------|-------------------------------|------------|----------------------------------------------------------------------------------------------|-------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 0910042-01A | Injection Well   | 10/1/2009 10:10:00 AM Aqueous | Aqueous    | EPA Method 8260B: VOLATILES                                                                  | JEPTUNE_091006/               | R35601      | was the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t | 10/6/2009            |
|             |                  |                               |            | EPA Method 8260B: VOLATILES                                                                  | JEPTUNE_091006/               | R35601      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/6/2009            |
|             |                  |                               | ,          | EPA Method 8260B: VOLATILES                                                                  | JEPTUNE_091006/               | R35601      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/6/2009            |
| 0910042-01B |                  |                               |            | EPA Method 8270C: Semivolatiles                                                              | ELMO_091013A                  | 20263       | 10/7/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/13/2009           |
| 0910042-01C |                  |                               |            | EPA 120.1: Specific Conductance                                                              | OSEIDON_091002                | R35564      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/2/2009            |
|             |                  |                               |            | EPA Method 300.0: Anions                                                                     | TRITON_091002A                | R35559      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/2/2009            |
|             |                  |                               |            | EPA Method 300.0: Anions                                                                     | TRITON_091002A                | R35559      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/2/2009            |
|             |                  |                               |            | EPA Method 300.0: Anions                                                                     | ORION_091005A                 | R35577      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/5/2009            |
|             |                  |                               |            | SM 2320B: Alkalinity                                                                         | OSELDON_091002.               | R35564      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/2/2009            |
|             |                  |                               |            | SM 2540 C: Total Dissolved Solids                                                            | WC_091005F                    | 20238       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/5/2009            |
|             |                  |                               |            | SM4500-H+B: pH                                                                               | OSEIDON_091002.               | R35564      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/2/2009            |
| 0910042-01D |                  |                               |            | EPA 6010B: Total Recoverable Metals                                                          | ISIS_091022A                  | 20291       | 10/12/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/22/2009           |
|             |                  |                               |            | EPA 6010B: Total Recoverable Metals                                                          | ISIS_091016A                  | 20291       | 10/12/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/16/2009           |
|             |                  |                               |            | EPA 6010B: Total Recoverable Metals                                                          | ISIS_091016A                  | 20291       | 10/12/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/16/2009           |
|             |                  |                               |            | EPA Method 7470. Mercury                                                                     | NEMO_091009A                  | 20279       | 10/9/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/9/2009            |
| 0910042-02A | TRIP BLANK       | •                             | Trip Blank | EPA Method 8260B: VOLATILES                                                                  | JEPTUNE_091007/               | R35624      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/7/2009            |
|             |                  |                               | •          | EPA Method 8260B: VOLATILES                                                                  | 4EPTUNE_091006/               | R35601      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/6/2009            |

# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc. Injection Well 4th QTR 10/1/09

Work Order:

0910042

| vect: injection v            | ven 4th Q1 k  | 10/1/09 |      |          |         |           |            | Work           | Order: 09      | 10042           |
|------------------------------|---------------|---------|------|----------|---------|-----------|------------|----------------|----------------|-----------------|
| Analyte                      | Result        | Units   | PQL  | SPK Va S | SPK ref | %Rec L    | owLimit Hi | ghLimit %RPD   | RPDLimit C     | Qual            |
| Method: SM 2540 C: Total Di  | ssolved Solid |         |      |          |         |           |            |                |                | <b>.</b>        |
| Sample ID: MB-20238          |               | MBLK    |      |          |         | Batch ID: | 20238      | Analysis Date: | 1              | 0/5/2009        |
| Total Dissolved Solids       | ND            | mg/L    | 20.0 |          |         |           |            |                | •              |                 |
| Sample ID: LCS-20238         |               | LCS     |      |          |         | Batch ID: | 20238      | Analysis Date: | 1              | 0/5/2009        |
| Total Dissolved Solids       | 1038          | mg/L    | 20.0 | 1000     | 16      | 102       | 80         | 120            |                |                 |
| Method: EPA Method 300.0:    | Anions        |         |      |          |         |           |            |                |                |                 |
| Sample ID: MB                |               | MBLK    |      |          |         | Batch ID: | R35569     | Analysis Date: | 10/2/2009 9:4  | 7: <b>25</b> AN |
| Chloride                     | ND            | mg/L    | 0.10 |          |         |           |            |                |                |                 |
| Sulfate                      | ND            | mg/L    | 0.50 |          |         |           |            |                |                |                 |
| Sample ID: MB                |               | MBLK    |      |          |         | Batch ID: | R35577     | Analysis Date: | 10/5/2009 2:5  | 2:30 PM         |
| Chloride                     | ND            | mg/L    | 0.10 |          |         |           |            |                |                |                 |
| Sulfate                      | ND            | mg/L    | 0.50 |          |         |           |            |                |                |                 |
| Sample ID: LCS               |               | LCS     |      |          |         | Batch ID: | R35559     | Analysis Date: | 10/2/2009 10:0 | 4:50 AM         |
| Chloride                     | 5.291         | mg/L    | 0.10 | 5        | 0       | 106       | 90         | 110            |                |                 |
| Sulfate                      | 10.65         | mg/L    | 0.50 | 10       | 0       | 107       | 90         | 110            |                |                 |
| Sample ID: LCS               |               | LCS     |      |          |         | Batch ID: | R35577     | Analysis Date: | 10/5/2009 3:0  | 9:54 PM         |
| Chloride                     | 4.992         | mg/L    | 0.10 | 5        | 0       | 99.8      | 90         | 110            |                |                 |
| Sulfate                      | 10.18         | mg/L    | 0.50 | 10       | 0       | 102       | 90         | 110            |                |                 |
| Method: SM 2320B: Alkalinity | •             |         |      |          |         |           |            |                |                |                 |
| ample ID: MB                 |               | MBLK    |      |          |         | Batch ID: | R35564     | Analysis Date: | 10/2/2009 1:4  | 1:00 PM         |
| linity, Total (As CaCO3)     | ND            | mg/L Ca | 20   |          |         |           |            |                |                |                 |
| Carbonate                    | ND            | mg/L Ca | 2.0  |          |         |           |            |                |                |                 |
| Bicarbonate                  | ND            | mg/L Ca | 20   |          |         |           |            |                |                |                 |
| Sample ID: 80PPM LCS         |               | LCS     |      |          |         | Batch ID: | R35564     | Analysis Date: | 10/2/2009 1:4  | 7:00 PM         |
| Alkalinity, Total (As CaCO3) | 79.44         | mg/L Ca | 20   | 80       | 0       | 99.3      | 80         | 120            | ,              |                 |





Estimated value

Analyte detected below quantitation limits

RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th QTR 10/1/09

Work Order:

0910042

| Analyte                        | Result       | Units        | PQL   | SPK Va SPK ref | %Rec Lo   | wLimit Hig | hLimit  | %RPD    | RPDLimit  | Qual       |
|--------------------------------|--------------|--------------|-------|----------------|-----------|------------|---------|---------|-----------|------------|
| Method: EPA Method 8260B       | : VOLATILES  |              |       |                |           |            |         |         |           |            |
| Sample ID: 6ml rb              |              | MBLK         |       |                | Batch ID: | R35601     | Analysi | s Date: | 10/6/2009 | 9:23:18 Af |
| Benzene                        | ND           | μg/L         | 1.0   |                |           |            |         |         |           |            |
| Toluene                        | ND           | µg/L         | 1.0   |                |           |            |         |         |           |            |
| Ethylbenzene                   | ND .         | µg/L         | 1.0   |                |           |            |         |         |           |            |
| Methyl tert-butyl ether (MTBE) | ND           | μg/L         | 1.0   |                |           |            |         |         |           |            |
| 1,2,4-Trimethylbenzene         | ND           | μg/L         | 1.0   |                |           |            |         |         |           |            |
| 1,3,5-Trimethylbenzene         | , <b>N</b> D | μg/L         | 1.0   |                |           |            |         |         |           |            |
| 1,2-Dichloroethane (EDC)       | ND           | µg/L         | 1.0   |                |           |            |         |         |           |            |
| 1,2-Dibromoethane (EDB)        | <b>N</b> D   | µg/L         | 1.0   |                |           |            |         |         |           |            |
| Naphthalene                    | ND           | μg/L         | 2.0   |                |           |            |         |         |           |            |
| 1-Methylnaphthalene            | ND           | µg/L         | 4.0   |                |           |            |         |         |           |            |
| 2-Methylnaphthalene            | ND           | µg/L         | 4.0   |                |           |            |         |         |           |            |
| Acetone                        | ND           | μg/L         | 10    |                |           |            |         |         |           | •          |
| Bromobenzene                   | ND           | µg/L         | 1.0   |                |           |            |         |         |           |            |
| Bromodichloromethane           | ND           | μg/L         | 1.0   |                |           |            |         |         |           |            |
| Bromoform                      | ND           | μg/L         | 1.0   |                |           |            |         |         |           |            |
| Bromomethane                   | ND           | µg/L         | 1.0   |                |           | •          |         |         |           |            |
| 2-Butanone                     | ND           | µg/L         | 10    |                |           |            |         |         |           |            |
| Carbon disulfide               | ND           | µg/L         | 10    |                |           |            |         |         |           |            |
| Carbon Tetrachloride           | ND           | μg/L         | . 1.0 |                |           |            |         |         |           |            |
| Chlorobenzene                  | ND           | µg/L         | 1.0   |                |           |            |         |         |           |            |
| Chloroethane                   | ND           | μg/L         | 2.0   |                |           |            |         | '       |           |            |
| Chloroform                     | ND           | μg/L         | 1.0   |                |           |            |         |         |           |            |
| Chloromethane                  | ND           | μg/L         | 1.0   |                |           |            |         |         |           |            |
| 2-Chlorotoluene                | ND           | μg/L         | 1.0   |                |           |            |         |         |           |            |
| 4-Chlorotoluene                | ND           | µg/L         | 1.0   |                |           | ,          |         |         |           |            |
| cis-1,2-DCE                    | ND           | µg/L         | 1.0   |                |           |            |         |         |           |            |
| cis-1,3-Dichloropropene        | ND           | µg/L         | 1.0   |                |           |            |         |         |           |            |
| 1,2-Dibromo-3-chloropropane    | ND .         | μg/L         | 2.0   |                |           |            |         |         |           |            |
| Dibromochloromethane           | ND           | μg/L         | 1.0   |                |           | ,          |         |         |           |            |
| Dibromomethane                 | ND           | μg/L         | 1.0   |                |           |            |         |         |           |            |
| 1,2-Dichlorobenzene            | ND           | μg/L         | 1.0   |                |           |            |         |         |           |            |
| 1,3-Dichtorobenzene            | ND           | μg/L         | 1.0   |                |           |            |         |         |           |            |
| 1,4-Dichlorobenzene            | ND           | μg/L         | 1.0   |                |           | į          |         |         |           |            |
| Dichlorodifluoromethane        | ND           | µg/L         | 1.0   | •              |           |            |         |         |           |            |
| 1,1-Dichloroethane             | ND           | µg/L         | 1.0   |                |           |            |         |         |           |            |
| 1,1-Dichloroethene             | ND           | <b>µ</b> g/L | 1.0   |                |           |            |         |         |           |            |
| 1,2-Dichloropropane            | ND           | µg/L         | 1.0   |                |           |            |         | -       |           |            |
| 1,3-Dichloropropane            | ND           | μg/L         | 1.0   |                |           |            |         |         |           |            |
| 2,2-Dichloropropane            | ND           | μg/L         | 2.0   |                |           |            |         |         |           |            |
| 1,1-Dichloropropene            | ND           | µg/L         | 1.0   |                |           |            |         |         | ,         |            |
| Hexachlorobutadiene            | ND           | µg/L         | 1.0   |                |           |            |         |         |           |            |
| 2-Hexanone                     | ND           | µg/L         | 10    |                |           |            |         |         |           |            |
| sopropylbenzene                | ND           | µg/L         | 1.0   |                |           |            |         |         |           |            |
| 4-Isopropyltoluene             | ND           | μg/L         | 1.0   |                |           |            |         |         |           |            |



E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits



# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

roject: Injection Well 4th QTR 10/1/09

Work Order:

0910042

| Analyte                        | Result     | Units | PQL | SPK Va SPK i | ef | %Rec L    | owLimit Hi | ghLimit | %RPD     | RPDLimit    | Qual      |
|--------------------------------|------------|-------|-----|--------------|----|-----------|------------|---------|----------|-------------|-----------|
| Method: EPA Method 8260B:      | VOLATILES  |       |     |              |    |           |            |         |          | 4 <u>.</u>  |           |
| Sample ID: 5ml rb              |            | MBLK  |     |              |    | Batch ID: | R35601     | Analys  | is Date: | 10/6/2009 9 | 9:23:18 A |
| 4-Methyl-2-pentanone           | ND         | μg/L  | 10  |              |    |           |            |         |          |             |           |
| Methylene Chloride             | ND         | μg/L  | 3.0 |              |    |           |            |         |          |             |           |
| n-Butylbenzene                 | ND         | .µg/L | 1.0 |              |    |           |            |         |          |             |           |
| n-Propylbenzene                | ND         | μg/L  | 1.0 |              |    |           |            |         |          |             |           |
| sec-Butylbenzene               | ND         | μg/L  | 1.0 |              |    |           |            |         |          |             |           |
| Styrene                        | ND         | μg/L  | 1.0 |              |    |           |            |         |          |             |           |
| tert-Butylbenzene              | ND         | μg/L  | 1.0 |              |    |           |            |         |          |             |           |
| 1,1,1,2-Tetrachloroethane      | ND         | μg/L  | 1.0 |              |    |           |            |         |          |             |           |
| 1,1,2,2-Tetrachloroethane      | ND         | µg/L  | 2.0 | •            |    |           |            |         |          |             |           |
| Tetrachloroethene (PCE)        | ND         | µg/L  | 1.0 |              |    |           |            |         |          |             |           |
| trans-1,2-DCE                  | ND         | µg/L  | 1.0 |              |    |           |            |         |          |             |           |
| trans-1,3-Dichloropropene      | ND         | μg/L  | 1.0 |              |    |           |            |         |          |             |           |
| 1,2,3-Trichlorobenzene         | ND         | µg/L  | 1.0 |              |    |           |            |         |          |             |           |
| 1,2,4-Trichlorobenzene         | ND         | µg/L  | 1.0 |              |    |           |            |         |          |             |           |
| 1,1,1-Trichioroethane          | ND         | µg/L  | 1.0 |              |    |           |            |         |          |             |           |
| 1.1.2-Trichloroethane          | ND         | μg/L  | 1.0 | •            |    |           |            |         |          |             |           |
| Trichloroethene (TCE)          | ND         | μg/L  | 1.0 |              |    |           |            |         |          |             |           |
| Trichlorofluoromethane         | ND         | μg/L  | 1.0 |              |    |           |            |         |          |             |           |
| 1,2,3-Trichtoropropane         | ND         | µg/L  | 2.0 |              |    |           |            |         |          |             |           |
| Vinyl chloride                 | ND         | μg/L  | 1.0 |              |    |           |            |         |          |             |           |
| ylenes, Total                  | ND         | μg/L  | 1.5 |              |    |           |            |         |          |             |           |
| Surr: 1,2-Dichloroethane-d4    | 9.772      | μg/L  | 0   | 10 0         |    | 97.7      | 54.6       | 141     |          |             | •         |
| Surr: 4-Bromofluorobenzene     | 10.02      | μg/L  | 0   | 10 0         |    | 100       | 60.1       | 133     |          |             |           |
| Surr: Dibromofluoromethane     | 9.571      | µg/L  | 0   | 10 0         |    | 95.7      | 78.5       | 130     |          |             |           |
| Surr: Toluene-d8               | 9.885      | μg/L  | 0   | 10 0         |    | 98.8      | 79.5       | 126     |          |             |           |
| Sample ID: b3                  |            | MBLK  |     |              |    | Batch ID: | R35601     | Analysi | s Date:  | 10/7/2009 3 | :22:21 AM |
| Benzene                        | ND         | µg/L  | 1.0 |              |    |           |            |         |          |             |           |
| Toluene                        | ND         | μg/L  | 1.0 |              |    |           |            |         |          |             |           |
| Ethylbenzene                   | ND         | μg/L  | 1.0 |              |    |           |            |         |          |             |           |
| Methyl tert-butyl ether (MTBE) | ND         | µg/L  | 1.0 |              |    |           |            |         |          |             |           |
| 1,2,4-Trimethylbenzene         | ND         | μg/L  | 1.0 |              |    |           |            |         |          |             |           |
| 1,3,5-Trimethylbenzene         | ND         | µg/L  | 1.0 |              |    |           |            |         |          |             |           |
| 1,2-Dichloroethane (EDC)       | <b>N</b> D | μg/L  | 1.0 |              |    |           |            |         |          |             |           |
| 1,2-Dibromoethane (EDB)        | ND         | μg/L  | 1.0 |              |    |           |            |         |          |             |           |
| Naphthalene                    | ND         | μg/L  | 2.0 |              |    |           |            |         |          |             |           |
| 1-Methylnaphthalene            | ND         | µg/L  | 4.0 |              |    |           |            |         |          |             |           |
| 2-Methylnaphthalene            | ND         | μg/L  | 4.0 |              |    |           |            |         |          |             |           |
| Acetone                        | ND         | µg/L  | 10  |              |    |           |            |         |          |             |           |
| Bromobenzene                   | ND         | μg/L  | 1.0 |              |    |           |            |         |          |             |           |
| Bromodichloromethane           | ND         | µg/L  | 1.0 |              |    |           |            |         |          |             |           |
| Bromoform                      | ND         | μg/L  | 1.0 |              |    |           |            |         |          |             |           |
| Bromomethane                   | ND         | µg/L  | 1.0 |              |    |           |            |         |          |             |           |
| 2-Butanone                     | ND         | µg/L  | 10  |              |    |           |            |         |          |             |           |
| Carbon disulfide               | ND         | μg/L  | 10  |              |    |           |            |         |          |             |           |

Qualifiers:

E Estimated value

Analyte detected below quantitation limits

RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th QTR 10/1/09

Work Order:

0910042

| Analyte                     | Result      | Units        | PQL | SPK Va SPK ref | %Rec Lo   | owLimit His | ghLimit | %RPD     | RPDLimit  | Qual       |
|-----------------------------|-------------|--------------|-----|----------------|-----------|-------------|---------|----------|-----------|------------|
| Method: EPA Method 8260B    | : VOLATILES |              |     |                |           |             |         |          |           |            |
| Sample ID: b3               |             | MBLK         |     |                | Batch ID: | R35601      | Analys  | is Date: | 10/7/2009 | 3:22:21 AM |
| Carbon Tetrachloride        | ND          | μg/L         | 1.0 |                |           |             |         |          |           |            |
| Chlorobenzene               | ND          | μg/L         | 1.0 |                |           |             |         |          |           |            |
| Chloroethane                | ND          | μg/L         | 2.0 |                |           |             |         |          |           |            |
| Chloroform                  | ND          | μg/L         | 1.0 |                |           |             |         |          |           |            |
| Chloromethane               | ND          | μg/L         | 1.0 |                |           |             |         |          |           |            |
| 2-Chlorotoluene             | ND          | µg/L         | 1.0 |                |           |             |         |          |           |            |
| 4-Chlorotoluene             | ND          | μg/L         | 1.0 |                |           |             |         |          |           |            |
| cis-1,2-DCE                 | ND          | µg/L         | 1.0 |                |           |             |         |          |           |            |
| cis-1,3-Dichloropropene     | ND          | µg/L         | 1.0 |                |           |             |         |          |           |            |
| 1,2-Dibromo-3-chloropropane | ND          | µg/∟         | 2.0 |                |           |             |         |          |           |            |
| Dibromochloromethane        | ND          | μg/L         | 1.0 |                |           |             |         |          |           |            |
| Dibromomethane              | ND          | μg/L         | 1.0 |                |           |             |         |          |           |            |
| 1,2-Dichlorobenzene         | ND          | μg/L         | 1.0 |                |           |             |         |          |           |            |
| 1,3-Dichlorobenzene         | ND          | µg/L         | 1.0 |                |           |             |         |          |           |            |
| 1,4-Dichlorobenzene         | ND          | μg/L         | 1.0 |                |           |             |         |          |           |            |
| Dichlorodifluoromethane     | ND .        | μg/L         | 1.0 |                |           |             |         |          |           |            |
| 1,1-Dichloroethane          | ND          | hã/r         | 1.0 |                |           |             |         |          |           |            |
| 1,1-Dichloroethene          | ND          | μg/L         | 1.0 |                |           |             |         |          |           |            |
| 1,2-Dichloropropane         | ND          | μg/L         | 1.0 |                |           |             |         |          |           |            |
| 1,3-Dichloropropane         | ND .        | μg/L         | 1.0 |                |           |             |         |          |           |            |
| 2,2-Dichloropropane         | ND .        | μg/L         | 2.0 |                |           |             |         |          |           |            |
| 1,1-Dichloropropene         | ND          | hã/F         | 1.0 |                |           |             |         |          |           |            |
| Hexachlorobutadiene         | ND          | µg/L         | 1.0 |                |           |             |         |          |           |            |
| 2-Hexanone                  | ND          | µg/∟         | 10  |                |           |             |         |          |           |            |
| Isopropylbenzene            | ND          | μg/L         | 1.0 |                | •         |             |         |          |           |            |
| 4-Isopropyltoiuene          | ND          | μg/L         | 1.0 |                |           |             |         |          |           |            |
| 4-Methyl-2-pentanone        | ND          | µg/L         | 10  |                |           |             |         |          |           |            |
| Methylene Chloride          | ND          | μg/L         | 3.0 |                |           |             |         |          |           |            |
| n-Butylbenzene              | ND          | μg/L         | 1.0 |                |           |             |         |          |           |            |
| n-Propylbenzene             | ND          | μg/L         | 1.0 |                |           |             |         |          |           |            |
| sec-Butylbenzene            | ND          | μg/L         | 1.0 |                | ,         |             |         |          |           |            |
| Styrene                     | ND          | ha\r<br>ha\r | 1.0 |                |           |             |         |          |           |            |
| tert-Butylbenzene           | ND          | μg/L         | 1.0 |                |           |             |         |          |           |            |
| 1,1,1,2-Tetrachloroethane   | ND          | μg/L         | 1.0 |                |           | •           |         |          |           |            |
| 1,1,2,2-Tetrachloroethane   | ND          | μg/L         | 2.0 |                |           |             |         |          |           |            |
| Tetrachloroethene (PCE)     | ND          | µg/L         | 1.0 |                |           |             |         |          |           |            |
| trans-1,2-DCE               | ND          | μg/L         | 1.0 |                |           |             |         |          |           |            |
| trans-1,3-Dichloropropene   | ND          | μg/L         | 1.0 |                |           |             |         |          |           |            |
| 1,2,3-Trichlorobenzene      | ND          | µg/L         | 1.0 |                |           |             |         |          |           |            |
| 1,2,4-Trichlorobenzene      | ND          | μg/L         | 1.0 |                |           |             |         |          |           |            |
| 1,1,1-Trichloroethane       | ND          | ha\r<br>ha\r | 1.0 |                |           |             |         |          |           |            |
| 1,1,2-Trichloroethane       | ND          | μg/L         | 1.0 |                |           |             |         |          |           |            |
| Trichloroethene (TCE)       | ND          | μg/L         | 1.0 |                |           |             |         | •        |           |            |
| Trichlorofluoromethane      | · ND        | μg/L         | 1.0 |                |           |             |         |          |           |            |
| - ingalototiacioniane       | 176         | F8, C        | ,   |                |           |             |         |          |           |            |

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

# QA/QC SUMMARY REPORT

Client: roject: Western Refining Southwest, Inc.

Injection Well 4th QTR 10/1/09

Work Order:

0910042

| Analyte                                                | Result    | Units        | PQL        | SPK Va S | PK ref | %Rec L    | owLimit Hi   | ghLimlt %RPD   | RPDLimit Qual         |
|--------------------------------------------------------|-----------|--------------|------------|----------|--------|-----------|--------------|----------------|-----------------------|
| Method: EPA Method 8260B:                              | VOLATILES |              |            |          |        |           |              |                |                       |
| Sample ID: b3                                          |           | MBLK         |            |          |        | Batch ID: | R35601       | Analysis Date: | 10/7/2009 3:22:21 AM  |
| 1,2,3-Trichloropropane                                 | ND        | μg/L         | 2.0        |          |        |           |              |                |                       |
| Vinyl chloride                                         | ND        | μg/L         | 1.0        |          |        |           |              |                |                       |
| Xylenes, Total                                         | ND        | μg/L         | 1.5        |          |        |           |              |                |                       |
| Surr: 1,2-Dichloroethane-d4                            | 9.409     | µg/L         | 0          | 10       | 0      | 94.1      | 54.6         | 141            | •                     |
| Surr: 4-Bromofluorobenzene                             | 9.794     | μg/L         | 0          | 10       | 0      | 97.9      | 60.1         | 133            |                       |
| Surr: Dibromofluoromethane                             | 9.467     | µg/L         | 0          | 10       | 0      | 94.7      | 78.5         | 130            |                       |
| Surr: Toluene-d8                                       | 9.811     | μg/L         | 0          | 10       | 0      | 98.1      | <b>79</b> .5 | 126            |                       |
| Sample ID: 6ml rb                                      |           | MBLK         |            |          |        | Batch ID: | R35624       | Analysis Date: | 10/7/2009 11:42:07 AN |
| Benzene                                                | ND        | μg/L         | 1.0        |          |        |           |              | •              |                       |
|                                                        | ND        |              | 1.0        |          |        |           |              | •              | •                     |
| Toluene                                                | ND<br>ND  | μg/L         | 1.0        |          |        |           |              |                |                       |
| Ethylbenzene Mathyl tart bulyl ather (MTRE)            |           | μg/L<br>ug/l |            |          |        |           |              |                |                       |
| Methyl tert-butyl ether (MTBE)  1,2,4-Trimethylbenzene | ND<br>ND  | μg/L         | 1.0<br>1.0 |          |        |           |              |                |                       |
| •                                                      |           | µg/L         | 1.0        |          |        |           |              |                |                       |
| 1,3,5-Trimethylbenzene                                 | ND        | μg/L         |            |          |        |           |              |                |                       |
| 1,2-Dichloroethane (EDC)                               | ND        | µg/L         | 1.0        |          |        |           |              |                |                       |
| 1,2-Dibromoethane (EDB)                                | ND        | µg/L         | 1.0        |          |        |           |              |                |                       |
| Naphthalene                                            | ND        | µg/L         | 2.0        |          |        |           |              |                |                       |
| 1-Methylnaphthalene                                    | ND        | μg/L         | 4.0        |          |        |           |              |                |                       |
| 2-Methylnaphthalene                                    | ND<br>ND  | μg/L         | 4.0        |          |        |           |              |                |                       |
| Acetone                                                | ND        | μg/L         | 10         |          |        |           |              |                |                       |
| omobenzene                                             | ND        | µg/L         | 1.0        |          |        |           |              |                |                       |
| oromodichloromethane                                   | ND        | μg/L         | 1.0        |          |        |           |              |                |                       |
| Bromoform                                              | ND        | μg/L         | 1.0        |          |        |           |              |                |                       |
| Bromomethane                                           | ND        | hg/r         | 1.0        |          |        |           | •            |                |                       |
| 2-Butanone                                             | ND        | μg/L         | 10         |          |        |           |              |                |                       |
| Carbon disulfide                                       | ND .      | μg/L<br>     | 10         |          |        |           |              |                |                       |
| Carbon Tetrachloride                                   | ND        | μg/L<br>     | 1.0        |          |        |           |              |                |                       |
| Chlorobenzene                                          | ND        | μg/L         | 1.0        |          |        |           |              |                |                       |
| Chloroethane                                           | ND        | μg/L         | 2.0        |          |        |           |              |                | •                     |
| Chloroform                                             | ND        | μg/L         | 1.0        |          |        |           |              |                |                       |
| Chloromethane                                          | ND        | µg/L         | 1.0        |          |        |           |              |                |                       |
| 2-Chlorotoluene                                        | ND        | μg/L         | 1.0        |          |        |           |              |                |                       |
| 4-Chlorotoluene                                        | ND        | µg/L         | 1.0        |          |        |           |              |                |                       |
| cis-1,2-DCE                                            | ND        | µg/L         | 1.0        |          |        |           |              |                |                       |
| cis-1,3-Dichloropropene                                | ND        | µg/L         | 1.0        |          |        |           |              |                |                       |
| 1,2-Dibromo-3-chloropropane                            | ND        | µg/L         | 2.0        |          |        |           |              |                |                       |
| Dibromochloromethane                                   | ND        | µg/L         | 1.0        |          |        |           | ,            |                |                       |
| Dibromomethane                                         | ND        | µg/L         | 1.0        |          |        |           |              |                |                       |
| 1,2-Dichlorobenzene                                    | ND        | μg/L         | 1.0        |          |        |           |              |                |                       |
| 1,3-Dichlorobenzene                                    | ND        | µg/L         | 1.0        |          |        |           |              |                |                       |
| 1,4-Dichlorobenzene                                    | ND        | µg/L         | 1.0        |          |        |           |              |                |                       |
| Dichlorodifluoromethane                                | ND        | μg/L         | 1.0        |          |        |           |              |                |                       |
| 1,1-Dichtoroethane                                     | ND        | µg/L<br>     | 1.0        |          |        |           |              |                |                       |
| 1,1-Dichloroethene                                     | ND        | µg/L         | 1.0        |          |        |           |              | ,              |                       |

Qualifiers:

E

Estimated value

Analyte detected below quantitation limits

RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project: Injection Well 4th QTR 10/1/09

Work Order:

0910042

| Analyte                                               | Result      | Units        | PQL  | SPK Va SPK re | f %Reci   | ∟owLimit Hi | ighLimit % | 6RPD  | RPDLimit    | Qual       |
|-------------------------------------------------------|-------------|--------------|------|---------------|-----------|-------------|------------|-------|-------------|------------|
| Method: EPA Method 8260B                              | : VOLATILES |              |      |               |           |             |            |       |             |            |
| Sample ID: 6ml rb                                     |             | MBLK         |      |               | Batch ID: | R35624      | Analysis D | Date: | 10/7/2009 1 | 1:42:07 AN |
| 1,2-Dichloropropane                                   | ND          | μg/L         | 1.0  |               |           |             |            |       |             | •          |
| 1,3-Dichloropropane                                   | ND          | µg/L         | 1.0  |               |           |             |            |       | #           |            |
| 2,2-Dichloropropane                                   | ND          | μg/L         | 2.0  |               |           |             | •          |       | #           |            |
| 1,1-Dichloropropene                                   | ND          | μg/L         | 1.0  |               |           |             |            |       |             |            |
| Hexachiorobutadiene                                   | ND          | μg/L         | 1.0  |               |           |             |            |       |             |            |
| 2-Hexanone                                            | ND          | µg/L         | 10   |               |           |             |            |       |             |            |
| Isopropylbenzena                                      | ND          | µg/L         | 1.0  |               |           |             |            |       |             |            |
| 4-Isopropyltoluene                                    | ND          | μg/L         | 1.0  |               |           |             |            |       |             |            |
| 4-Methyl-2-pentanone                                  | ND          | µg/L         | 10   |               |           |             |            |       |             |            |
| Methylene Chloride                                    | ND          | μg/L         | 3.0  |               | •         |             |            |       |             |            |
| n-Butylbenzene                                        | ND          | μg/L         | 1.0  |               |           |             |            |       |             |            |
| n-Propylbenzene                                       | ND          | μg/L         | 1.0  |               |           |             |            |       |             |            |
| sec-Butylbenzene                                      | ND          | µg/L         | 1.0  |               |           |             |            |       |             |            |
| Styrene                                               | ND          | μg/L         | 1.0  |               |           |             |            |       |             |            |
| tert-Butylbenzene                                     | ND.         | μg/L         | 1.0  |               |           |             |            |       |             |            |
| 1,1,1,2-Tetrachloroethane                             | ND          | μg/L         | 1.0  |               |           |             |            |       | *           |            |
| 1,1,2,2-Tetrachloroethane                             | ND          | µg/L         | 2.0  |               |           |             |            |       |             |            |
| Tetrachloroethene (PCE)                               | ND          | μg/L         | 1.0  |               |           |             |            |       |             |            |
| trans-1,2-DCE                                         | ND          | μg/L         | 1.0  |               |           |             |            |       |             |            |
| frans-1,3-Dichloropropene                             | ND          | μg/L         | 1.0  |               |           |             |            |       |             |            |
| 1,2,3-Trichlorobenzene                                | ND          | μg/L         | 1.0  |               |           |             |            |       |             |            |
| 1,2,4-Trichlorobenzene                                | ND          | µg/L         | 1.0  |               |           |             |            |       |             |            |
| 1,1,1-Trichloroethane                                 | ND          | μg/L         | 1.0  |               |           |             |            |       |             |            |
| 1,1,2-Trichloroethane                                 | ND          | µg/L         | 1.0  |               |           |             |            |       |             |            |
| Trichloroethene (TCE)                                 | ND          | µg/L         | 1.0  |               |           |             |            |       |             |            |
| Trichlorofluoromethane                                | ND          | µg/∟         | 1.0  |               |           |             |            |       | •           |            |
| 1,2,3-Trichloropropane                                | ND          | µg/L         | 2.0  |               |           |             |            |       |             |            |
| Vinyl chloride                                        | ND          | µg/L         | 1.0  |               |           |             |            |       |             |            |
| Xylenes, Total                                        | ND          | μg/L         | 1.5  |               |           |             |            |       |             |            |
| Surr: 1,2-Dichloroethane-d4                           | 9.099       | μg/L         | .0   | 10 0          | 91.0      | 54.6        | 141        |       |             |            |
| Surr: 4-Bromofluorobenzene                            | 9.415       | µg/L         | 0    | 10 0          | 94.1      | 60.1        | 133        |       |             |            |
| Surr: Dibromofluoromethane                            | 9.148       | μg/L         | 0    | 10 0          | 91.5      | 78.5        | 130        |       |             |            |
| Surr: Toluene-d8                                      | 9.541       | μg/L         | 0.   | 10 0          | 95.4      | 79.5        | 126        |       |             |            |
| Sample ID: b6                                         |             | MBLK         |      |               | Batch ID: | R35624      | Analysis D | ate:  | 10/8/2009 1 | :10:13 AM  |
| Benzene                                               | ND          | μg/L         | 1.0  |               |           |             | •          |       |             |            |
| Toluene                                               | ND          | μg/L         | 1.0  |               |           |             |            |       |             |            |
| Ethylbenzene                                          | ND          | μg/L<br>μg/L | 1.0  |               |           |             |            |       |             | ,          |
|                                                       | ND          | μg/L<br>μg/L | 1.0  |               |           |             |            |       | •           |            |
| Methyl tert-butyl ether (MTBE) 1,2,4-Trimethylbenzene | ND<br>ND    | ha/r<br>ha/r | 1.0  |               |           |             |            |       |             |            |
| 1,2,4-1 illinethylbenzene                             | ND          | µg/L         | 1.0  |               |           |             |            |       |             |            |
| 1,3,5-11methylbenzene<br>1,2-Dichloroethane (EDC)     | ND<br>ND    | µg/L<br>µg/L | 1.0  |               |           |             |            |       |             |            |
| 1,2-Dichioroethane (EDB)                              | ND          | μg/L<br>μg/L | 1.0  | •             |           |             |            |       |             |            |
| Naphthalene                                           | ND<br>ND    | μg/L         | 2.0  |               |           |             |            |       |             |            |
| · '                                                   | ND          |              | 4.0  |               |           | :           |            |       |             |            |
| 1-Methylnaphthalene                                   | טא          | µg/L         | 41.0 |               |           |             |            |       |             |            |

Qualifiers:

Ε Estimated value

'Analyte detected below quantitation limits

RPD outside accepted recovery limits

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits

# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Injection Well 4th QTR 10/1/09

Work Order:

0910042

|                                         |              |              |            | · · · · · · · · · · · · · · · · · · · |           |            |         |         |           | 0510012    |
|-----------------------------------------|--------------|--------------|------------|---------------------------------------|-----------|------------|---------|---------|-----------|------------|
| Analyte                                 | Result       | Units        | PQL        | SPK Va SPK ref                        | %Rec L    | owLimit Hi | ghLimit | %RPD    | RPDLimit  | Qual       |
| Method: EPA Method 8260E                | 3: VOLATILES |              |            |                                       |           |            |         |         | er.       |            |
| Sample ID: b6                           |              | MBLK         |            |                                       | Batch ID: | R35624     | Analysi | s Date: | 10/8/2009 | 1:10:13 AM |
| 2-Methylnaphthalene                     | ND           | µg/L         | 4.0        |                                       |           |            |         |         |           |            |
| Acetone                                 | ND           | μg/L         | 10         |                                       |           |            |         |         |           |            |
| Bromobenzene                            | ND           | μg/L         | 1.0        |                                       |           |            |         |         |           |            |
| Bromodichloromethane                    | ND           | ug/L         | 1.0        |                                       |           |            |         |         |           |            |
| Bromoform                               | ND           | µg/L         | 1.0        |                                       |           |            | -       |         |           |            |
| Bromomethane                            | ND           | μg/L         | 1.0        |                                       |           |            |         |         |           |            |
| 2-Butanone                              | ND           | μg/L         | 10         |                                       |           |            |         |         |           |            |
| Carbon disulfide                        | ND           | μg/L         | 10         |                                       |           |            |         |         |           |            |
| Carbon Tetrachloride                    | ND           | µg/L         | 1.0        |                                       |           |            |         |         |           |            |
| Chlorobenzene                           | ND           | µg/L         | 1.0        |                                       |           |            |         |         |           |            |
| Chloroethane                            | ND           | µg/L         | 2.0        |                                       |           |            |         |         |           |            |
| Chloroform                              | ND           | µg/L         | 1.0        |                                       |           |            |         |         |           |            |
| Chloromethane                           | ND           | μg/L         | 1.0        |                                       |           |            |         |         |           |            |
| 2-Chlorotoluene                         | ND           | µg/L         | 1.0        |                                       |           |            |         |         |           |            |
| 4-Chlorotoluene                         | ND           | μg/L         | 1.0        |                                       |           |            |         |         |           |            |
| cis-1,2-DCE                             | ND           | μg/Ľ         | 1.0        |                                       |           |            |         |         |           |            |
| cis-1,3-Dichloropropene                 | ND           | µg/L         | 1.0        |                                       |           |            |         |         |           |            |
| 1,2-Dibromo-3-chloropropane             | ND           | µg/L         | 2.0        |                                       |           |            |         |         |           |            |
| Dibromochloromethane                    | ND           | µg/∟<br>µg/L | 1.0        |                                       |           |            |         |         |           |            |
| Dibromomethane                          | ND           | µg/L         | 1.0        |                                       |           |            |         |         |           |            |
| 2-Dichlorobenzene                       | ND           | μg/L         | 1.0        |                                       |           |            |         |         |           |            |
| s-Dichlorobenzene                       | ND           | µg/L         | 1.0        |                                       |           |            |         |         |           |            |
| 1,4-Dichlorobenzene                     | ND           | μg/L         | 1.0        |                                       |           |            |         |         |           |            |
| Dichlorodifluoromethene                 | ND           | µg/L         | 1.0        |                                       |           |            |         |         |           |            |
| 1,1-Dichloroethane                      | ND           | µg/L<br>µg/L | 1.0        |                                       |           |            |         |         |           |            |
|                                         | ND           |              |            |                                       |           |            |         |         |           |            |
| 1,1-Dichloroethene                      |              | µg/L         | 1.0        |                                       |           |            |         |         |           |            |
| 1,2-Dichloropropane                     | ND<br>ND     | μg/L         | 1.0        |                                       |           |            |         |         |           |            |
| 1,3-Dichloropropane                     | ND           | µg/L         | 1.0        |                                       |           |            |         |         |           |            |
| 2,2-Dichloropropane                     | ND<br>ND     | μg/L         | 2.0        |                                       |           |            |         |         |           |            |
| 1,1-Dichloropropene                     | ND<br>ND     | µg/L         | 1.0        |                                       |           |            |         |         |           |            |
| Hexachlorobutadiene                     | ND           | µg/L         | 1.0        |                                       |           |            |         |         |           |            |
| 2-Hexanone                              | ND<br>ND     | µg/L         | 10         |                                       |           |            |         |         |           |            |
| Isopropylbenzene                        | ND           | μg/L         | 1.0        |                                       |           |            |         |         |           |            |
| 4-Isopropyltoluene                      | ND<br>ND     | µg/L         | 1.0        |                                       |           |            |         |         |           |            |
| 4-Methyl-2-pentanone Methylene Chloride | ND<br>ND     | μg/L         | 10         |                                       |           |            |         |         |           |            |
| •                                       | ND<br>ND     | µg/L         | 3.0        | -                                     |           |            |         |         |           |            |
| n-Butylbenzene                          | ND           | μg/L         | 1.0        |                                       |           |            |         |         |           |            |
| n-Propylbenzene                         | ND<br>ND     | µg/L         | 1.0<br>1.0 |                                       |           |            |         |         |           |            |
| sec-Butylbenzene                        | ND<br>ND     | µg/L         |            |                                       |           |            |         |         |           |            |
| Styrene                                 | ND<br>ND     | µg/L         | 1.0        |                                       |           |            |         |         |           |            |
| tert-Butylbenzene                       | ND .         | µg/L         | 1.0        |                                       |           |            |         |         |           |            |
| 1,1,1,2-Tetrachloroethane               | ND           | μg/L         | 1.0        |                                       |           |            |         |         |           |            |
| 1,1,2,2-Tetrachloroethane               | ND           | µg/L         | 2.0        |                                       |           |            |         |         |           |            |
| Tetrachloroethene (PCE)                 | ND           | μg/L         | 1.0        |                                       |           |            |         |         |           |            |





Estimated value

Analyte detected below quantitation limits

RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project: Injection Well 4th QTR 10/1/09

Work Order:

0910042

| Analyte                     | Result    | Units  | PQL | SPK Va S | PK ref | %Rec L       | owLimit Hi   | ghLimit  | %RPD  | RPDLimit     | Qual       |
|-----------------------------|-----------|--------|-----|----------|--------|--------------|--------------|----------|-------|--------------|------------|
| Method: EPA Method 8260B:   | VOLATILES |        |     |          |        |              |              |          |       |              | ,          |
| Sample ID: b6               |           | MBLK   |     |          |        | Batch ID:    | R35624       | Analysis | Date: | 10/8/2009    | I:10:13 AM |
| trans-1,2-DCE               | ND        | µg/L   | 1.0 |          |        |              |              |          |       |              |            |
| trans-1,3-Dichloropropene   | ND        | μg/L   | 1.0 |          |        |              |              |          | •     |              | *          |
| 1,2,3-Trichlorobenzene      | ND        | μg/L   | 1.0 |          |        |              |              |          |       |              |            |
| 1,2,4-Trichlorobenzene      | ND        | µg/L   | 1.0 |          |        |              |              |          |       |              |            |
| 1,1,1-Trichtoroethane       | ND        | μg/L   | 1.0 |          |        |              |              |          |       |              |            |
| 1,1,2-Trichloroethane       | ND        | µg/L   | 1.0 |          |        |              |              |          |       |              |            |
| Trichloroethene (TCE)       | ND        | μg/L   | 1.0 |          |        |              |              |          |       |              |            |
| Trichlorofluoromethane      | ND        | . μg/L | 1.0 |          |        |              |              |          |       |              |            |
| 1,2,3-Trichloropropane      | ND        | µg/L   | 2.0 |          |        |              |              |          |       |              |            |
| Vinyl chloride              | ND        | µg/L   | 1.0 |          |        |              |              |          |       |              |            |
| Xylenes, Total              | ND        | µg/L   | 1.5 |          |        |              |              |          |       |              |            |
| Surr: 1,2-Dichloroethane-d4 | 9.352     | μg/L   | 0   | 10       | 0      | 93.5         | 54.6         | 141      |       |              |            |
| Surr: 4-Bromofluorobenzene  | 9.646     | μg/L   | 0   | 10       | 0      | 96.5         | 60.1         | 133      |       |              |            |
| Surr: Dibromofluoromethane  | 9.479     | µg/L   | 0   | 10       | 0      | 94.8         | 78.5         | 130      |       |              |            |
| Surr: Toluene-d8            | 9.853     | μg/L   | 0   | 10       | 0      | 98.5         | 79.5         | 126      |       |              |            |
| Sample ID: 100ng lcs        |           | LCS    |     |          |        | Batch ID:    | R35601       | Analysis | Date: | 10/6/2009 1  | :00:31 PM  |
| Benzene                     | 17.98     | μg/L   | 1,0 | 20       | 0      | 89.9         | 76.7         | 114      |       |              |            |
| Toluene                     | 19.55     | µg/L   | 1.0 | 20       | 0      | 97.8         | 78.4         | 117      |       |              |            |
| Chlorobenzene               | 19.30     | μg/L   | 1.0 | 20       | 0      | 96.5         | 80.7         | 127      |       |              |            |
| 1,1-Dichloroethene          | - 21.15   | μg/L   | 1.0 | 20       | 0      | 106          | 80.2         | 128      |       |              |            |
| Trichloroethene (TCE)       | 17.49     | μg/L   | 1.0 | 20       | 0      | 87.4         | 77.4         | 115      |       |              |            |
| Surr: 1,2-Dichloroethane-d4 | 28.53     | μg/L   | ٥   | 30       | 0      | <b>9</b> 5.1 | 54.6         | 141      |       | •            |            |
| Surr: 4-Bromofluorobenzene  | 28.82     | μg/L   | 0   | 30       | 0      | 96.1         | 60.1         | 133      |       |              |            |
| Surr: Dibromofluoromethane  | 26.94     | μg/L   | 0   | 30       | 0      | 89.8         | <b>78</b> .5 | 130      |       |              |            |
| Surr: Toluene-d8            | 28.07     | μg/L   | 0   | 30       | 0      | 93.6         | 79.5         | 126      |       |              |            |
| Sample ID: 100ng lcs_b      |           | LCS    |     |          |        | Batch ID:    | R35601       | Analysis | Date: | 10/7/2009 4  | :34:12 AM  |
| Benzene                     | 17.88     | μg/L   | 1.0 | 20       | 0      | 89.4         | 76.7         | 114      |       |              |            |
| Foluene                     | 18.96     | µg/L   | 1.0 | 20       | 0      | 94.8         | 78.4         | 117      |       |              |            |
| Chlorobenzene               | 18.85     | µg/L   | 1.0 | 20       | 0      | 94.2         | 80.7         | 127      |       |              |            |
| 1,1-Dichloroethene          | 18.98     | μg/L   | 1.0 | 20       | O      | 94.9         | 80.2         | 128      |       |              |            |
| Frichloroethene (TCE)       | 15.42     | µg/L   | 1.0 | 20       | 0      | 77.1         | 77.4         | 115      |       |              | S          |
| Surr: 1,2-Dichloroethane-d4 | 9.507     | μg/L   | O   | 10       | 0      | 95.1         | 54.6         | 141      |       |              |            |
| Surr: 4-Bromofluorobenzene  | 9.864     | µg/L   | 0   | 10       | 0      | 98.6         | 60.1         | 133      |       |              |            |
| Surr: Dibromofluoromethane  | 9.519     | µg/L   | 0   | 10       | 0      | 95.2         | 78.5         | 130      |       |              |            |
| Surr: Toluene-d8            | 9.387     | µg/L   | 0   | 10       | 0      | 93.9         | 79.5         | 126      |       |              |            |
| Sample ID: 100ng Ics        |           | LCS    |     |          |        | Batch ID:    | R35624       | Analysis | Date: | 10/7/2009 12 | :37:37 PM  |
| 3enzene                     | 18.32     | μg/L   | 1.0 | 20       | 0      | 91.6         | 76.7         | 114      |       |              |            |
| Toluene                     | 20.24     | µg/L   | 1.0 | 20       | 0      | 101          | 78.4         | 117      |       |              |            |
| Chlorobenzene               | 19.84     | μg/L   | 1.0 | 20       | 0      | 99.2         | 80.7         | 127      |       |              |            |
| 1,1-Dichloroethene          | 21.05     | µg/L   | 1.0 | 20       | 0      | 105          | 80.2         | 128      |       |              |            |
| Frichloroethene (TCE)       | 16.12     | µg/L   | 1.0 | - 20     | 0      | 80.6         | 77.4         | 115      |       |              |            |
| Surr: 1,2-Dichloroethane-d4 | 9.237     | µg/L   | 0   | 10       | 0      | 92.4         | 54.6         | 141      |       |              |            |
| Surr: 4-Bromofluorobenzene  | 9.250     | µg/L   | . 0 | 10       | 0      | 92.5         | 60.1         | 133      |       |              |            |
| Surr: Dibromofluoromethane  | 9.086     | μg/L   | 0   | 10       | 0      | 90.9         | 78.5         | 130      |       |              |            |



E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits



# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Injection Well 4th QTR 10/1/09

Work Order:

0910042

| Analyte                     | Result    | Units        | PQL | SPK Va SF | K ref | %Rec L    | owLimit Hi | ghLimit %RPD   | RPDLimit Qual         |
|-----------------------------|-----------|--------------|-----|-----------|-------|-----------|------------|----------------|-----------------------|
| Method: EPA Method 8260B:   | VOLATILES |              |     |           |       |           |            | ,              |                       |
| Sample ID: 100ng ics        |           | LCS          |     |           |       | Batch ID: | R35624     | Analysis Date: | 10/7/2009 12:37:37 PM |
| Surr: Toluene-d8            | 9.619     | μg/L         | 0   | 10        | 0     | 96.2      | 79.5       | 126            |                       |
| Sample ID: 100ng lcs_b      |           | LCS          |     |           |       | Batch ID: | R35624     | Analysis Date: | 10/8/2009 12:42:31 AM |
| Benzene                     | 17.75     | µg/L         | 1.0 | 20        | 0     | 88.7      | 76.7       | 114            |                       |
| Toluene                     | 19.37     | μg/L         | 1.0 | ` 20      | 0     | 96.9      | 78.4       | 117            |                       |
| Chlorobenzene               | 18.70     | µg/∟         | 1.0 | 20        | 0     | 93.5      | 80.7       | 127            |                       |
| 1,1-Dichloroethene          | 20.73     | μg/L         | 1.0 | 20        | 0     | 104       | 80.2       | 128            |                       |
| Trichloroethene (TCE)       | 15.58     | µg/L         | 1.0 | 20        | 0     | 77.9      | 77.4       | 115            |                       |
| Surr: 1,2-Dichloroethane-d4 | 9.129     | μg/L         | 0   | 10        | 0     | 91.3      | 54.6       | 141            |                       |
| Surr: 4-Bromofluorobenzene  | 8.964     | μg/L         | 0   | 10        | 0     | 89.6      | 60.1       | 133            |                       |
| Surr: Dibromofluoromethane  | 9.427     | μ <b>g/L</b> | 0   | 10        | 0     | 94.3      | 78.5       | 130            |                       |
| Surr: Toluene-d8            | 9.529     | րց/բ         | 0   | 10        | 0     | 95.3      | 79.5       | 126            |                       |





Estimated value

Analyte detected below quantitation limits RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th QTR 10/1/09

Work Order:

0910042

|                             |               |      |    | _ <del></del> |           |       |          |       |            | Qual       |
|-----------------------------|---------------|------|----|---------------|-----------|-------|----------|-------|------------|------------|
|                             | Semivolatiles |      |    |               |           |       |          |       |            |            |
| Sample ID: mb-20263         |               | MBLK |    |               | Batch ID: | 20263 | Analysis | Date: | 10/13/2009 | 8:22:08 PM |
| Acenaphthene                | ND            | µg/L | 10 |               |           |       |          |       |            |            |
| Acenaphthylene              | · ND          | μg/L | 10 |               |           |       |          |       |            |            |
| Anlline                     | ND            | µg/L | 10 |               |           |       |          |       |            |            |
| Anthracene                  | ND            | μg/L | 10 |               |           |       |          |       |            |            |
| Azobenzene                  | ND            | µg/L | 10 |               |           |       |          |       |            |            |
| Benz(a)anthracene           | ND            | μg/L | 10 |               |           |       |          |       |            |            |
| Benzo(a)pyrene              | ND            | µg/L | 10 |               |           | •     | •        |       |            |            |
| Benzo(b)fluoranthene        | ND            | µg/L | 10 |               |           |       |          |       |            |            |
| Benzo(g,h,i)perylene        | ND            | μg/L | 10 |               |           |       |          |       |            |            |
| Benzo(k)fluoranthene        | ND            | µg/L | 10 |               |           |       |          |       |            |            |
| Benzoic acid                | ND            | μg/L | 20 |               |           |       |          |       |            |            |
| Benzyl alcohol              | ND            | µg/L | 10 |               |           |       |          |       |            |            |
| Bis(2-chloroethoxy)methane  | ND            | μg/L | 10 |               |           |       |          |       |            |            |
| Bis(2-chloroethyl)ether     | ND            | μg/L | 10 |               |           |       |          |       |            |            |
| Bis(2-chloroisopropyl)ether | ND            | μg/L | 10 |               |           |       |          |       |            |            |
| Bis(2-ethylhexyl)phthalate  | ND            | μg/L | 10 |               |           |       |          |       |            |            |
| 4-Bromophenyl phenyl ether  | ND            | μg/L | 10 |               |           |       |          |       |            |            |
| Butyl benzyl phthalate      | ND            | μg/L | 10 |               |           |       |          |       |            |            |
| Carbazole                   | ND            | μg/L | 10 |               |           |       |          |       |            |            |
| 4-Chloro-3-methylphenol     | ND            | μg/L | 10 |               |           |       |          |       |            |            |
| 4-Chloroaniline             | ND            | μg/L | 10 |               |           |       |          |       |            |            |
| 2-Chloronaphthalene         | ND            | μg/L | 10 |               |           |       |          |       |            |            |
| 2-Chlorophenol              | ND            | µg/L | 10 |               |           |       |          |       |            |            |
| 1-Chlorophenyl phenyl ether | ND            | µg/L | 10 |               |           |       |          |       |            |            |
| Chrysene                    | ND            | μg/L | 10 |               |           |       |          |       |            |            |
| Di-n-butyl phthalate        | ND            | μg/L | 10 |               |           |       |          |       |            |            |
| Di-n-octyl phthalate        | ND            | μg/L | 10 |               |           |       |          |       |            |            |
| Dibenz(a,h)anthracene       | ND            | µg/L | 10 |               |           |       |          |       |            |            |
| Dibenzofuran                | ND            | µg/L | 10 |               | •         |       |          |       |            |            |
| ,2-Dichlorobenzene          | ND            | μg/L | 10 |               |           |       |          |       |            |            |
| 1,3-Dichlorobenzene         | ND            | μg/L | 10 |               |           |       |          |       |            |            |
| 1,4-Dichlorobenzene         | ND            | µg/L | 10 |               |           |       |          |       |            |            |
| 3.3'-Dichlorobenzidine      | ND            | μg/L | 10 |               |           |       |          |       |            |            |
| Diethyl phthalate           | ND            | μg/L | 10 |               |           |       |          |       |            |            |
| Dimethyl phthalate          | ND            | µg/L | 10 |               |           |       |          |       |            |            |
| 2,4-Dichlorophenol          | ND            | µg/L | 20 |               |           |       |          |       |            |            |
| 2,4-Dimethylphenol          | ND            | µg/L | 10 |               |           |       |          | •     |            |            |
| 4,6-Dinitro-2-methylphenol  | ND .          | µg/L | 20 |               |           |       |          |       |            |            |
| 2,4-Dinitrophenol           | ND            | μg/L | 20 |               |           |       |          |       |            |            |
| 2,4-Dinitrotoluene          | ND            | µg/L | 10 |               |           |       |          |       |            |            |
| 2,6-Dinitrotoluene          | ND .          | μg/L | 10 |               |           |       |          |       |            |            |
| luoranthene                 | ND            | μg/L | 10 |               |           |       |          |       |            |            |
| Fluorene                    | ND.           | µg/L | 10 |               |           |       |          |       |            |            |
| dexachlorobenzene           | ND            | µg/L | 10 |               |           |       |          |       |            |            |



E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits



# QA/QC SUMMARY REPORT

Client: Dject: Western Refining Southwest, Inc.

Injection Well 4th QTR 10/1/09

Work Order:

0910042

| Analyte                    | Result         | Units PQL SPK Va SPK ref |    | %Rec | LowLimit H | %RPD      | D RPDLimit Qual |             |          |              |            |
|----------------------------|----------------|--------------------------|----|------|------------|-----------|-----------------|-------------|----------|--------------|------------|
| Method: EPA Method 8270C   | Semivolatile   | s                        |    |      |            |           |                 |             |          |              |            |
| Sample ID: mb-20263        |                | MBLK                     |    |      |            | Batch ID: | 20263           | Analys      | is Date: | 10/13/2009   | 8:22:08 Pf |
| Hexachlorobutadiene        | ND             | µg/L                     | 10 |      |            |           |                 |             |          |              |            |
| Hexachlorocyclopentadiene  | ND             | μg/L                     | 10 |      |            |           |                 |             |          |              |            |
| Hexachloroethane           | ND             | μg/L                     | 10 |      |            |           |                 |             |          |              |            |
| Indeno(1,2,3-cd)pyrene     | ND             | μg/L                     | 10 |      |            |           |                 |             |          |              |            |
| Isophorone                 | ND             | μg/L                     | 10 |      |            |           |                 |             |          |              |            |
| 2-Methylnaphthalene        | ND.            | μg/L                     | 10 |      |            |           |                 |             |          |              |            |
| 2-Methylphenol             | ND             | μg/L                     | 10 |      |            |           |                 |             |          |              |            |
| 3+4-Methylphenol           | ND             | µg/L                     | 10 |      |            |           |                 |             |          |              |            |
| N-Nitrosodi-n-propylamine  | ND             | μg/L                     | 10 |      |            |           |                 |             |          |              |            |
| N-Nitrosodimethylamine     | ND -           | μg/L                     | 10 |      |            |           |                 |             |          |              |            |
| N-Nitrosodiphenylamine     | ND             | μg/L                     | 10 |      |            |           |                 |             |          |              |            |
| Naphthalene                | ND             | µg/L                     | 10 |      |            |           |                 |             |          |              |            |
| 2-Nitroaniline             | ND             | µg/L                     | 10 |      |            |           |                 |             |          |              |            |
| 3-Nitroaniline             | ND             | μg/L                     | 10 |      |            |           |                 |             |          |              |            |
| 4-Nitroaniline             | ND             | µg/L                     | 10 |      |            |           |                 |             |          |              |            |
| Nitrobenzene               | ND             | µg/L                     | 10 |      |            |           |                 |             | •        |              |            |
| 2-Nitrophenol              | ND             | µg/L                     | 10 |      |            |           |                 |             |          |              |            |
| 4-Nitrophenol              | ND             | µg/L                     | 10 |      |            |           |                 |             |          |              |            |
| Pentachiorophenol          | ND             | µg/L                     | 20 |      |            |           |                 |             |          |              |            |
| Phenanthrene               | ND             | µg/L                     | 10 |      |            |           |                 |             |          |              |            |
| nol                        | ND             | μg/L                     | 10 |      |            |           |                 |             |          |              |            |
| ene                        | ND             | µg/L                     | 10 |      |            |           |                 |             |          |              |            |
| Pyridine                   | ND             | µg/L                     | 10 |      |            |           |                 |             |          |              |            |
| 1,2,4-Trichlorobenzene     | ND             | μg/L                     | 10 |      |            |           |                 |             |          |              |            |
| 2,4,5-Trichlorophenol      | ND             | μg/L                     | 10 |      |            |           |                 |             |          |              |            |
| 2,4,6-Trichlorophenol      | ND             | μg/L                     | 10 |      |            |           |                 |             |          |              |            |
| Surr: 2,4,6-Tribromophenol | 125.5          | µg/L                     | 0  | 200  | 0          | 62.7      | 16.6            | 150         |          |              |            |
| Surr: 2-Fluorobiphenyl     | 67.08          | µg/L                     | 0  | 100  | 0          | 67.1      | 19.6            | 134         |          |              |            |
| Surr: 2-Fluorophenol       | 81.92          | µg/L                     | 0  | 200  | 0          | 41.0      | 9.54            | <b>1</b> 13 |          |              |            |
| Surr: 4-Terphenyl-d14      | 55.72          | μg/L                     | 0  | 100  | 0          | 55.7      | 22.7            | 145         |          |              |            |
| Surr: Nitrobenzene-d5      | 63.14          | μg/L                     | 0  | 100  | 0          | 63.1      | 14.6            | 134         |          |              |            |
| Surr: Phenol-d5            | 78.32          | μg/L                     | 0  | 200  | 0          | 39.2      | 10.7            | 80.3        |          |              |            |
| Sample ID: Ics-20263       |                | LCS                      |    |      |            | Batch ID: | 20263           | Analysi     | is Date: | 10/13/2009 1 | :45:48 PM  |
| Acenaphthene               | 68. <b>7</b> 6 | μg/L                     | 10 | 100  | 0          | 68.8      | 33.2            | 88.1        |          |              |            |
| 4-Chloro-3-methylphenol    | 126.1          | µg/L                     | 10 | 200  | 0          | 63.0      | 26.5            | 101         |          |              |            |
| 2-Chlorophenol             | 115.8          | µg/L                     | 10 | 200  | 0          | 57.9      | 27.5            | 88.7        |          |              |            |
| 1,4-Dichlorobenzene        | 54.96          | μg/L                     | 10 | 100  | 0          | 55.0      | 27.2            | 74.1        |          |              |            |
| 2,4-Dinitrotoluene         | 79.68          | µg/L                     | 10 | 100  | 0          | 79.7      | 32.6            | 107         |          |              |            |
| N-Nitrosodi-n-propylamine  | 66.70          | μg/L                     | 10 | 100  | 0          | 66.7      | 27.1            | 96.3        |          |              |            |
| 4-Nitrophenol              | 92.92          | µg/L                     | 10 | 200  | 0          | 46.5      | 6.78            | 74.7        |          |              |            |
| Pentachlorophenol          | 141.7          | µg/L                     | 20 | 200  | 0          | 70.9      | 14.8            | 113         |          |              |            |
| Phenol                     | 63.86          | μg/L                     | 10 | 200  | 0          | 31.9      | 17              | 53.4        |          |              |            |
| Pyrene                     | 64.12          | µg/L                     | 10 | 100  | 0          | 64.1      | 27              | 96.3        |          |              |            |
| -                          | 62.24          | μg/L                     | 10 | 100  | 0          | 62.2      | 30              | 77.9        |          |              |            |

Qualifiers:



Estimated value

Analyte detected below quantitation limits RPD outside accepted recovery limits

Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

# QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th QTR 10/1/09

Work Order:

0910042

| Analyte                     | Result        | Units   | PQL    | SPK V | a SPK ref | %Rec L    | owLimit Hi | ghLimit %RPD   | RPDLimit Qual          |
|-----------------------------|---------------|---------|--------|-------|-----------|-----------|------------|----------------|------------------------|
| Method: EPA Method 8270C:   | Semivolatiles | 3       |        |       |           |           |            |                |                        |
| Sample ID: Ics-20263        |               | LCS     |        |       |           | Batch ID: | 20263      | Analysis Date: | 10/13/2009 1:45:48 PM  |
| Surr: 2,4,6-Tribromophenol  | 166.5         | µg/L    | 0      | 200   | 0         | 83.3      | 16.6       | 150            |                        |
| Surr: 2-Fluorobiphenyl      | 69.02         | µg/L    | 0      | 100   | 0         | 69.0      | 19.6       | 134            |                        |
| Surr: 2-Fluorophenol        | 91.20         | μg/L    | 0      | 200   | 0         | 45.6      | 9.54       | 113            | •                      |
| Surr: 4-Terphenyl-d14       | 65.48         | µg/L    | 0      | 100   | 0         | 65.5      | 22.7       | 145            |                        |
| Surr: Nitrobenzene-d5       | 70.80         | µg/L    | 0      | 100   | 0         | 70.8      | 14.6       | 134            |                        |
| Surr: Phenol-d5             | 71.74         | µg/Ł    | 0      | 200   | 0         | 35.9      | 10.7       | 80.3           |                        |
| Method: EPA 120.1: Specific | Conductance   | D.UD    |        |       |           | Batch ID: | Dagge      | Analysis Data  | 10/2/2009 2:35:00 PM   |
| Sample ID: 0910020-04A DUP  |               | DUP     |        |       |           | Daton ID. | R35564     | Analysis Date: |                        |
| Specific Conductance        | 704.1         | µmhos/c | 0.010  |       |           |           |            | 0.566          | •                      |
| Sample ID: 0910025-01GDUP   |               | DUP     |        |       |           | Batch ID: | R35564     | Analysis Date: | 10/2/2009 6:12:00 PM   |
| Specific Conductance        | 47950         | µmhos/c | 0.10   |       |           |           |            | 0.208          | 20                     |
| Method: EPA 6010B: Total Re | coverable Me  | tals    |        |       |           |           |            |                |                        |
| Sample ID: MB-20291         |               | MBLK    |        |       |           | Batch ID: | 20291      | Analysis Date: | 10/14/2009 1:09:21 AM  |
| Lead                        | ND            | mg/L    | 0.0050 |       |           |           |            |                | ·                      |
| Sample ID: MB-20291         |               | MBLK    | •      |       |           | Batch ID: | 20291      | Analysis Date: | 10/16/2009 12:46:37 PM |
| Arsenic                     | ND            | mg/L    | 0.020  |       |           |           |            |                |                        |
| Barium                      | ND            | mg/∟    | 0.010  |       |           |           |            |                |                        |
| Cadmium                     | ND            | mg/L    | 0.0020 |       |           |           |            |                |                        |
| Calcium                     | ND            | mg/L    | 0.50   |       |           |           |            |                |                        |
| Chromium                    | ND            | mg/L    | 0.0060 |       |           |           |            |                |                        |
| Lead                        | ND            | mg/L    | 0.0050 |       |           |           |            |                |                        |
| Magnesium                   | ND            | mg/L    | 0.50   |       |           |           |            |                |                        |
| Potassium                   | ND            | mg/L    | 1.0    |       |           |           |            |                | •                      |
| Sélenium                    | ND            | mg/L    | 0.050  |       |           |           |            |                |                        |
| Silver                      | ND            | mg/L    | 0.0050 |       |           |           |            |                |                        |
| Sodium                      | ND            | mg/L    | 0.50   |       |           |           |            | •              |                        |
| Sample ID: LCS-20291        |               | LCS     |        |       |           | Batch ID: | 20291      | Analysis Date: | 10/14/2009 1:11:54 AM  |
| Lead                        | 0.4668        | mg/L    | 0.0050 | 0.5   | 0         | 93.4      | 80         | 120            |                        |
| Sample ID: LCS-20291        |               | LCS     |        |       |           | Batch ID: | 20291      | Analysis Date: | 10/16/2009 12:49:47 PM |
| Arsenic                     | 0.4714        | mg/L    | 0.020  | 0.5   | 0         | 94.3      | 80         | 120            |                        |
| Barium                      | 0.4770        | mg/L    | 0.010  | 0.5   | 0         | 95.4      | 80         | 120            |                        |
| Cadmium                     | 0.4819        | mg/L    | 0.0020 | 0.5   | 0.0008    | 96.2      | 80         | 120            |                        |
| Calcium                     | 49.19         | mg/L    | 0.50   | 50    | 0         | 98.4      | 80         | 120            | i e                    |
| Chromium                    | 0.4753        | mg/L    | 0.0060 | 0.5   | 0         | 95.1      | 80         | 120            |                        |
| Lead                        | 0.4767        | mg/L    | 0.0050 | 0.5   | 0         | 95.3      | 80         | 120            |                        |
| Magnesium                   | 49.91         | mg/L    | 0.50   | 50    | 0         | 99.8      | 80         | 120            |                        |
| Potassium                   | 51.79         | mg/L    | 1.0    | 50    | 0         | 104       | 80         | 120            |                        |
| Selenium                    | 0.4668        | mg/L    | 0.050  | 0.5   | 0         | 93.4      | 80         | 120            |                        |
| Silver                      | 0.4967        | mg/L    | 0.0050 | 0.5   | 0.0022    | 98.9      | 80         | 120            |                        |
| Sodium                      | 53.73         | mg/L    | 0.50   | EΛ    | 0.4055    | 107       | 80         | 120            |                        |

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits



# QA/QC SUMMARY REPORT

SPK Va SPK ref

Client: oject: Western Refining Southwest, Inc.

Result

7.500

Injection Well 4th QTR 10/1/09

Work Order:

0910042

Analyte

pΗ

SM4500-H+B: pH

Sample ID: 0910025-01GDUP

pH units

Units

PQL

0.1

%Rec LowLimit HighLimit

%RPD RPDLimit Qual

Method:

DUP

Batch ID:

R35564

Analysis Date:

10/2/2009 6:12:00 PM

0

Qualifiers:

Estimated value

Analyte detected below quantitation limits RPD outside accepted recovery limits

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

\$ Spike recovery outside accepted recovery limits

# Hall Environmental Analysis Laboratory, Inc.

# Sample Receipt Checklist

| Client Name WESTERN REFINING SOUT               |                   | Date Receiv | Date Received: 10/2/2009 |                    |                                       |                       |             |  |
|-------------------------------------------------|-------------------|-------------|--------------------------|--------------------|---------------------------------------|-----------------------|-------------|--|
| Work Order Number 0910042                       |                   |             |                          | Received b         | y: TLS                                | 1                     |             |  |
| Checklist completed by:                         | \$                | ·<br>       | / C                      | Sample ID          | labels checked by<br>-                | /:<br>Initials        |             |  |
| Matrix:                                         | Carrier name:     | <u>UPS</u>  | <u>3</u>                 |                    |                                       |                       |             |  |
| Shipping container/cooler in good condition?    | •                 | Yes         | $\mathbf{Z}$             | No 🗌               | Not Present                           |                       |             |  |
| Custody seals intact on shipping container/cool | er?               | Yes         | ¥                        | No 🗌               | Not Present [                         | Not Shipped           |             |  |
| Custody seals intact on sample bottles?         |                   | Yes         |                          | No 🗆               | N/A                                   | Ø                     |             |  |
| Chain of custody present?                       |                   | Yes         | V                        | No 🗌               |                                       | •                     |             |  |
| Chain of custody signed when relinquished and   | received?         | Yes         | V                        | No 🗌               |                                       |                       |             |  |
| Chain of custody agrees with sample labels?     | •                 | Yes         | V                        | No 🗆               |                                       |                       |             |  |
| Samples in proper container/bottle?             |                   | Yes         | $\checkmark$             | No 🗌               |                                       |                       |             |  |
| Sample containers intact?                       |                   | Yes         | V                        | No 🗌               |                                       |                       |             |  |
| Sufficient sample volume for indicated test?    |                   | Yes         | $\checkmark$             | No 🗌               |                                       |                       |             |  |
| All samples received within holding time?       |                   | Yes         | V                        | No 🗌               | •                                     | Number of             |             |  |
| Water - VOA vials have zero headspace?          | No VOA vials subm | itted       |                          | Yes 🗹              | No 🗌                                  | bottles che<br>pH:    | icked for   |  |
| Water - Preservation labels on bottle and cap m | atch?             | Yes         | $\mathbf{Z}$             | No 🗌               | N/A                                   | <u> </u>              | <b></b>     |  |
| Water - pH acceptable upon receipt?             |                   | Yes         | Y                        | No 🗀               | N/A                                   | <2 >12 unie<br>below. | ess noted   |  |
| Container/Temp Blank temperature?               |                   | 4.          | .3°                      | <6° C Accepta      |                                       | Delow.                |             |  |
| COMMENTS:                                       |                   |             |                          | If given sufficier | nt time to cool.                      |                       |             |  |
| ·                                               |                   |             |                          |                    |                                       |                       |             |  |
|                                                 |                   |             |                          |                    |                                       |                       |             |  |
|                                                 |                   |             |                          |                    |                                       | :                     |             |  |
|                                                 |                   |             |                          |                    |                                       |                       | •           |  |
|                                                 |                   |             |                          |                    |                                       |                       |             |  |
| •                                               | •                 |             |                          |                    |                                       | •                     | •           |  |
| Client contacted                                | Date contacted:   |             |                          | Per                | son contacted                         |                       |             |  |
| Contacted by:                                   | Regarding:        |             |                          |                    |                                       |                       |             |  |
| Comments:                                       |                   |             |                          |                    |                                       |                       |             |  |
|                                                 |                   |             |                          |                    |                                       |                       | ,           |  |
|                                                 |                   |             |                          |                    | · · · · · · · · · · · · · · · · · · · |                       | <del></del> |  |
| ·                                               |                   |             |                          |                    |                                       |                       |             |  |
|                                                 |                   |             |                          |                    | ·                                     |                       |             |  |
| Corrective Action                               |                   |             |                          |                    | <del></del>                           |                       |             |  |
|                                                 |                   |             |                          |                    |                                       |                       |             |  |
|                                                 | N                 |             |                          |                    | <del></del>                           |                       |             |  |

|                       |                         | www hallenvironmental com | 1 4901 Hawki           | Tel. 505-345-3975 | Analysis | ( <sup>7</sup> () | s on | (Gas)                                    | B (CO)        | 11 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 | BE day                       | hethod<br>Method<br>Method<br>8 Me<br>(F,C<br>(VO)<br>Semi- | BTEX<br>BTEX<br>BTEX<br>BTEX<br>BTPH (I<br>BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS STO (BS | X                               | ×             | · × | ×             | <b>X</b>        | × | ×           | X X           | X            |            |     | Time Remarks:          | 0/0                      | 2            |
|-----------------------|-------------------------|---------------------------|------------------------|-------------------|----------|-------------------|------|------------------------------------------|---------------|----------------------------------------|------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------|-----|---------------|-----------------|---|-------------|---------------|--------------|------------|-----|------------------------|--------------------------|--------------|
| Turn-Around Time:     | ☐ Standard □ Rush       |                           | Triedly well 4th of M. |                   |          | Project Manager:  |      |                                          | Sampler: $60$ |                                        | ample Tremperature The Table | Container Preservative                                      | Type and # Type (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3-voA HC/ 1                     | 1-liter Amber | A.  | 1-500ml N/A 1 | 1-Seem! Na OH 1 | 0 | 1-50m N/A 1 | 1-250 H2SOY 1 | - Seems 11/4 | 2-VOA 2    |     | Received by: Date Time | Boreling W 10/2/09 10/2  | Date Comment |
| ain-of-Custody Record | Client Western Refining |                           | +60 CR4990             | 8,1413            | 11       | ///               |      | ☐ Standard ☐ ☐ Level 4 (Full Validation) |               | □ EDD (Type)                           |                              |                                                             | Mattix Satispie Request ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10-1-09 1010 Has Injection well |               |     |               |                 |   |             |               |              | Trip Blank | i i | Time: Relinquished by: | Date Time Relingished by |              |

# Hall Environmental Analysis Laboratory

# **QUALITY ASSURANCE PLAN**

Effective Date: January 31st 2009

Revision 9.0

www.hallenvironmental.com

Control Number: 0000082

Approved By:

Nancy McDuffie

Laboratory Manager

Date

# **Table of Contents**

| Section | Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>Page</u> |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.0     | Title Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1           |
| 2.0     | Table of Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3           |
| 3.0     | Introduction Purpose of Document Objectives Policies                                                                                                                                                                                                                                                                                                                                                                                                                               | 6           |
| 4.0     | Organization and Responsibility Company Certifications Personnel     Laboratory Director     Laboratory Manager/ Lead Technical Director     Quality Assurance Officer     Business/Project Manager     Section Managers/Technical Directors     Health and Safety/Chemical Hygiene Officer     Chemist I-III     Laboratory Technician     Sample Control Manager     Sample Custodians     Delegations in the Absence of Key Personnel     Personnel Qualifications and Training | 8           |
| 5.0     | Receipt and Handling of Samples Sampling Procedures Containers Preservation Sample Custody Receiving Samples Logging in Samples and Storage Disposal of Samples                                                                                                                                                                                                                                                                                                                    | 16          |
| 6.0     | Analytical Procedures  List of Procedures Used  Criteria for Standard Operating Procedures                                                                                                                                                                                                                                                                                                                                                                                         | 19          |

| 7.0     | Calibration Thermometers Refrigerators/Freezers Ovens Analytical/Table Top Balances Instrument Calibration pH Meter Other Analytical Instrumentation and Equipment Standards Reagents                                                                                              | 23 |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 8.0     | Maintenance                                                                                                                                                                                                                                                                        | 27 |
| 9.0     | Data Integrity                                                                                                                                                                                                                                                                     | 28 |
| 10.0    | Quality Control Internal Quality Control Checks Precision, Accuracy, Detection Limit Quality Control Parameter Calculations Mean Standard Deviation Percent Recovery (%R) Confidence Intervals Relative Percent Difference (RPD) Uncertainty Measurements Calibration Calculations | 29 |
| 11.0    | Data Reduction, Validation, and Reporting Data Reduction Validation Reports and Records                                                                                                                                                                                            | 39 |
| 12.0    | Corrective Action                                                                                                                                                                                                                                                                  | 41 |
| 13.0    | Quality Assurance Audits, Reports and Complaints Internal/External Systems' Audits Management Reviews Complaints Internal and External Reports                                                                                                                                     | 43 |
| 14.0    | Analytical Protocols                                                                                                                                                                                                                                                               | 46 |
| Appendi | x A Personnel Chart/Organizational Structure                                                                                                                                                                                                                                       | 48 |
| Appendi | x B ORELAP Accreditation  Full list of approved analytes, methods, analytical techniques and fields of testing  Reserved, available upon request.                                                                                                                                  |    |

Page 3 of 48 Quality Assurance Plan Effective January 31, 2009

# Appendix C TCEQ Accreditation

Full list of approved analytes, methods, analytical techniques and fields of testing Reserved, available upon request

# Appendix D ADHS Accreditation

Full list of approved analytes, methods, analytical techniques and fields of testing Reserved, available upon request

# Appendix E NMED-DWB Certification

Reserved, available upon request

## Appendix F Terms and Definitions

Reserved, available upon request

# Appendix G Chain of Custody Record

Reserved, available upon request

# Appendix H HEAL Forms

Analyst Ethics and Data Integrity Agreement IDOC Certificate
ADOCP Certificate
Training Forms
Reserved, available upon request

#### 3.0 Introduction

## **Purpose of Document**

The purpose of this Quality Assurance Plan is to formally document the quality assurance policies and procedures of Hall Environmental Analysis Laboratory, Inc. (HEAL), for the benefit of its employees, clients, and accrediting organizations. HEAL continually implements all aspects of this plan as an essential and integral part of laboratory operations in order to ensure that high quality data is produced in an efficient and effective manner.

## **Objectives**

The objective of HEAL is to achieve and maintain excellence in environmental testing. This is accomplished by developing, incorporating and documenting the procedures and policies specified by each of our accrediting authorities and outlined in this plan. A laboratory staff that is analytically competent, well qualified, and highly trained carries out these activities. An experienced management team, knowledgeable in their area of expertise, monitors them. Finally, a comprehensive quality assurance program governs laboratory practices and ensures that the analytical results are valid, defensible, reproducible, reconstructable and of the highest quality.

HEAL establishes and thoroughly documents its activities to ensure that all data generated and processed will be scientifically valid and of known and documented quality. Routine laboratory activities are detailed in method specific standard operating procedures (SOP). All data reported meets the applicable requirements for the specific method that is referenced, ORELAP, TCEQ, EPA, client specific requirements and/or State Bureaus. In the event that these requirements are ever in contention with each other, it is HEAL's policy to always follow the most prudent requirement available. For specific method requirements refer to HEAL's Standard Operating Procedures (SOP's), EPA methods, Standard Methods 20<sup>th</sup> edition, ASTM methods or state specific methods.

HEAL management ensures that this document is correct in terms of required accuracy, data reproducibility, and that the procedures contain proper quality control measures. HEAL management additionally ensures that all equipment is reliable, well maintained and appropriately calibrated. The procedures and practices of the laboratory are geared towards not only strictly following our regulatory requirements but also allowing the flexibility to conform to client specific specifications. Meticulous records are maintained for all samples and their respective analyses so that results are well documented and defensible in a court of law.

The HEAL Quality Assurance/Quality Control Officer (QA/QCO) and upper management are responsible for supervising and administering this quality assurance program, and ensuring each individual is responsible for its proper implementation. All HEAL management remains committed to the encouragement of excellence in analytical testing and will continue to provide the necessary resources and environment conducive to its achievement.

Page 5 of 48
Quality Assurance Plan
Effective January 31, 2009

#### **Policies**

Understanding that quality cannot be mandated, it is the policy of this laboratory to provide an environment that encourages all staff members to take pride in the quality of their work. In addition to furnishing proper equipment and supplies, HEAL stresses the importance of continued training and professional development. Further, HEAL recognizes the time required for data interpretation. Therefore, no analyst should feel pressure to sacrifice data quality for data quantity. Each staff member must perform with the highest level of integrity and professional competence, always being alert to problems that could compromise the quality of their technical work.

Management and senior personnel supervise analysts closely in all operations. Under no circumstance is the willful act or fraudulent manipulation of analytical data condoned. Such acts must be reported immediately to HEAL management. Reported acts will be assessed on an individual basis and resulting actions could result in dismissal. The laboratory staff is encouraged to speak with lab managers or senior management if they feel that there are any undo commercial, financial, or other pressures, which might adversely affect the quality of their work; or in the event that they suspect that data quality has been compromised in any way. HEALs Quality Assurance/Quality Control Officer is available if any analyst and/or manager wishes to anonymously report any suspected or known breaches in data integrity.

All proprietary rights and client information at HEAL (including national security concerns) are considered confidential. No information will be given out without the express verbal or written permission of the client. All reports generated will be held in the strictest of confidence.

This is a controlled document. Each copy is assigned a unique tracking number and when released to a client or accrediting agency the QA/QCO keeps the tracking number on file. This document is reviewed on an annual basis to ensure that it is valid and representative of current practices at HEAL.

Page 6 of 48
Quality Assurance Plan
Effective January 31, 2009

## 4.0 Organization and Responsibility

# Company

HEAL is accredited in accordance with the 2003 NELAC standard (see NELAC accredited analysis list in the appendix), through ORELAP and TCEQ and by the Arizona Department of Health Services. Additionally, HEAL is qualified as defined under the State of New Mexico Water Quality Control Commission regulations and the New Mexico State Drinking Water Bureau. HEAL is a locally owned small business that was established in 1991. HEAL is a full service environmental analysis laboratory with analytical capabilities that include both organic and inorganic methodologies and has performed analyses of soil, water, air as well as various other matrices for many sites in the region. HEAL's client base includes local, state and federal agencies, private consultants, commercial industries as well as individual homeowners. HEAL has performed as a subcontractor to the state of New Mexico and to the New Mexico Department of Transportation. HEAL has been acclaimed by its customers as producing quality results and as being adaptive to client-specific needs.

The laboratory is divided into an organic section, and an inorganic section. Each section has a designated manager/technical director. The technical directors report directly to the laboratory manager, who oversees all operations.

## Certifications

ORELAP - NELAC Oregon Primary accrediting authority.

TCEQ - NELAC Texas Secondary accrediting authority.

The Arizona Department of Health Services

The New Mexico Drinking Water Bureau

See appendix B-E for copies of current licenses and licensed parameters, or refer to our current list of certifications online at <a href="https://www.hallenvironmental.com">www.hallenvironmental.com</a>.

## Personnel

HEAL management ensures the competence of all who operate equipment, perform environmental tests, evaluate results, and sign test reports. Personnel performing specific tasks shall be qualified on the basis of appropriate education, training, experience and /or demonstrated skills.

All personnel shall be responsible for complying with HEALs quality assurance/quality control requirements that pertain to their technical function. Each technical staff member must have a combination of experience and education to adequately demonstrate specific knowledge of their

particular function and a general knowledge of laboratory operations, test methods, quality assurance/quality control procedures and records management.

All employees training certificates and diplomas are kept on file with demonstrations of capability for each method they perform. An Organizational Chart can be found in Appendix A.

# **Laboratory Director**

The Laboratory Director is responsible for overall technical direction and business leadership of HEAL. The Laboratory Manager, the Project Manager and Quality Assurance/Quality Control Officer report directly to the Laboratory Director. Someone with a minimum of 7 years of directly related experience and a bachelor's degree in a scientific or engineering discipline should fill this position.

# Laboratory Manager/Lead Technical Director

The Laboratory Manager shall exercise day—to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results. The Laboratory Manager shall be experienced in the fields of accreditation for which the laboratory is approved or seeking accreditation. The Laboratory Manager shall certify that personnel with appropriate educational and/or technical background perform all tests for which HEAL is accredited. Such certification shall be documented.

The Laboratory Manager shall monitor standards of performance in quality control and quality assurance and monitor the validity of the analyses performed and data generated at HEAL to assure reliable data.

The Laboratory Manager is responsible for the daily operations of the laboratory. The Laboratory Manager is the lead technical director of the laboratory and in conjunction with the section technical directors is responsible for coordinating activities within the laboratory with the overall goal of efficiently producing high quality data with in a reasonable time frame.

In events where employee scheduling or current workload is such that new work cannot be incorporated, with out missing hold times, the Laboratory Manager has authority to modify employee scheduling, re-schedule projects or, when appropriate, allocate the work to approved subcontracting laboratories.

Additionally, the laboratory manager reviews and approves new analytical procedures and methods, and performs a final review of most analytical results. The Laboratory Manager provides technical support to both customers and HEAL staff.

The Laboratory Manager also observes the performance of supervisors to ensure good laboratory practices and proper techniques are being taught and utilized, assisting in overall quality control implementation, and strategic planning for the future of the company. Other duties include assisting in establishing laboratory policies which lead to the fulfillment of requirements for various certification programs, assuring that all Quality

Page 8 of 48
Quality Assurance Plan
Effective January 31, 2009

Assurance and Quality Control documents are reviewed and approved, and assisting in conducting Quality Assurance Audits.

The laboratory manager addresses questions or complaints that cannot be answered by the section managers.

The Laboratory Manager shall have a bachelor's degree in a chemical, environmental, biological sciences, physical sciences or engineering field, and at least five years of experience in the environmental analysis of representative inorganic and organic analytes for which the laboratory seeks or maintains accreditation.

## Quality Assurance Quality Control Officer

The Quality Assurance/Quality Control Officer (QA/QCO) serves as the focal point for QA/QC and shall be responsible for the oversight and/or review of quality control data. The QA/QCO functions independently from laboratory operations and shall be empowered to halt unsatisfactory work and/or prevent the reporting of results generated from an out-of-control measurement system. The QA/QCO shall objectively evaluate data and perform assessments without any outside/managerial influence. The QA/QCO shall have direct access to the highest level of management at which decisions are made on laboratory policy and/or resources. The QA/QCO shall notify laboratory management of deficiencies in the quality system in periodic, independent reports.

The QA/QCO shall have general knowledge of the analytical test methods, for which data review is performed, have documented training and/or experience in QA/QC procedures and in the laboratory's quality system. The QA/QCO will have a minimum of a BS in a scientific or related field and a minimum of three years of related experience.

The QA/QCO shall schedule and conduct internal audits as per the Internal Audit SOP at least annually, monitor and trend Corrective Action Reports as per the Data Validation SOP, periodically review control charts for out of control conditions and initiate any appropriate corrective actions.

The QA/QCO shall oversee the analysis of proficiency testing in accordance with our standards and monitor any corrective actions issued as a result of this testing.

The QA/QCO reviews all standard operating procedures and statements of work in order to assure their accuracy and compliance to method and regulatory requirements.

The QA/QCO shall be responsible for maintaining and updating this quality manual.

#### Business/Project Manager

The role of the business/project manager is to act as a liaison between HEAL and our clients. The project manager reviews reports, updates clients on the status of projects inhouse, prepares quotations for new work, and is responsible for HEALs marketing effort.

All new work is assessed by the project manager and reviewed with the other managers so as to not exceed the laboratories capacity. In events where employee scheduling or current workload is such that new work cannot be incorporated with out missing hold times, the Project Manager has authority to re-schedule projects.

It is also the duty of the project manager to work with the Laboratory Manager and QA/QCO to insure that before new work is undertaken the resources required and accreditations requested are available to meet the client's specific needs.

Additionally, the Project Manager can initiate the review of the need for new analytical procedures and methods, and performs a final review of some analytical results. The Project Manager provides technical support to customers. Someone with a minimum of 2 years of directly related experience and a bachelor's degree in a scientific or engineering discipline should fill this position.

# Section Manager/Technical Directors

The Section Manager/Technical Directors are full-time members of the staff at HEAL who exercise day-to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results for their department within HEAL. A Technical Director's duties shall include, but not be limited to, monitoring standards of performance in quality control and quality assurance; monitoring the validity of the analyses performed and the data generated in their sections to ensure reliable data, overseeing training and supervising departmental staff, schedule incoming work for their sections and monitor laboratory personnel to ensure that proper procedures and techniques are being utilized. They supervise and implement new Quality Control procedures as directed by the QA/QCO, update and maintain quality control records including, but not limited to, training forms, IDOCs, ADOCPs, MDLs and evaluate laboratory personnel in their Quality Control activities. In addition technical directors are responsible for upholding the spirit and intent of HEAL's data integrity procedures.

They are the technical director of the associated section and review analytical data to acknowledge that data meets all criteria set forth for good Quality Assurance practices. Someone with a minimum of 2 years of experience in the environmental analysis of representative analytes for which HEAL seeks or maintains accreditation and a bachelor's degree in a scientific or related discipline should fill this position.

## Health and Safety / Chemical Hygiene Officer

Refer to the most recent version of the Health and Safety and Chemical Hygiene Plans for the rolls, responsibilities and basic requirements of the Health and Safety Officer (H&SO) and the Chemical Hygiene Officer (CHO). These jobs can be executed by the same employee.

Page 10 of 48
Quality Assurance Plan
Effective January 31, 2009

## Chemist I, II and III

Chemists are responsible for the analysis of various sample matrices including, but not limited to, solid, aqueous, and air as well as the generation of high quality data in accordance with the HEAL SOPs and QA/QC guidelines in a reasonable time as prescribed by standard turnaround schedules or as directed by the Section Manager or Laboratory Manager.

Chemists are responsible for making sure all data generated is entered in the database in the correct manner and the raw data is reviewed, signed and delivered to the appropriate peer for review. A Chemist reports daily to the section manager and will inform them as to material needs of the section specifically pertaining to the analyses performed by the chemist. Additional duties may include preparation of samples for analysis, maintenance of lab instruments or equipment, cleaning and providing technical assistance to lower level laboratory staff.

The senior chemist in the section may be asked to perform supervisory duties as related to operational aspects of the section. The chemist may perform all duties of a lab technician.

The position of Chemist is a full or part time hourly position and is divided into three levels, Chemist I, II, and III. All employees hired into a Chemist position at HEAL must begin as a Chemist I and remain there at a minimum of three months regardless of their education and experience. Chemist I must have a minimum of an AA in a related field or equivalent experience (equivalent experience means years of related experience can be substituted for the education requirement). A Chemist I is responsible for analysis, instrument operation and data reduction. Chemist II must have a minimum of an AA in a related field or equivalent experience and must have documented and demonstrated aptitude to perform all functions of a Chemist II. A Chemist II is responsible for the full analysis of their test methods, routine instrument maintenance, purchase of consumables as dictated by their Technical Director, advanced data reduction and basic data review. Chemist II may also assist Chemist III in method development and as dictated by their Technical Director may be responsible for the review and/or revision of their method specific SOPs. Chemist III must have Bachelors degree or equivalent experience and must have documented and demonstrated aptitude to perform all functions of a Chemist III. Chemist III are responsible for all tasks completed by a Chemist I and II as well as advanced data review, non-routine instrument maintenance, assisting their technical director in basic supervisory duties and method development.

# Laboratory Technician

A laboratory technician is responsible for providing support in the form of sample preparation, basic analysis, general laboratory maintenance, glassware washing, chemical inventories and sample kit preparation. This position can be filled by someone without the education and experience necessary to obtain a position as a chemist.

## Sample Control Manager

The sample control manager is responsible for receiving samples and reviewing the sample login information after it has been entered into the computer. The sample control manager also checks the samples against the chain-of-custody for any sample and/or labeling discrepancies prior to distribution.

The sample control manager is responsible for sending out samples to the sub-contractors along with the review and shipping of field sampling bottle kits. The sample control manager acts as a liaison between the laboratory and field sampling crew to ensure that the appropriate analytical test is assigned. If a discrepancy is noted the sample control manager or sample custodian will contact the customer to resolve any questions or problems. The sample control manager is an integral part the customer service team.

This position should be filled by someone with a high school diploma and a minimum of 2 years of related experience and can also be filled by a senior manager.

# Sample Custodians

Sample Custodians work directly under the Sample Control Manager. They are responsible for sample intake into the laboratory and into the LIMS. Sample Custodians take orders from our clients and prepare appropriate bottle kits to meet the client's needs. Sample Custodians work directly with the clients in properly labeling and identifying samples as well as properly filling out legal COCs. When necessary, Sample Custodians contact clients to resolve any questions or problems associated with their samples. Sample Custodians are responsible for distributing samples throughout the laboratory and are responsible for notifying analysts of special circumstances such as short holding times or improper sample preservation upon receipt.

### Delegations in the Absence of Key Personnel

Planned absences shall be preceded by notification to the Laboratory Manager. The appropriate staff members shall be informed of the absence. In the case of unplanned absences, the organizational superior shall either assume the responsibilities and duties or delegate the responsibilities and duties to another appropriately qualified employee.

In the event that the Laboratory Manager is absent for a period of time exceeding fifteen consecutive calendar days, another full-time staff member meeting the basic qualifications and competent to temporarily perform this function will be designated. If this absence exceeds thirty-five consecutive calendar days, HEAL will notify ORELAP in writing of the absence and the pertinent qualifications of the temporary laboratory manager.

# Laboratory Personnel Qualification and Training

All personnel joining HEAL shall undergo orientation and training. During this period the new personnel shall be introduced to the organization and their responsibilities, as well as

Page 12 of 48 Quality Assurance Plan Effective January 31, 2009



the policies and procedures of the company. They shall also undergo on the job training and shall work with trained staff. They will be shown required tasks and be observed while performing them.

When utilizing staff undergoing training, appropriate supervision shall be dictated and overseen by the appropriate section technical director. Prior to analyzing client samples, a new employee, or an employee new to a procedure, must meet the following basic requirements. The SOP and Method for the analysis must be read and signed by the employee indicating that they read, understood and intend to comply with the requirements of the documents. The employee must undergo documented training. conducted by a senior analyst familiar with the procedure and overseen by the section Technical Director. This training is documented by any means deemed appropriate by the trainer and section Technical Director, and kept on file in the employees file located in the QA/QCO's office. The employee must perform a successful Initial Demonstration of Proficiency (IDOC). See Appendix H for the training documents and checklists utilized at HEAL to ensure that all of these requirements are met. Once all of the above requirements are met it is incumbent upon the section Technical Director to determine at which point the employee can begin to perform the test unsupervised. A Certification to Complete Work Unsupervised (see Appendix H) is them filled out by the employee and technical director.

All IDOCs shall be documented through the use of the certification form which can be found in Appendix H. IDOCs are performed by analyzing four Laboratory Control Spikes (LCSs). Using the results of the LCSs the mean recovery is calculated in the appropriate reporting units and the standard deviations of the population sample (n-1) (in the same units) as well as the relative percent difference for each parameter of interest. When it is not possible or pertinent to determine mean and standard deviations HEAL assesses performance against establish and documented criteria dictated in the method SOP. The mean and standard deviation are compared to the corresponding acceptance criteria for precision and accuracy in the test method (if applicable) or in laboratory-generated acceptance criteria. In the event that the HEAL SOP or test method fail to establish the pass/fail criteria the default limits of +/- 20% for calculated recovery and <20% relative percent difference based on the standard deviation will be utilized. If all parameters meet the acceptance criteria, the IDOC is successfully completed. If any one of the parameters do not meet the acceptance criteria, the performance is unacceptable for that parameter and the analyst must either locate and correct the source of the problem and repeat the test for all parameters of interest or repeat the test for all parameters that failed to meet Repeat failure, however, confirms a general problem with the measurement system. If this occurs the source of the problem must be identified and the test repeated for all parameters of interest.

New employees that do not have prior analysis experience will not be allowed to perform analysis until they have demonstrated attention to detail with minimal errors in the assigned tasks. To ensure a sustained level of quality performance among staff members, continuing demonstration of capability shall be performed at least once a year. These are as an Annual Documentation of Continued Proficiency (ADOCP).

At least once per year an ADOCP must be completed by: the acceptable performance of a blind sample (this is typically done using a PT sample but can be a single blind sample to the analyst), by performing another IDOC, or by summarizing the data of four consecutive

Page 13 of 48
Quality Assurance Plan
Effective January 31, 2009

laboratory control samples with acceptable levels of precision and accuracy (these limits are those currently listed in the LIMS for an LCS using the indicated test method.) ADOCPs are documented using a standard form and are kept on file in each analysts employee folder.

Each new employee shall be provided with data integrity training as a formal part of their new employee orientation. Each new employee will sign an ethics and data integrity agreement to ensure that they understand that data quality is our main objective. Every HEAL employee recognizes that although turn around time is important, quality is put above any pressure to complete the task expediently. Analysts are not compensated for passing QC parameters nor are incentives given for the quantity of work produced. Data Integrity and Ethics training are performed on an annual basis in order to remind all employees of HEAL's policy on data quality. Employes are required to understand that any infractions of the laboratory data integrity procedures will result in a detailed investigation that could lead to very serious consequences including immediate termination, debarment or civil/criminal prosecution.

Training for each member of HEALs technical staff is further established and maintained through documentation that each employee has read, understood, and is using the latest version of this Quality Assurance Manual. Training courses or workshops on specific equipment, analytical techniques or laboratory procedures are documented through attendance sheets, certificates of attendance, training forms, or quizzes. This training documentation is located in either analyst specific employee folders in the QA/QCO Office or in the current years group training folder, also located in the QA/QCO Office. On the front of all methods, SOPs and procedures for HEAL there is a signoff sheet that is signed by all pertinent employees, indicating that they have read, understood and agreed to perform the most recent version of the document.

## 5.0 Receipt and Handling of Samples

## Sampling

#### **Procedures**

HEAL does not provide field sampling for any projects. Sample kits are prepared and provided for clients upon request. The sample kits contain the appropriate sampling containers (with a preservative when necessary), labels, blue ice, a cooler, chain-of-custody forms, plastic bags, bubble wrap, and any special sampling instructions. Sample kits are reviewed prior to shipment for accuracy and completeness.

#### Containers

Containers which are sent out for sampling are purchased by HEAL from a commercial source. Glass containers are certified "EPA Cleaned" QA level 1. Plastic containers are certified clean when required. These containers are received with a Certificate of Analysis verifying that the containers have been cleaned according to the EPA wash procedure. Containers are used once and discarded. If the samples are collected and stored in inappropriate containers the laboratory may not be able to accurately quantify the amount of the desired components. In this case re-sampling may be required.

#### Preservation

If sampling for an analyte(s) requires preservation, the sample custodians fortify the containers prior to shipment to the field, or provide the preservative for the sampler to add in the field. The required preservative is introduced into the vials in uniform amounts and done so rapidly to minimize the risk of contamination. Vials that contain a preservative are labeled appropriately. If the samples are stored with inappropriate preservatives the laboratory may not be able to accurately quantify the amount of the desired components. In this case re-sampling may be required.

Refer to the current Login SOP and/or the current price book for detailed sample receipt and handling procedures, appropriate preservation and holding time requirements.

# Sample Custody

## Chain-of-Custody Form

A Chain-of-Custody (CoC) form is used to provide a record of sample chronology from the field to receipt at the laboratory. HEALs CoC contains the client's name, address, phone and fax numbers, the project name and number, the project manager's name.

and the field sampler's name. It also identifies the date and time of sample collection, sample matrix, field sample ID number, number/volume of sample containers, sample temperature upon receipt, and any sample preservative information.

There is also a space to record the HEAL ID number assigned to samples after they are received. Next to the sample information is a space for the client to indicate the desired analyses to be performed. There is a section for the client to indicate the data package level as well as any accreditation requirements. Finally, there is a section to track the actual custody of the samples. The custody section contains lines for signatures, dates and times when samples are relinquished and received. The CoC form also includes a space to record special sample related instructions, sampling anomalies, time constraints, and any sample disposal considerations.

It is paramount that all CoCs arrive at HEAL complete and accurate so that the samples can be processed and allocated for testing in a timely and efficient manor. A sample chain-of-custody form can be found in Appendix G or on line at www.hallenvironmental.com.

## **Receiving Samples**

Samples are received by authorized HEAL personnel. Upon arrival, the CoC is compared to the respective samples. After the samples and CoC have been determined to be complete and accurate, the sampler signs over the CoC. The HEAL staff member in turn signs the chain-of-custody, also noting the current date, time and sample temperature. This relinquishes custody of the samples from the sampler and delegates sample custody to HEAL. The third (pink) copy of the CoC form is given to the person who has relinquished custody of the samples.

## Logging in Samples and Storage

Standard Operating Procedures have been established for the receiving and tracking of all samples (refer to the current HEAL Login SOP). These procedures ensure that samples are received and properly logged into the laboratory, and that all associated documentation, including chain of custody forms, are complete and consistent with the samples received. Each sample set is given a unique HEAL tracking ID number. Individual sample locations within a defined sample set are given a unique sample ID suffix-number. Labels with the HEAL numbers, and tests requested, are generated and placed on their respective containers. The pH of preserved, non-volatile samples is checked and noted if out of compliance. Due to the nature of the samples, the pHs of volatiles samples are checked after analysis. Samples are reviewed prior to being distributed for analysis.

Samples are distributed for analysis based upon the requested tests. In the event that sample volume is limited and different departments at HEAL are required to share the

sample, volatile work takes precedence and will always be analyzed first before the sample is sent to any other department for analysis.

Each project (sample set) is entered into the Laboratory Information Management System (LIMS) with a unique ID that will be identified on every container. The ID tag includes the Lab ID, Client ID, date and time of collection, and the analysis/analyses to be performed. The LIMS continually updates throughout the lab. Therefore, at any time, an analyst or manager may inquire about a project and/or samples status. For more information about the login procedures, refer to the Sample Login SOP.

## Disposal of Samples

Samples are held at HEAL for a minimum of thirty days and then transferred to the HEAL warehouse for disposal. Analytical results are used to characterize their respective sample contamination level(s) so that the proper disposal can be performed. These wastes will be disposed of according to their hazard as well as their type and level of contamination. Refer to the Hall Environmental Analysis Laboratory Chemical Hygiene Plan and current Sample Disposal SOP for details regarding waste disposal.

Waste drums are provided by an outside agency. These drums are removed by the outside agency and disposed of in a proper manner.

The wastes that are determined to be non-hazardous are disposed of as non-hazardous waste in accordance with the Chemical Hygiene Plan and Sample Disposal SOP.

#### 6.0 Analytical Procedures

All analytical methods used at HEAL incorporate necessary and sufficient Quality Assurance and Quality Control practices. A Standard Operating Procedure (SOP) is used for each method to provide the necessary criteria to yield acceptable results. These procedures are reviewed at least annually and revised as necessary and are attached as a pdf file in the Laboratory Information Management System (LIMS) for easy access by each analyst. The sample is often consumed or altered during the analytical process. Therefore, it is important that each step in the analytical process be correctly followed in order to yield valid data.

When unforeseen problems arise, the analyst, technical director, and, when necessary, laboratory manager meet to discuss the factors involved. The analytical requirements are evaluated and a suitable corrective action or resolution is established. The client is notified in the case narrative with the final report or before, if the validity of their result is in question.

#### List of Procedures Used

Typically, the procedures used by HEAL are EPA approved methodologies or 20<sup>th</sup> edition Standard Methods. However, proprietary methods for client specific samples, are sometimes used. The following tables list EPA and Standard Methods Method numbers with their corresponding analytes and/or instrument classification.

#### Methods Utilized at HEAL

| Methodiology | Tittle of Method                                                                                                            |  |  |  |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 120.1        | "Conductance(Specific Conductance, uohms at 25 ° C)"                                                                        |  |  |  |  |
| 180.1        | "Turbidity (Nephelometric)"                                                                                                 |  |  |  |  |
| 200.2        | "Sample Preparation Procedure For Spectrochemical Determination of Total Recoverable Elements"                              |  |  |  |  |
| 200.7        | "Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry" |  |  |  |  |
| 245.1        | "Mercury (Manual Cold Vapor Technique)"                                                                                     |  |  |  |  |
| 300.0        | "Determination of Inorganic Anions by Ion Chromatography"                                                                   |  |  |  |  |
| 413.2        | "Oil and Grease"                                                                                                            |  |  |  |  |
| 418.1        | "Petroleum Hydrocarbons (Spectrophotometric, Infrared)"                                                                     |  |  |  |  |
| 420.3        | "Phenolics (Spectrophotometric, MBTH With Distillation)"                                                                    |  |  |  |  |
| 504.1        | "EDB, DBCP and 123TCP in Water by Microextraction and Gas Chromatography"                                                   |  |  |  |  |

Page 18 of 48 Quality Assurance Plan Effective January 31, 2009

| 505     | "Analysis of Organohalide Pesticides and Commercial Polychlorinated<br>Biphenyl (PCB) Products in Water by Microextraction and Gas<br>Chromatography"                     |  |  |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 515.1   | "Determination of Chlorinated Acids in Water by Gas Chromatography with an Electron Capture Delector"                                                                     |  |  |  |  |  |
| 524.2   | "Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry"                                                            |  |  |  |  |  |
| 531.1   | "Measurement of N-Methylcarbomoyloximes and N-Methylcarbamates in Water by Direct Aqueous Injection HPLC with Post Column Dervivatization"                                |  |  |  |  |  |
| 547     | "Determination of Glyphosate in Drinking Water by Direct-Aqueous Injection—HPLC, Post-Column Derivatization, and Fluorescence Detection"                                  |  |  |  |  |  |
| 552.1   | "Determination of Haloacetic Acids and Dalapon in Drinking Water by Ion-<br>Exchange Liquid-Solid Extraction and Gas Chromatography with an Electron<br>Capture Detector" |  |  |  |  |  |
| 1311    | "Toxicity Characteristic Leaching Procedure"                                                                                                                              |  |  |  |  |  |
| 1311ZHE | "Toxicity Characteristic Leaching Procedure"                                                                                                                              |  |  |  |  |  |
| 3005A   | "Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by FLAA or ICP Spectroscopy"                                                             |  |  |  |  |  |
| 3010A   | "Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by FLAA or ICP Spectroscopy"                                                                |  |  |  |  |  |
| 3050B   | "Acid Digestion of Sediment, Sludge, and Soils"                                                                                                                           |  |  |  |  |  |
| 3510C   | "Separatory Funnel Liquid-Liquid Extraction"                                                                                                                              |  |  |  |  |  |
| 3540    | "Soxhlet Extraction"                                                                                                                                                      |  |  |  |  |  |
| 3545    | "Pressurized Fluid Extraction(PFE)"                                                                                                                                       |  |  |  |  |  |
| 3665    | "Sulfuric Acid/Permanganate Cleanup"                                                                                                                                      |  |  |  |  |  |
| 5030B   | "Purge-and-Trap for Aqueous Samples"                                                                                                                                      |  |  |  |  |  |
| 5035    | "Closed-System Purge-and-Trap and Extraction for Volatile Organics in Soil and Waste Samples"                                                                             |  |  |  |  |  |
| 6010B   | "Inductively Coupled Plasma-Atomic Emission Spectrometry"                                                                                                                 |  |  |  |  |  |
| 7470A   | "Mercury in Liquid Waste (Manual Cold-Vapor Technique)"                                                                                                                   |  |  |  |  |  |
| 7471A   | "Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)"                                                                                                       |  |  |  |  |  |
| 8021B   | "Aromatic and Halogenated Volatiles By Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors"                                               |  |  |  |  |  |
| 8015B   | "Nonhalogenated Volatile Organics by Gas Chromatography" (Gasoline Range and Diesel Range Organics)                                                                       |  |  |  |  |  |

| 8015AZ           | "C10-C32 Hydrocarbons in Soil-8015AZ"                                            |  |  |  |  |
|------------------|----------------------------------------------------------------------------------|--|--|--|--|
| 8081A            | "Organochlorine Pesticides by Gas Chromatography"                                |  |  |  |  |
| 8082             | "Polychlorinated Biphenyls (PCBs) by Gas Chromatography"                         |  |  |  |  |
| 8260B            | "Volatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS)"    |  |  |  |  |
| 8270C            | Semivolatile Organic Compounds by Gas Chromatography/ Mass spectrometry (GC/MS)" |  |  |  |  |
| 8310             | "Polynuclear Aromatic Hydrocarbons"                                              |  |  |  |  |
| 9045C            | "Soil and Waste pH"                                                              |  |  |  |  |
| 9056             | "Determination of Inorganic Anions by Ion Chromatography"                        |  |  |  |  |
| 9060             | "Total Organic Carbon"                                                           |  |  |  |  |
| 9067             | "Phenolics (Spectrophotometric, MBTH With Distillation)"                         |  |  |  |  |
| 9095             | Paint Filter                                                                     |  |  |  |  |
| Walkley/Black    | FOC/TOC WB                                                                       |  |  |  |  |
| SM2320 B         | "Alkalinity"                                                                     |  |  |  |  |
| SM2540 B         | "Total Solids Dried at 103-105° C"                                               |  |  |  |  |
| SM2540 C         | "Total Dissolved Solids Dried at 180° C"                                         |  |  |  |  |
| SM2540 D         | "Total Suspended Solids Dried at 103-105° C"                                     |  |  |  |  |
| SM 3500 Fe+2     | Ferrous Iron                                                                     |  |  |  |  |
| SM4500-H+B       | "pH Value"                                                                       |  |  |  |  |
| SM4500-NH3<br>C  | "4500-NH3" Ammonia                                                               |  |  |  |  |
| SM4500-Norg<br>C | "4500-Norg" Total Kjeldahl Nitrogen (TKN)                                        |  |  |  |  |
| SM4500-P B       | "4500-P" Total Phosphorous                                                       |  |  |  |  |
| SM4500-S2 F      | "4500-S2" Sulfide                                                                |  |  |  |  |
| SM5310 B         | "5310" Total Organic Carbon (TOC)                                                |  |  |  |  |

#### Criteria for Standard Operating Procedures

HEAL has Standard Operating Procedures (SOPs) for each of the test methods listed above. These SOPs are based upon the listed methods and detail the specific procedure and equipment utilized as well as the quality requirements necessary to prove the integrity of the data. SOPs are reviewed or revised every twelve months or sooner if necessary. The review/revision is documented in the Master SOP Logbook filed in the QA/QC Office. All SOPs are available in the LIMS linked under the specific test method. Administrative SOPs, which are not linked in the LIMS are available on desktops throughout the laboratory in the link to administrative SOPs folder.

Each HEAL test method SOP shall include or reference the following topics where applicable:

Identification of the test method;

Applicable matrix or matrices;

Limits of detection and quantitation;

Scope and application, including parameters to be analyzed;

Summary of the test method;

Definitions:

Interferences;

Safety;

Equipment and supplies;

Reagents and standards:

Sample collection, preservation, shipment and storage;

Quality control parameters;

Calibration and standardization:

Procedure:

Data analysis and calculations;

Method performance;

Pollution prevention;

Data assessment and acceptance criteria for quality control measures;

Corrective actions for out-of-control data:

Contingencies for handling out-of-control or unacceptable data;

Waste management:

References; and

Any tables, diagrams, flowcharts and validation data.

#### 7.0 Calibration

All equipment and instrumentation used at HEAL are operated, maintained and calibrated according to manufacturers guidelines, as well as criteria set forth in applicable analytical methodology. Personnel who have been properly trained in their procedures perform operation and calibration. Brief descriptions of the calibration processes for our major laboratory equipment and instruments are found below.

#### **Thermometers**

The thermometers in the laboratory are used to measure the temperatures of the refrigerators/freezers, ovens, water baths, hot blocks, ambient laboratory conditions, TCLP Extractions, digestion blocks and samples at the time of log-in. All NIST traceable thermometers are either removed from use upon their documented expiration date or they are checked annually with a NIST certified thermometer and a correction factor is noted on each thermometer log. See the most current Login SOP for detailed procedures on this calibration procedure.

Dickson Data Loggers are used to record sample and standard storage refrigerators over the weekend when the appropriate staff is not available to record the temperatures. These data loggers are shipped back to the manufacturer once a year to be re calibrated.

# Refrigerators/Freezers

Each laboratory refrigerator or freezer contains a thermometer capable of measuring to a minimum precision of 1°C. The thermometers are kept with the bulb immersed in liquid. Each workday, the temperatures of the refrigerators are recorded in a designated logbook to insure that the refrigerators are within the required designated range. Samples are stored separately from the standards to reduce the risk of contamination.

See the current catastrophic Failure SOP for the procedure regarding how to handle failed refrigerators or freezers.

#### Ovens

The ovens contain thermometers graduated by 1° C. The ovens are calibrated quarterly against NIST thermometers and checked daily as required and in which ever way is dictated by or appropriate for the method in use.

#### Analytical and Table Top Balances

The table top balances are capable of weighing to a minimum precision of 0.01 grams. The analytical balances are capable of weighing to a minimum precision of 0.0001 grams. Records are kept of daily calibration checks for the balances in use. Working weights are used in these checks. The balances are annually certified by an outside source and the certifications are on file with the QA/QCO.

Balances, unless otherwise indicated by method specific SOPs, will be checked daily with at least two weights that will bracket the working range of the balance for the day. Daily balance checks will be done using working weights that are calibrated annually against Class S weights. Class S weights are calibrated as required by an external provider. The Class S weights are used once a year or more frequently if required, to assign values to the Working Weights. During the daily balance checks the working weights are compared to their assigned values and must pass within 5% of their assigned value in order to validate the calibration of the balance. The assigned values for the working weights, as well as the daily checks, are recorded in the balance logbook for each balance.

#### Instrument Calibration

An instrument calibration is the relationship between the known concentrations of a set of calibration standards introduced into an analytical instrument and the measured response they produce. Calibration curve standards are a prepared series of aliquots at various known concentrations levels from a primary source reference standard. Specific mathematical types of calibration techniques are outlined in SW-846 8000B. The entire initial calibration must be performed prior to sample analyses.

The lowest standard in the calibration curve must be at or below the required reporting limit.

Refer to the current SOP to determine the minimum requirement for calibration points.

Most compounds tend to be linear and a linear approach should be favored when linearity is suggested by the calibration data. Non-linear calibration should be considered only when a linear approach cannot be applied. It is not acceptable to use an alternate calibration procedure when a compound fails to perform in the usual manner. When this occurs it is indicative of instrument issues or operator error.

If a non-linear calibration curve fit is employed, a minimum of six calibration levels must be used for second-order (quadratic) curves.

When more than 5 levels of standards are analyzed in anticipation of using second-order calibration curves, all calibration points MUST be used regardless of the calibration option employed. The highest or lowest calibration point may be excluded for the purpose of narrowing the calibration range, and meeting the requirements for a specific calibration option. Otherwise, unjustified exclusion of calibration data is expressly forbidden.

Page 23 of 48 Quality Assurance Plan Effective January 31, 2009 Analytical methods vary in QC acceptance criteria. HEAL follows the method specific guidelines for QC acceptance. The specific acceptance criteria are outlined in the analytical methods and its corresponding SOP.

#### pH Meter

The pH meter measures to a precision of 0.01 pH units. The pH calibration logbook contains the calibration before each use, or each day, if used more than once per day. It is calibrated using a minimum of 3 certified buffers. Also available with the pH meter is a magnetic stirrer with a temperature sensor. See the current pH SOP (SM4500 H+ B) for specific details regarding calibration of the pH probe.

#### Other Analytical Instrumentation and Equipment

The conductivity probe is calibrated as needed and checked daily when in use.

Eppendorf (or equivalent brands) pipettes are checked gravimetrically prior to use.

#### Standards

All of the source reference standards used are ordered from a reliable commercial vendor. A Certificate of Analysis (CoA), which verifies the quality of the standard, accompanies the standards from the vendor. The Certificates of Analysis are dated and stored on file by the Technical Directors or their designee. These standards are traceable to the National Institute of Standards (NIST). When salts are purchased and used as standards the certificate of purity must be obtained from the vendor and filed with the CoAs.

All standard solutions, calibration curve preparations, and all other quality control solutions are labeled in a manner that can be traced back to the original source reference standard. All source reference standards are entered into the LIMS with an appropriate description of the standard. Dilutions of the source reference standard (or any mixes of the source standards) are fully tracked in the LIMS. Standards are labeled with the date opened for use, and an expiration date.

As part of the quality assurance procedures at HEAL, analysts strictly adhere to manufacture recommendations for storage times/expiration dates and policies of analytical standards and quality control solutions.

#### Reagents

HEAL ensures that the reagents used are of acceptable quality for their intended purpose. This is accomplished by ordering high quality reagents and adhering to good laboratory

Page 24 of 48
Quality Assurance Plan
Effective January 31, 2009

practices so as to minimize contamination or chemical degradation. All reagents must meet any specifications noted in the analytical method. Refer to the current Purchase of Consumables SOP for details on how this is accomplished and documented.

Upon receipt, all reagents are assigned a separate ID number, and logged into the LIMS. All reagents shall be labeled with the date received into the laboratory and again with the date opened for use. Recommended shelf life shall be documented and controlled. Dilutions or solutions prepared shall be clearly labeled, dated, and initialed. These solutions are traceable back to their primary reagents.

All gases used with an instrument shall meet specifications of the manufacturer. All safety requirements that relate to maximum and/or minimum allowed pressure, fitting types, and leak test frequency, shall be followed. When a new tank of gas is placed in use, it shall be checked for leaks and the date put in use will be written in the instrument maintenance logbook.

HEAL continuously monitors the quality of the reagent water and provides the necessary indicators for maintenance of the purification systems in order to assure that the quality of laboratory reagent water meets established criteria for all analytical methods.

Reagent blank samples are also analyzed to ensure that no contamination is present at detectable levels. The frequency of reagent blank analysis is typically the same as calibration verification samples. Refrigerator storage blanks are stored in the volatiles refrigerator for a period of one week and analyzed and replaced once a week.

#### 8.0 Maintenance

Maintenance logbooks are kept for each major instrument and all support equipment in order to document all repair and maintenance. In the front of the logbook, the following information is included:

Unique name of the item or equipment
Manufacturer
Type of Instrument
Model Number
Serial Number
Date received and date placed into service
Location of Instrument
Condition of instrument upon receipt

For routine maintenance, the following information shall be included in the log:

Maintenance Date
Maintenance Description
Maintenance Performed by Initials

A manufacturer service agreement (or equivalent) covers most major instrumentation to assure prompt and reliable response to maintenance needs beyond HEAL instrument operator capabilities.

Refer to the current Maintenance and Troubleshooting SOP for each section in the laboratory for further information.

# 9.0 Data Integrity

For HEAL's policy on ethics and data integrity see section 3.0 of this document. Upon being hired and annually there after, all employees at HEAL undergo documented data integrity training. All new employees sign an Ethics and Data Integrity Agreement, documenting their understanding of the high standards of integrity required at HEAL and outlining their responsibilities in regards to ethics and data integrity. See Appendix H for a copy of this agreement.

In instances of ethical concern analysts are required to report the known or suspected concern to their Technical Director, the Laboratory Manager or the QA/QCO. This will be done in a confidential and receptive environment, allowing all employees to privately discuss ethical issues or report items of ethical concern.

Once reported and documented the ethical concern will be immediately elevated to the Laboratory Manager and the need for an investigation, analyst remediation or termination will be determined on a case by case basis.

All reported instances of ethical concern will be thoroughly documented and handled in a manner sufficient to rectify any breaches in data integrity with an emphasis on preventing similar incidences from happening in the future.

# 9.0 Quality Control

# Internal Quality Control Checks

HEAL utilizes various internal quality control checks, including duplicates, matrix spikes, matrix spike duplicates, method blanks, laboratory control spikes, laboratory control spike duplicates, surrogates, internal standards, calibration standards, quality control charts, proficiency tests and calculated measurement uncertainty.

Refer to the current method SOP to determine the frequency and requirements of all quality controls. In the event that the frequency of analysis is not indicated in the method specific SOP, duplicate samples, laboratory control spikes (LCS), Method Blanks (MB) and matrix spikes and matrix spike duplicates (MS/MSD) are analyzed for every batch of twenty samples.

When sample volume is limited on a test that requires an MS/MSD an LCSD shall be analyzed to demonstrate precision and accuracy and when possible a sample duplicate will be analyzed.

Duplicates, are identical tests repeated for the same sample or matrix spike in order to determine the precision of the test method. A Relative Percent Difference (RPD) is calculated as a measure of this precision. Unless indicated in the SOP, the default acceptance limit is </= 30%.

Matrix Spikes and Matrix Spike Duplicates are spiked samples (MS/MSD) that are evaluated with a known added quantity of a target compound. This is to help determine the accuracy of the analyses and to determine the matrix affects on analyte recovery. A percent recovery is calculated to assess the quality of the accuracy. In the event that the acceptance criteria is not outlined in the SOP a default limits of 70-130% will be utilized. When an MSD is employed an RPD is calculated and when not indicated in the SOP shall be acceptable at </= 30%.

When appropriate for the method, a Method Blank should be analyzed with each batch of samples processed to assess contamination levels in the laboratory. MBs consist of all the reagents measured and treated as they are with samples, except without the samples. This enables the laboratory to ensure clean reagents and procedures. Guidelines should be in place for accepting or rejecting data based on the level of contamination in the blank. In the event that these guidelines are not dictated by the SOP or in client specific work plans, the MB should be less than the MDL reported for the analyte being reported.

A Laboratory Control Spike and Laboratory Control Spike Duplicate (LCS/LCSD) are reagent blanks, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. It is generally used to establish intra-laboratory or analyst-specific precision and bias or to assess the performance of all or a portion of the measurement system. Guidelines are outline in each

Page 28 of 48
Quality Assurance Plan
Effective January 31, 2009





SOP for the frequency and pass fail requirements for LCS and LCSDs. These limits can be set utilizing control charts as discussed below.

Surrogates are utilized when dictated by method and are substances with properties that mimic the analytes of interest. The surrogate is an analyte that is unlikely to be found in environmental samples. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for surrogates.

Internal Standards are utilized when dictated by the method and are known amounts of standard added to a test portion of a sample as a reference for evaluating and controlling the precision and bias of the applied analytical method. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for Internal Standards.

Proficiency Test (PT) Samples are samples provided by an unbiased third party. They are typically analyzed twice a year, or at any other interval defined in the method SOP. They contain a pre-determined concentration of the target compound, which is unknown to HEAL. HEAL's management and all analyst shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance criteria, sequence of analytical steps, number of replicates and other procedures as used when analyzing routine samples.

With regards to analyzing PT Samples HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seeks accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall not attempt to obtain the assigned value of any PT sample from the PT Provider.

Calibration standards are standards run to calibrate. Once the calibration is established the same standards can be analyzed as Continuing Calibration Verifications (CCV), used to confirm the consistency of the instrumentation. Calibration standards can be utilized at the beginning and end of each batch, or more frequently as required. Typically Continuing Calibration Blanks (CCB) are run in conjunction with CCVs. Refer to the current method SOP for frequency and pass/fail requirements of CCVs and CCBs.

Control Limits are limits of acceptable ranges of the values of quality control checks. If a value falls outside the appropriate range, immediate evaluation and assessment of the procedure is required. Data generated with laboratory control samples that fall outside of the established control limits are judged to be generated during an "out-of-control" situation. These data are considered suspect and shall be repeated or reported with qualifiers.

Control limits should be established and updated according to the requirements of the method being utilized. When the method does not specify, and control limits are to be generated or updated for a test, the following guidelines shall be utilized.

Page 29 of 48 Quality Assurance Plan Effective January 31, 2009 Control Limits should be updated periodically and at least annually. The Limits should be generated utilizing the most recent 20-40 data values and Control Charts should be printed when these limits are updated in the LIMS. The data values used shall not reuse values that were included in the previous Control Limit update. The data values shall also be reviewed by the LIMS for any Grubbs Outliers, and if identified, the outliers must be removed prior to generating new limits. Once new Control Limits have been established and updated in the LIMS, the printed Control Chart shall be reviewed by the appropriate technical director and primary analyst performing the analysis for possible trends and compared to the previous Control Charts. The technical director initials the control charts, indicating that they have reviewed and determined the updated Limits to be accurate and appropriate. These initialed charts are then filed in the QA/QCO office.

Calculated Measurement Uncertainty is calculated annually using LCSs in order to determine the laboratory specific uncertainty associated with each test method. These uncertainty values are available to our clients upon request and are utilized as a trending tool internally to determine the effectiveness of new variables introduced into the procedure over time.

#### Precision, Accuracy, Detection Levels

#### Precision

The laboratory uses sample duplicates, laboratory control spike duplicates and matrix spike duplicates to assess precision in terms of relative percent difference (RPD). HEAL requires the RPD to fall within the 99% confidence interval of established control charts or an RPD of less than 30% if control charts are not available. RPD's greater than these limits are considered out-of-control and require an appropriate response.

RPD = 2 x (Sample Result – Duplicate Result) X 100 (Sample Result + Duplicate Result)

#### Accuracy

The accuracy of an analysis refers to the difference between the calculated value and the actual value of a measurement. The accuracy of a laboratory result is evaluated by comparing the measured amount of QC reference material recovered from a sample and the known amount added. Control limits can be established for each analytical method and sample matrix. Recoveries are assessed to determine the method efficiency and/or the matrix effect.

Analytical accuracy is expressed as the percent recovery (%R) of an analyte or parameter. A known amount of analyte is added to an environmental sample before

Page 30 of 48
Quality Assurance Plan
Effective January 31, 2009

the sample is prepared and subsequently analyzed. The equation used to calculate percent recovery is:

%Recovery = {(concentration\* recovered)/(concentration\* added)} X 100

\*or amount

HEAL requires that the Percent Recovery to fall within the 99 % confidence interval of established control limits. A value that falls outside of the confidence interval requires a warning and process evaluation. The confidence intervals are calculated by determining the mean and sample standard deviation. If control limits are not available, the range of 70 to 130% is used unless the specific method dictates otherwise. Percent Recoveries outside of this range mandate additional action such as analyses by Method of Standard Additions, additional sample preparation(s) where applicable, method changes, out-of-control action or data qualification.

#### **Detection Limit**

Current practices at HEAL define the Detection Limit (DL) as the smallest amount that can be detected above the baseline noise in a procedure within a stated confidence level.

HEAL presently utilizes an Instrument Detection Limit (IDL), a Method Detection Limit (MDL), and a Practical Quantitation Limit (PQL). The relationship between these levels is approximately

IDL: MDL: PQL = 1:5:5.

The IDL is a measure of the sensitivity of an analytical instrument. The IDL is the amount which, when injected, produces a detectable signal in 99% of the analyses at that concentration. An IDL can be considered the minimum level of analyte concentration that is detectable above random baseline noise.

The MDL is a measure of the sensitivity of an analytical method. An MDL determination (as required in 40CFR part 136 Appendix B) consists of replicate spiked samples carried through all necessary preparation steps. The spike concentration is three times the standard deviation of three replicates of spikes. At least seven replicates are spiked and analyzed and their standard deviation (s) calculated. Routine variability is critical in passing the 10 times rule and is best achieved by running the MDLs over different days and when possible over several calibration events. The method detection limit (MDL) can be calculated using the standard deviation according to the formula:

MDL = s \* t (99%)

Page 31 of 48
Quality Assurance Plan
Effective January 31, 2009

Where t (99%) is the student's t value for the 99% confidence interval. It depends on the number of trials used in calculating the sample standard deviation, so choose the appropriate value according to the number of trials.

| Number of Trials | t(99%) |
|------------------|--------|
| 6                | 3.36   |
| 7                | 3.14   |
| 8                | 3.00   |
| 9                | 2.90   |

The calculated MDL must not be less than 10 times the spiked amount or the study must be performed again with a lower concentration.

The PQL is significant because different laboratories can produce different MDLs although they may employ the same analytical procedures, instruments and sample matrices. The PQL is about two to five times the MDL and represents a practical, and routinely achievable, reporting level with a good certainty that the reported value is reliable. It is often determined by regulatory limits. The reported PQL for a sample is dependent on the dilution factor utilized during sample analysis.

#### **Quality Control Parameter Calculations**

#### Mean

The sample mean is also known as the arithmetic average. It can be calculated by adding all of the appropriate values together, and dividing this sum by the number of values.

Average = 
$$(\Sigma x_i) / n$$

 $x_i$  = the value x in the  $i^{th}$  trial  $i^{th}$  trial  $i^{th}$  trials

#### Standard Deviation

The sample standard deviation, represented by s, is a measure of dispersion. The dispersion is considered to be the difference between the average and each of the values  $x_i$ . The variance,  $s^2$ , can be calculated by summing the squares of the differences and dividing by the number of differences. The sample standard deviation, s, can be found by taking the square root of the variance.

Standard deviation = s =  $\left[\sum (x_1 - average)^2 / (n-1)\right]^{\frac{1}{2}}$ 

#### Percent Recovery (MS, MSD, LCS and LCSD)

Percent Recovery = (Spike Sample Result – Sample Result) X100 (Spike Added)

#### Confidence Intervals

Confidence intervals are calculated by the LIMS using the average (x), the sample standard deviation (s), and the Student's t distribution (s-dist), which depends on the number of values used to calculate the average and sample standard deviation.

The formula is:

confidence interval =  $x \pm s * s$ -dist

Student's t Distribution

| # values * | 10    | 15: ** | 20 .  | 25    | 31    | 41    | 61    | 121   | >121⊪ |
|------------|-------|--------|-------|-------|-------|-------|-------|-------|-------|
| 95 %       | 2.262 | 2.145  | 2.093 | 2.064 | 2.042 | 2.021 | 2.000 | 1.980 | 1.960 |
| 99%        | 3.250 | 2.977  | 2.861 | 2.797 | 2.750 | 2.704 | 2.660 | 2.617 | 2.576 |

Unless there is insufficient data, at least 20 values will always be used in calculating the confidence intervals.

#### RPD (Relative Percent Difference)

Analytical precision is expressed as a percentage of the difference between the results of duplicate samples for a given analyst. Relative percent difference (RPD) is calculated as follows:

RPD = 2 x (Sample Result – Duplicate Result) X 100 (Sample Result + Duplicate Result)

#### **Uncertainty Measurements**

Uncertainty, as defined by ISO, is the parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurement. Ultimately uncertainty measurements are used to state how good a test result is and to allow the end user of data to properly interpret their reported data. All procedures allow for some uncertainty. For most analyses the components and estimates of uncertainty are reduced by following well established test methods. To further reduce uncertainty, results are generally not reported below the lowest calibration point (PQL) or above the highest calibration point (UQL).

Page 33 of 48
Quality Assurance Plan
Effective January 31, 2009

Understanding that there are many influence quantities affecting a measurement result, so many in fact that it is impossible to identify all of them, HEAL calculates measurement uncertainty at least annually using LCSs. These estimations of measurement uncertainty are kept on file in the method folders in the QA/QC office.

Measurement Uncertainty contributors are those that may be determined statistically. These shall be generated by estimating the overall uncertainty in the entire analytical process by measuring the dispersion of values obtained from laboratory control samples over time. At least 20 of the most recent LCS data points are gathered. The standard deviation (s) is calculated using these LCSs data points. Since it can be assumed that the possible estimated values of the spikes are approximately normally distributed with approximate standard deviation (s), the unknown value of the spike is believed to lie in 95% confidence interval, corresponding to an uncertainty range of  $\pm 1$ .

Calculate standard deviation (s) and 95% confidence interval according to the following formulae:

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{(n-1)}}$$

Where: s = standard deviation

x = number in series

 $\bar{x}$  = calculated mean of series n = number of samples taken

95% confidence =  $2 \times s$ 

Example: Assuming that after gathering 20 of the most recent LCS results for Bromide, we have calculated the standard deviations of the values and achieved a result of 0.0326, our measurement uncertainty for Bromide (at 95% confidence =  $2 \times s$ ) is 0.0652.

#### Calibration Calculations

1. Response Factor or Calibration Factor:

$$RF = ((A_x)(C_{is}))/((A_{is})(C_x))$$
  $CF = (A_x)/(C_x)$ 

a. Average RF or CF

Page 34 of 48
Quality Assurance Plan
Effective January 31, 2009

$$RF_{AVE} = \Sigma RF_i / n$$

b. Standard Deviation

$$s = SQRT \{ [\Sigma (RF_i - RF_{AVE})^2] / (n-1) \}$$

c. Relative Standard Deviation

#### Where:

 $A_x$  = Area of the compound

 $C_x$  = Concentration of the compound

A<sub>is</sub> = Area of the internal standard

C<sub>is</sub> = Concentration of the internal standard

n = number of pairs of data

RF<sub>i</sub> = Response Factor (or other determined value)

RF<sub>AVE</sub> = Average of all the response factors

 $\Sigma$  = the sum of all the individual values

#### 2. Linear Regression

a. Slope (m)

$$m = (n\Sigma x_i y_i - (n\Sigma x_i)^* (n\Sigma y_i)) / (n\Sigma x_i^2 - (\Sigma x_i)^2)$$

b. Intercept (b)

$$b = y_{AVE} - m^*(x_{AVE})$$

c. Correlation Coefficient (cc)

$$\begin{array}{l} \text{CC (r) = } \{ \ \Sigma((x_i \!\!-\! x_{ave})^*(y_i \!\!-\! y_{ave})) \ \} \ / \ \{ \ SQRT((\Sigma(x_i \!\!-\! x_{ave})^2)^*(\Sigma(y_i \!\!-\! y_{ave})^2)) \ \} \\ \text{Or} \\ \text{CC (r) = } [(\Sigma w \ ^* \Sigma wxy) - (\Sigma wx \ ^* \Sigma wy)] \ / \ (\text{sqrt( ( [(\Sigma w \ ^* \Sigma wx^2) - (\Sigma wx \ ^* \Sigma wx))] ^* [(\Sigma w \ ^* \Sigma wy^2) - (\Sigma wy \ ^* \Sigma wy)])))] \\ \end{array}$$

d. Coefficient of Determination

$$COD(r^2) = CC*CC$$

Page 35 of 48
Quality Assurance Plan
Effective January 31, 2009

#### Where:

 $y = Response (Area) Ratio A_x/A_{is}$ 

 $x = Concentration Ratio C_x/C_{is}$ 

m = slope

b = intercept

n = number of replicate x,y pairs

 $x_i$  = individual values for independent variable

y<sub>I</sub> = individual values for dependent variable

 $\Sigma$  = the sum of all the individual values

 $x_{ave}$  = average of the x values

 $y_{ave}$  = average of the y values

w = weighting factor, for equal weighting w=1

# 3. Quadratic Regression

$$y = ax^2 + bx + c$$

#### a. Coefficient of Determination

COD 
$$(r^2) = (\Sigma(y_i - y_{ave})^2 - \{[(n-1)/(n-p)] * [\Sigma(y_i - Y_i)^2]\}) / \Sigma(y_i - y_{ave})^2$$

#### Where:

 $y = Response (Area) Ratio A_x/A_{is}$ 

 $x = Concentration Ratio C_x/C_{is}$ 

 $a = x^2$  coefficient

b = x coefficient

c = intercept

y<sub>i</sub> = individual values for each dependent variable

x<sub>i</sub> = individual values for each independent variable

 $y_{ave}$  = average of the y values

n = number of pairs of data

p = number of parameters in the polynomial equation (i.e., 3 for third order, 2 for second order)

 $Yi = ((2*a*(C_x/C_{is})^2)-b^2+b+(4*a*c))/(4a)$ 

# b. Coefficients (a,b,c) of a Quadratic Regression

$$a = S_{(x2y)}S_{(xx)}-S_{(xy)}S_{(xx2)} / S_{(xx)}S_{(x2x2)}-[S_{(xx2)}]^2$$

$$b = S_{(xy)}S_{(x2x2)} - S_{(x2y)}S_{(xx2)} / S_{(xx)}S_{(x2x2)} - [S_{(xx2)}]^2$$

$$c = [(\Sigma yw)/n] - b^*[(\Sigma xw)/n] - a^*[\Sigma (x^2w)/n]$$

#### Where:

Page 36 of 48
Quality Assurance Plan
Effective January 31, 2009

n = number of replicate x,y pairs x = x values y = y values y = y values y = y values  $w = S^{-2} / (\Sigma S^{-2}/n)$   $S_{(xx)} = (\Sigma x^2 w) - [(\Sigma x w)^2 / n]$   $S_{(xy)} = (\Sigma x^3 w) - [(\Sigma x w)^* (\Sigma y w) / n]$   $S_{(x22)} = (\Sigma x^3 w) - [(\Sigma x w)^* (\Sigma x^2 w) / n]$   $S_{(x22)} = (\Sigma x^2 y w) - [(\Sigma x^2 w)^* (\Sigma y w) / n]$   $S_{(x222)} = (\Sigma x^4 w) - [(\Sigma x^2 w)^2 / n]$  Or If unweighted calibration, w=1  $S(xx) = (Sx2) - [(Sx)^2 / n]$   $S(xy) = (Sxy) - [(Sx)^* (Sy) / n]$   $S(x2y) = (Sx3) - [(Sx)^* (Sy) / n]$   $S(x2y) = (Sx2y) - [(Sx2)^* (Sy) / n]$   $S(x2x2) = (Sx4) - [(Sx2)^2 / n]$ 

#### 11.0 Data Reduction, Validation, Reporting, and Record Keeping

All data reported must be of the highest possible accuracy and quality. During the processes of data reduction, validation, and report generation, all work is thoroughly checked to insure that error is minimized.

#### Data Reduction

The analyst who generated the data usually performs the data reduction. The calculations include evaluation of surrogate recoveries (where applicable), and other miscellaneous calculations related to the sample quantitation.

If the results are computer generated, then the formulas must be confirmed by hand calculations, at minimum, one per batch.

See the current Data Validation SOP for details regarding data reduction.

#### Validation

A senior analyst, most often the section supervisor, validates the data. All data undergoes peer review. If an error is detected it is brought to the analyst attention to rectify and further checks ensure that all data for that batch is sound. Previous and/or common mistakes are stringently monitored throughout the validation process. Data is reported using appropriate significant figure criteria. In most cases, two significant digits are utilized, but three significant digits can be used in QC calculations. Significant digits are not rounded until after the last step of a sample calculation. All final reports undergo a review by the laboratory manager, or the project manager or their designee, to provide a logical review of all results before they are released to the client.

If data is to be manually transferred from one medium to another, the transcribed data is checked by a peer. This includes data typing, computer data entry, chromatographic data transfer, data table inclusion to a cover letter, or when data results are combined with other data fields.

All hand written data from run logs, analytical standard logbooks, hand entered data logbooks, or on instrument generated chromatograms, are systematically archived should the need for future retrieval arise.

See the current Data Validation SOP for detail regarding data validation.

#### Reports and Records

All records at HEAL are retained and maintained through the procedures outlined in the most recent version of the Records Control SOP.

The reports are compiled by the Laboratory Information Management System (LIMS). Most data is transferred directly from the instruments to the LIMS. After being processed by the analyst and reviewed by a data reviewer, final reports are approved and signed by the senior laboratory management. A comparative analysis of the data is performed at this point. For example, if TKN and NH3 are analyzed on the same sample the NH3 result should never be greater than the TKN result. Lab results and reports are released only to appropriately designated individuals. Release of the data can be by fax, email, electronic deliverables, or mailed hard copy.

When a project is completed, the project file folder is stored with a hard copy of the report, relevant supporting data, and the quality assurance/control worksheets. These folders are kept on file and are arranged by project number. Additionally, all electronic data is backed up daily on the HEAL main server. The backup includes raw data, chromatograms and report documents. Hard copies of chromatograms are stored separately according to the instrument and the analysis date. All records and analytical data reports are retained in a secure location as permanent records for a minimum period of five years (unless specified otherwise in a client contract). Access to archived information shall be documented with an access log. Access to archived electronic reports and data will be protected by a project manager password. In the event that HEAL transfers ownership or terminates business practices, complete records will be maintained or transferred according to the client's instructions.

After issuance, the original report shall remain unchanged. If a correction to the report is necessary, then an additional document shall be issued. This document shall have a title of "Addendum to Test Report or Correction to Original Report", or equivalent. Demonstration of original report integrity comes in two forms. First, the report date is included on each page of the final report. Second, each page is numbered in sequential order, making the addition or omission of any data page(s) readily detectable.

#### 12.0 Corrective Action

Refer to the most recent version of the Data Validation SOP for the procedure utilized in filling out a Corrective Action Report.

The limits that have been defined for data acceptability also form the basis for corrective action initiation. Initiation of corrective action occurs when the data generated from continuing calibration standard, sample surrogate recovery, laboratory control spike, matrix spike or sample duplicates exceed acceptance criteria. If corrective action is necessary, the analyst or the section supervisor will coordinate to take the following steps to determine and correct the measurement system deficiency:

Check all calculations and data measurements systems (Calibrations, reagents, instrument performance checks etc.).

Assure that proper procedures were followed.

Unforeseen problems that arise during sample preparation and/or sample analysis that lead to treating a sample differently from documented procedures shall be documented with a corrective action report. The section supervisor and laboratory manager shall be made aware of the problem at the time of the occurrence. See the appropriate SOP regarding departures from documented procedures.

Continuing calibration standards below acceptance criteria can not be used for reporting analytical data unless method specific criteria states otherwise.

Continuing calibration standards above acceptance criteria can be used to report data so long as the failure is isolated to a single standard and the corresponding samples are non-detect for the failing analyte.

Samples with non-compliant surrogate recoveries should be reanalyzed unless deemed unnecessary by the supervisor for matrix, historical data, or other analysis related anomalies.

Laboratory and Matrix Spike acceptance criteria vary significantly depending on method and matrix. Analysts and supervisors meet and discuss appropriate corrective action measures as spike failures occur.

Sample duplicates with RPD values outside control limits require supervisor evaluation and possible reanalysis.

A second mechanism for initiation of corrective action is that resulting from Quality Assurance performance audits, system audits, inter and intra-laboratory comparison studies. Corrective Actions initiated through this mechanism will be monitored and coordinated by the laboratory QA/QCO.

All corrective action forms are entered in the LIMS and included with the raw data for peer review, signed by the technical director of the section and included in the case narrative to

the client whose samples were affected. All Corrective action forms in the LIMS are reviewed by the QA/QCO.

# 13.0 Quality Assurance Audits, Reports and Complaints

# Internal/External Systems' Audits, Performance Evaluations, and Complaints

Several procedures are used to assess the effectiveness of the quality control system. One of these methods includes internal performance evaluations, which are conducted by the use of control samples, replicate measurements and control charts. Another method is external performance audits, which are conducted by the use of inter-laboratory checks, such as participation in laboratory evaluation programs and performance evaluation samples available from a NELAC accredited Proficiency Standard Vendor.

Proficiency samples will be obtained twice per year from an appropriate vendor for all tests and matrices for which we are accredited and for which there are PTs available. HEAL participates in soil, waste water, drinking water and underground storage tank PT studies. Copies of results are available upon request. HEAL's management and all analyst shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance criteria, sequence of analytical steps, number of replicates and other procedures as used when analyzing routine samples.

With regards to analyzing PT Samples HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seeks accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall no attempt to obtain the assigned value of any PT sample from the PT Provider.

Internal Audits are performed annually by the QA/QCO in accordance with the current Internal Audit SOP. They are performed using the guidelines outlined below:

The system audit consists of a qualitative inspection of the QA system in the laboratory and an assessment of the adequacy of the physical facilities for sampling, calibration, and measurement. This audit includes a careful evaluation and review of laboratory quality control procedures. Including but not limited to:

- 1. Review of staff qualifications, demonstration of capability, and personnel training programs
- 2. Storage and handling of reagents, standards and samples
- 3. Standard preparation logbook and LIMS procedures
- 4. Extraction logbooks
- 5. Raw data logbooks
- 6. Analytical logbooks or batch printouts and instrument maintenance logbooks
- 7. Data review procedures

- 8. Corrective action procedures
- 9. Review of data packages is performed regularly by the lab manager/QA Officer.

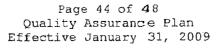
The QA/QCO will conduct these audits on an annual basis.

#### **Management Reviews**

HEAL management shall periodically, and at least annually conduct a review of the laboratory's quality system and environmental testing activities to ensure their continuing suitability and effectiveness, and to introduce necessary changes or improvements. The review shall take account of:

- 1. the suitability and implementation of policies and procedures
- 2. reports from managerial and supervisory personnel
- 3. the outcome of recent internal audits
- 4. corrective and preventive actions
- 5. assessments by external bodies
- 6. the results of interlaboratory comparisons or proficiency tests
- 7. changes in volume and type of work
- 8. client feed back
- 9. complaints
- 10. other relevant factors, such as laboratory health and safety, QC activities, resources and staff training.

Findings from management reviews and the actions that arise from them shall be recorded and any corrective actions that arise shall be completed in an appropriate and agreed upon timescale.

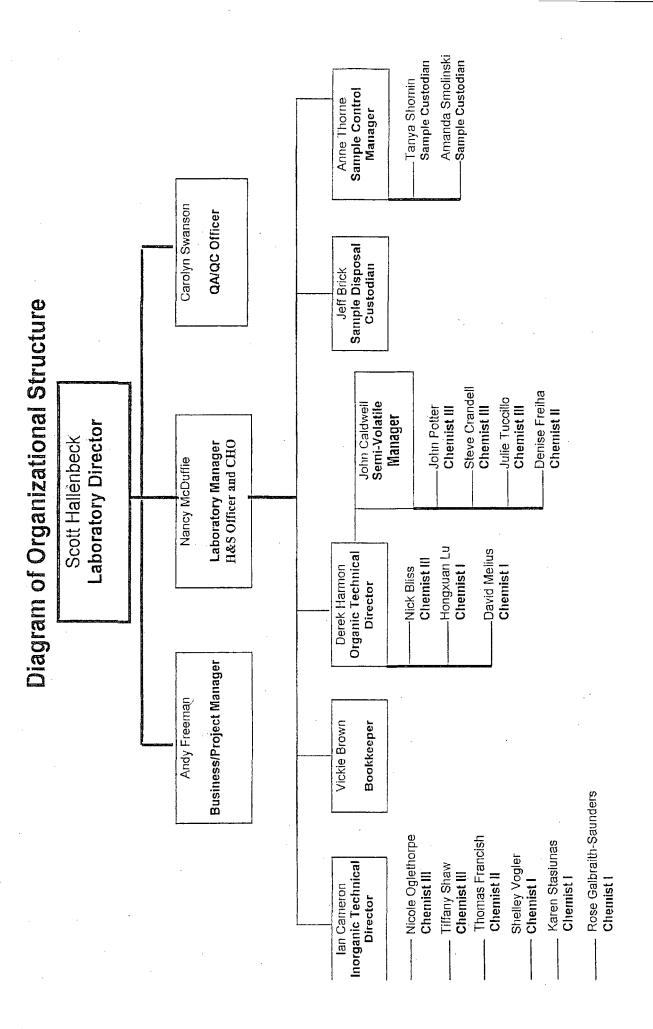

# Complaints

Complaints from clients are documented and given to the laboratory manager. The lab manager shall review the information and contact the client. If doubt is raised concerning the laboratories policies or procedures, then an audit of the section or sections may be performed. All records of complaints and subsequent actions shall be maintained in the client compliant logbook for 5 years unless otherwise stated.

#### Internal and External Reports

The QA/QCO is responsible for preparation and submission of quality assurance reports to the appropriate management personnel as problems and issues arise. These reports include the assessment of measurement systems, data precision and accuracy, and the results of performance and system audits. Additionally, they also include significant QA problems, corrective actions, and recommended resolution measures. Reports of these Quality Assurance Audits describe the particular activities audited, procedures utilized in

the examination and evaluation of laboratory records, and data validation procedures. Finally, there are procedures for evaluating the performance of Quality Control and Quality Assurance activities, and laboratory deficiencies and the implementation of corrective actions with the review requirements.




# 14.0 Analytical Protocols Utilized at Hall Environmental Analysis Laboratory, Inc.

- 1. <u>Standard Methods for the Examination of Water and Wastewater:</u> AOHA, AWWA, and WPCG; 20th Edition, 1999.
- 2. <u>Methods for Chemical Analysis of Water and Wastes</u>, USEPA, EPA-600/4-79-020, March 1979 and as amended December, 1982 (EPA-600/4-82-055)
- 3. <u>Test Methods for Evaluating Solid Waste: Physical/Chemical Methods</u>, USEPA SW-846, 3rd Edition, Updates I, II, IIA, IIB, III, December, 1996.
- 4. <u>Methods of Soil Analysis</u>: Parts 1 & 2, 2nd Edition, Agronomy Society of America, Monograph 9
- 5. <u>Diagnosis & Improvement of Saline & Alkali Soils</u>, Agriculture Handbook No. 60, USDA, 1954
- 6. <u>Handbook on Reference Methods for Soil Testing.</u> The Council on Soil Testing & Plant Analysis, 1980 and 1992
- 7. <u>Field and Laboratory Methods Applicable to Overburdens and Mine Soils, USEPA, EPA-600/2-78-054, March 1978</u>
- 8. <u>Laboratory Procedures for Analyses of Oilfield Waste.</u> Department of Natural Resources, Office of Conservation, Injection and Mining Division, Louisiana, August 1988
- 9. <u>Soil Testing Methods Used at Colorado State University for the Evaluation of Fertility.</u>
  Salinity and Trace Element Toxicity, Technical Bulletin LT B88-2 January, 1988
- 10. <u>Manual of Operating Procedures for the Analysis of Selected Soil, Water, Plant Tissue and Wastes Chemical and physical Parameter.</u> Soil, Water, and Plant Analysis Laboratory, Dept. of Soil and Water Science, The University of Arizona, August 1989
- 11. <u>Sampling Procedures and Chemical Methods in Use at the U.S. Salinity Laboratory for Characterizing Salt-Affected Soils and Water.</u> USDA Salinity Laboratory.
- 12. <u>Procedures for Collecting Soil Samples and Methods of Analysis for Soil Survey.</u> USDA Soil Conservation Service, SSIR No. 1.
- 13. <u>Soil Survey Laboratory Methods Manual.</u> Soil Survey Laboratory Staff. Soil Survey Investigations Report No. 42, version 2.0, August 1992.
- 14. <u>Methods for the Determination of Metals in Environmental Samples</u>, USEPA, EPA-600/4-91-010, June 1991
- 15. The Merck Index, Eleventh Edition, Merck & Co., Inc. 1989.

- 16. Handbook of Chemistry and Physics, 62nd Edition, CRC Press, Inc. 1981-1982.
- 17. <u>Analytical Chemistry of PCB's</u>. Erickson, Mitchell D., CRC Press, Inc. 1992.
- 18. <u>Environmental Perspective on the Emerging Oil Shale Industry</u>, EPA Oil & Shale Research Group.
- 19. Polycyclic Aromatic Hydrocarbons in Water Systems, CRC Press, Inc.
- 20. Quality Systems for Analytical Services. Revision 2.2, U.S. Department of Energy, October 2006.

# Appendix A Personnel Chart / Organizational Structure



Fage 48 of 48 Quality Assurance Plan Effective January 31, 2009



# OREGON

# **ENVIRONMENTAL LABORATORY** ACCREDITATION PROGRAM



NELAP Recognized

# Hall Environmental Analysis Laboratory, Inc.

#### NM100001

4901 Hawkins Rd. NE, Suite D Albuquerque, NM 87109

IS GRANTED APPROVAL BY ORELAP UNDER THE 2003 NELAC STANDARDS, TO PERFORM ANALYSES ON ENVIRONMENTAL SAMPLES IN MATRICES AS LISTED BELOW:

|     | Drinking  | Non Potable | Solids and  |        |
|-----|-----------|-------------|-------------|--------|
| Air | Water     | Water       | Chem. Waste | Tissue |
|     | Chemistry | Chemistry   | Chemistry   |        |

AND AS RECORDED IN THE LIST OF APPROVED ANALYTES, METHODS, ANALYTIC TECHNIQUES, AND FIELDS OF TESTING ISSUED CONCURRENTLY WITH THIS CERTIFICATE AND REVISED AS NECESSARY.

ACCREDITED STATUS DEPENDS ON SUCCESSFUL ONGOING PARTICIPATION IN THE PROGRAM AND CONTINUED COMPLIANCE WITH THE STANDARDS.

CUSTOMERS ARE URGED TO VERIFY THE LABORATORY'S CURRENT ACCREDITATION STATUS IN OREGON.

Irene E. Ronning, Ph.D. ORELAP Administrator 3150 NW 229th Ave, Suite 100 Hillsboro, OR 97124

ISSUE DATE:

3/1/2008

EXPIRATION DATE: 2/28/2009

Certificate No:

NM100001-009



# Oregon

# Environmental Laboratory Accreditation Program



Public Health Laboratory 3150 NW 229th Ave, Suite 100 Hillsboro, OR, OR 97124 NELAP Recognized (503) 693-4122 FAX (503) 693-5602

Department of Agriculture, Laboratory Division Department of Environmental Quality, Laboratory Division Department of Human Services, Public Health Laboratory

#### **ORELAP Fields of Accreditation**

ORELAPID: NM100001 EPACode: NM00035

Certificate:

NM100001-009

# Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

issue Date: 3/1/2008

Expiration Date: 2/28/2009 As of 03/01/2008 this list supercedes all previous lists for this certificate number.

Customers: Please verify the current accreditation standing with ORELAP.

| WATRIX: Drinkii | id Water       |          | Salar Branco Salar Branco Salar Branco Salar Branco Salar Branco Salar Branco Salar Branco Salar Branco Salar B |
|-----------------|----------------|----------|-----------------------------------------------------------------------------------------------------------------|
| Reference       |                | Code     | Descrip <b>ti</b> on                                                                                            |
| EPA 200.7 6     |                | 10014003 | ICP - meta Is                                                                                                   |
| Analyte Code    | <u>Analyte</u> |          |                                                                                                                 |
| 1000            | Aluminum       |          |                                                                                                                 |
| 1015            | Barium         |          |                                                                                                                 |
| 1020            | Beryllium      |          |                                                                                                                 |
| 1025            | Boron          |          |                                                                                                                 |
| 1030            | Cadmium        |          |                                                                                                                 |
| 1035            | Calcium        |          |                                                                                                                 |
| 1040            | Chromium       | *        |                                                                                                                 |
| 1055            | Copper         | •        | t                                                                                                               |
| 1070            | iron           |          |                                                                                                                 |
| 1075            | Lead           |          |                                                                                                                 |
| 1085            | Magnesium      |          |                                                                                                                 |
| 1090            | Manganese      |          |                                                                                                                 |
| 1100            | Molybdenum     |          |                                                                                                                 |
| 1105            | Nickel         |          |                                                                                                                 |
| 1125            | Potassium      |          | ,                                                                                                               |
| 1150            | Silver         |          |                                                                                                                 |
| 1155            | Sodium         |          |                                                                                                                 |
| 1175            | Tin .          |          |                                                                                                                 |
| 1180            | Titanium       |          |                                                                                                                 |
| 1185            | · Vanadium     |          | •                                                                                                               |
| 1190            | Zinc           |          |                                                                                                                 |
| EPA 245.1 3     |                | 10036609 | Mercury by Cold Vapor Atomic Absorption                                                                         |
| Analyte Code    | <u>Analyte</u> |          | ·                                                                                                               |
| <b>109</b> 5    | Mercury        |          |                                                                                                                 |
| EPA 300.0       |                | 10053006 | ion chroma tography - anions.                                                                                   |
| Analyte Code    | <u>Analyte</u> |          | •                                                                                                               |
| <b>157</b> 5    | Chloride       |          |                                                                                                                 |
| 1730            | Fluoride       |          |                                                                                                                 |
| 1810            | Nitrate as N   |          |                                                                                                                 |
| 1835            | Nitrite        |          |                                                                                                                 |
| 2000            | Sulfate        |          |                                                                                                                 |
| EPA 300.0 2.1   | _              | 10053200 | inorganic Anions in water by Ion Chromatography                                                                 |
| Analyte Code    | <u>Analyte</u> |          |                                                                                                                 |
| 1870            | Orthophosphate | as P     |                                                                                                                 |
|                 |                |          |                                                                                                                 |

#### **ORELAP Fields of Accreditation**

ORELAPID: NM100001 EPACode: NM00035

Certificate:

NM100001-009

# Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

issue Date: 3/1/2008

Expiration Date: 2/28/2009

As of 03/01/2008 this list supercedes all previous lists for this certificate number.

Customers: Please verify the current accreditation standing with ORELAP.

| PA 5030B 2   | 10153409 Purg                            | e and trap for aqueous samples                |
|--------------|------------------------------------------|-----------------------------------------------|
| Analyte Code | <u>Analyte</u>                           |                                               |
| 125          | Extraction/Preparation                   |                                               |
| PA 504.1     | 10083008 EDB                             | DBCP/TCP micro-extraction, GC/ECD             |
| Analyte Code | <u>Analyte</u>                           |                                               |
| 4570         | 1,2-Dibromo-3-chloropropane (DBCP)       |                                               |
| <b>458</b> 5 | 1,2-Dibromoethane (EDB, Ethylene dibromi | de)                                           |
| PA 524.2 4.1 | 10088809 Vota                            | ille Organic Compounds GC/MS Capillary Column |
| Analyte Code | <u>Analyte</u>                           |                                               |
| 5105         | 1,1,1,2-Tetrachioroethane                |                                               |
| 5160         | 1,1,1-Trichloroethane                    |                                               |
| 5110         | 1,1,2,2-Tetrachloroethane                |                                               |
| 5165         | 1,1,2-Trichloroethane                    |                                               |
| 4630         | 1,1-Dichloroethane                       |                                               |
| 4640         | 1,1-Dichloroethylene                     |                                               |
| 4670         | 1,1-Dichloropropene                      |                                               |
| 5150         | 1,2,3-Trichlorobenzene                   | •                                             |
| 5180         | 1,2,3-Trichloropropane                   |                                               |
| 5155         | 1,2,4-Trichlorobenzene                   |                                               |
| 5210         | 1,2,4-Trimethylbenzene                   |                                               |
| 4610         | 1,2-Dichlorobenzene                      |                                               |
| 4635         | 1,2-Dichloroethane                       |                                               |
| 4655         | 1,2-Dichioropropane                      |                                               |
| 5215         | 1,3,5-Trimethylbenzene                   |                                               |
| 4615         | 1.3-Dichlorobenzene                      |                                               |
| 4660         | 1,3-Dichloropropane                      |                                               |
| 4620         | 1,4-Dichlorobenzene                      |                                               |
| 4535         | 2-Chlorotoluene                          |                                               |
| 4540         | 4-Chlorotoluene                          | •                                             |
| 4375         | Benzene                                  |                                               |
| 4385         | Bromobenzene                             |                                               |
| 4390         | Bromochloromethane                       |                                               |
| 4395         | Bromodichloromethane                     |                                               |
| 4400         | Bromoform                                |                                               |
| 4950         | Bromomethane (Methyl bromide)            |                                               |
| 4455         | Carbon tetrachioride                     |                                               |
| 4475         | Chlorobenzene                            |                                               |
| 4485         | Chloroethane                             |                                               |
| 4505         | Chloroform                               |                                               |
| 105          | Chloromethane                            |                                               |
| 4645         | cis-1,2-Dichloroethylene                 |                                               |
| 4680         | cis-1,3-Dichloropropene                  |                                               |
| 4575         | Dibromochloromethane                     | ·                                             |
| 4595         | Dibromomethane                           | •                                             |
| 4650         | Dichloromethane (DCM, Methylene chloride | }                                             |
| 4765         | Ethylbenzene                             |                                               |
| 4835         | Hexachlorobutadiene                      |                                               |
| 4900         | isopropylbenzene                         |                                               |
| 5000         | Methyl tert-butyl ether (MTBE)           |                                               |
| 4435         | n-Butylbenzene                           |                                               |
| 509D         | n-Propylbanzene                          |                                               |

# **ORELAP** Fields of Accreditation

ORELAPID: NM100001

EPACode: NM00035

Certificate:

NM100001-009

# Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

issue Date: 3/1/2008

2040

Expiration Date: 2/28/2009

As of 03/01/2008 this list supercedes all previous lists for this certificate number. Customers: Please verify the current accreditation standing with ORELAP.

Total Organic Carbon

| 4440                 | sec-Butylbenzene                     |                                                     |
|----------------------|--------------------------------------|-----------------------------------------------------|
| 5100                 | Styrene                              |                                                     |
| 4445                 | tert-Butylbenzene                    |                                                     |
| 5115                 | Tetrachloroethylene (Perchloroethyle | ene)                                                |
| 5140                 | Toluene                              | ·                                                   |
| 4700                 | trans-1,2-Dicloroethylene            |                                                     |
| 4685                 | trans-1,3-Dichloropropylene          |                                                     |
| 5170                 | Trichloroethene (Trichloroethylene)  |                                                     |
| 51:75                | Trichlorofluoromethane               |                                                     |
| 5235                 | Vinyl chloride                       |                                                     |
| 5260                 | Xylene (total)                       |                                                     |
| SM 2540 C 20th ED    | 20050004                             | Total Dissolved Solids                              |
| Analyte Code         | <u>Analyte</u>                       | •                                                   |
| 1 <b>95</b> 5        | Residue-filterable (TDS)             |                                                     |
| SM 4500-H+ B 20th ED | 20104807                             | pH by Probe                                         |
| Analyte Code         | Analyte                              |                                                     |
| 1900                 | pH                                   |                                                     |
| SM 5310 B 20th ED    | 20137400                             | Total Organic Carbon by Combustion Infra-red Method |
| Analyte Code         | Analyte                              |                                                     |
|                      |                                      |                                                     |

#### **ORELAP Fields of Accreditation**

ORELAPID: NM100001 EPACode: NM00035

Certificate:

NM100001-009

# Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

Issue Date: 3/1/2008

Expiration Date: 2/28/2009

As of 03/01/2008 this list supercedes all previous lists for this certificate number. Customers: Please verify the current accreditation standing with ORELAP.

| Reference      | Code                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EPA 300.0      | 10053006               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analyte Code   | Analyte ·              | Toll official assumption and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco |
| 1540           | Bromide                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1575           | Chloride               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1730           | Fluoride               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1810           | Nitrate as N           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1840           | Nitrite as N           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1870           | Orthophosphate as P    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2000           | Sulfate                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EPA 3005A 1    | 10133207               | Acid Digestion of waters for Total Recoverable or Dissolved Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte Code   | <u>Analyte</u>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 125            | Extraction/Preparation |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EPA 3510C 3    | 10138202               | Separatory Funnel Liquid-liquid extraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Analyte Code   | <u>Analyte</u>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 125            | Extraction/Preparation |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EPA 5030B 2    | 10153409               | Purge and trap for aqueous samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte Code   | <u>Analyte</u>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 125            | Extraction/Preparation |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EPA 6010B 2    | 10155609               | ICP - AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Analyte Code   | <u>Analyte</u>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1000           | Aluminum               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1005           | Antimony               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>10</b> 10 · | Arsenic                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>10</b> 15   | Barium                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1020           | Beryllium              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1025           | Boron                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1030           | Cadmium                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1035           | Calcium                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1040           | Chromium               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1050           | Cobalt                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1070           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1075           | Iron<br>Lead           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | · -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1085           | Magnesium              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1090           | Manganese              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1100           | Molybdenum             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1105           | Nickel                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1125           | Potassium              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1140           | Selenium               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1150           | Silver                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1155           | Sodium                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1165           | Thallium               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1175           | Tin                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1180           | Titanium               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3035           | Uranium                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 <b>1</b> 85  | Vanadium               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1190           | Zinc                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EPA 7470A 1    | 10165807               | Mercury in Liquid Waste by by Cold Vapor Atomic Absorption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Analyte Code   | <u>Analyte</u>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1095           | Mercury                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



ORELAPID: NM100001 EPACode: NM00035

Certificate:

NM100001-009

# Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

Issue Date: 3/1/2008

Expiration Date: 2/28/2009

As of 03/01/2008 this list supercedes all previous lists for this certificate number.

Customers: Please verify the current accreditation standing with ORELAP.

| Analyte Diesel range organics (DRO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Diesel range organics (DRO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
| Gasoline range organics (GRO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |
| Motor Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |
| 10174808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aromatic and Halogenated Volatiles by GC with PID and/or ECD Purge 8 |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , , , , , , , , , , , , , , , , , , ,                                |
| 1,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·                                                                    |
| 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                      |
| m+p-xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Organochlorine Pesticides by GC/ECD                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Organismini i Committee Sy Conzer                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
| '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | havano)                                                              |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                    |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | valle)                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vachlere evalor a van EV                                             |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | xachiorocyclone xane)                                                |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Polychlorinated Biphenyls (PCBs) by GC/ECD                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Polychionilated Biblieriyis (PCBS) by GC/ECD                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                    |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Volatile Organic Compounds by purge and trap GC/MS                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Volatile Organic Compounds by purge and trap GC/MS                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,3,5-Trimethylbenzene<br>Benzene                                    |





ORELAPID: NM100001 EPACode: NM00035

Certificate:

NM100001-009

# Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

Issue Date: 3/1/2008

Expiration Date: 2/28/2009

| 4640         | 1,1-Dichloroethylene                        |
|--------------|---------------------------------------------|
| 4670         | 1,1-Dichloropropene                         |
| 5150 .       | 1,2,3-Trichiorobenzene                      |
| 5180         | 1,2,3-Trichloropropane                      |
| 5155         | 1,2,4-Trichlorobenzene                      |
| 5210         | 1,2,4-Trimethylbenzene                      |
| 4570         | 1,2-Dibromo-3-chloropropane (DBCP)          |
| <b>458</b> 5 | 1,2-Dibromoethane (EDB, Ethylene dibromide) |
| 4610         | 1,2-Dichłorobenzene                         |
| <b>463</b> 5 | 1,2-Dichloroethane                          |
| <b>465</b> 5 | 1,2-Dichloropropane                         |
| 5215         | 1,3,5-Trimethylbenzene                      |
| 4615         | 1,3-Dichlorobenzene                         |
| 4660         | 1,3-Dichloropropane                         |
| 4620         | 1,4-Dichlorobenzene                         |
| 6380         | 1-Methylnaphthalene                         |
| 4665         | 2,2-Dichloropropane                         |
| 4410         | 2-Butanone (Methyl ethyl ketone, MEK)       |
| <b>453</b> 5 | 2-Chlorotoluene                             |
| 4860         | 2-Hexanone                                  |
| 6385         | 2-Methỳinaphthalene                         |
| 4540         | 4-Chlorotoluene                             |
| <b>499</b> 5 | 4-Methyl-2-pentanone (MIBK)                 |
| 4315         | Acetone                                     |
| 4375         | Benzene                                     |
| 4385         | Bromobenzene                                |
| 4390         | Bromochloromethane                          |
| 4395         | Bromodichloromethane                        |
| 4400         | Bromoform                                   |
| 4950         | Bromomethane (Methyl bromide)               |
| 4450         | Carbon disuffide                            |
| 4455         | Carbon tetrachloride                        |
| 4475         | Chlorobenzene                               |
| 4485         | Chloroethane                                |
| <b>450</b> 5 | Chloroform                                  |
| 105          | Chloromethane                               |
| 4645         | cis-1,2-Dichtoroethylene                    |
| 4680         | cis-1,3-Dichloropropene                     |
| 4575         | Dibromochloromethane                        |
| 4595         | Dibromomethane                              |
| 4625         | Dichlorodifluoromethane                     |
| 4650         | Dichloromethane (DCM, Methylene chloride)   |
| 4765         | Ethylbanzene                                |
| 4835         | Hexachlorobutadiene                         |
| 4900         | isopropylbenzene                            |
| 5240         | m+p-xylene                                  |
| 5000         | Methyl tert-butyl ether (MTBE)              |
| 5005         | Naphthalene                                 |
| 4435         | n-Butylbenzene                              |
| 5090         | n-Propylbenzene                             |
| 5250         | o-Xylene                                    |
|              |                                             |

ORELAPID: NM100001 EPACode: NM00035

Certificate:

NM100001-009

# Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

Issue Date: 3/1/2008

Expiration Date: 2/28/2009

| 4910          | p-isopropyitoluene                      |  |  |
|---------------|-----------------------------------------|--|--|
| 4440          | sec-Butylbenzene                        |  |  |
| 5 <b>10</b> 0 | Styrene                                 |  |  |
| 4445          | tert-Butylbenzene                       |  |  |
| 5115          | Tetrachloroethylene (Perchloroethylene) |  |  |
| 5140          | Toluene                                 |  |  |
| 4700          | trans-1,2-Dictoroethylene               |  |  |
| 4685          | trans-1,3-Dichloropropylene             |  |  |
| 5170          | Trichloroethene (Trichloroethylene)     |  |  |
| 5175          | Trichlorofluoromethane                  |  |  |
| 5235          | Vinyl chloride                          |  |  |
| 5260          | Xylene (total)                          |  |  |
|               |                                         |  |  |

|     | 5235         | Vinyi chioride               |                                         |
|-----|--------------|------------------------------|-----------------------------------------|
|     | 5260         | Xylene (total)               |                                         |
| EPA | 8270C 3      | 10185805                     | SemiVolitile Organic compounds by GC/MS |
|     | Analyte Code | <u>Anaiyte</u>               |                                         |
|     | 5155         | 1,2,4-Trichlorobenzene       |                                         |
|     | 4610         | 1,2-Dichlorobenzene          |                                         |
|     | 4615         | 1,3-Dichlorobenzene          |                                         |
|     | 4620         | 1,4-Dichlorobenzene          | ·                                       |
|     | 6835         | 2,4,5-Trichiorophenol        |                                         |
|     | 6840         | 2,4,6-Trichlorophenol        | •                                       |
|     | 6000         | 2,4-Dichlorophenol           |                                         |
|     | 6130         | 2,4-Dimethylphenol           | •                                       |
|     | 6175         | 2,4-Dinitrophenol            |                                         |
|     | 6185         | 2,4-Dinitrotoluene (2,4-DNT) | •                                       |
|     | 6190         | 2,6-Dinltrotoluene (2,6-DNT) |                                         |
|     | 5795         | 2-Chloronaphthalene          |                                         |
|     | 5800         | 2-Chlorophenol               |                                         |
|     | 6385         | 2-Methylnaphthalene          |                                         |
|     | 6400         | 2-Methylphenol (o-Cresol)    |                                         |
|     | 6460         | 2-Nitroanlline               | ·                                       |
|     | 6490         | 2-Nitrophenol                |                                         |
|     | 6412         | 3 & 4 Methylphenol           |                                         |
|     | 5945         | 3,3'-Dichlorobenzidine       |                                         |
|     | 6465         | 3-Nitroaniline               |                                         |
|     | 6140         | 4,6-Dinitro-2-methylphenol   |                                         |
|     | 5660,        | 4-Bromophenyl phenyl ether   |                                         |
|     | 5700         | 4-Chloro-3-methylphenol      |                                         |
|     | 5745         | 4-Chloroaniline              | ·                                       |
|     | 5825         | 4-Chlorophenyl phenylether   |                                         |
|     | 6470         | 4-Nitroaniline               |                                         |
|     | 6500         | 4-Nitrophenol                |                                         |
|     | 5500         | Acenaphthene                 |                                         |
|     | 5505         | Acenaphthylene               |                                         |
|     | 5545         | Aniline                      |                                         |
|     | 5555         | Anthracene                   |                                         |
|     | 123          | Azobenzene                   |                                         |
|     | 5575         | Benzo[a]anthracene           | , ~                                     |
|     | 5580         | Benzo[a]pyrene               |                                         |
|     | 5585         | Benzo[b]fluoranthene         |                                         |
|     | 5590         | Benzo[g,h,i]perylene         |                                         |
|     | 5600         | Benzo[k]fluoranthene         |                                         |

ORELAPID: NM100001 EPACode: NM00035

Certificate:

NM100001-009

# Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

Issue Date: 3/1/2008

Expiration Date: 2/28/2009

|     |               | the burion accreanation standing with ONLEAR.             |
|-----|---------------|-----------------------------------------------------------|
|     | 482           | Benzofluoranthene                                         |
|     | 5610          | Benzoic acid                                              |
|     | 5630          | Benzyl alcohol                                            |
|     | 5765          | bis(2-Chloroethyl)ether                                   |
|     | 5770          | bis(2-Chloroethyloxymethane)                              |
|     | 5780          | bis(2-Chloroisopropyl)ether                               |
|     | 6255          | bis(2-Ethylnexyl)phthalate (DEHP)                         |
|     | 5670          | Butyl benzyl phthalate                                    |
|     | 5680          | Carbazole                                                 |
|     | 5855          | Chrysene                                                  |
|     | 5895          | Dibenz[a,h]anthracene                                     |
|     | 5905          | Dibenzofuran                                              |
|     | 6070          | Diethyl phthalate                                         |
|     | 6135          | Dimethyl phthalate                                        |
|     | 5925          | Di-n-butyl phthalate                                      |
|     | 6200          | Di-n-octyl phthalate                                      |
|     | 6265          | Fluoranthene                                              |
|     | 6270          | Fluorene                                                  |
|     | 6275          | Hexachlorobenzene                                         |
|     | 4835          | Hexachlorobutadiene                                       |
|     | <b>628</b> 5  | Hexachlorocyclopentadiene                                 |
|     | 4840          | Hexachloroethane                                          |
|     | 6315          | Indeno[1,2.3-cd]pyrene                                    |
|     | 6320          | Isophorone                                                |
|     | 5005          | Naphthalene                                               |
|     | 5015          | Nitrobenzene                                              |
|     | 6 <b>53</b> 5 | n-Nitrosodiphenylamine                                    |
|     | 6540          | n-Nitrosodipropylamine                                    |
|     | 6605          | Pentachlorophenol                                         |
|     | 6615          | Phenanthrene                                              |
|     | 6625          | Phenol                                                    |
|     | 6665          | Pyrene                                                    |
|     | <b>509</b> 5  | Pyridine                                                  |
| EPA |               | 10187607 Polynuclear Aromatic Hydrocarbons by HPLC/UV-VIS |
|     | Analyte Code  | <u>Analyte</u>                                            |
|     | 6380          | 1-Methylnaphthalene                                       |
|     | 55 <b>0</b> 0 | Acenaphthene                                              |
|     | <b>550</b> 5  | Acenaphthylene                                            |
|     | <b>555</b> 5  | Anthracene                                                |
|     | 5575          | Benzo[a]anthracene                                        |
|     | 5580          | Benzo[a]pyrene                                            |
|     | <b>558</b> 5  | Benzo[b]fluoranthene                                      |
|     | 5590          | Benzo[g,h,i]perylene                                      |
|     | 56 <b>0</b> 0 | Benzo[k]fluoranthene                                      |
|     | 5 <b>85</b> 5 | Chrysene                                                  |
|     | 5895          | Dibenz[a,h]anthracene                                     |
|     | 62 <b>6</b> 5 | Fluoranthene                                              |
|     |               | Fluorene                                                  |
|     | 6270          |                                                           |
|     | 6270<br>6315  |                                                           |
|     |               | Indeno[1,2,3-cd]pyrene Naphthalene                        |



ORELAPID: NM100001 EPACode: NM00035

Certificate:

NM100001-009

# Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

Issue Date: 3/1/2008

Expiration Date: 2/28/2009

| 6665                | Pyrene                  |        |                        |   |   |
|---------------------|-------------------------|--------|------------------------|---|---|
| SM 2540 C 20th ED   | 20                      | 050004 | Total Dissolved Solids |   |   |
| Analyte Code        | <u>Analyte</u>          |        |                        |   |   |
| 1955                | Residue-filterable (TDS | S)     |                        | • | • |
| SM 4500-H+ B 20th E | D 20                    | 104807 | pH by Probe            |   |   |
| Analyte Code        | <u>Analyte</u>          |        |                        |   |   |
| 1900                | pН                      |        |                        |   |   |

ORELAPID: NM100001 EPACode: NM00035

Certificate:

NM100001-009

# Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

Issue Date: 3/1/2008

Expiration Date: 2/28/2009

| Reference    | Code                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EPA 3050A    | 10135407                      | Acid Digestion of Sediments, Sludges, and soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analyte Code | <u>Analyte</u>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 125          | Extraction/Preparation        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EPA 3540C 3  | 10140202                      | Soxhlet Extraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte Code | <u>Analyte</u>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 125          | Extraction/Preparation        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EPA 3545     | 10140804                      | Pressurized Fluid Extraction (PFE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte Code | Analyte                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 125          | Extraction/Preparation        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EPA 5035     | 10154004                      | Closed-System Purge-and-Trap and Extraction for Volatile Organics in S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Analyte Code | <u>Analyte</u>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 125          | Extraction/Preparation        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EPA 6010B 2  | 10155609                      | ICP - AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Analyte Code | An <u>alyte</u>               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1000         | Aluminum                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1005         | Antimony                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1010         | Arsenic                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1015         | Barium                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1020         | Beryllium                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1025         | Boron                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1030         | Cadmium                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1035         | Calcium                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1040         | Chromium                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1050         | Cobalt                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1055         | Copper<br>Iron                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1070         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1075         | Lead                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1085         | Magnesium                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1090         | Manganese                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1100         | Molybdenum                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1105         | Nickel                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1125         | Potassium                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1140         | Selenium                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1150         | Silver                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1155         | Sodium                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1165         | Thallium                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1175         | Tin                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1180         | Titanium                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3035         | Uranium                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1185         | Vanadium                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1190         | Zinc                          | Standard California Lancative and the California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California California Califo |
| EPA 7471A 1  | 10166208                      | Mercury in Solid Waste by Cold Vapor Atomic Absorption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Analyte Code | Analyte                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1095         | Mercury                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EPA 8015B 2  | 10173601                      | Non-haloge nated organics using GC/FID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Analyte Code | <u>Analyte</u>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9369         | Diesel range organics (DRO)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9408         | Gasoline range organics (GRO) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 102          | Motor Oll                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

ORELAPID: NM100001 EPACode: NM00035

Certificate:

NM100001-009

## Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

Issue Date: 3/1/2008

Expiration Date: 2/28/2009

| PA 8021B 2   | 10174808                          | Aromatic and Halogenated Volatiles by GC with PID and/or ECD Purge 8 |
|--------------|-----------------------------------|----------------------------------------------------------------------|
| Analyte Cod  | <u>Analyte</u>                    |                                                                      |
| 4375         | Benzene                           |                                                                      |
| 4765         | Ethylbenzene                      | •                                                                    |
| 5240         | m+p-xylene                        |                                                                      |
| 5000         | Methyl tert-butyl ether (MTBE)    |                                                                      |
| <b>525</b> 0 | o-Xylene                          |                                                                      |
| 5140         | Toluene                           |                                                                      |
| 5260         | Xylene (total)                    |                                                                      |
| PA 8081A 1   | 10178606                          | Organochtorine Pesticides by GC/ECD                                  |
| Analyte Cod  | <u> Analyte</u>                   | ;<br>                                                                |
| 7355         | 4,4'-DDD                          |                                                                      |
| 7360         | 4,4'-DDE                          |                                                                      |
| 7365         | 4,4'-DDT                          |                                                                      |
| 7025         | Aldrin                            |                                                                      |
| 7110         | aipha-BHC (alpha-Hexachiorocycioh | PYRIDA)                                                              |
| 7115         | beta-BHC (beta-Hexachlorocyclonex |                                                                      |
| 7105         | delta-BHC                         | MINY                                                                 |
| 7470         | Dieldrin                          |                                                                      |
| 7510         | Endosulfan l                      |                                                                      |
|              |                                   |                                                                      |
| 7515         | Endosulfan II                     |                                                                      |
| 7520         | Endosulfan sulfate                |                                                                      |
| 7540         | Endrin                            |                                                                      |
| 7530         | Endrin aldehyde                   | III and leaves M                                                     |
| <b>71</b> 20 | gamma-BHC (Lindane, gamma-Hex     | achiorocyclo nexan=)                                                 |
| 7685         | Heptachlor                        |                                                                      |
| 7690         | Heptachlor epoxide                |                                                                      |
| 7810         | Methoxychlor                      |                                                                      |
| PA 8082      | 10179007                          | Polychlori nated Biphenyls (PCBs) by GC/ECD                          |
| Analyte Coo  |                                   |                                                                      |
| 8880         | Aroclor-1016 (PCB-1016)           |                                                                      |
| 8885         | Aroclor-1221 (PCB-1221)           |                                                                      |
| 8890         | Aroclor-1232 (PCB-1232)           |                                                                      |
| 8895         | Arocior-1242 (PCB-1242)           |                                                                      |
| 8900         | Arocior-1248 (PCB-1248)           |                                                                      |
| 8905         | Aroclor-1254 (PCB-1254)           | •                                                                    |
| 8910         | Aroclor-1260 (PCB-1260)           |                                                                      |
| PA 8260B 2   | 10184802                          | Volatile O rganic Compounds by purge and trap GC/MS                  |
| Analyte Coc  | e <u>Analyte</u>                  |                                                                      |
| 5105         | 1,1,1,2-Tetrachloroethane         |                                                                      |
| 5160         | 1,1,1-Trichloroethane             |                                                                      |
| 5110         | 1,1,2,2-Tetrachloroethane         |                                                                      |
| 5165         | 1,1,2-Trichloroethane             |                                                                      |
| 4530         | 1,1-Dichloroethane                |                                                                      |
| 4640         | 1,1-Dichloroethylene              |                                                                      |
| 4670         | 1,1-Dichloropropene               |                                                                      |
| 5150         | 1,2,3-Trichlorobenzene            |                                                                      |
| 5180         | 1,2,3-Trichloropropane            |                                                                      |
| 5155         | 1,2,4-Trichlorobenzene            |                                                                      |
|              |                                   |                                                                      |
| 5210         | 1,2,4-Trimethylbenzene            |                                                                      |

ORELAPID: NM100001 EPACode: NM00035

Certificate:

NM100001-009

## Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

Issue Date: 3/1/2008

Expiration Date: 2/28/2009

| <b>458</b> 5 |    | 1,2-Dibromoethane (EDB, Ethylene dibromide) |
|--------------|----|---------------------------------------------|
| 4610         |    | 1,2-Dichlorobenzene                         |
| 4635         | hi | 1,2-Dichloroethane                          |
| 4655         |    | 1,2-Dichloropropane                         |
| 5215         |    | 1,3,5-Trimethylbenzene                      |
| 4615         |    | 1,3-Dichlorobenzene                         |
| 4660         |    | 1,3-Dichloropropane                         |
| 4620         |    | 1,4-Dichlorobenzene                         |
| 6380         |    | 1-Methylnaphthalene                         |
| 4665         |    | 2,2-Dichloropropane                         |
| 4410         |    | 2-Butanone (Methyl ethyl ketone, MEK)       |
| 4535         |    | 2-Chiorotoluene                             |
| 4860         |    | 2-Hexanone                                  |
| 6385         |    | 2-Methylnaphthalene                         |
| 4540         |    | 4-Chiorotoluene                             |
| 4995         |    | 4-Methyl-2-pentanone (MIBK)                 |
| 4315         |    | Acetone                                     |
| 4375         |    | Benzene                                     |
| 4385         |    | Bromobenzene                                |
| 4390         | •  | Bromochloromethane                          |
| <b>439</b> 5 |    | Bromodichloromethane                        |
| 4400         |    | Bromoform                                   |
| 4950         |    | Bromomethane (Methyl bromide)               |
| 4450         |    | Carbon disulfide                            |
| 4455         |    | Carbon tetrachloride                        |
| 4475         |    | Chlorobenzene                               |
| 4485         |    | Chloroethane                                |
| 4505         |    | Chloroform                                  |
| 105          |    | Chloromethane                               |
| 4645         |    | cis-1,2-Dichloroethylene                    |
| 4680         |    | cis-1,3-Dichloropropene                     |
| 4575         |    | Dibromochloromethane                        |
| 4595         |    | Dibromomethane                              |
| 4625         |    | Dichlorodifluoromethane                     |
| 465D         |    | Dichloromethane (DCM, Methylene chloride)   |
| 4765         |    | Ethylbenzene                                |
| 4835         |    | Hexachtorobutadiene                         |
| 4900         |    | Isopropylbenzene                            |
| 5240         |    | m+p-xylene                                  |
| 5000         |    | Methyl tert-butyl ether (MTBE)              |
| 5005         |    | Naphthalene                                 |
| 4435         |    | n-Butylbenzene                              |
| 5090         |    | n-Propylbenzene                             |
| 5250         |    | o-Xylene                                    |
| 4910         |    | p-Isopropyltoluene                          |
| 4440         |    | sec-Butylbenzene                            |
| 5100         |    | Styrene                                     |
| 4445         |    | tert-Butylbenzene                           |
| 5115         |    | Tetrachloroethylene (Perchloroethylene)     |
| 5140         |    | Toluene                                     |
| 4700         |    | trans-1,2-Dictoroethylene                   |

ORELAPID: NM100001 EPACode: NM00035

Certificate:

NM100001-009

# Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

Issue Date: 3/1/2008

Expiration Date: 2/28/2009

|     |                   | (                                   |                                         |   |   |
|-----|-------------------|-------------------------------------|-----------------------------------------|---|---|
|     | 4685              | trans-1,3-Dichloropropylene         |                                         |   |   |
|     | 5170              | Trichloroethene (Trichloroethylene) |                                         |   |   |
|     | 5175              | Trichlorofluoromethane              |                                         |   |   |
|     | 5235              | Vinyl chloride                      |                                         |   |   |
|     | 5260              | Xylene (total)                      |                                         |   |   |
| EPA | 8270C 3           | 10185805                            | SemiVolitile Organic compounds by GC/MS |   |   |
|     | Analyte Code      | <u>Analyte</u>                      |                                         |   |   |
|     | 5155              | 1,2,4-Trichlorobenzene              |                                         |   |   |
|     | 4610              | 1,2-Dichlorobenzene                 | · · · · · · ·                           |   |   |
|     | 4615              | . 1,3-Dichlorobenzene               |                                         |   |   |
|     | 4620              | 1,4-Dichlorobenzene                 |                                         |   |   |
|     | 6835              | 2,4,5-Trichlorophenol               |                                         |   |   |
|     | 6840              | 2,4,6-Trichlorophenol               |                                         |   |   |
|     | 6000              | 2,4-Dichlorophenol                  |                                         |   |   |
|     | 6130              | 2,4-Dimethylphenol                  |                                         |   |   |
|     | 6175              | 2,4-Dinitrophenol                   |                                         |   |   |
|     | 6185              | 2,4-Dinitrotoluene (2,4-DNT)        | ·                                       | ٠ | • |
|     | 6190              | 2,6-Dinitrotoluene (2,6-DNT)        |                                         |   |   |
|     | 5795              | 2-Chioronaphthalene                 |                                         |   |   |
|     | 5800              | 2-Chlorophenol                      |                                         |   |   |
|     | 6385              | 2-Methylnaphthalene                 |                                         |   |   |
|     | 6400              | 2-Methylphenol (o-Cresol)           | ·                                       | • |   |
|     | 6460              | 2-Nitroaniline                      |                                         |   |   |
|     | 6490              | 2-Nitrophenol                       |                                         |   |   |
|     | 6412              | 3 & 4 Methylphenol                  |                                         |   |   |
|     | <b>594</b> 5      | 3,3'-Dichlorobenzidine              |                                         |   |   |
|     | 64 <del>6</del> 5 | 3-Nitroaniline                      |                                         |   |   |
|     | 6140              | 4,6-Dinitro-2-methylphenol          |                                         |   |   |
|     | 5660              | 4-Bromophenyl phenyl ether          |                                         |   |   |
|     | 57 <b>0</b> 0     | 4-Chloro-3-methylphenol             |                                         |   |   |
|     | 5745              | 4-Chloroaniline                     |                                         |   |   |
|     | 5825              | 4-Chlorophenyl phenylether          |                                         |   |   |
|     | 6470              | 4-Nitroaniline                      |                                         |   |   |
|     | 6500              | 4-Nitrophenol                       |                                         |   |   |
|     | 5500              | Acenaphthene                        |                                         |   | • |
|     | 5505              | Acenaphthylene                      |                                         |   |   |
|     | 5545              | Anthroppe                           | •                                       |   |   |
|     | 5555<br>123       | Anthracene<br>Azobenzene            |                                         |   |   |
|     | 5575              |                                     |                                         |   |   |
|     | 55 <b>7</b> 5     | Benzo(a)anthracene                  |                                         |   |   |
|     | 55 <b>8</b> 5     | Benzo[a]pyrene Benzo[b]fluoranthene |                                         |   |   |
|     | 5590              | Benzo[g,h,i]perylene                |                                         |   |   |
|     | 5600              | Benzo[k]fluoranthene                |                                         |   |   |
|     | 5610              | Benzoic acid                        |                                         |   |   |
|     | 5630              | Benzyl alcohol                      | •                                       |   |   |
|     | 5760              | bis(2-Chloroethoxy)methane          |                                         |   |   |
|     | 5765              | bis(2-Chloroethyl)ether             |                                         |   |   |
|     | 5780              | bis(2-Chloroisopropyl)ether         |                                         |   |   |
| •   | 6255              | bis(2-Ethylhexyl)phthalate (DEHP)   |                                         |   |   |
|     | 5670              | Butyl benzyl phthalate              |                                         |   |   |
|     | 34.0              | - ary a warmy i prosince            |                                         |   |   |

ORELAPID: NM100001 EPACode: NM00035

Certificate:

NM100001-009

## Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

Issue Date: 3/1/2008

Expiration Date: 2/28/2009

|   | 5680         | Carbazole                 |
|---|--------------|---------------------------|
|   | 5855         | Chrysene                  |
|   | 5895         | Dibenz[a,h]anthracene     |
|   | 5905         | Dibenzofuran              |
|   | 6070         | Diethyl phthalate         |
|   | 6135         | Dimethyl phthalate        |
|   | 5925         | Di-n-butyl phthalate      |
|   | 6200         | Di-n-octyl phthalate      |
|   | <b>626</b> 5 | Fluoranthene              |
|   | 6270         | Fluorene                  |
|   | 6275         | Hexachlorobenzene         |
|   | 4835         | Hexachlorobutadiene       |
|   | 6285         | Hexachlorocyclopentadiene |
|   | 4840         | Hexachioroethane          |
|   | 6315         | Indeno[1,2,3-cd]pyrene    |
|   | 6320         | Isophorone                |
|   | 5005         | Naphthalene               |
|   | 5015         | Nitrobenzene              |
|   | 6530         | n-Nitrosodimethylamine    |
|   | 6535         | n-Nitrosodiphenylamine    |
|   | 6540         | n-Nitrosodipropylamine    |
|   | 6605         | Pentachiorophenol         |
|   | 6615         | Phenanthrene              |
|   | 6625         | Phenol                    |
|   | 6665         | Pyrene                    |
|   | 5095         | Pyridine                  |
| _ |              | 404070                    |

| EPA 8310     |         | 10187607 | Polynuclear Aromatic Hydrocarbons by HPLC/UV-VIS |
|--------------|---------|----------|--------------------------------------------------|
| Amalida Cada | Amainda |          |                                                  |

| Analyte Code  | <u>Analyte</u>         |
|---------------|------------------------|
| 6380          | 1-Methylnaphthalene    |
| 6385          | 2-Methylnaphthalene    |
| 5500          | Acenaphthene           |
| 5505          | Acenaphthylene         |
| <b>555</b> 5  | Anthracene             |
| 5575          | Benzo(a)anthracene     |
| 5580          | Benzo[a]pyrene         |
| 5 <b>58</b> 5 | Benzo[b]fluoranthene   |
| 5590          | Benzo[g,h,i]perylene   |
| 5600          | Benzo[k]fluoranthene   |
| 5855          | Chrysene               |
| 5895          | Dibenz(a,h)anthracene  |
| 6 <b>26</b> 5 | Fluoranthene           |
| 6270          | Fluorene               |
| 6315          | indeno[1,2,3-cd]pyrene |
| 5005          | Naphthalene            |
| 6615          | Phenanthrene           |
| 6665          | Pyrene                 |
|               |                        |



#### State of New Mexico

#### ENVIRONMENT DEPARTMENT

Field Operations Division
Drinking Water Bureau
525 Camino de Los Marquez
Santa Fe, New Mexico 87501
Telephone (505) 476-8620
Fax (505) 476-8658



Cindy Padilla
Deputy Secretary

March 11, 2008

Hall Environmental Analysis Laboratory Inc. 4901 Hawkins Rd. NE, Suite D Albuquerque, NM 87109

Dear Mr. Freeman

The Drinking Water Bureau of the New Mexico Environment Department (NMED-DWB) has received and reviewed your Nelap certification /accreditation information from the state of Oregon, The documentation is acceptable and your New Mexico certification is now valid through February 29, 2009.

This certification is to perform drinking water analysis in compliance with the Federal Safe Drinking Water Act, pursuant 40CFR Part 141, and the New Mexico Environment Department Drinking Water Regulations for the Primary Regulated contaminants, including Contaminants in as listed in your Oregon Scope Accreditation.

You must advise NMED-DWB of any change in your accreditation by the State of Oregon and continue to provide this office with performance evaluation results. You are also required to provide evidence of renewal of accreditation by the state of Oregon to continue certification past February 29, 2009.

Laboratories certified by the New Mexico can be purged from the list if there is no evidence that they are performing drinking water compliance samples analysis for public water supply systems in New Mexico.

IF you have any questions or require additional information, please contact me at 505-476-8635.

Sincerely,

Joe Chavez

### Chavez, Carl J, EMNRD

From: Chavez, Carl J, EMNRD

Sent: Thursday, November 19, 2009 7:45 AM

**To:**'Bob Patterson'; 'Dan Gibson'; 'Schmaltz, Randy'; 'Moore, Darrell'; 'Lackey, Johnny'
Sanchez, Daniel J., EMNRD; VonGonten, Glenn, EMNRD; Griswold, Jim, EMNRD

Subject: UIC Class I Disposal Well Annual Report Schedule for Submittal & Content REMINDER- 2010

Attachments: Class I Disposal Well Annual Report Tracking 2010.xls; 19.15.11 NMAC.doc

#### Gentlemen:

Good morning. You may recall an e-mail message from me this past Summer alerting you to the reporting provision of your current discharge permit (permit) and how the New Mexico Oil Conservation Division (OCD) is stepping up its efforts to track reporting under issued permits.

Please find attached a spreadsheet listing the dates that OCD expects to receive your Annual Reports and/or any reporting requirements from your permit. If you are an operator with limited reporting requirements based on your permit, you are welcome to follow the format and content required from more recent permit renewals issued by the OCD, which are more comprehensive and constitute a report, Any renewed permits will likely require similar content anyway.

You will notice that a Hydrogen Sulfide Contingency Plan (CP) (see attached 19.15.11 NMAC Regulations) has been written into a couple of new Navajo Refining Company permits. This regulation became effective on December 1, 2008 and applies to any facility or well where the hydrogen sulfide concentration is at or greater than 100 ppm. Consequently, if your facilities meet or exceed this concentration, you are required to have an H2S CP for your facility regardless of whether the OCD has required it in your permit. The OCD believes that all UIC Class I Disposal Well Facilities require an H2S CP; therefore, the OCD is requesting your H2S CP(s) by Wednesday, March 31, 2010, unless a different date for submittal is specified in your permit. Also, if you are an operator with multiple wells, you may develop one CP, but you must address each well location with site specific details in that one CP.

Please plan on meeting the Annual Report submittal dates in January of 2010 as failure to submit the report will constitute a violation under the Federal Underground Injection Control (UIC) Program and reporting to the United States Environmental Protection Agency, which could result in the shut-in and/or plug and abandonment of your Class I disposal well. Failure to meet the H2S CP requirement may also result in the shut-in of your well operations; consequently, the OCD is hopeful you will satisfy the regulations pertaining to this deadly gas.

Please contact me if you have questions. Thank you in advance for your cooperation in this matter.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: <a href="http://www.emnrd.state.nm.us/ocd/index.htm">http://www.emnrd.state.nm.us/ocd/index.htm</a> (Pollution Prevention Guidance is under "Publications")

CC: UIC Class I Well File "Annual Reporting" and "H2S Contingency Plan"

| Annual Report Contents | 20. B. Hydrogen Sulfide (H2S') Contingency Plan: If concentrations of H-S at the facility may exceed 100 ppm as specified in 19.15.11.12 et seq. |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Submitted              | 30.                                                                                                                                              |
| Annual Report Due Date | 01/31/10                                                                                                                                         |
| Operator               | Navajo Refining Company                                                                                                                          |
| Permit ID              | UICI-8 WDW-1                                                                                                                                     |

42S Contingency Plan per 19,15,11.9 et se NMAC shall be submitted within 3 months of permit issuance.

21 G. Injection Record Volumes and Pressures: The owner/operator shall submit quarterly reports of its disposal, operation and well workovers pravided herein. The minimum, maximum, average flow waste injection volumes (including total volumes) and annular pressures of waste (oil field exempt/non-exempt non-hazardous waste) injected will be recorded monthly and submitted to the OCD Santa Fe Office on a quarterly basis. The casing-tubing annulus shall contain fluid and be equipped with a pressure gauge or an approved leak detection device in order to determine leakage in the casing, tubing, or packer. Due to pressure fluctuations observed at Navajo's other two nearby Class I Injection Wells, WDW-1 shall be equipped with an expansion tank under constant 100 psig pressure connected to the casing-annulus and maintained under constant pressure. The expansion tank shall initially be expansion tank coupled with documented additions! removals of fluids into or out of the expansion tank is required to maintain the equilibrium volume. Any loss or gain of fluids in the expansion tank shall be recorded, and if significant, reported to the CCD within 24 hours of discovery. The owner/operator shall provide the following information on a quarterly basis, weekly expansion tank volume readings shall be provided in a table in the cover letter of each quarterly report. Navajo shall monitor, record and none any fluid volume additions or removals from the expansion tank on a quarterly basis, In addition, any well activity (i.e., plugging, changing injection intervals, etc.) shall be conducted in accordance with all applicable New Mexico Oil Conservation Division regulations. filled half-full (250 gallon expansion tank) with an approved fluid to establish an equilibrium volume and fluid level. Weekly monitoring of fluid levels in the

- 21 H. Analysis of Injected Waste: Provide an analytical data or test results summary of the injection waste water with each annual report. The analytical testing shall be conducted on a quarterly basis with any exceedence reported to the OCD within 24 hours after having knowledge of an exceedence(s). Records shall be maintained at Navajo for the life of the well. The required analytical test methods are:
- a. Aromatic and halogenated volatile hydrocarbon scan by EPA Method 8260C GCMS. Semi-volatile Organics GCMS EPA Method 8270B including I and
- b. General water chemistry (Method 40 CFR 136.3) to include calcium, potassium, magnesium, sodium, bicarbonate, carbonate, chloride, sulfate, total dissolved solids (TDS), pH, and conductivity.
- c. Heavy metals using the ICP scan (FPA Method 60 tO) and Arsenic and Mercury using atomic absorption (FPA Methods 7060 and 7470).
- d. FPA RCRA Characteristics for Ignitability, Corrosivity and Reactivity (40 CFR part 261 Subpart C Sections 261.21 -261.23, July 1, 1992).

## Chavez, Carl J, EMNRD

From:

Chavez, Carl J. EMNRD

Sent:

Thursday, November 19, 2009 7:45 AM

To:

'Bob Patterson'; 'Dan Gibson'; 'Schmaltz, Randy'; 'Moore, Darrell'; 'Lackey, Johnny'

Cc:

Sanchez, Daniel J., EMNRD; VonGonten, Glenn, EMNRD; Griswold, Jim, EMNRD

Subject:

UIC Class I Disposal Well Annual Report Schedule for Submittal & Content REMINDER- 2010

Attachments:

Class I Disposal Well Annual Report Tracking 2010.xls; 19.15.11 NMAC.doc

#### Gentlemen:

Good morning. You may recall an e-mail message from me this past Summer alerting you to the reporting provision of your current discharge permit (permit) and how the New Mexico Oil Conservation Division (OCD) is stepping up its efforts to track reporting under issued permits.

Please find attached a spreadsheet listing the dates that OCD expects to receive your Annual Reports and/or any reporting requirements from your permit. If you are an operator with limited reporting requirements based on your permit, you are welcome to follow the format and content required from more recent permit renewals issued by the OCD, which are more comprehensive and constitute a report, Any renewed permits will likely require similar content anyway.

You will notice that a Hydrogen Sulfide Contingency Plan (CP) (see attached 19.15.11 NMAC Regulations) has been written into a couple of new Navajo Refining Company permits. This regulation became effective on December 1, 2008 and applies to any facility or well where the hydrogen sulfide concentration is at or greater than 100 ppm. Consequently, if your facilities meet or exceed this concentration, you are required to have an H2S CP for your facility regardless of whether the OCD has required it in your permit. The OCD believes that all UIC Class I Disposal Well Facilities require an H2S CP; therefore, the OCD is requesting your H2S CP(s) by Wednesday, March 31, 2010, unless a different date for submittal is specified in your permit. Also, if you are an operator with multiple wells, you may develop one CP, but you must address each well location with site specific details in that one CP.

Please plan on meeting the Annual Report submittal dates in January of 2010 as failure to submit the report will constitute a violation under the Federal Underground Injection Control (UIC) Program and reporting to the United States Environmental Protection Agency, which could result in the shut-in and/or plug and abandonment of your Class I disposal well. Failure to meet the H2S CP requirement may also result in the shut-in of your well operations; consequently, the OCD is hopeful you will satisfy the regulations pertaining to this deadly gas.

Please contact me if you have guestions. Thank you in advance for your cooperation in this matter.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: <a href="http://www.emnrd.state.nm.us/ocd/index.htm">http://www.emnrd.state.nm.us/ocd/index.htm</a> (Pollution Prevention Guidance is under "Publications")

CC: UIC Class I Well File "Annual Reporting" and "H2S Contingency Plan"

| Annual Report Contents | . Chemical Analysis of Injection Fluids: The following analyses of injection fluids will be conducted on a quarterly hasis: |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Submitted              | 6                                                                                                                           |
| Annual Report Due Date | 01/31/10                                                                                                                    |
| Operator               | Western Refining Southwest                                                                                                  |
| Permit ID              | 6-IJIN                                                                                                                      |

a. Aromatic and halogenated volatile hydrocarbon scan by EPA method 8260C GCMS including MTBE. Semi-Volatile Organics GCMS EPA method 8270B including 1 and 2-methylnaphthalene.

b. General water chemistry to include calcium, potassium, magnesium, sodium, bicarbonate, carbonate, chloride, sulfate total dissolved solids (TDS), pH. and conductivity.

c. Total heavy metals using the ICAP scan (EPA method 6010IICPMS) and Mercury using Cold Vapor (EPA method 7470).

d. EPA RCRA Characteristics for Ignitability, Corrosivity and Reactivity.

Records of all analyses will be maintained at Giant Refining Company for the life of the well..

10. Quarterly Reporting: The following reports will be signed and certified in accordance with WQCC section 5101.G. and submitted quarterly to both the OCD Santa Fe and Aztee Offices:

a. Results of the chemical analysis of the injection fluids (number 9).
 b. Monthly average, maximum and minimum values for injection pressures. flow rate and flow volume; and, annular pressure.
 C. Monthly volumes of injected fluids.

### Chavez, Carl J, EMNRD

From: Chavez, Carl J, EMNRD

Sent: Friday, September 25, 2009 3:05 PM

To: 'Bob Patterson'; 'Imolleur@keyenergy.com'; 'Schmaltz, Randy'; DARRELL MOORE; Lackey,

Johnny

Cc: Sanchez, Daniel J., EMNRD; Jones, William V., EMNRD; VonGonten, Glenn, EMNRD

Subject: New Mexico Oil Conservation Division Class I (non-hazardous) Disposal Well Operator

Notice--QUARTERLY & ANNUAL REPORTING

#### Gentlemen:

Re: UIC Class I Disposal Well Quarterly and Annual Reporting

You are receiving this message because you are currently operating a Underground Injection Control (UIC) Class I (non-hazardous) Disposal Well in New Mexico under an Oil Conservation Division (OCD) Discharge Permit. You may be aware of the most recent events related to OCD Class III Wells in New Mexico and can find out more by visiting the OCD's Brine Well Webpage at <a href="http://www.emnrd.state.nm.us/OCD/brinewells.htm">http://www.emnrd.state.nm.us/OCD/brinewells.htm</a> and OCD Brine Well Work Group Website at <a href="http://ocdimage.emnrd.state.nm.us/imaging/AEOrderFileView.aspx?appNo=pCJC0906359521">http://ocdimage.emnrd.state.nm.us/imaging/AEOrderFileView.aspx?appNo=pCJC0906359521</a>.

The OCD is writing to inform you that it will be monitoring more closely the receipt of your "Quarterly Reports" and "Annual Reports" required under the applicable section(s) of your OCD Discharge Permit. After reexamining our UIC Program subsequent to the UIC Class III Solution Mining Wells that collapsed in July and November of 2008, the OCD identified that it has been deficient in tracking reporting obligations in the past; however, the OCD has recently upgraded its online electronic system to better track operators who are not meeting the reporting requirements as specified in their OCD Discharge Permits. Please plan on submitting reports with required information by the date specified in your discharge permit. Operators undergoing permit renewal will notice changes to the OCD's discharge permit, which will include "Annual Reports" in addition to the Quarterly Reporting requirement(s).

To access your OCD Discharge Permit Online for the date of submittal and required contents of the report(s), please go to OCD Online at <a href="http://ocdimage.emnrd.state.nm.us/imaging/AEOrderCriteria.aspx">http://ocdimage.emnrd.state.nm.us/imaging/AEOrderCriteria.aspx</a> (enter "Order Type" as UICI and your "Order Number"). The OCD has placed a "Quarterly Reporting" and "Annual Reports" thumbnails into each of your online well files and will be scanning all received reports into them upon receipt from now on.

If you have been delinquent in submitting your Quarterly (more recent permits require Annual Reports), a historical review of your production or disposal records will be required in order to provide cumulative injection or disposal information in this year's report.

Please contact me if you have questions or need assistance.

Thank you in advance for your cooperation in this matter.

Copy: Class I (non-hazardous) Disposal Well Files UICI- 5, 9, 8, 8-1 & 8-0 (Quarterly Reporting & Annual Reports)

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: <a href="http://www.emnrd.state.nm.us/ocd/">http://www.emnrd.state.nm.us/ocd/</a> index.htm (Pollution Prevention Guidance is under "Publications")